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An integrated solution for lane level irregular driving detection on 

highways
Rui Sun ⇑, Washington Yotto Ochieng, Shaojun Feng
s (GN
 avail

l of sy
eter/d
d inte
ted IT
h accu
ed info
ositio
 and l
ce Sy

0.5 m accu-racy positioning source is req
detect irregular driving styles.

In the recent years, the researches for the irregular driving detection in the early stage are mainly based on the ve
eal-time driving pattern detection and driver’s physical behavior monitoring.
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1. Introduction

Traffic safety plays an important role in modern society. In 2012, the total casualties in road accidents was 195,723, of
which 1754 were killed and 23,039 were serious injuries (Kilbey, 2013). Abnormal driving maneuvers, including sudden lane 
change and erratic driving due to drowsiness, resulting in more than 90 percent of these accidents (Aljaafreh, 2012). From 
National Highway Traffic Safety Administration (NHTSA), these irregular driving styles could be characterized as weaving, 
swerving and jerky driving. If early detection and warning of irregular driving can be provided, the probability of the accident 
happen will be reduced. Intelligent Transport Systems (ITS) technologies can be applied to realize irregular driving identifi-
cation, with the function of evaluating driving performance, improving driving behaviour and have potential benefits for lane 
control and collision avoidance applications.
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In regard to the researches of vehicle’s driving pattern detection, which uses of different sensors including positioning, 
orientation, velocity and vision to detect vehicle’s motion information. The analysis of the collected data is to find cues of 
irregular driving. Lecce and Calabrese (2008) designed a driving information collection system based on specific sensors and 
GPS receivers and applied pattern matching algorithm to classify driving styles. Chang et al. (2008) developed a vision based 
system with the function of learning the trajectories and longitudinal and lateral velocities of the vehicle based on Fuzzy 
Neural Networks (FNNs) and subsequently calculated the level of danger of the vehicle. Imkamon et al. (2008) devel-oped a 
vision and orientation sensors based method for detecting dangerous driving behaviours. A fuzzy logic system is sub-
sequently used to classify different levels of hazardous driving. Krajewski et al. (2009) used orientation sensors to collect 
steering data and extracted driver’s fatigue information and then used signal processing to capture fatigue impaired patterns. 
Dai et al. (2010) developed dangerous vehicle manoeuvres detection system typically associated with drunk driving using a 
mobile phone with an accelerometer and orientation sensor. The acceleration pattern from sensor readings are matched with 
the typical drunk driving patterns extracted from real driving tests. Sultani and Choi (2010) developed an algorithm for 
detecting and localizing irregular traffic based on video image processing using an intelligent driver model. Saruwatari et al. 
(2012) proposed a vision sensor based method for detecting abnormal driving of vehicles, including meandering, trans-verse 
motion and sudden acceleration or deceleration. The abnormal vehicle motions can be extracted in the sense of group 
behaviour by using a multi-linear relationship in space–time images.

In regard to the researches of driver’s behaviour monitoring, which mainly uses visual or auxiliary systems to monitor the 
driver physical behaviour when driving. Visual observation is an option for monitoring and detecting of fatigue driver. 
Eriksson and Papanikolopoulos (2001) proposed a vision-based approach for diagnosing fatigue driver by monitoring a dri-
ver’s eyes and issuing a warning when the irregular eye closure is detected. Zhu and Ji (2004) developed a two-camera based 
method to predict fatigue with a probabilistic model based on the captured visual cues of drivers, such as eyelid movement, 
gaze movement, head movement and facial expression. Lee et al. (2006) also developed a camera based method to monitor 
the driving status of the driver. The driver’s sight line and driving path are captured by the camera and also the correlation 
between them is calculated. Omidyeganeh et al. (2011) proposed a scheme for drowsiness driver detection based on a fusion 
of eye closure and yawning detection methods. A camera installed in the car is used to capture the driver’s facial appearance 
and the signs of driver fatigue are studied. A warning will send to the driver, once the drowsiness driver state is determined.

Auxiliary systems coupled with the vehicle to detect interactions between the driver and the vehicle to indicate drunk 
driving is also an option for monitoring the driver. Albu et al. (2008) not only used a vision-based system to monitor eye 
conditions in order to detect fatigue while driving but also used an auxiliary force sensor on the accelerator pedal to collected 
the exerted force for monitoring driver fatigue. Heitmann et al. (2001) have developed a multi-parametric approach to moni-
tor and prevent driver fatigue based on various auxiliary sensors, including a head position sensor, an eye-gaze system, a two 
pupil-based system and an in-seat vibration system, for alertness monitoring. Desai and Haque (2006) proposed a system to 
define the level of driver alertness based on the time derivative of force exerted by the driver at the vehicle–human interface, 
such as pressure on the accelerator pedal. Sandberg et al. (2011) have proposed a physiological signals based method for 
abnormal driving detection. The electroencephalography is used to detect brain activity and signs of drowsiness can be 
extracted by analysing of the signal.

From the discussion of literature above, for the researches of monitoring driver physical behaviour and preventing fatigue 
or inattention, vision sensors are always used in the vehicle to monitor the driver. Cameras inside of the vehicle are a poten-
tial safety hazard to the driver by distracting the driver, also performance of the vision sensors is affected by the ambiguous 
road marks and bad weather seriously. For auxiliary system based driver physical behaviour monitoring, the compatibility of 
the system is still a big problem. Furthermore, the complexity and high cost of the system make it difficult to integrate in 
practice. Most of the research is still on either simulations or laboratory conditions with very few field trials. Even some 
research teams have addressed field tests, they generally simply describe the field scenarios without detail results compar-
ison or discussion. For the detection of the irregular driving using a vehicle’s real-time driving patterns, the approaches in the 
literature often come with relatively high sensor or computational costs or have some unacceptable drawbacks, in particular 
some systems are still in an early stage of development without field tests. However, the systems could still be generally 
improved by improved performance of the positioning and orientation detection technology (Krajewski et al., 2009; Dai et al., 
2010).

