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The Kirchhoff approximation (KA) for elastic wave
scattering from 2D and 3D rough surfaces is critically
examined using finite element (FE) simulations
capable of extracting highly accurate data whilst
retaining a fine-scale rough surface. The FE approach
efficiently couples a time domain finite element solver
with a boundary integration method to compute
the scattered signals from specific realizations of
rough surfaces. Multiple random rough surfaces
whose profiles have Gaussian statistics are studied
by both Kirchhoff and FE models and the results are
compared; Monte Carlo simulations are used to assess
the comparison statistically. The comparison focuses
on the averaged peak amplitude of the scattered
signals, as it is an important characteristic measured
in experiments.

Comparisons, in both 2D and 3D, determine the
accuracy of Kirchhoff theory in terms of an empirically
estimated parameter σ2/λ0 (σ is the root mean
square value, and λ0 is the correlation length, of
the roughness), being considered accurate when this
is less than some upper bound c, (σ2/λ0 < c). The
incidence and scattering angles also play important
roles in the validity of the Kirchhoff theory and it is
found that for modest incidence angles of less than
30o the accuracy of the Kirchhoff approximation is
improved even when σ2/λ0 > c. In addition, the
evaluation results are compared using 3D isotropic
rough surfaces and 2D surfaces with the same surface
parameters.

c© The Author(s) Published by the Royal Society. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.&domain=pdf&date_stamp=
mailto:f.shi12@imperial.ac.uk


2

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

1. INTRODUCTION
The Kirchhoff approximation (KA) is the classical methodology often used to calculate the
scattering behavior from rough surfaces. It is widely used in many fields, such as underwater
acoustics [1], radar detection [2], and seismology [3,4], to produce fast predictions of statistics for
the scattering of waves via a Monte Carlo approach. For elastic media there is strong interest in
Nondestructive Evaluation (NDE) and ultrasonics in applying the Kirchhoff model to understand
the scattering behavior from rough defects as this is of critical importance in assessing the
structural integrity of, for instance, components in the nuclear industry. In that area early work
by Ogilvy [5] studied the effects of roughness on scattered wave amplitude-based and time-based
sizing techniques, and concluded that careful interpretation of measured data is required when
roughness is present. More recently, Zhang et al. [6] have investigated the effect of roughness and
inclined angles on sizing the defect using the ultrasonic array imaging with the total focusing
method (TFM). Given the wide ranging use of Kirchhoff theory to estimate defect size it is natural
to want to constrain, or determine, the range of this uncertainty; this is just one example amongst
many where clarity over the KA range of validity is required.

It is well known, as pointed out by Ogilvy [7], that Kirchhoff theory is a high
frequency approximation and its accuracy depends on many factors (surface roughness, grazing
incidence/scattering angles, etc.). It is therefore important to find the range of validity, and when
the use of KA should be expected to be reliable, particularly as it is used for safety critical
inspection. Historically there have been several attempts to evaluate the accuracy of KA, and
Ogilvy provided a detailed summary in her book [7]. For instance, in [8], Ogilvy implemented a
variational principle to quantify the accuracy of the scalar KA. Another evaluation was provided
by Thorsos [1] comparing the boundary integration method and acoustic Kirchhoff theory using
random Gaussian surfaces. The conclusion was that the correlation length λ0 is the most critical
parameter and the root mean square (RMS) σ also affects the accuracy of the Kirchhoff model.
A similar study was extended to a Pierson-Moskowitz sea surface [9] and the KA was shown to
accurately predict the incoherent scattering near the specular direction for incident grazing angles
as low as 10o; this is typical of the impressive accuracy and utility that has led to the widespread
use of Kirchhoff theory.

The above examples are all for scalar problems, and the validity of the vector wave KA
(occurring in electromagnetics and elastodynamics) differs from the scalar case. The difference
is because restrictions on surface properties that arise from effects such as shadowing and
multiple scattering can be made more severe by mode conversion, into bulk waves and surface,
or interfacial, waves. Chen and Fung [10] investigated electromagnetic wave scattering from
rough surfaces by the KA and the moment method finding that electromagnetic Kirchhoff theory
provides good agreement over small angles of incidence when kσ is less than 0.2 and kλ0 is less
than or equal to 2.0. Here k is the incident wavenumber. Robertsson et al. [3] compared the elastic
KA with the finite difference method (FDM) and the spectral element method (SEM) with an
application in reflection seismology. In this work, some discrepancies between the KA and the
other two methods were shown particularly in terms of amplitudes. Elastic Kirchhoff theory was
also investigated in connection with the application in NDE by Roberts [11], who compared it
with the boundary element (BE) method. More recently, Zhang et al. [12] calculated the scattering
matrix from Gaussian rough defects in comparison with the finite element method and concluded
that the elastic KA is valid with the roughness σ ≤ 0.3λ and λ0 ≥ 0.5λ at incidence and scattering
angles over the range from -80o to 80o.

