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ABSTRACT

This paper describes a methodology for assessing the applicability of 
the low forming process for the manufacture of speciic components. 
The process starts by iltering potential candidates for low forming 
from a component collection and then carries out a detailed 
assessment of quantitative, technological and economic feasibility 
before determining a viable process plan. The process described 
uses analytical relationships and criteria drawn from the literature. 
For example, qualitative feasibility is evaluated using analytical 
relationships for ultimate strength prediction. Similarly technological 
validation is done estimating forming process forces and defects rate 
which are evaluated against threshold values. A process time model 
is used to develop a hybrid cost model in order to evaluate economic 
feasibility. Using these calculated values production feasibilities are 
established by comparison with reported reduction ratios and process 
parameters. The paper concluded with a brief summary of the results 
of applying the process to an industrial case study.

1. Introduction

Essentially low forming is a deformation process carried out by rollers that compresses 

and stretches a blank (called a preform) over a rotating mandrel, usually in a number of 

consecutive stages (Figure 1). he appearance of heavy duty CNC low forming machines 

has provided both the capability (i.e. power) to fulill small-medium batches and a lex-

ibility which allows production of a wide range of rotational shapes and near-net-shape 

components. he process is very eicient in terms of material usage and its adoption oten 

allows reduction of component’s weight and costs (both important considerations in many 

industrial applications) (Marini, Cunningham, & Corney, 2015).

Existent investigation on low forming has been carried out with experimental and 

theoretical methodologies (analytical and numerical). In low forming, empirical stud-

ies have been used to seek to correlations between inputs (e.g. the workpiece material’s 

properties and process parameters such as the radial, tangential and axial forces on the 
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rollers) and outputs (e.g. surface roughness, mechanical properties or dimensional accuracy) 

(Marini, Cunningham, Xirouchakis, & Corney, 2016). Notable examples include (Davidson, 

Balasubramanian, & Tagore, 2008; Gupta, Ghosh, Kumar, Karthikeyan, & Sinha, 2007; 

Hayama & Kudo, 1979b; Jahazi & Ebrahimi, 2000; Podder, Mondal, Ramesh Kumar, & 

Yadav, 2012; Rajan, Deshpande, & Narasimhan, 2002b; Singhal, Das, & Prakash, 1987). 

Existent design of experiment application to low forming process can be found in (Marini 

et al., 2016).

he main focus of analytical research is to develop a model of the low of the metal 

during the low forming process. his would provide the means to quantify the working 

energies and the forces required to form a speciic geometry from a given billet. his can 

also give general feasibility boundaries for the process (e.g. the maximum reduction ratio 

achievable in one pass for a certain kind of process and metals). All the models start with the 

assumption of ‘conservation of volume’ and consequently evaluate its distribution between 

axial growing and radial reduction. Energy based models (Hayama & Kudo, 1979a; Jolly 

& Bedi, 2010; Molladavoudi & Djavanroodi, 2010; Singhal, Saxena, & Prakash, 1990) and 

upper-bound models (Gur & Tirosh, 1982; Mohan & Misra, 1970; Nagarajan, Kotrappa, 

Mallanna, & Venkatesh, 1981; Park, Kim, & Bae, 1997; Roy, Maijer, Klassen, Wood, & Schost, 

2010) are the commonly used in this approach.

Finite element models (FEM) allow aspects of the low forming process to be evaluated 

that are impossible to assess analytically (e.g. roller deformation). Numerical simulation 

avoids the expense of experiments and allows precise understandings of process trade-ofs to 

be developed. However the implicit necessity of 3-dimensional modeling and complexity of 

contact surfaces create diiculties in this kind of approach. Despite this, eleven papers have 

reported numerical models for low forming. hree papers use an implicit approach (Kemin, 

Yan, & Xianming, 1997; Kemin, Zhen, Yan, & Kezhi, 1997; Xu et al., 2001), meanwhile 

Figure 1. a schematic illustration of low forming (chang et al., 1998).
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212   D. MARINI AND J. CORNEY

six use an explicit approach (Jalali Aghchai, Razani, & Mollaei Dariani, 2012a; Lexian & 

Dariani, 2008; Li, Hao, Lu, & Xue, 1998; Mohebbi & Akbarzadeh, 2010; Parsa, Pazooki, & 

Nili Ahmadabadi, 2008; Wong, Lin, & Dean, 2005). Wong, Dean, and Lin (2004) compare 

both approaches. Only two papers (Li et al., 1998; Xu et al., 2001) model numerically the 

friction between roller and workpiece, (while other authors neglect friction contributes to 

displacement). Most use commercial sotware (e.g. ABAQUS) which has been modiied to 

incorporate appropriate solution codes (Marini et al., 2016).