For all these reasons, it is difficult to realize detection of irregular driving based on driver physical monitoring. However, it 
is comparatively feasible to realize real-time driving pattern based irregular driving detection and the system performance 
could be improved based on the positioning improvement. Furthermore, the literature review has shown that none of cur-
rent algorithms are appropriate for identifying the different types of irregular driving styles. The reason is that the detection 
performance is currently limited by the availability of high accuracy positioning. Also for the current researches, some are 
just focused on the GNSS positioning technology improvement and some are only focused on driving pattern recognition but 
there is rarely a link between the two.

This paper present a work on the GPS and INS integration estimated results to provide high accuracy positioning and 
dynamic parameters estimation for the FIS based irregular driving identification. The rest of the paper is organized as fol-
lows. First, in Section 2, the GPS/INS integration model for the lane level precise positioning and dynamic parameter estima-
tion algorithm that employs Extended Kalman Filter (EKF) and Particle Filter (PF) with relative motion and lane models are 
presented as well as the comparison of the positioning performance of the fusion models. Section 3 then explains the detec-
tion method of driving events that characterize different types of designed driving styles based on FIS using estimated
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integrated results. Finally, evaluation of the designed algorithm on the field experiments and the conclusions obtained from 
them are discussed in Sections 4 and 5.

2. Lane level positioning and precise parameter estimation model

This section describes the lane level positioning and dynamic parameter estimation system based on PF/EKF filters and
precise vehicle motion models on straight and curved lanes. The accuracy of positioning and estimated parameters from 
fusion models are critical for the next section Fuzzy Inference System (FIS) based irregular driving detection. Section 2.1 
describes the PF model design and Section 2.2 describes the EKF model design. Section 2.3 shows the comparison of the 
estimated results from different fusion models for the defined simulation scenarios.

2.1. Particle filter model design

The PF is one of the most applicable filters for sensor fusion. In PF, the probability density is approximated by a number N 
of weighted samples. The steps of PF based lane level positioning are described as follows (Gustafsson et al., 2002).

2.1.1. Initialization
In the designed GPS/INS fusion based lane level precise positioning algorithm, the defined state vector for PF is in (1),
XðtÞ ¼ ð xyvhxabdÞT ð1Þ
where

x, is the X-axis coordinate (in metres) of point o in the local UK National Grid coordinate system 
y, is the Y-axis coordinate (in metres) of point o in the local UK National Grid coordinate system 
v, is the velocity at the heading direction
h, is the heading angle of the vehicle
x, is the vehicle yaw rate
a, is the vehicle acceleration along the heading
b, is the angle between the lane segment and the local British National Grid coordinates
d, is the vehicle lateral displacement

The state vector (1) can be divided into two sub state vectors: vehicle motion vector (2) and lane geometry related vector 
(3). Sub state (2) is for the particle filter cycle calculation and sub state vector (3) is the dependent vector of state vector (2) in 
the calculation.
pðtÞ ¼ ð xyvhxaÞT ð2Þ

qðtÞ ¼ ð bdÞT ð3Þ

In the particle filter operation, the parameters change with time epochs and particles with each parameter within the 

state vector (1) will be expression as.
Xi
t ðt ¼ 0 . . .  n; i ¼ 1 . .  .  nÞ ð4Þ
where

Xi
t , is the parameter within the state vector (1) on the time epoch t with the particle number i.

The filter begins with the initialization of the particles xi
0 of the vehicle motion vector p(t). To realize this, first the local 

coordinate sub-state variables x and y are randomly generated following a Gaussian distribution with the first accepted GPS 
point as the mean value and a standard deviation value according to the GPS a posteriori solution statistics. The initial head-
ing velocity vi

o is set as 0, for the initial position of the vehicle is assumed as static. Since it is assumed that the initial heading 
is along the lane’s direction, the values of h could spread through the range of ½b; p=2 þ b� and the initial xi

0 is 0.

For the initialization of q(t), in the straight road section, b is constant, while in the curved road section bi
0 depends on [xi

0,
yi

0]. bi
0 is the corresponding angle within the local coordinates frame of the lane centre line. di

0 is the minimum 
distance between [xi

0, yi
0] and the lane central line.

The geometry relationship between the vehicle and lane is shown in Fig. 1. 
where

X; Y, is local British National Grid coordinate system 
X0; Y0, is vehicle body coordinate system
O, is the center of the vehicle
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Fig. 1. Geometry relationship between vehicle and lane on a straight lane (i) and curved lane (ii).
h, is the heading angle of the vehicle, which is also the angle between the vehicle body frame and the local British National 
Grid coordinate frame
x, is the vehicle yaw rate
b, is the angle between the lane segment and the local British National Grid coordinates
d, is the vehicle lateral displacement, which is the distance between the O and lane central line

2.1.2. Filter prediction
The prediction model of the p(t) is calculated as follows in Eq. (5):
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a will be different from the vehicle motion models. In this paper, Constant Velocity (CV) and 
Constant Acceleration (CA) models are applied on straight highway motion, while Constant Turn Rate and Acceleration 
(CTRA) and Constant Turn Rate and Velocity (CTRV) models are applied on curved scenarios as they have perform a 
reasonable approx-imation of motions by vehicles on highways with straight and curves separately (Tsogas et al., 2005).