However, to the best knowledge of the authors, all of these previous research papers
regarding the range of validity of the Kirchhoff theory, especially in the elastodynamic regime,
are only based on 2D rough surfaces or at most 2.5D (corrugated) surfaces due to limitations
in the simulation methods used. We are now in a position to sidestep these limitations and
perform highly accurate numerical simulations in 3D due to recent advances such as hybrid
methods [13,14]. We have been motivated to explore the validity of Kirchhoff theory in 3D



3

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

θi θs 

Incident plane wave 

x 

z 

Scattering wave 

z = h(x) 

Stress free  

Figure 1. Sketch of the scattering geometry: Plane wave in an elastic material incident on an infinitely long surface with

stress-free boundary condition.

as researchers developing modelling tools using 3D KA for NDE in the power industry have
observed significant differences of several dB between experimentally measured reflections from
rough defects and KA simulations of the same cases [15]. These discrepancies arise because
surface scattering in a real inspection is an inherently complex process, involving phenomena
such as mode conversions, surface waves and shadowing, which are not at all included in the
Kirchhoff approximation. These phenomena are known to cause the greatest errors when the
angle of incidence and the height of the roughness are large, and are also expected to be different
for 2D and 3D. Therefore, to gain a comprehensive understanding of the performance of the 3D
Kirchhoff theory on random rough surfaces, with height variations in both x and y directions, it is
necessary to actually simulate the full 3D problems. Motivated by the experimental observations,
and the apparent discrepancies with the KA in elasticity, we carefully examine the range of
validity of both the 3D and 2D elastic KA by comparison to a reference numerical method. Using
an empirical procedure the ratio σ2/λ0 is found to be important in determining the region of
validity of the KA, and this ratio has different upper bounds in 2D and 3D. In addition the incident
angle also affects the performance of the KA.

This paper is organized as follows: Section 2 introduces the numerical models, including the
rough surface profile, the Kirchhoff model and the finite element boundary integration method
used as a reference for comparison. Section 3 describes details of the simulations in both 2D and
3D. Error analysis in 2D and 3D is discussed in Section 4, and the concluding remarks are made
in Section 5.

2. NUMERICAL MODELS
We intend to simulate, as closely as possible, the scattering of a plane wave from an infinite rough
surface and the scattering geometry (in 2D) is depicted in Fig. (1). The incident and scattering
angles are denoted as θi and θs, respectively, and a stress-free boundary condition is assumed
along the rough surface.
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Figure 2. 3D isotropic Gaussian rough surface profiles. (a) σ = λp/6, λ0 = λp/2. (b) Height distribution of the surface

shown in (a) and the corresponding Gaussian fit curve. (c) σ = λp/3, λ0 = λp/2. (d) σ = λp/6, λ0 = λp/4.

(a) Gaussian random rough surface
The surface of the defect is represented as ’rough’ in the sense that the surface height data obeys
a certain statistical distribution, and these realistic surface profiles are generated using some
statistical parameters. Gaussian random surfaces were commonly used historically [1,16], and
also some fatigue cracks are found experimentally to have a Gaussian spectrum [12]. Therefore
we use Gaussian surfaces herein to find the region of validity of KA. Fig. (2) shows a typical 3D
isotropic (the roughness varies in the same manner in both x and y directions) Gaussian rough
surface profile, with the mean value of height data h(x, y) being zero. The probability density
function p(h) is used to describe the statistical distribution of the height data, which is a Gaussian
function in this study:

p(h) =
1

σ
√

2π
exp

(
−h

2(x, y)

2σ2

)
(2.1)

σ is the RMS of height and the empirical formula to estimate σ is then given by:

σ=
√
<h2 >=

√√√√ 1

N

N∑
i=1

h2i . (2.2)
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The RMS value determines the height scale of the surface. In addition, the lateral variation of
surface height is described by the correlation function which for a Gaussian surface is

C(R) =
<h(r)h(r + R)>

σ2
= exp

[
−
(
x2

λ2x
+
y2

λ2y

)]
. (2.3)

In (2.3) λx and λy are called the correlation lengths in the x and y directions, as distances over
which the correlation function falls by 1/e; we assume an isotropic rough surface hereafter,
implying λx = λy = λ0. In this isotropic case the correlation function simplifies to:

C(R) = exp

(
−R

2

λ20

)
(2.4)

with R2 = x2 + y2.
The commonly used moving average method [16] is utilized to generate the rough surface

by controlling the RMS value σ and the correlation length λ0. They are in units relative to
the compressional wavelength λp. This method first produces a series of uncorrelated random
numbers that are convolved with a set of weighting functions to calculate the required surface
height data h(x, y). Fig. (2)(a) and (b) show one realization of a 3D Gaussian rough surface and the
corresponding height distribution function. The effect of changing σ and λ0 on the roughness is
clearly seen in Fig. (2)(c) and (d), compared with the original surface profile in Fig.(2)(a). It should
be noted that each generated realization of the surface profile is not identical given the random
nature of the surface. However, for a specific σ and λ0, all realizations should follow the same
statistical parameters and can be classified into the same category. In later sections Monte Carlo
simulations are run for different categories of rough surfaces, and a general rule with respect to
the statistical parameters regarding the validity of the KA is obtained.

(b) Finite element boundary integration approach
The finite element method is a very general numerical tool that is highly effective for elastic wave
problems, and we use it as a reference against which to evaluate the accuracy of the Kirchhoff
theory. However, full 3D FE modelling is very computationally expensive and even the 3D free
meshing of the irregular surface depends on the irregularity of the defect shape. To overcome
these issues, that have limited previous studies to 2D or 2.5D simulations, we use a state-of-the-
art finite element boundary integration method implemented in a GPU-driven software package
Pogo [17], with a mixed meshing algorithm in 3D. This package is sophisticated in its use of
computer hardware, algorithms and in utilising hybrid methods. Efficient and accurate Monte
Carlo simulations using the FE method in 3D are performed; for brevity the full details of the
methodology are not included here as they are given in [13].

The FE model to calculate the scattering from a rough surface when internal waves are
incident, is shown in Fig. (3). A rough backwall is surrounded by smooth surfaces extended into
an absorbing region [18]. The smooth transition between the rough part and the smooth part is
achieved by multiplying a spatial Hanning window to the whole bottom surface. A plane P wave
is excited by forcing along a line located just above the rough backwall. Specific time traces of
forces, which are calculated from a finite difference time domain method (FDTD) using a modified
forcing approach [19], are fed into each excitation node. This approach was initially designed to
calculate forcing signals to excite the correct incident waves inside a rectangular box. Here we
simply use the code to obtain the forces on one side of the box, denoted as the excitation line. It
should be noted here that the two tips of the excitation line need to be buried into the absorbing
region to prevent any unwanted circular-crested waves, which would otherwise be generated
from the two ends.