Investigations into low forming are frequently connected to the manufacture of near-

net-shape parts that are inished using traditional machining. he avoidance, or at least the 

minimization, of machining and raw materials can be delivered by the adoption of low 

forming of technology but only if applied to appropriate components. hus a low forming 

feasibility assessment methodology is critical to allow evaluation of how easy, or diicult, 

it is to produce a component with this cold forming technology. Steps of the feasibility 

assessment methodology are:

(1)  Find potential products were low forming could be used.

(2)  Design a nominal low forming process (e.g. specify a sequence of reduction ratios) 

for the candidate components.

(3)  Establish the feasibility (technological, qualitative and economic) for the produc-

tion of the components, selected in step 1, by considering:

 (a)  Technological feasibility: verifying if it is possible to realize a speciic compo-

nent using current low forming technology.

 (b)  Quantitative feasibility: analyzing theoretically the inal proprieties of low 

formed product.

 (c)  Economic feasibility: evaluate the cost and lead-time of low forming designed 

processes.

(4)  Explore variations on the nominal process plan generated in Step 2 to identify the 

one that is most likely to produce the required quality of product.

2. Flow forming feasibility methodology

he proposed low forming methodology is composed of three main parts (Figure 2) that 

can be characterized as: Product selection, Process analysis and Comparative analysis. he 

product selection step identiies potential products from a large number of candidate com-

ponents (catalogs or assemblies), using high level criteria. his permitted a selection of 

Figure 2. flow forming feasibility methodology.
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components in which the low forming manufacturing process could result in added value 

in term of, say, quality enhancement and/or savings.

he manufacturability analysis requires both component dimensions and a process 

design. For the components that reach the inal step of the feasibility assessment number 

of diferent potential low forming process plans are developed for every part, in order to 

evaluate alternative forming strategies. A geometric representation of each component is 

used to provide the dimensions needed to allow selection of the most appropriate process 

plan. he quality targets incorporated in the system described here are the inal material 

strength and the surface inish. Manufacturing cost and time have been developed via an 

industrial case study that provides information for a hybrid cost model. his suggested it 

was credible to estimate process costs, by relating them to analytical estimates of forming 

power and machine idle time.

A comparative analysis selects the best low forming process designs in terms of feasibility 

and impact on quality and costs. Process design selection was made by comparison between 

forming forces and technological constrains. he forming forces and defect rate are used 

as evaluation parameters that determine the technological feasibility. During the process 

design selection phase, the inal products’ ultimate strength and surface roughness can be 

compared with target performance values between the designed low forming alternatives. 

Similarly, low forming costs and lead-times can be evaluated, also comparing them with 

real process parameters. At this stage, it is possible to detect best possible low forming 

solution, depending on the target requirements. he following sections now describe each 

step shown in Figure 2 in more detail.

2.1. Product selection procedure

Product selection procedure is based on four stages (Figure 3)

(5)  Initial screening low chart (Figure 4): enables high level iltering of components 

to identify potential candidates for further investigation.

(6)  Brainstorming: reduces further forming candidates and includes unconsidered 

components.

(7)  Decisional Tree (Figure 5): synthesis of acquired knowledge through critical low 

forming application features identiication.

(8)  Technical Meeting: discussion with production facilities or process expert about 

previous decisions (i.e. decisional tree developments).

Both the low chart (Figure 4) and the decisional tree (Figure 5) have been developed 

from consideration of literature and industrial applications. he lowchart assess the main 

geometric constrains for low forming applications (e.g. hollow circular axial symmetry and 

length and diameter ratio) while taking into account near net shape considerations (low 

Figure 3. Product selection for low forming methodology.
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214   D. MARINI AND J. CORNEY

internal complexity). Stacked production (i.e. the formation of several components from 

one preform) has been considered as alternative for uneconomic batches of one.

he decisional tree (Figure 5) investigates the following features:

•  Material selection: material adequate to severe cold plastic deformation and its possible 

re-deinition.

•  Technological and Geometrical feasibility: possibility of realizing components geome-

try or semi-inished piece (propaedeutic to inal geometry through further operations).

•  Initial re-design Flow Forming oriented: possibility of inal product design (or 

 semi-inished design) in order to apply low forming. hese would include a series of 

rules that could be included in a Design for Flow Forming application. In Figure 5, 

some of these logic possible rules were described.

•  Enhancing critical to Qualities Product proprieties: previous evaluation of low forming 

impact on the product quality features, in comparison with current production (e.g. 

ultimate strength enhancing due to hardening).

•  Economic re-design or material selection: possibility of adapting low forming impact 

in an economic advantage (e.g. possibility of reducing thickness or using cheapest less 

resistant material, due to hardening).

•  Raw material saving: dependent on current process. Flow forming could be an improve-

ment if compared with pure machining or die forging processes. On the other hand, 

die casting and mold casting made an almost complete material usage.

Figure 4. Product selection procedure chart.
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•  Dimensional-Geometrical accuracy and Surface propriety increasing: low forming’s 

ranges of tolerances and surface quality needed a comparison with the current process.

•  Reduction Finishing Process Steps: evaluating the impact of low forming on the pro-

cess chain, through its semi-inished product characteristics.