From the geometry relationship of the lane segment, the prediction of qðtÞ can be expressed as:
bi
tþ1 � bi

t ð6Þ

di
tþ1 ¼ di

t þ sinðbi
t ÞD

i
x � cosðbi

t ÞD
i
y ð7Þ
2.1.3. Filter update

The prediction cycle is applied on every input sample. First, the judgment of di is made. The valid di should comply with
the equation jdij < 3HL, where 3HL is 3 times half of the lane width. The reason for defining the threshold of parameter 

acceptance as 3HL is that it is not realistic for the vehicle jumps from current lane to the non-adjacent lane within 0.1 s based

on the current lateral velocity. Assuming the lane width is 3.5 m, 3HL is 5.25 m. Thus, if jdij is larger than 5.25 m, which 
means that the vehicle jumps from current lane to the non-adjacent lane. In that case, the particle is considered as measure-
ment error (Toledo-Moreo et al., 2010).
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If di is within this interval, the prediction parameters of t + 1 are calculated. However, these predictions are only consid-
ered as valid when the position predicted for a particle i is still within the bounds of the lane width. Therefore, after every 
prediction phase, the condition given by the following equation must be verified as below.

If jdi
tþ1j < 3HL is satisfied and the predicted di

tþ1 is accepted, then the other predicted parameters are accepted. If
jdi

tþ1j < 3HL is not satisfied, the other predicted parameters are considered as invalid and the weighting of the particle is thus 
set as wi

0 ¼ 0. The weights of the samples are updated by the likelihood: wi
t ¼ wi

t�1pðYt jXi
tÞ ¼  wi

t�1peðYt � hðXi
t ÞÞ; i ¼ 1; 2; . . .  ; 

N:where

Xi
t , is the parameter within the state vector (1) on the time epoch t with the particle number i. 

Yt , is the measurement for the parameters within the state vector (1) on the time epoch t.

GPS validity is tested after every prediction cycle and used to adjust the predicted particles to output the particle filter 
estimates.

2.1.4. Normalization and resampling
After every update phase, the weights of the particles are modified, and the normalization and resample test phases of a PF 

is relaunched.

2.2. Extended Kalman Filter model design

EKF is also an option for sensor fusion. The EKF is similar to the Kalman Filter (KF) but it can be applied on non-linear 
systems because it linearizes the transformations via the Taylor Expansion (Mohinder and Angus, 2008).

For the system developed in this paper, the EKF state vector, consisting of six parameters, is:
xðtÞ ¼  ð xyvbhxÞT ð8Þ

In this GPS/INS fusion system, the measurement space only includes four parameters of location, velocity and angle rate. 

The measurement vector is:
zðtÞ ¼  ð xyvxÞT ð9Þ
The relationship between measurement vector zðtÞ and state vector xðtÞ is:
zðtÞ ¼  HxðtÞ ð10Þ
The Jacobian of the measurement model H is:
H ¼

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

0
BBB@

1
CCCA ð11Þ
The covariance matrix of measurement noise is:
R ¼

rx
2 0 0 0

0 ry
2 0 0

0 0 rv
2 0

0 0 0 r2
x

0
BBBB@

1
CCCCA ð12Þ
The Jacobian of the measurement model with respect to measurement noise is:
V ¼

@x
@rx

0 0 0

0 @y
@ry

0 0

0 0 @v
@rv

0

0 0 0 @x
@rx

0
BBBBB@

1
CCCCCA ð13Þ
The estimated error covariance P is used together with the Jacobian matrix H and measurement noise covariance R 
together with the Jacobian matrix V to calculate the Kalman gain (Mohinder and Angus, 2008). Once the Kalman Gain K is 
calculated, the system brings in the measured data z to correct the predicted parameters and also the covariance error. After 
correcting the previously predicted values, the system is ready to predict the next position by using the state vector 
equations. The filter also estimates the error covariance of the estimated parameters by using the Jacobian of the system 
model with respect to state A and the Jacobian of the system model with respect to process noise W together with the process 
noise Q as follows.
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For the four vehicle motion models (CV, CA, CTRV, CTRA), each one has its own EKF models. For every prediction, d is
calculated to be the minimum distance between [x, y] and the lane central line.

2.3. Simulation comparison of the positioning results

The simulation is created on the scenarios extracted from the true driving styles on straight and curved lanes. The most 
common irregular driving styles on straight lanes for highway are defined as weaving, swerving and jerky driving, while on 
the curved lane, weaving and jerky driving can occur, but swerving takes the form of over-turning or under-turning. Fig. 2 
shows the defined different types of driving scenarios.

The simulation data generated by the GPS simulator and Matlab is used to feed the EKF and PF filters for the evaluation of 
the positioning results estimation. The details of the data generation is described in Sun et al. (2014). There are two filters
Driving styles: (a) Scenario 1 weaving on straight. (b) Scenario 2 swerving on straight. (c) Scenario 3 jerky driving on straight. (d) Scenario 4 normal
on straight. (e) Scenario 5 weaving on curve. (f) Scenario 6a swerving (over-turning) on curve. (g) Scenario 6b swerving (under-turning) on curve. (h)
o 7 jerky driving on curve. (i) Scenario 8 normal driving on curve (NHTSA, 2010).
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Fig. 3. Integrated estimation positioning results for Scenario 1.

Table 1
Mean positioning error results from model estimated results for straight scenarios.