After executing the FE computation in the local box, the boundary displacements recorded at
the rough surface are used in the Helmholtz integration with a stress-free boundary condition [20]
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(a) (b) 

Figure 3. Sketches of the finite element boundary integration model to calculate the scattering waves from a rough

backwall. (a) 2D model. (b) 3D model.

to calculate the scattered waves:

usck (R) =

∫
S
Σijk(|R− r|)ui(r)nj(r)dS(r) (2.5)

where Σijk is the stress Greens tensor, ui is the ith component of the total displacement, nj is
the jth component of the unit normal vector surface pointing towards the observation point at R,
and r represents the position of the surface point.

With a far field approximation, Eq. (2.5) can be simplified as:

usc(R) =−ikp
∫
S

e(ikpD)

4πD
Up(r,D)dS(r)− iks

∫
S

e(iksD)

4πD
Us(r,D)dS(r). (2.6)

Here

Up(r,D) =

[
(u · n)

(
1−

2k2p

k2s

)
+

2k2p

k2s
(u · D̂)(n · D̂)

]
D̂

Us(r,D) = (n · D̂)u + (u · D̂)n− 2(u · D̂)(n · D̂)D̂

(2.7)

Before using the boundary displacements in Eq. (2.6), the Hanning window function is
applied to them, to reduce the ’edge effects’ in the approximation of an infinite surface. In 2D
a popular way to approximate plane wave scattering from a truncation to an infinite surface is to
use a tapered plane wave [21]. In this approximation the half beam width must be much smaller
than the surface length, but roughly larger than 3λ to eliminate the tip effects. Unfortunately in
3D it is difficult to satisfy both criteria simultaneously due to the limited size of the 3D surface
that can be simulated. Our approach is to apply a Hanning window to smooth the boundary
displacement and, although this does not completely cancel the circular-crested waves from the
edges, it does mitigate the effect substantially.

In practice Eq. (2.6) is implemented in the frequency domain and the results are synthesized
back to the time domain to obtain the scattering signals using the inverse Fast Fourier Transform
(IFFT). The model is extended to 3D by replacing the FE rectangular box with a cubic box, the 2D
surface with a 3D surface and a source line with a source plane, as shown in Fig. (3)(b). Note that,
for brevity, the absorbing region in 3D is not drawn here.
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Figure 4. Sketch of the Kirchhoff model and the local view of the Kirchhoff approximation at one surface point.

(c) Elastic Kirchhoff model
The Kirchhoff model with a rough surface in the x-y plane is illustrated in Fig. (4) . The KA
assumes that the motion of a point on the surface is the same as if the point were part of an
infinite plane insonified by the incident wave, as depicted in the zoom-in of Fig. (4). The total
displacement at this point is calculated as a summation of the incident wave and the reflected
compressional(P) and shear(S) waves:

ut = u0(d0 +Appdp +Apsds). (2.8)

Here ut represents the total displacement, u0 is the amplitude of the incident P wave,App andAps

are reflection coefficients of P and S waves respectively and d0, dp and ds are the displacement
polarization vectors for the incident P and reflected P/S waves. The same Hanning window as
implemented in the FE method is also applied to smooth the total displacement from KA to
guarantee a fair comparison. By substituting the total displacement into Eq. (2.6), the scattering
displacement is computed explicitly in the far field.

3. SIMULATIONS IN 2D AND 3D
In this paper, although we mainly investigate the compressional wave incidence/scattering case
the method can also equally be applied to study shear wave scattering. For the simulations shown
we use the material in the bulk medium to be Aluminium with Young’s modulus of 70GPa,
density of 2700kg/m3 and Poisson’s ratio of 0.33. Thus the compressional wave speed is 6198m/s,
and the shear wave speed is 3122m/s. The surfaces used follow the Gaussian distribution, which
is generated by the moving average method discussed in Section 2. In 2D, 15 different rough
surface profiles are tested with RMS σ = λp/8, λp/6, λp/5, λp/4 and λp/3, and correlation length
λ0 = λp/2, λp/3 and λp/4. While in 3D, 10 rough surface profiles are used with the same RMS
values as those of the 2D cases, and with correlation lengths λ0 = λp/2 and λp/3. In the 3D case
the example with λ0 = λp/4 is not used because this is too demanding for the 3D free-meshing
algorithm which tends to fail when such a small correlation length is tested, and it should be noted
that despite the efficiencies of the methodology, these calculations remain extremely demanding
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Figure 5. Hilbert transformed normal pulse echo scattering signals from one realization of surfaces with different

roughness. (a) σ = λp/8, λ0 = λp/2. (b) σ = λp/6, λ0 = λp/2. (c) σ = λp/5, λ0 = λp/2. (d) σ = λp/4, λ0 = λp/2.

(e) σ = λp/3, λ0 = λp/2.

in terms of computer resources. Numerous simulations are run with incidence angles θi ranging
from 0o to 30o to calculate scattering signals with θs from -90o to 90o. The distance from the surface
to the far field projection point is 50mm (≈ 32λp). For each roughness, 50 realizations of surfaces
are generated and Monte Carlo simulations are performed to obtain a statistically meaningful
result for comparison between the KA and the FE method. The number of realizations is chosen
by considering the conflicting requirements of both the statistical stability and the computational
cost, especially in 3D. In NDT inspection scenarios we utilise the amplitude of the scattering
signal because the amplitude directly determines the probability of detection [22]. The statistical
parameter used for comparison is therefore the ensemble average of the peak of the Hilbert
transformed scattered signals.
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Figure 6. Comparison of the averaged peak amplitude of the scattering signals from 50 realizations between 2D FE and

KA when θi = 0o. (a) σ = λp/8, λ0 = λp/2. (b) σ = λp/6, λ0 = λp/2. (c) σ = λp/5, λ0 = λp/2. (d) σ = λp/4, λ0 = λp/2.