•  Production Volume: low forming production is optimized for small batches, but 

enough for amortizing operational costs. Making family of part was considered a 

huge opportunity, particularly related with shear forming process compatibility.

Machine lexibility is oten not enough, in order to justify high low forming machine 

costing. So, service hiring was depicted as a concrete opportunity. his stage made an 

important impact not only on the product selection, but it gave also hints on product and 

process design development.

2.2. Process analysis

Process analysis has been deined by four phases (Figure 6): product design, low forming 

process design, prediction models and low forming feasibility.

2.2.1. Nominal process design feasibility

In this phase, the inal component’s geometry and material selection are considered. he irst 

is fundamental for designing the forming steps, while the latter has an enormous inluence 

on the overall process deinition (i.e. process parameters and intermediate forming steps).

Figure 5. decisional tree for low forming product selection.
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216   D. MARINI AND J. CORNEY

2.2.1.1. Product geometry. Initial input data are the inal geometry of the product (listed 

as follows), which are the data who lead the process design.

•  Final diameter

•  Final length

•  Final piece features (lange diameters, lange lengths, internal walls thickness, chamfer 

degree, …)

•  Internal diameter (constant)

Internal diameter remained constant for whole process because it was constrained by 

mandrel. Reduction ratios selection depends on number of forming steps and its selection 

inluences dimensioning of forming parts. In order to apply low forming process, some 

modiications were needed in product drawing. For example on a tube, drastic section 

changes (vertical scale or high degree chamfers) or illets must not be formed so chamfers 

with low degree should replace them instead. If irst geometry was needed, this should be 

obtained by further machining operations.

2.2.1.2. Material selection. he sensitivity of the low forming process to material 

properties afects the prediction accuracy and, so the impact, of theoretical models (Marini 

et al., 2016). his As stated in all literature and summarized by (Wong, Dean, & Lin, 2003) 

and (Sivanandini, Dhami, & Pabla, 2012), low forming process was able to work on a 

huge range of material. An incomplete list of workable material has been deployed as 

follows: Aluminum alloys, Titanium alloys, Carbon steels, Low- and High-Alloy steels, 

Nickel alloys, Maraging steels, Inconel, Duplex, Copper, Brass. Eventual material changes 

should be deined at this stage. Reason for diferent new material selection would be caused 

by several reasons: incompatibility with severe; cold plastic deformation (e.g. cast iron); 

economic material selection; mechanical proprieties material increasing (due to their 

Figure 6. flow forming process analysis chart.
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increasing provided by forming hardening); quality target deinition (e.g. dimensional 

tolerances, surface roughness); avoidance of welding or other operations through low 

forming application In particular, hardening provided by cold deformation could permit 

to select a less strong material in order to improve its mechanical proprieties. Another 

possibility could be to keep same material but reducing dimension. hese possibilities would 

be limited by other factors of dimensioning such as corrosion. A complete knowledge about 

product loads and tensional state was needed in order to correctly approach these changes.

Quality targets deinition was contemporary deployed with product design and material 

selection. Targets were deined by stakeholder needs and improvement possibilities, for 

example:

•  Ultimate tensile strength

•  Yield strength

•  Surface Roughness

•  Surface Hardness

•  Dimensional tolerances

•  Geometric tolerance (concentricity, ovality, cylindricity …)

•  Defects absence (wrinkling, circumferential cracks, radial cracks …)

he failure prediction models and the dependency between quality target and failure is 

summarized in (Marini et al., 2016) and (Marini et al., 2015). Table 1 summarizes some of 

them. In this case, the quality targets that that can be measured through analytical models 

are used in the inal comparison (ultimate tensile strength, surface roughness and defect 

prediction), whilst other can be used as process selection justiication (i.e. to test in the 

experimental or numerical phase).

2.2.2. Flow forming process design

Diferent processes are developed for every component, in order to evaluate diferent form-

ing strategies. Process parameters and reduction ratios (i.e. diameter reduction for every 

forming step) irst selections have been based on literature and industrial examples. A 

geometric modeling method (i.e. using volume constancy) is used to select suitable inter-

mediate dimension for every designed reduction step in a multistage low forming process. 

In a irst approximation, more than one process chain should be developed, in order to 

increase the feasibility to many combination of low forming steps, process parameters and 

process design combinations.

2.2.2.1. Process parameters selection. he following process parameters need to be 

selected for designing a low forming process:

•  Number of steps: usually from 1–3. his selection is critical for the process parameters 

coniguration.

•  Reduction ratio: Ratio between the diameter of the hollow tube before the low forming 

and the one ater, deined in as t =
(

D
1

D
0

)

 (4). Selection of this parameter is dependent 

to number of steps. In case of more than one step, total reduction coeicient needed 

to respect needed inal deformation. Reduction ratio is most important parameter 

in low forming and its selection critical, as stated by (Hayama & Kudo, 1979b) and 

proved by several authors. Reduction ratios were selected from literature for similar 
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material and adapted to current dimensions, (Roy, Klassen, & Wood, 2009), (Singhal 

et al., 1987) and (Chang et al., 1998).