Mean error comparison (m) EKFCV/EKFCTRV EKFCA/EKFCTRA PFCV/PFCTRV PFCA/PFCTRA

S1 weaving 0.3892 0.3873 0.2523 0.2032
S2 swerving 0.5521 0.5731 0.3363 0.3317
S3 jerky driving 0.5233 0.4910 0.3734 0.3676
S4 normal driving 0.6034 0.5873 0.4865 0.4731
S5 weaving on curve 0.5594 0.4487 0.4027 0.3888
S6a swerving (over-turning) on curve 0.5348 0.4658 0.3824 0.3696
S6b swerving (under-turning) on curve 0.4148 0.4012 0.3650 0.3581
S7 jerky driving on curve 0.7323 0.6720 0.5327 0.4231
S8 normal driving on curve 0.4547 0.4293 0.3870 0.3653
(EKF and PF) and four motion models (CV, CA, CTRV and CTRA), therefore, for the straight lane, the combination of fusion 
model can be EKFCV, EKFCA, PFCV and PFCA. For the curved lane, the combination of fusion model can be EKFCTRV, 
EKFCTRA, PFCTRV and PFCTRA.

By comparing of the integrated positioning results from EKFCV, EKFCA, PFCV and PFCA model estimations, in general, the 
EKF filters produce more noise, while the PF filter estimations are comparatively smooth, see Fig. 3 as an example for the 
integrated estimation positioning results for Scenario 1.

Vehicle mean positioning errors based on all designed model for straight and curved scenarios are shown in Table 1, 
which indicates that all of the fusion models have perform the positioning error below 1 m in all scenarios. Among these 
fusion models, PFCA/PFCTRA model performs the best estimation and makes the mean positioning error below 0.5 m in 
all of the scenarios, while the other models perform mean positioning error between 0.5 m and 1 m in some scenarios.

3. Irregular driving detection

The irregular driving features of the vehicle are extracted based on the defined scenarios. Omega and d, which are the
vehicle’s yaw rate and lateral displacement respectively, representing the vehicle’s manoeuvres (Aljaafreh et al., 2012). In 
order to smooth the noises of the filter estimated values and extract the trend of their changes, Moving Average Deviation 
(MAD) of omega and d, noted as O-indicator and D-indicator respectively are developed to represent the driving features of 
the vehicle. The system to detect irregular driving has to recognize a driving event that characterizes the different driving 
styles on the FIS based irregular driving detection algorithms applied on O-indicator and D-indicator derived from the filter 
estimated omega and d at every time epoch.
7



Fig. 4. Framework of the designed irregular driving detection system.
3.1. System overview

The Framework of the system in Fig. 4 shows the designed lane level irregular driving detection system, which contains 
two main parts. The first part is lane level precise positioning and parameter estimation algorithm. In order to collect the 
vehicle’s driving data, one INS with one gyro and one accelerometer mounted along the vehicle body axis is used to output 
the yaw rate, acceleration and heading angle for the vehicle heading direction. One GPS is used to collect the vehicle’s local 
coordinates and heading velocity. The collected initial position is used to feed the PF/EKF models with the precise vehicle 
motion models to provide the estimated positioning and attitude parameters for the next time epoch for iteration. This part 
has already discussed in Section 2. The second part is irregular driving detection algorithm. It started from the calculation of 
O-indicator and D-indicator based on the first part estimated omega and d. These two indicators are then as the input of the 
FIS for the driving pattern identification. The FIS outputs the risk type indicator. In order to amplify the features of each driv-
ing style, the driving classification indicators are then developed based on the risk type indicators. Finally, by comparison of 
the sorting of calculated driving classification indicator with predefined sorting rules extracted from the reference data, the 
system will output the identified driving style type.

3.2. FIS based detection algorithm

For each designed irregular driving style, the different sorting of the driving classification indicator can present different 
driving styles. In order to pick up the features, the FIS is applied on the O-indicator and D-indicator to output the risk type 
indicator.

The FIS is a widely used pattern matching method for detecting driver behaviour. It maps input to output using fuzzy logic
through combination rules. The membership function of a fuzzy set is a generalization of the indicator function in classical
sets. In FIS, it represents the degree of truth as an extension of evaluation (Zadeh, 1965). The fuzzy inference system consists
of three stages. The first stage is fuzzification, which maps any input to a degree of membership in one or more membership
functions and the input variable is evaluated in terms of the linguistic condition. The second stage is fuzzy inference, which
calculates the fuzzy output. The final step is defuzzification, which is to convert the fuzzy output to a crisp output (Aljaafreh
et al., 2012).
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Based on the output of the risk type indicator values for every time epoch, the total risk type indicator numbers in defined 
risk types are calculated followed by driving classification indicator. The sorting rules extracted from driving classification 
indicators of the reference data is applied to the integrated model estimated driving classification indicator data to judge the 
driving types.

The O-indicator and D-indicator estimated from the fusion model are the input of the FIS system to calculate the risk type 
indicator for each fusion model. Fig. 5 shows the structure of the fuzzy inference system.

Figs. 6 and 7 show the designed membership function for the O-indicator and D-indicator values and risk type indicator in 
straight and curved scenarios. The experience data is used to define the fuzzy values in the membership functions. In Figs. 6 
and 7, O-indicator is the first input of FIS and corresponding fuzzy values are defined to be Small O-indicator (SO), Medium O-
indicator (MO), Large O-indicator (LO) and Very Large O-indicator (VLO). The trapezoidal membership function is used for the 
SO and VLO fuzzy sets and the triangular function is used for MO and BO. D-indicator is the second input of FIS and the 
corresponding fuzzy values are defined to be Small D-indicator (SD), Medium D-indicator (MD), Large D-indicator (LD) and 
Very Large D-indicator (VLD). The trapezoidal membership function is used for the SD and VLD fuzzy sets and the triangular 
function is used for MD and BD. Finally, the system output driving risk type indicator, defined by four fuzzy values A, B, C, D. 
Fuzzy value A means low risk, B means medium risk, C means high risk and D means very high risk. Trapezoidal membership 
function is used for A and D fuzzy sets and the triangular function is used for the B and C fuzzy sets.
Fig. 5. Fuzzy inference system structure.