(e) σ = λp/3, λ0 = λp/2. (f) Mean value and the standard deviation of the error when θi = θs = 0o.

(a) Simulations using 2D rough surfaces
Simulations are first run using 2D surfaces and the corresponding FE model is meshed by
linear triangular elements (equivalent to CPE3 in Abaqus (Dassault Systemes Simulia Corp.,
Providence, RI)) with an element size of λp/30. From earlier studies [23] this element size is
sufficient for the convergence requirement in this study. With a proper partition, only the region
surrounding the rough backwall is free meshed and the remaining region can be regularly
meshed. A five-cycle Hanning windowed compressional wave with center frequency of 4MHz
is used and the length of the 2D rough surface is about 5.2λp. The dimension of the FE
domain including the absorbing region is 14.8×9.4 mm2 ≈9.6λp×6.1λp), and the thickness of
the absorbing layers is 2.4mm (≈1.5λp).

For each scattering angle the compressional displacement is decomposed from the total
displacement by using up = uxsin(θs) + uzcos(θs). Fig. (5) shows a set of plots of Hilbert
transformed time traces of scattering signals from one realization of surfaces when θi = θs = 0o,
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with increased RMS values and a fixed correlation length. The amplitude is shown on a linear
scale, and it is divided by the peak of the normal pulse echo response from a smooth surface
of the same size. From Fig. (5) , with a positive increment of the roughness, the amplitude
of the scattering waves decreases significantly. In addition, the scattering waveforms become
more complicated and a clear second arrival can be seen around 17µs. This second arrival
is the mode converted shear wave because it matches the correct arrival time, which equals
to 4mm/(6198m/s) + 50mm/(3122m/s) = 16.7µs. As shown in Fig. (5)(a) to (d), the Hilbert
transformed scattering signals calculated from KA agree well with those from the FE method,
when σ is smaller than λp/4. Such good agreement can no longer be seen in Fig. (5)(e), as the
roughness increases to σ = λp/3, indicating that KA then becomes inaccurate.

Taking the mean value of the peak of these time traces from all realizations, the error between
the KA and the FE across all scattering angles can be more accurately demonstrated by comparing
the scattering patterns as in Fig. (6). For comparison the scattering pattern from a smooth surface
with the same dimension is also shown. Only one curve is seen because the KA and the FE predict
the same result for a smooth surface. Note that the angular spread is caused by both the finite
length of the crack and the presence of the roughness. The amplitude is shown on the dB scale,
and the reference is again the peak of the normal pulse echo response from a smooth surface. If
more realizations are run we would expect the graph to become symmetric about θs = 0o. If the
tolerance of error is set to be 1dB, as commonly used in NDE, the range of the scattering angle θs
for which KA is acceptable is from -70o to 70o when σ≤ λp/4. However, if the RMS σ increases
to λp/3 then, even at the specular direction the KA no longer matches with the FE. In addition,
at near specular directions the KA underestimates the amplitude but at near grazing angles it
overestimates the amplitude compared with the FE results; this is because multiple scattering
phenomena are neglected in the KA. The consequences of neglecting the multiple scattering is
that less energy is reflected back to the normal, or near normal, scattering angles and more energy
than expected is distributed at near grazing angles. Fig. (6) (f) shows that both the mean absolute
value and the standard deviation of the error at the normal backscattering direction increase as σ
increases. The mean absolute error and the standard deviation are calculated using the following
equations:

Ē =
1

N

N∑
n=1

En =
1

N

N∑
n=1

|AKA
n −AFE

n |

std(E) =

√√√√ 1

N

N∑
n=1

(En − Ē)2

(3.1)

Here Ē is the mean absolute error, En is the error for one realization, and N is the number of
total realizations. AKA

n and AFE
n are the scattering amplitudes calculated from KA and FE for

one realization respectively. std(E) is the standard deviation of the error.

(b) Simulations using 3D rough surfaces
The 2D simulation results shown above are equivalent to 3D models using corrugated surfaces
which have a height variation only in the x direction. Such simplifications have been performed
in the past to ease computational demands [1,8,12], but in reality all defects have roughness in
two dimensions. Although the range of validity for the 3D KA might, intuitively, not differ from
the 2D KA much, some discrepancy between the two is expected given we now have roughness
in one more direction.

The FE model as discussed and implemented with a 2D surface is extended to three
dimensions with minor modifications. The 3D CAD software Rhino (Robert McNeel & Associates,
Seattle, WA) was implemented to build the rough surfaces as shown for example in Fig. (7).
The dimension of the rough surface is 5×5mm2, that is approximately 3.3λp×3.3λp. The surface
is created by spline interpolating the surface point cloud generated using the moving average
method. Restrictions are included in the interpolation algorithm so that the CAD surface is exactly
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Figure 7. Sketch of a typical rough surface with σ = λ/3, λ0 = λ/2.

(a) (b) 

Figure 8. Mesh profile in 3D. (a) One cell composed of six tetrahedron elements. (b) Local view of the 3D mesh.

on the positions of the generated points. This is crucial to guarantee that the produced surface
does not deviate from the required point position, and consequently to avoid any smoothing
effect caused by general surface interpolation algorithms.