•  Roller geometry: attack angle (α) and roller diameter (DR). Roller geometry was 

selected in order to have less force impact and low defects rate. Also these param-

eters were taken from literature (Hayama & Kudo, 1979a; Jahazi & Ebrahimi, 2000; 

Srinivasulu, Komaraiah, & Rao, 2012a) in dependence to selected reduction ratios 

and passes number.

•  Spindle speed and feed rate can be deducted from literature or industrial application, 

due to the previous parameters selection. In particular, feed rate had strict connection 

with roller attack angle and reduction ratios, as summarized in (Music, Allwood, & 

Kawai, 2010), (Marini et al., 2016) and (Wong et al., 2003). Feed rate impacted on axial 

forces, surface roughness, defects and process cost. Articles such as Jalali Aghchai et 

al. (2012), Davidson et al. (2008) Srinivasulu et al. (2012b) and Davidson et al. (2008) 

can be used to evaluate usable parameters settings.

he selection of process parameters is always an iterative process. his selection is not 

optimized but a irst drat, which can be still considered reliable for judging the process 

feasibility. his happens because of process parameters range and their connection with 

geometries and materials (Marini et al., 2015).

2.2.2.2. Geometric model. Product geometry should be assigned to every forming pass. 

Using reduction ratios, it is possible to deduct all semi-inished components geometries. 

Initial blank (preform) is usually dimensioned as a hollow cylinder (Podder et al., 2012; 

Rajan, Deshpande, & Narasimhan, 2002a). Volume constancy is widely used in literature 

for evaluating low forming blank and preform dimensions (Podder et al., 2012; Singhal 

et al., 1987). Same methodology can be used for dimensioning the intermediate forging 

geometries during the low forming steps.

In Appendix 1, the mathematical expression volume constancy and its derivation of for 

deriving the initial and intermediate geometries is displayed (4–8). Results of this mathe-

matical expression (8) are numbers with high number of decimal precision (four decimals), 

for preform and intermediates. his required a high level measurement for being pre-

pared, also for a low precision in input data (one decimal). Final dimensions need diferent 

tolerances. hese tolerances were selected for rounding inal length and testing selected 

parameters through inverse evaluation of preform diameter. So a procedure has been set 

in order to evaluate blank dimensions and reduction ratios selections, having tolerances 

selected. Figure 7 showed developed procedure. Rounding down initial length L′

0
 to selected 

number of digits (one, two or four decimals), it was possible to obtain another L
0
 value. 

With the latter, it was possible to evaluate the internal diameter D1 through the inverse 

volume constancy expression (8). Ater, it was possible to accept or reject blank or preform 

dimensions, if obtained D
0
 resulted to agree with tolerances. In case of not agreement, initial 

blank or preform dimensions and reduction ratios needed to be changed. he procedure 

can be replicated at the same for multi-pass processes, as exposed in Figure 8. Expression 

(8) is valid only for passing from a cylindrical tube to another. his relationship needed to 

be modiied, in order to describe more complicated shape, shape, as in Equations (11–14). 

Given the precision and the opportunity of producing complex shapes, volume constancy 

can be modiied for obtaining complex shape. In Appendix 2, volume constancy has been 
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220   D. MARINI AND J. CORNEY

modiied for equalizing a tubular blank volume with a langed pipe one (i.e. this will be 

used in the case study). New features of langed pipe were described as follows. In case of 

Figure 7. geometric modeling lowchart for single multi stage low forming.

Figure 8. geometric modeling lowchart for multi stage low forming.
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very complex output or intermediate geometries, CAD and FEM supports are essential for 

dimension correctly the preform and intermediate shapes.

2.2.3. Prediction models

Using empirical models, the defect rate (equations (15–16)), ultimate tensile strength (equa-

tions (1, 2)) and surface inish, (equation (3)) can be deducted. he quality targets considered 

are the inal material strength and surface inish.

2.2.3.1. Empirical models. Key to this process is the S/L ratio, developed Gur and Tirosh 

(1982) and validated by several authors (Jahazi & Ebrahimi, 2000; Jalali Aghchai, Razani, & 

Mollaei Dariani, 2012b; Parsa et al., 2008; Podder et al., 2012; Rajan & Narasimhan, 2001; 

Roy et al., 2010), expresses plastic low quality for given process parameters. If axial contact 

length (L) exceeds the circumferential length (S), circumferential plastic low dominates 

(S/L < 1) and geometrical inaccuracies and defects are common. Increasing the S/L ratio 

results in greater interfacial friction that enhances axial low. In this case (S/L > 1), and most 

of material lows in axial direction consequently defects tend are infrequent. Although, if 

contact ratio becomes too large (S/L >> 1), friction coeicient become close to unity and 

material lows in directions smaller than the attack angle. In this case, wave-like surfaces 

and thickness variation in workpiece occur (Marini et al., 2015). Appendix 3 provides 

mathematical formulation of the S/L ratio.