Fig. 6. Membership function for the straight scenarios.
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Fig. 7. Membership function for the curved scenarios.

Table 2
Rules of FIS for straight scenarios.

O-indicator D-indicator Risk type

SO SD A
MD B
LD C
VLD

MO Any(SD, MD, LD,VLD) C

LO Any(SD, MD, LD,VLD) D

VLO Any(SD, MD, LD,VLD) D
The rules for mapping the O-indicator and D-indicator to the corresponding risk type is based on the experience data.
Tables 2 and 3 show the mapping rules for straight and curved scenarios. Fig. 8 shows the designed FIS results in surface
view, which presents the one pair of O-indicator value and D-indicator value has one corresponding risk type indicator value.

Based on the risk type indicator output of the FIS, the points in each risk type for all the scenarios during the last 5 s are
collected and calculated in Simulink. Table 4 shows the statistics of the number of points in each risk type calculated from
the reference data. It can be seen that each scenario returns one or two dominant risk types in the 5 s sample. If there was
only one dominant risk type for a given scenario containing the most points, it would be straightforward to classify the sce-
narios. However, this is not always the case with two or more risk types having a similar number of points for some scenar-
ios. In order to amplify the features of each scenario, the points in adjacent risk types are combined as shown in Table 5,
effectively resulting in new driving classification indicator for the detection of driving styles. The four parameters in driving
classification indicator are developed based on the sum number of points in adjacent risk types, e.g., AB is the sum number of
risk type A and risk type B; BC is the sum number of risk type B and risk type C; CD is the sum number of risk type C and risk
type D; AD is the sum number of risk type A and D.
10



Table 3
Rules of FIS for curved scenarios.

O-indicator D-indicator Risk type

SO SD A
MD B
LD D
VLD

MO SD B
MD
LD D
VLD

LO SD C
MD
LD
VLD D

VLO SD C
MD
LD
VLD D

Fig. 8. Designed FIS logic in surface view.
Based on the calculation and comparison results of the AB, BC, CD and AD parameters, the sorting rules can be extracted to
represent the feature of each scenario. For example, AB > BC > CD > AD is extracted as the rule for weaving from S1 and
CD > BC = AD > AB is extracted from S7 as jerky driving. Thus, the rules for detecting the features of each of the scenarios
are extracted in Table 6. Based on the sorting rules extracted, the simulated reference episode is generated to test the
performance of the irregular driving detection algorithm in Section 3.3.
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Table 4
Statistic of number of points in risk types indicators for reference data.

Number of points Risk types

Scenarios A B C D

S1 19 31 0 0
S2 15 11 22 2
S3 0 1 11 38
S4 50 0 0 0
S5 8 40 2 0
S6a 0 25 19 6
S6b 10 28 12 0
S7 0 3 22 25
S8 50 0 0 0

Table 5
Driving classification indicators for reference data.

Scenarios AB BC CD AD

S1 50 31 0 19
S2 26 33 24 17
S3 1 12 49 38
S4 50 0 0 0
S5 48 42 2 8
S6a 25 44 25 6
S6b 38 40 12 10
S7 3 25 47 25
S8 50 0 0 50

Table 6
Sorting rules for driving style judgment.

No. Sorting rules Judgment

1 AB > BC >= CD >= AD Weaving/weaving on curve
2 AB > BC >= AD >= CD Weaving/weaving on curve
3 AB > CD >= BC >= AD N/A
4 AB > CD >= AD >= BC Weaving/weaving on curve
5 AB > AD >= BC >= CD Normal driving/normal driving on curve
6 AB > AD >= CD >= BC N/A
7 BC > CD >= AD >= AB Swerving/over-turning (under-turning)
8 BC > CD >= AB >= AD Swerving/over-turning (under-turning)
9 BC > AD >= AB >= CD N/A

10 BC > AD >= CD >= AB N/A
11 BC > AB >= CD >= AD Swerving/over-turning (under-turning)
12 BC > AB >= AD >= CD Swerving/over-turning (under-turning)
13 CD > AD >= AB >= BC Jerky driving/jerky driving on curve
14 CD > AD >= BC >= AB Jerky driving/jerky driving on curve
15 CD > AB >= BC >= AD N/A
16 CD > AB >= AD >= BC N/A
17 CD > BC >= AB >= AD N/A
18 CD > BC >= AD >= AB Jerky driving/jerky driving on curve
19 AD >= AB >= BC >= CD Normal driving/normal driving on curve
20 AD > AB >= CD >= BC Normal driving/normal driving on curve
21 AD > CD >= AB >= BC Jerky driving/jerky driving on curve
22 AD > CD >= BC >= AB Jerky driving/jerky driving on curve
23 AD > BC >= AB >= AD N/A
24 AD > BC >= AD >= AB N/A
25 AB = AD Normal driving/normal driving on curve
3.3. Simulated reference trajectory for the irregular driving detection

The simulated reference episode of irregular driving types are input for the test to find out if the irregular driving detec-
tion algorithm can continuously detect different types of irregular driving. One set of 60 s episode is created to test the
irregular driving detection algorithm. Fig. 9 shows the trajectory of the designed episode. The simulated data includes the
manoeuvres with weaving for 10 s, swerving for 10 s, jerky driving for 10 s and normal driving for 30 s. The separate irregular
driving manoeuvre for the episode test has already been recognized in the previous paper (Sun et al., 2014).
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Fig. 9. Input episode with different driving styles.