Free meshing algorithms using linear tetrahedral elements (C3D4 in Abaqus) are commonly
utilized for the 3D FE modelling of scattering from obstacles with irregular geometries [24,25]. As
is well known, free meshing tends to randomize the distribution and the shape of each element,
and thus may introduce unwanted mesh-scattering and dispersion [26]. We therefore combine
two different meshing algorithms in 3D with a code developed using Matlab (MathWorks, Natick,
MA). The region just above the 3D rough surface is meshed via a free meshing algorithm to
produce elements around the surfaces. This very local meshing profile is then used as an input
to the code to grow a regular mesh to fill up the remaining region of the 3D model. The regular
meshed region is meshed with many hexahedral cells and each cell is composed of six linear
tetrahedral elements as shown in Fig. (8)(a). The dimension of the 3D FE domain including
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Figure 9. Comparison of the averaged peak amplitude of the scattering signals from 50 realizations between 3D FE and

KA when θi = 0o. (a) σ = λp/8, λ0 = λp/2. (b) σ = λp/6, λ0 = λp/2. (c) σ = λp/5, λ0 = λp/2. (d) σ = λp/4, λ0 = λp/2.

(e) σ = λp/3, λ0 = λp/2. (f) Mean value and the standard deviation of the error when θi = θs = 0o.

the absorbing region is 12.8×12.8×4.4mm3 (≈8.3λp×8.3λp×2.9λp), and the thickness of the
absorbing layers is 2.4mm (≈1.5λ).

Fig. (8)(b) shows a local view of the mesh profile of one 3D FE model. It should be noted
that at the boundary of the free meshing and the regular meshing regions, the two neighboring
elements need to have the same hypotenuse to prevent any spurious reflection. In this manner,
the mesh minimizes the complexity caused by the free meshing algorithm whilst still capturing
the exact shape of the complex rough surface.

In a similar manner to that deployed in the 2D studies a Monte Carlo simulation is
performed, with various roughness and incidence/scattering angles, and the averaged peak
amplitudes from 50 realizations are compared between the KA and the FE model. Fig. (9) shows
the comparison for the case of a normally incident wave. Good agreement can be seen from -
70o to 70o when σ = λp/8, λp/6, λp/5 and λp/4. The scattering pattern from a smooth surface
with the same dimension is also shown for comparison. However, when σ increases to λp/3,
the agreement no longer exists even in the normal backscattering direction. Note that the errors
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Figure 10. Error of the averaged peak amplitude (θi = θs = 0o) between 2D FE and KA with respect to σ when λ0 =

λp/2, λp/3 and λp/4.

between the KA and the FE are relatively higher than the corresponding 2D cases in Fig. (6). Again
the mean absolute error and the corresponding standard deviation for each σ are plotted in Fig.
(9)(f).

4. ERROR ANALYSIS IN 2D AND 3D

(a) The effect of surface roughness
As mentioned by Ogilvy [7], historically the most frequently cited validity criterion from a
geometrical point of view for the KA is krc cos3 θi� 1, in which rc is the local radius of curvature
and θi is the global angle of incidence. This equation explains the fundamental restriction of the
rate of change of the surface height gradient, which determines the validity of the tangential plane
assumption used as a starting point for the KA. However, other related works [1,10] indicate that
this commonly used criterion has not proved to be practically useful. The errors from the KA
are not only from the ‘local’ geometrical tangential plane assumption, but also arise from ‘global’
effects, such as multiple scattering and shadowing effects due to the overall shape of the rough
surface. These ‘global’ errors become larger as the roughness or the frequency increases, and the
corresponding ‘global’ effects are not easy to quantify directly. Thorsos [1] suggests the use of λ0
as a crucial surface parameter including both the local and the global effects. In this section we
propose a different surface parameter for elastic materials, a function of both λ0 and σ to give a
rough idea when the use of the KA is valid for practical applications.

Figure (10) shows the errors of the averaged peak amplitude between the 2D KA and the FE
with respect to the RMS σ, with a normal incident/backscattering configuration. Different curves
represent the numerical errors using surfaces with different correlation lengths. The tolerance
of error is set to the value commonly used in NDE applications of 1dB, as shown by the flat
dashed line, indicating that the roughness is acceptable for the use of KA once the corresponding
error is below this threshold. The maximum values of σ for a given correlation length λ0 and
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Figure 11. Comparison of the averaged peak amplitude of the scattering signals from 50 realizations (θi = 0o) between

2D FE and KA, when σ = λp/3, λ0 = 0.6λp.

error tolerance can hence be found by observing the trend of the error curves. These values are
summarized in Table 1.

Clearly, as can be seen from Fig. (10), increasing the RMS σ and decreasing the correlation
length λ0 result in a larger value of the error. This increase in error is because the surface
effectively becomes more rough when changing the two surface parameters in this manner.
Therefore we propose a simple criterion as a function of both σ and λ0, based on the inversely
proportional relationship:

σa

λ0
≤ c (4.1)

where a is the weighting factor for σ and c is an unknown constant representing an upper bound
for this inequality. Note that this form is not unique, for example one may also assume a weighting
factor for λ0 instead of σ. However, in this paper we propose Eq. (4.1) and it will be shown later
that this formulation can approximately estimate the region of validity of the KA in both 2D and
3D.

The acceptable values of σ and λ0 can be explicitly calculated from this formula once a and
c are known. An alternative form converted from Eq. (4.1) is used here to estimate these two
unknown coefficients.