Hollomon’s power law (1) is deployed by some authors (Jalali Aghchai et al., 2012b; 

Podder et al., 2012) for predicting the ultimate strength of formed components and shows 

good agreement with experimental data.

 

With: S
u
, ultimate tensile strength (MPa); �

u
, total plastic strain; n, strain hardening expo-

nent; K, strength index (MPa).

Erasmus law (2), used in Rajan et al. (2002a), is derived from Hollomon’s one. his for-

mula considers section variation (A
r
) and accuracy in its prediction is tested by the authors

 

where: Ar =
Ai−Af

Af

 is the area reduction ratio.

(Rajan & Narasimhan, 2001) develop an empirical formula (3) for low forming, evalu-

ating the surface inishing.

 

where, h, is height variations on the surface (mm); DR, is roller diameter (mm) and f is 

feed rate (mm/rev).

2.2.3.2. Analytical models. Using such analytical models, working forces and powers can 

be deducted, using component and roller geometries, materials and process parameters. 

hree main models have been proposed in the literature: energy model (Hayama & Kudo, 

1979a, 1979b; Jolly & Bedi, 2010; Mohan & Misra, 1970; Molladavoudi & Djavanroodi, 2010; 

(1)S
u
= K�

n

u

(2)S
u
= K

[

n + ln

(

1

1 − A
r

)]n

(3)h = DR −
1

2

√

4DR2
− f 2

D
o
w

n
lo

ad
ed

 b
y
 [

U
n
iv

er
si

ty
 o

f 
S

tr
at

h
cl

y
d
e]

 a
t 

0
7
:2

3
 1

1
 O

ct
o
b
er

 2
0
1
7
 



222   D. MARINI AND J. CORNEY

Singhal et al., 1990), upper-bound method (Gur & Tirosh, 1982; Park et al., 1997; Roy et al., 

2009) and slip-line ield (Nagarajan et al., 1981). Energy is the most frequently and complete 

applied and developed by researchers. In Appendix 2, principle forming forces and powers 

formula from (Hayama & Kudo, 1979a) have been developed for application. his phase 

provide also feedback to the process parameters and the intermediate process steps. Diferent 

combination of process should be needed for obtaining a suitable low forming sequence.

2.2.4. Flow forming feasibility analysis

Figure 10 summarizes the feasibility analysis procedure. Technological feasibility should be 

assessed before proceeding with further steps (i.e. qualitative and economic).

Technological feasibility is determined by the axial forming force values (25) and the S/L 

ratios (15–16) for every process variant. First needs to be compared with industrial available 

low forming machine, the second with a threshold value. he complete plastic deformation 

model can be found in Appendix 4. 

Qualitative feasibility is determined by the comparison ultimate tensile strength (2) and 

surface roughness predictions (3) with current (or target) values.

2.2.4.1. Economic feasibility. A process time model has been developed by assuming 

the forming tool motion exhibits similarity between low forming and turning processes. 

Model and its derivation are presented in Appendix 5. Time model has been constructed 

in reference to low forming process dynamic. For this reason, a time-model is inspired by 

Figure 9. flow forming time model schematization for hollow tube (up) and langed pipe (down).

Figure 10. flow forming feasibility analysis lowchart.

D
o
w

n
lo

ad
ed

 b
y
 [

U
n
iv

er
si

ty
 o

f 
S

tr
at

h
cl

y
d
e]

 a
t 

0
7
:2

3
 1

1
 O

ct
o
b
er

 2
0
1
7
 



PRODUCTION & MANUFACTURING RESEARCH   223

classic G-code, which is used for programming CNC machines Roller motion during low 

forming process is schematized in Figure 9. Process time is obtained by the developed model, 

meanwhile the idle times and indirect costs have been estimated based on industrial case 

studies. As shown in Figure 9, forming lengths (green) and transverse lengths (red) can be 

treated diferently as in turning. Consequently, forming lengths are associated to process 

feed rate. As shown in Equation (34), the process time can be calculated referring to the 

selected process parameters. A hybrid cost model has been used for calculating the total 

process costs (31), the complete cost model can be found in Appendix 5. Model is derived 

from cost models used in (Kalpakjian & Schimd, 2009; Swit & Booker, 2013). Forming 

powers (i.e. analytically calculated in the previous phase) have been used for calculating 

energy expenditures during the low forming process (36). he obtained values of cost and 

time need to be compared with the current or the targets ones.

2.3. Comparative analysis of process plans

Depending on the quality target, the designed low forming process alternatives, which 

have been deined as feasible, can be compared for deining the target optimal solution. 