Table 7
Detection results for the episode.

Output frequency (Hz) First detection time epoch

Weaving Swerving Jerky driving Normal driving

10 5 s 14.5 s 21.8 s 32.7 s
5 5 s 14.5 s 22 s 33 s
1 5 s 15 s 22 s 33 s
The irregular driving detection results for the episode test are output in 10 Hz, 5 Hz and 1 Hz, see Table 7.
Table 7 reveals several information of the irregular driving detection results for the episode. As the algorithm use back 5 s

data to judge the irregular driving styles, the first irregular driving detection result output time epoch is in the 5 s. From the
comparison of the irregular driving detection output in different frequencies, it is shown that if the output frequency is
higher, the detection of the specific irregular driving can be earlier. For example, if the output frequency is 5 Hz, the first time
to detect jerky driving is in the time epoch 22 s, however, if the frequency is 10 Hz, the first time to detect jerky driving could
be 21.8 s, which is 0.2 s earlier than using 5 Hz output.

Availability and correct detection rate are parameters developed to evaluate the performance of the irregular driving
detection algorithm. Availability is the percentage of the available driving style detection output. Correct detection rate is
the percentage of the correct driving style judgement output. In general, although the episode test results show that every
designed irregular driving styles can be distinguished and detected, there are still some problems exit in the detection of
irregular driving. Fig. 10 is an example of the unavailability in the detection of the irregular styles in 5 Hz output rate.
The driving classification indicator in the blue block forms the sorting rule CD = AD > AB = BC, which cannot output any driv-
ing styles. These kind of unavailability always happen in the changing area from one driving style to another. The availability
and correct detection rate for the episode is shown in Table 8 and it is clear that if the output rate of the system is higher, the
correct detection rate and availability rate will decrease. Thus, choose the proper output rate for required situation is critical.

3.4. Fusion model estimated results for irregular driving detection

From the fusion model estimated results based irregular driving detection in the simulation, the performance is discussed
based on the positioning error levels. The models with the mean positioning estimation errors above 0.5 m are EKFCV,
EKFCTRV, EKFCA, EKFCRA and PFCTRV. EKFCV and EKFCTRV results have wrongly detected swerving/under-turning as jerky
driving or weaving. EKFCA and EKFCTRA models results both have wrongly detected weaving/weaving on curve as swerving/
swerving on curve. Furthermore, EKFCTRA results also have wrongly detected normal driving as weaving on curve. PFCTRV
model results incorrectly detect swerving on curve as weaving on curve. It is obviously that none of the model estimations
results above can be used for the correct detection of the irregular driving scenarios, resulting from the low positioning accu-
racy. PFCV, PFCA and PFCTRA models have the mean positioning estimation error below 0.5 m. All three models based
13



Fig. 10. An example of unavailability in detection of irregular driving.

Table 8
The availability and correct detection rate for the episode analysis with
respect to output rate.

Output rate (s) Availability (%) Correct detection rate (%)

0.1 94.19 97.82
0.5 98.19 98.20
1 98.21 100
estimations have correctly detected different irregular driving scenarios. Thus, from the simulation, it can be concluded that
0.5 m mean positioning accuracy is required for the irregular driving detection algorithm.

In the next section, the field test is carried out to validate the designed lane level high accuracy positioning based irregu-
lar driving detection algorithm. The PFCA and PFCTRA model perform the best positioning estimations in the simulation will
be applied on the true GPS data collected on the highway.
4. Field experiment and analysis

The field test is based on the real time single reference Real Time Kinematic (RTK) GPS data filtered with PFCTRA and PFCA
estimation to input into the FIS for detection of irregular driving. The road test includes the design of the data collection
scheme and its execution including the analysis of the results of the detection of irregular driving.
4.1. Data collection

The designed driving routes for the experiment are on the M4 highway from Ravenscourt Park to Heathrow Terminal 3
and then back to Imperial College London. The irregular driving styles are conducted on the two routes captured. For the first
route in the east–west direction, data were captured for 7 min, involving weaving and jerky driving on a straight lane and
jerky driving on a curved lane. For the second route in the west–east direction, data were captured for 3 min, involving
swerving and weaving on a curved lane. Therefore, in order to distinguish different types of irregular driving, total five ses-
sions are defined in Table 9. All the sessions are carried out on the open area when there was no passing by vehicle or trees
on the highway, that is to ensure the safety of the experiment and also the relatively high quality RTK measurements
obtained from the GPS. As the experimental vehicle is old and potentially dangerous for some types of manoeuvres, swerving
was attempted only once.

For the irregular driving data collection, the vehicle was driven at speeds ranging from 70 km/h to 120 km/h and the data
is collected at 10 Hz. The installation of the various equipment is shown in Fig. 11. The specifics of the equipment used in the
experiment were as follows.
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Table 9
Definition of sessions.