σamax

λ0
= c (4.2)

Substituting the three values of σmax2D from Table. 1 into Eq. (4.2) and taking the log of both
sides yields the following form of matrix multiplication: log10 σmax1 −1

log10 σmax2 −1

log10 σmax3 −1

( a

log10 c

)
=

 log10 λ01
log10 λ02
log10 λ03

 (4.3)

By multiplying the term on the righthand side with the pseudo inverse of the first term on
the left side, the weighting factor a and the upper bound c are calculated in the sense of least
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squares. Recalling that we are using the tolerance of 1dB, typical of NDE, from the calculation we
see that for this error a≈ 2. The value of a could change if a more or less stringent tolerance of
error were required. The observed criterion for the validity of KA can be expressed as:

σ2

λ0
≤ 0.2λp (4.4)

This criterion can be applied to find the σmax with a given λ0 or the λ0min with a given σ:

σmax = (0.2λp × λ0)
1
2 and λ0min =

σ2

0.2λp
(4.5)

A numerical case is performed here to test the proposed criterion. As can be seen from Fig.
(10), when σ = λp/3 the errors for all curves are above the 1dB threshold, which implies that
the acceptable λ0 needs to be larger than λp/2. By substituting σ = λp/3 into Eq. (4.5) , λ0min is
estimated to be roughly 0.6λp. A Monte Carlo simulation with 50 surfaces is run for this specific
σ and λ0, as was performed with the other roughness tested. As can be seen from Fig. (11) , the
error between the KA and the FE method when θi = θs = 0o is 0.86dB. This error is just below
the 1dB threshold, implying that when σ = λp/3, λ0min = 0.6λp, which is the same as the value
predicted from Eq. (4.5) . The simple empirical criterion proposed from observation can therefore
be applied to roughly estimate the region of validity of KA.

(b) The effect of scattering/incidence angle
The Kirchhoff theory is known to be insufficient to model the scattering of waves at large
scattering angles [7]. For example as seen from Fig. (6)(a) to (d), the scattering amplitude
calculated by the KA is several dB higher than the FE when the scattering angle θs > 70o. The
explanation given in section 3 is that the KA cannot account for multiple scattering effects.

In the same way large incidence angles also result in considerable errors of the Kirchhoff
model. In this study, we alternatively focus on the effect of modest incidence angles on the
accuracy of the KA. Specifically, we compared the averaged scattering amplitude of the KA and
the FE at incidence angles from 0o to 30o with an interval of 5o. Fig. (12)(a) shows the comparison
results of the amplitude with a slightly oblique incidence angle (θi = 30o) when σ = λp/3, λ0 =
λp/2. Excellent agreement is found with the scattering angle θs ranging from -65o to 65o. It is
different from the case with the normal incidence angle as shown in Fig. (6)(e), where the error
is above 1dB. It indicates that even with a very rough crack, an acceptable inspection result may
still be achieved using the Kirchhoff model with a small oblique incidence angle. Fig. (12)(b)
further illustrates this point as the error of the scattering signal at the specular direction is plotted
as a function of the incidence angle. As can be clearly seen, the error decays as the incidence
angle increases for the curve representing σ = λp/3; for the other curves when σ<λp/3, the error
roughly remains the same, well within 1dB. The results for surfaces with a correlation length of
λp/2 are shown here but the trend is typical for all other correlation lengths tested in this paper.

The ‘Rayleigh parameter’ [7] which has been used to classify the rough surface and the
smooth surface can be quoted here to give a qualitative physical explanation. The Rayleigh
parameter is

Ra = kσ cos θi (4.6)

which represents statistically the relative phase difference between the reflected waves from two
random surface points observed in the specular direction. The larger the value of Ra, the more
destructively the two reflected waves interfere with each other. Therefore it is one feature which
is proportional to the roughness of the surface. According to Eq. (4.6), if the Rayleigh parameter
Ra is fixed then the RMS σ is inversely a measure of cos θi. This suggests that for a fixed Ra, with
a modest incidence angle the maximum value of σ can be relatively larger than that when θi = 0o.
It should be noted that the effect of a modest incident angle is qualitatively analyzed here by the
use of the Rayleigh parameter, but it cannot be applied in the same manner when the incidence
angle is large.
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Figure 12. Effects of a modest incidence angle on the accuracy of KA in 2D. (a) Comparison of the averaged peak

amplitude from 50 realizations (θi = 30o) between 2D FE and KA when σ = λp/3, λ0 = λp/2. (b) Error of the averaged

peak amplitude between 2D FE and KA with respect to θi in the specular direction when σ = λp/8, λp/6, λp/5, λp/4,

λp/3, and λ0 = λp/2.

λ0 λp/2 λp/3 λp/4

σmax2D 0.31λp 0.27λp 0.22λp

σmax3D 0.27λp 0.22λp −

Table 1. Maximum values of σ for a known λ0 with 1dB error of tolerance estimated from Fig. (10) (2D) and Fig. (13)

(3D).

(c) The effect of dimension (2D or 3D)
Similar criteria for the 3D KA can be proposed in the same manner as was deployed for 2D.
Fig. (13) shows the error between the KA and the FE method with respect to σ for two different
values of λ0. Similar trends can be observed in the two curves but the errors are relatively higher,
compared with those in Fig. (10) for the 2D KA. The same strategy is implemented to estimate
the unknown parameters in Eq. (4.2), but using σmax3D from Table 1. By using the least squares
method, the best fitted weighting factor remains at a≈ 2, and the upper bound reduces to c =
0.14λp. The criterion in 3D can therefore be expressed as:

σ2max

λ0
≤ 0.14λp (4.7)

It is notable that the upper bound 0.14λp is smaller than the corresponding value 0.2λp in 2D,
which highlights one important discrepancy of the validity between the KA in 2D and 3D.
Specifically, as we can see, the values of σmax for a given λ0 in 3D are smaller than those in
2D as shown in Table 1; this implies that the criterion for the 3D KA is stricter than that in 2D.
We can consider this by examining the surface locally, where we know that the magnitude of the
gradient of one surface point in 2D and 3D can be expressed as
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Figure 13. Error of the averaged peak amplitude between 3D FE and KA (θi = θs =0o) with respect to σ when λ0 = λp/2

and λp/3.