Although, low forming designs must be iltered for the deined technological feasibility 

(i.e. the upper limit of forming forces and the S/L threshold) and ater evaluate qualitative 

(S/L threshold, UTS increasing threshold, surface roughness acceptable limit) and eco-

nomic feasibilities (Figure 10). A weighted average of these diferent parameters can be 

realized, for summarizing the comparison between diferent low forming process plans 

(i.e. sequences of reduction operations). Weights selection depends on the required quality 

and cost/time targets.

3. Case studies

Products from Weir Group PLC have been used for investigating the low forming feasibility. 

Product selection has been applied on assemblies and catalogs. Due to disclosure agreement 

with the company, no details about the components (i.e. dimensions, tolerances, materials, 

mechanical proprieties, costs or lead times) or about the comparative analysis (i.e. quality or 

cost targets) can be revealed. Selected process variant for both the components is forward 

low forming, due to high process stability and control of formed shape (Hayama & Kudo, 

1979b). Integrals were solved numerically using Maple, in order to evaluate all energy 

contributions. Ater iltering with the low chart (Figure 3), 27 components were selected. 

Brainstorming reduces them to 5, mainly due to the repetition of certain components in 

the assemblies. Decisional tree reduced them to 2: a riser pipe and valve seat. For the latter, 

stacked production has been considered as forming option. In comparison with the current 

manufacturing process, strength improvement, dimensional tolerances close to the inal 

shape and less machining (i.e. even if the stacked component need to be thermal treated 

before being separated) can be improved through low forming process, even if the material 

and its resilience put the process on the borderline of unfeasibility.

Riser pipe is very long and is essentially a langed pipe (so the main potential advantage 

of production by low forming would be removal of the need for welding of the lange).
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3.1. Nominal process feasibility

Riser pipe is modeled as in Figure 11. Diametric steps were substituted by chamfers of 

diferent degrees. Diferences between diameters allowed trying diferent chamfer solu-

tion (30 and 40 degrees angles). Presence of slot in planar face and drilled holes must be 

machined ater forming process. Flanges diameters were deined as same of initial product 

but formed with diferent options. Piece geometry needed to be changed (chamfer in diamet-

rical steps). hese changes were considered compatible with component usage, also if more 

material needed to be removed by drilling. Material has been selected by prior design, due 

to compatibility with corrosive environment and loads. Material was a steel with following 

characteristics: yield strength, 820 MPa; ultimate Tensile strength, 850 MPa; hardening 

exponent (n), 0.25; strength index (K), 820 MPa.

3.2. Flow forming process design

Reduction ratios (4) have been iterative selected using the procedures in Figure 7, for single 

pass, and in Figure 8, for multiple passes (0.1 mm. tolerance). Reduction ratios’ ranges were 

taken from literature (Roy et al. (2009)) even if only dedicated experimental and numeric 

analysis should correctly evaluate feasible reduction ratios. his was due to high low form-

ing process instability (Hayama & Kudo, 1979a). Many process alternatives were created 

(i.e. forming in one, two or three steps and creating the langes in diferent steps), described 

in Table 2. Diferent forming strategies have been created for producing the component:

•  Type A: hollow cylinder blank is formed into langed pipe only in the last stage, includ-

ing chamfers of 30° (remaining a regular pipe for one or two stages).

•  Type B: hollow blank is formed langed pipe (at second stage for three passes) with 

chamfers of 30°. In the last stage, main diameter is only processed, without involving 

langes.

Figure 11. some of the designed low forming processes for seat valve manufacturing: rpi (top), rpiic 
(middle), rpiiic (bottom).
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•  Type C: hollow blank (for two stages) or pipe (three stages) is formed as langed 

pipe (30° chamfers). In the last stage, pipe are formed as lange one with 45° degrees 

chamfers (Figure 11).

•  Type D (only for three stages): all stages were formed as lange pipe including chamfers 

and langes variations. Hollow blank is formed with 20° chamfers, irst pass with 30° 

and third pass with 45°.

Reduction ratios and process variants are summarized in Table 2. Process parameters 

were selected accordingly to literature (Hayama & Kudo, 1979a; Podder et al., 2012; Rajan 

& Narasimhan, 2001; Srinivasulu, Komaraiah, & Rao, 2012b): spindle speed, 300 rpm; feed 

rate, 540 mm/min (1.8 mm/rev); mandrel diameter, 83 mm. Roller geometry were selected 

accordingly to (Hayama & Kudo, 1979b) and (Jahazi & Ebrahimi, 2000): roller diameter, 

800 mm; roller attack angle, 20°.

3.3. Prediction models

Forming axial forces, defect rate prediction (S/L) and inal predicted proprieties (i.e. ulti-

mate tensile strength and surface roughness) have been summarized as in Table 3. In two 

passes processes, last stages involved a huge material displacement amount, due to high 

thickness diferences and process parameters. In three stages, trend became normal because 

of force decreasing. his was due to material displacement divided though more forming 

operations. S/L ratio trends correctly assume values coherent with forming forces, except 

that in two cases (second passes type A and type C processes).