Session name Start time (UTC) End time (UTC) Driving type

Session 1 15:51:14.0 15:51:20.8 Weaving on straight
Session 2 15:51:41.5 15:51:50.4 Jerky driving on curve
Session 3 15:57:13.9 15:57:23.5 Jerky driving on straight
Session 4 16:12:10.9 16:12:16.1 Swerving on curve
Session 5 16:12:36.4 16:12:43.4 Weaving on curve

Fig. 11. On board equipment.
� Leica Viva GNSS GS15 receiver for real-time GPS data collection, including the position and speed of the vehicle.
� I-Mar RT-200 INS for the real-time attitude data collection, including heading angle and yaw rate of the vehicle. The sen-

sor have the function of output GPS/INS measurements, which were post-processed by forward and backward processing
using Inertial Explorer for a high accuracy reference.

For the collected irregular driving styles, the post-process GPS/INS measurements are directly feed to irregular driving
detection algorithm to make the reference. The measurements output from Leica Viva GNSS GS15 is to feed the PFCA/
PFCTRA model for positioning and dynamic parameter estimation and then the estimated results are used for irregular driv-
ing detection algorithm.

Besides the collection of irregular driving trajectory data, another important issue is to get the lane’s central line data in
the field test. In this thesis, the coordinates information of lane’s central line is collected afterwards by the vehicle with i-Mar
RT-200 INS (20 Hz output rate) driving along the middle of the lanes, on which the irregular driving are conducted. The post-
processed GPS/INS measurements for the central line are recognized as the lane’s central line coordinates information. The
lateral displacement of the vehicle will be calculated by the same method as in simulation, which is searching for the nearest
two points of the central line data to the vehicle’s location and then calculate the perpendicular distance to the straight line
containing these two points. Therefore, the calculated perpendicular distance is the lateral displacement of the vehicle.
4.2. Reference data for irregular driving detection

The post-processed data collected by the high-grade integrated system on the routes are considered as the reference data
in the field test. For the defined sessions, the calculated O-indicator and D-indicator from the reference data are feed to the
FIS model to output the risk type indicator values and driving classification indicator values in three output rates (1 Hz, 5 Hz
and 10 Hz) for both routes. The example of the calculated driving classification indicator values from the reference data for
the first 5 s is in Table 10. It shows that the irregular driving is correctly detected in the first five seconds sample.
Table 10
Driving classification indicators for the first five seconds of five sessions from reference data.

Sessions Five seconds of sessions AB BC CD AD Judgement

1 15:51:14.0–15:51:18.9 47 44 3 6 Weaving on straight
2 15:51:41.5–15:51:46.4 0 31 50 19 Jerky driving on curve
3 15:57:13.9–15:57:18.8 0 9 50 41 Jerky driving on straight
4 16:12:10.9–16:12:15.8 29 31 21 19 Swerving on curve
5 16:12:36.4–16:12:41.3 50 41 0 9 Weaving on curve
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Table 11
The first time epoch of irregular driving detection for sessions based on the output frequency from reference results.

Output frequency (Hz) First detection time epoch

Session 1 Session 2 Session 3 Session 4 Session 5

10 15:51:16.2 15:51:45.8 15:57:15.3 16:12:14.5 16:12:39.7
5 15:51:16.5 15:51:46.0 15:57:15.5 16:12:14.5 16:12:40.0
1 15:51:17.0 15:51:46.0 15:57:16.0 16:12:15.0 16:12:40.0

Fig. 12. RTKNav processing.
The first detection time epoch of different types of irregular driving based on the various output rate is shown in Table 11.
It is clear that all of the sessions can be detected within the five seconds of the irregular driving happen. The reference data
based field test results show the irregular driving detection can be detected on the routes. It also indicates that the higher
output rate, the earlier detection time epoch, which is identical with the simulation results.

From the post-processed GPS/INS combined reference data based irregular driving detection results, it is clear that the
defined irregular driving styles can be distinguished on a highway. In Section 4.3, the RTK GPS measurements with PFCA
and PFCTRA models used for the detection of irregular driving detection will be discussed.

4.3. Fusion results for irregular driving detection

The NovAtel RTKNav software has been used to process the collected Leica GPS receiver data. The output contains the
position and velocity of the vehicle at each time epoch at 10 Hz. The quality of positioning was measured in 4 types: type
0 for no solution, type 1 for single point positioning, type 2 for DGPS positioning, type 3 for PPS DGPS positioning, type 4
for RTK ambiguity fixed positioning and type 5 for RTK float ambiguity solution. Fig. 12 shows the reply mode based real-
time simulation processing for the collected data in RTKNav software. The reply mode can simulate the real situation with
the same time duration.

From the RTKNav output for the positioning quality solutions. 84.04% of total points were determined with the RTK fixed
ambiguity solution in route 1, which is claimed to have sub-meter mean positioning accuracy. However, in route 2, only
51.53% of the points were determined with the RTK fixed ambiguity solution. As it is discussed in the simulation, 0.5 m
positioning accuracy is required for the irregular driving detection, current RTKNav output positioning is obviously not accu-
racy enough. For this reason, the PFCA and PFCTRA models have shown the smallest errors in the straight and curved
positioning estimation in the simulation is used for the real sessions to improve RTK GPS positioning accuracy.

From Fig. 13, it is clear that the filter estimated results are closer to the reference position solutions, demonstrating bene-
fit of filtering to the improvement of the accuracy of the RTK GPS results. Table 12 shows the statistics of the positioning
16



Fig. 13. Comparison of RTKNav output GPS positioning and PFCA/PFCTRA estimated positioning results with respect to reference.

Table 12
Statistics of the positioning accuracy.