|∇h(x)|2D =
∣∣∣∂h
∂x

∣∣∣
2D

and, |∇h(x, y)|3D =

√∣∣∣∂h
∂x

∣∣∣2
3D

+
∣∣∣∂h
∂y

∣∣∣2
3D
. (4.8)

Obviously from the above equation, |∇h(x, y)|3D is larger than |∇h(x)|2D if it is assumed
that |∂h∂x |2D = |∂h∂x |3D, which is due to adding an additional term |∂h∂y |3D. The conclusion is that
the rate of change of height is faster for the 3D surface which consequently appears rougher than
the corresponding 2D surface.

Apart from this, height variations in the y direction can contribute to out of plane scattering
effects besides the scattering waves inside the x-z plane. Globally more shadowing effects and
multiple scattering would occur, due to the roughness in the extra dimension. It would result in
extra errors of the 3D KA in addition to the local errors from the tangential plane assumption. As
a result, restrictions on the validity of 3D KA are made more severe than the 2D KA due to this
one more dimension of roughness.

If the incidence angle is slightly oblique at 30o, as in Fig. (14)(a), then the FE and the KA
models show agreement, but only within a very narrow angular range around the specular
direction, roughly from 30o to 50o. In contrast, the acceptable region of the scattering angles in 2D
with the same roughness is much larger, ranging from -65o to 65o, as shown in Fig. (12)(a). This
rapidly reduced angular range in 3D when σ = λp/3 is another important feature between the
region of validity of 3D and 2D KA. It may be because in 3D there are more multiple scattering
and mode conversions than 2D, which are not modelled using the KA. The scattering waves
contributed from these phenomena would spread to all scattering angles, reducing the accuracy
of the 3D KA at non-specular directions. On the other hand, the effect of a modest incidence angle
on the 3D KA is demonstrated in Fig. (14)(b). All the curves representing different σ show a decay
of the error when increasing the incidence angle θi. The errors are relatively higher than those
shown in Fig. (12)(b) for the 2D cases.
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Figure 14. Effects of a modest incidence angle on the accuracy of KA in 3D. (a) Comparison of the averaged peak

amplitude from 50 realizations (θi = 30o) between 3D FE and KA when σ = λp/3, λ0 = λp/2. (b) Error of the averaged

peak amplitude between 3D FE and KA with respect to θi in the specular direction when σ = λp/8, λp/6, λp/5, λp/4,

λp/3, and λ0= λp/2.

5. CONCLUSIONS
A numerical study to determine the range of validity of the Kirchhoff approximation as used to
calculate the elastic wave scattering signals from Gaussian rough surfaces has been performed.
The Kirchhoff theory is evaluated for comparison with a FE method using 2D and 3D isotropic
surfaces with different roughness characterized by RMS σ and correlation length λ0. Monte Carlo
simulations of multiple realizations are run with a variety of incidence/scattering angles, and the
averaged peak amplitude of the scattering signals are used for comparison. It is found that, with
a normal incidence angle θi = 0o, the KA is valid when σ2/λ0≤c, with -70o<θs<70o. In addition,
a modest incidence angle within 30o can improve the accuracy of the KA when σ2/λ0 exceeds the
constant upper bound c. The above criteria are derived empirically for an estimation of the region
of validity of the KA.

We have particularly examined the difference of the valid region with 2D and 3D surfaces
and have found that the criterion for the 3D KA is stricter. First of all when θi = 0o, the upper
bound c of σ2/λ0 in 2D is 0.20λp, and in 3D it reduced to 0.14λp. In other words, the acceptable
range of σ and λ0 in 3D is smaller than those in 2D, which is the most important discrepancy
between the 2D and 3D KA. This is caused by the increased local RMS gradient, and the global
multiple reflections and shadowing effects as well. Furthermore, similar to 2D, a modest incidence
angle of less than 30o can also improve the accuracy of the 3D KA. However, the acceptable
angular range of the scattering angle is dramatically reduced compared with the same situation
in 2D, being only around the specular direction. In fact these differences arise from extra surface
height variations in one more dimension, which makes 3D surfaces as viewed by the incident
wave appear to be rougher. In practice, the criteria for the 3D KA must be taken into consideration
in a real NDE inspection because naturally all real defects are rough in 3D.



19

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

6. Ethics statement
The paper does not include any contents regarding animals or human subjects.

7. Data accessibility
Data has been submitted as an attachment document.

8. Competing interests
We have no competing interests.

9. Authors’ contribution
Contribution of F. Shi: Perform all simulations, analyze data and write the paper. Contributions
of W. Choi, M. J. S. Lowe, E. A. Skelton and R. V. Craster: Provide valuable discussions with the
first author and critically revise the paper.

Acknowledgment
The authors are grateful to the UK Research Centre in Non Destructive Evaluation (RCNDE),
the Engineering and Physical Science Research Council (EPSRC), and to Amec Foster Wheeler,
Rolls-Royce Marine and EDF Energy, for funding this work.

References
1. Thorsos EI. 1988 The validity of the Kirchhoff approximation for rough surface scattering

using a Gaussian roughness spectrum, J. Acoust. Soc. Am. 83, 78–92.
2. Berry MV. 1973 The statistical properties of echoes diffracted from rough surfaces, Phil. Trans.

R. Soc. Lond. A 273, 611–654.
3. Robertsson JOA, Laws R, Chapman C, Vilotte JP, Delavaud E. 2006 Modelling of scattering of

seismic waves from a corrugated rough sea surface: a comparison of three methods, Geophys.
J. Int. 167, 70–76.