3.4. Flow forming feasibility

Axial forming force limit has been established 10,000 KN (AFRC machine limit), defect rate 

threshold, S∕L > 1 (as in (Gur & Tirosh, 1982)), and strength increasing ratio threshold, 

0.25 (arbitrary selected). Referring to Table 3, the unfeasible features were target in red, 

meanwhile feasible parameters in green. Technological feasibility is found only acceptable 

for four cases (i.e. mostly due to the high forces involved), although even then the likely 

defect rate was very high. In conclusion only one process has been selected as feasible the 

process might enhance the tensile strength and surface roughness and reduce lead times the 

cost increase resulted in the conclusion the process was not a feasible proposition for the 

component. Following these criteria, only process rpIIIB has been considered as feasible.

Qualitative feasibility is evaluated through the ultimate strength increasing (i.e. which 

follows the reduction ratios trend). Surface roughness was not coherent with industrial 

and literature data (Wong et al., 2003). Strength improvement, even if signiicant, was not 

a primary target, due to the low loads on the component and its unknown impact on the 

current erosion-corrosion phenomenon on the riser pipe. Economic feasibility has evalu-

ated only for the selected process. Flow forming times and costs data have been taken from 

industrial case study and machine available at Advanced Forming Research Center (AFRC) 

in Glasgow. Final process time shows a reduction of 60% with the current production time, 

although predicted cost result 25% higher than the current one. Even though the process 

results technologically feasible and the prediction models show possible improvements in 
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Table 2. Process variants description, number of stages (passes), reduction ratios and trends.

Table 3. Prediction model results: axial forming forces and trend, ultimate tensile strengths and 
increments, surface roughness, S/L ratios and trends.

strength and lead time, the process has been considered as unfeasible for this component 

due the predicted cost increasing (i.e. very high cost impact on the comparative analysis).

Similarly a low forming process for a valve seat was designed to be produced in a stack 

(i.e. 4, 6 or 8 from the same preform) with a proportional increasing of forming steps. 

Technologically, the process was deemed acceptable for many combinations. Although 

ultimate strength and surface roughness have been considered as acceptable (i.e. compared 

with previous manufacturing method) as well as the lead time (i.e. almost halved), the cost 

has doubled in comparison with the current cost (based on forging and machining).

4. Conclusion

his methodology provides a reliable guidance for inding opportunities an evaluating the 

feasibility of low forming process. Although the analytical model can formulate the process 

in a complete way, they are not suicient for analyzing completely the low forming process. 

Process parameters and design selection should interact directly with the feasibility study, 

giving an immediate feedback and not acting as hypothesis. A more complete framework 

should be developed in this sense, including numerical capabilities and approaches.
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Appendix 1. Volume constancy

Reduction ratio t is deined as in (4)
 

Referring to Figure A1: D
0
, initial external diameter D

1
, inal external diameter; D

i
, internal diameter; 

L
1
, inal length. Using volume constancy (5), we can obtain (6).
 

 

From (6), it is possible to obtain the inal length L
1
 (7).

 

(4)t =

(

D
1

D
0

)

(5)V
0
= V

1

(6)L
0

(

D
2

0
− D

2

i

)

= L
1
(D2

1
− D

2

i
)

(7)L
0
= L

1

(

D
2

0
− D

2

i

D
2

1
− D

2

i

)

Figure A1. decisional tree for low forming product selection.
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From (7), the initial diameter D
1
 (7) is easily derivable.

 

Appendix 2. Volume constancy modiication

Volume constancy (5) need to be modiied for equalizing a tubular blank volume with a langed 
component. Referring to Figure A2, the new features of langed pipe are the langes’ lengths (L

f1
, L

f2
), 

langes’ diameters (D
f1

, D
f2

), chamfers’ length (L
c1

, L
c2

) and chamfers’ angles (�
1
, �

2
).

So, (5) could rewrite as (9).
 

Referring to Figure A2 (let), V
f1

 and V
f2

 correspond to langes volume (orange), V
c1

 and V
c2

 to 
chamfer volume (white) and V

i2
 to internal volume (yellow). Flanges volume and internal volume 

could be calculated as cylindrical pipe. Chamfer volumes could be considered as hollow cone frus-
tums. Referring to Figure A2, chamfer volume was calculate as in (10) 

First member of equation represents the red zone in Figure A2 (right), and second member the green 
one. Deining the chamfer length L

ci
= cot

(

�
c

)

D
e
−D

i

2
 and applying to (10):

 

Using (11), modiied volume constancy (9) could be written as follows.
 

Hypothesizing that: α
1
 = α

2
 = α; Df 1 = Df 2 = Df . Blank length expression becomes (13)

 

As in the inverse expression (8), D
1
 could be derived as in (14).

(8)D2

0
=

√

L
1

(

D
2

1
− D

2

i

)

+ D
2

i

L
0

(9)V
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)
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Figure A2. Volume constancy modiication for a langed pipe.
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If two (or more) consecutive langed pipes needed to be realized, second term of (12) should be 

multiplied for two (or more).