Name Time Positioning type Error in 0–0.5 m Error in 0.5–1 m Error in 1–1.5 m Error Above 1.5 m Total

Route 1 15:51:00–15:57:59.9 RTKNav output points 48 1498 2633 20 4199
PFCA/PFCTRA estimated points 305 3455 422 17 4199
RTKNav output Percentage 1.14% 35.68% 62.70% 0.48% 100%
RTKNav output mean error 0.9664 (m)
PFCA/PFCTRA estimated percentage 7.26% 82.28% 10.06% 0.40% 100%
PFCA/PFCTRA estimated mean error 0.6214 (m)

Route 2 16:10:00–16:12:59.9 RTKNav output points 96 481 1179 43 1799
PFCA/PFCTRA estimated points 375 1116 277 31 1799
RTKNav output Percentage 5.33% 26.72% 65.56% 2.39% 100%
RTKNav output mean error 1.0090 (m)
PFCA/PFCTRA estimated percentage 20.84% 62.03% 15.41% 1.72% 100%
PFCA/PFCTRA estimated mean error 0.7883 (m)
performance for route 1 and route 2. It is obviously that PFCA/PFCTRA model estimated positioning solutions have signifi-
cantly improved the positioning accuracy compared to RTKNav output results, which indicate that the mean positioning
error in route 1 is reduced to 0.6214 m from 0.9664 m and the mean positioning error in route 2 is reduced to 0.7883 m from
1.0090 m. The percentage of measurements positioning errors within 0–0.5 m in route 1 is increased from 1.14% to 7.26%
based on the PFCA/EKFCTRA estimations, meanwhile, the corresponding percentage for route 2 is increased from 5.33% to
20.84%. Furthermore, from the analysis of positioning accuracy against the time epochs of the defined sessions, it shows that
the mean positioning error after PFCA/PFCTRA model applied for all the 5 sessions are below 0.5 m.

Based on the PFCA/PFCTRA estimated positioning results, the 5 s example of driving classification indicator and
judgement from the PFCA/PFCTRA estimated results are presented in Table 13. In the example of the first five seconds of
the five sessions, the detection of different types of irregular driving results are identical with the reference data based
irregular driving detection results.

The first time epoch for detection of irregular driving manoeuvres based on the PFCA/PFCTRA estimated results in
Table 14 performs similar results with the reference data, which means that the PFCA/PFCTRA estimated results are capable
of distinguishing defined sessions. The comparison of the availability and correct detection rate of the irregular driving
detection algorithm with respect to the output rate is shown in Table 15. Generally, the availability and correct detection
rate of the irregular driving detection algorithm decrease as the output rate increase. The availability based on the
PFCA/PFCTRA estimated results is slightly lower than the availability from the reference results. The correct detection rate
from PFCA/PFCTRA estimations is significantly lower than the reference, as the PFCA/PFCTRA estimations have more error
than the reference.

From the analysis of the sessions above, the 0.5 m positioning accuracy requirement for the irregular driving detection
algorithm is validated in the field test. However, there are a number of open issues associated with real testing. Due to
low quality satellite signal especially during the time interval just after crossing an over-bridge, the collected trajectory data
on the initial time for recapture of the signal is a bit fluctuate. Similar situation also occurs as a result of vehicle passing by
17



Table 13
The example of driving classification indicator for the first five seconds of five sessions from PFCA/PFCTRA estimated data.

Session AB BC CD AD Judgement

1 49 46 1 4
2 0 27 49 23
3 0 5 50 45
4 27 31 25 20
5 48 44 2 6

Weaving on straight 
Jerky driving on curve 
Jerky driving on straight 
Swerving on curve 
Weaving on curve

Table 14
The first time epoch of irregular driving detection for sessions based on the output frequency from PFCA/PFCTRA estimated results.

Output frequency (Hz) First detection time epoch

Session 1 Session 2 Session 3 Session 4 Session 5

10 15:51:16.4 15:51:45.9 15:57:15.3 16:12:14.8 16:12:39.6
5 15:51:16.5 15:51:46.0 15:57:15.5 16:12:15.0 16:12:40.0
1 15:51:17.0 15:51:46.0 15:57:16.0 16:12:15.0 16:12:40.0

Table 15
The comparison of availability and correct detection rate from the PFCA/PFCTRA estimated results and reference results with respect to different output rates.

Output rate (s) Availability (PFCA/PFCTRA 
estimated) (%)

Availability (reference) (%) Correct detection rate
(PFCA/PFCTRA estimated) (%)

Correct detection
rate (reference) (%)

0.1 86.13 87.12 79.82 87.35
0.5 92.35 93.27 89.20 94.05
1 94.21 95.34 94.71 96.75
proximate objects such as large lorries and trees. These problems results from the GPS signal weakness, although the PFCA/
PFCTRA estimated GPS positioning improves accuracy, however, due to the low quality measurement data, it is still impos-
sible to make all of the measurement positioning accuracy below 0.5 m, which is the positioning accuracy requirement for 
the irregular driving detection algorithm. That is also the reason why the correct detection rate for the PFCA/PFCTRA estima-
tion based irregular driving detection algorithm is much lower than the reference especially in high rate output mode. For 
the future work, the Trimble BD910 receiver module, which is claimed to be capable of providing centimeter moving 
positioning accuracy, may be used to evaluate if the positioning results and irregular driving detection performance could 
be improved.
5. Conclusion

This paper presents a novel integrated solution for lane level irregular driving detection on the highways. The PFCA/
PFCTRA evaluated as the best performance fusion model for GNSS/INS integration during the simulation is further verified in 
the real road test, the results show that the developed PFCA and PFCTRA model have improved the accuracy of the RTK GPS 
measurements and based on the 0.5 m positioning accuracy, the defined weaving, swerving and jerky driving sessions can be 
detected correctly on the highway.
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