4. Laws R, Kragh E. 2002 Rough seas and time lapse seismic, Geophys. Propect. 167, 195–208.
5. Ogilvy JA. 1989 Model for the ultrasonic inspection of rough defects, Ultrasonics 27, 69–79.
6. Zhang J, Drinkwater BW, Wilcox PD. 2012 Effect of roughness on imaging and sizing rough

crack-like defects usign ultrasonic arrays, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 59,
939–948.

7. Ogilvy JA. 1991 Theory of Wave Scattering from Random Rough Surfaces, Adam Hilger Ltd.
8. Ogilvy JA. 1986 An estimate of the accuracy of the Kirchhoff approximation in acoustic wave

scattering from rough surfaces, J. Phys. D: Appl. Phys. 19, 2085–2113.
9. Thorsos EI. 1990 Acoustic scattering from a ‘Pierson-Moskowitz’ sea surface, J. Acoust. Soc.

Am. 88, 335–349.
10. Chen MF, Fung AK. 1988 A numerical study of the regions of validity of the Kirchhoff and

small-perturbation rough surface scattering models, Radio Science 23, 163–170.
11. Roberts RA. 2012 The effect of crack morphology on ultrasonic response, In Review of Progress

in Quantitative NDE (eds. DO Thompson, DE Chimenti), AIP Conference Proceedings, volume
1430, 150–157. American Institute of Physics, Denver, CO.

12. Zhang J, Drinkwater BW, Wilcox PD. 2011 Longitudinal wave scattering from rough crack-like
defects, IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 58, 2171–2180.

13. Shi F, Choi W, Skelton EA, Lowe MJS, Craster RV. 2014 A time domain finite element boundary
integration method for ultrasonic non-destructive evaluation, IEEE Trans. Ultrason. Ferroelectr.
Freq. Control. 61, 2054–2066.

14. Velichko A, Wilcox PD. 2010 A generalized approach for efficient finite element modeling of
elastodynamic scattering in two and three dimensions, J. Acoust. Soc. Am. 128, 1004–1014.



20

rspa.royalsocietypublishing.org
P

roc
R

S
oc

A
0000000

..........................................................

15. Chapman RK, Pearce JE, Burch SF, Fradkin L, Toft MW. 2007 Recent in-house developements
in theoretical modelling of ultrasonic inspection, Insight 49, 93–97.

16. Ogilvy JA. 1988 Computer simulation of acoustic wave scattering from rough surfaces, J. Phys.
D: Appl. Phys. 21, 260–277.

17. Huthwaite P. 2014 Accelerated finite element elastodynamic simulations using the GPU, J.
Comput. Phys. 257, 687–707.

18. Pettit JR, Walker A, Cawley P, Lowe MJS. 2014 A stiffness reduction method for efficient
absorbing of waves at boundaries for use in commerical Finite Element codes, Ultrasonics
54, 1868–1879.

19. Skelton EA, Craster RV, Choi W, Lowe MJS. 2013 Numerical simulaions of ultrasound NDE:
A hybrid model with improved efficiency by a new boundary forcing method, In Proceedings
of the 10th International Conference on NDE in Relation to Structural Integrity for Nuclear and
Pressurised Components, 602–609.

20. Ogilvy JA, Culverwell ID. 1991 Elastic model for simulating ultrasonic inspection of smooth
and rough defects, Ultrasonics 29, 490–496.

21. Schultz CA, Toksoz MN. 1993 Enhanced backscattering of seismic waves from a highly
irregular, random interface: Sh case, Geophys. J. Int. 114, 91–102.

22. Pettit JR, Walker A, Lowe MJS. 2014 Improved detection of rough defects for ultrasonic
nde inspections based on finite element modeling of elastic waves, In Review of Progress in
Quantitative NDE (eds. DO Thompson, DE Chimenti), AIP Conference Proceedings, volume
1581, 521–528. American Institute of Physics, Boise, ID.

23. Drozdz MB. 2008 Efficient finite element modelling of ultrasound waves in elastic media.
Ph.D. thesis, Imperial College London.

24. Schaubert D, Wilton DR, Glisson AW. 1984 A tetrahedral modeling method for
electromagnetic scattering by arbitrarily shaped inhomogeneous dielectric bodies, IEEE Trans.
Antennas. Propagation. 32, 77–85.

25. Lawrence H, Demontoux F, Wigneron JP, Paillou P, Wu TD, Kerr YH. 2011 Evaluation of
numerical modeling approach based on the finite-element method for calculating the rough
surface scattering and emission of a soil layer, IEEE Geosci. Remo. Sens. Lett. 8, 953–957.

26. Rajagopal P, Drozdz MB, Lowe MJS. 2008 Towards improved finite element modelling of
the interaction of elastic waves with complex defect geometries, In Review of Progress in
Quantitative NDE (eds. DO Thompson, DE Chimenti), volume 28a, 49–56. American Institute
of Physics, Chicago, IL.


	1 INTRODUCTION
	2 NUMERICAL MODELS
	(a) Gaussian random rough surface
	(b) Finite element boundary integration approach
	(c) Elastic Kirchhoff model

	3 SIMULATIONS IN 2D AND 3D
	(a) Simulations using 2D rough surfaces
	(b) Simulations using 3D rough surfaces

	4 ERROR ANALYSIS IN 2D AND 3D
	(a) The effect of surface roughness
	(b) The effect of scattering/incidence angle
	(c) The effect of dimension (2D or 3D)

	5 CONCLUSIONS
	6 Ethics statement
	7 Data accessibility
	8 Competing interests
	9 Authors' contribution
	References