Appendix 3. S/L ratio

Expression of circumferential contact (S) and axial contact (L), from Gur and Tirosh (1982).
 

 

where: � = cos
−1

(

a
2
+c

2
−b

2

2ac

)

; a = R
R
 + T

i
 + R

M
; b = R

M
 + T

i
 + ftanα; c = R

R
. With, R

D
, roller radius 

(mm); R
M

, mandrel radius (mm); α, roller attack angle; T
0
, initial thickness (mm) T

f
, inal thickness 

(mm).

Appendix 4. Energy based low model

Equation (8) describes the total low forming energy (U
e
), as in Hayama and Kudo (1979a).

 

Referring to Figure A3, every energy contribute can be described as follows: U
f
, energy consumed 

in ranges of z > 0; U
b
, energy consumed in ranges of z > 0; U

if
, plastic deformation energy under roller 

for z > 0; U
ib

, plastic deformation energy under roller for z < 0; U
a
, plastic low velocity discontinuity 

energy on roller entrance (HEƍ); U
f
, frictional energy consumed on contact surface between roller/

blank and blank mandrel for z > 0; U
b

, frictional energy consumed on contact surface between roller/

blank and blank mandrel for z > 0; U
r
, plastic low velocity discontinuity energy on roller exit (EL). 

Applied forming powers and forces equations are developed from Equation (17), they can be found 

in (Hayama & Kudo, 1979a, 1979b; Jolly & Bedi, 2010; Marini, Cunningham, & Corney, 

2014; Singhal et al., 1990).
Contact surface area need to be calculated trough deinition of z

g
(z > 0) and z

n
(z < 0). Referring to 

Figure A3, the irst was deined as a parabola passing for vertex E = (0, z
E
) and point Eƍ = (x

a
, z

Eƍ). he 
second was similarly deined but passing for vertex E = (0, z

E
) and point Eƍ = (x

a
, z

E
). Consequently,

•   

•   

hus, contact surface were deined as follows and calculated using (18) and (19).

•   
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(15)S = RR�

(16)L ≅

(T
0
− Tf + 2

f + tan�

)

(17)Ue = Uf + Ub =

(

Uif + Ua + Uff + Ur

)

+
(

Uib + Ufb

)

(18)zg =
z�E − zE

x2a
x2 + zE

(19)z
n
=

z
L

x
2

b

x
2 + z

L

(20)
Sf =

xa

∫
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zgdx =

zE� − zE
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xa + zExa
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•   

Radial force (P
r
) contributes in z > 0 and z < 0 were described as follows.

 

 

Consecutively, the total radial forces (y-axis)
 

he axial force (z-axis) 

Appendix 5. Time and cost models

Time model (low-turning model). Referring to Figure 9, forming lengths (green) and transverse 
lengths (red) could be identiied for every low forming pass (i-th)
 

(21)S
b
=

x
b

∫
0

z
n
dx =

4

3
z
L
x
a

(22)Prf =

Uf

Yf

Sf

(23)P
rb
=

U
b

Y
b

S
b

(24)P
r
= Prf + P

rb

(25)P
z
= P

r
tan(�)

(26)Lforming,pass−i =

N
o

∑

K=1

L
Ok

Figure A3. energy method, contact zone model for low forming (hayama & Kudo, 1979a).
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For i-th low forming pass: L
forming,pass–i

 (26), total formed length i-th pass; L
transverse,pass–i

 (27), total 

transverse length; L
Ok

, k-th formed length; L
Tk

, k-th transverse length for i-th pass, N
o
, number of 

forming length sections, N
T
, number of transverse length sections.

 

 

For i-th low forming pass, tforming,pass i (28), total forming time, t
transverse,pass i (29), total transverse 

time, F
pass–i

, feed rate in mm/min, v
pass–i

, transverse speed in mm/min. Total operative time in 
toperative,pass i is expressed as in (30).

 

Hybrid cost model. Cost model was created in order to calculate manufacturing cost, derived 
from (Allen & Swit, 1990; Kalpakjian & Schimd, 2009; Swit & Booker, 2013). Only direct costs were 
involved in calculation. (i.e. costs directly imputable to process). Total cost expression (15) includes 
labor cost (35), material cost (16), tool cost (37), working operative cost (36) as variable costs. Machine 
depreciation (39) and maintenance cost (40) has been considered as constant. Indirect costs were not 
considered in this investigation. By the way, usual general cost formula could be written as follows

 

 

 

With, C
Material

, total material cost, V
preform

, preform volume (mm3) ρ, material density (kg/mm3), 
c

material
, material cost (£∕kg).

Flow forming process has been as composed of ive main phases: t
set-up

, set-up time, machine pro-
gramming in order to absolve the task (machine stopped, idle machine time); tload, part loading time, 
workpiece clamping on the machine (machine stopped, idle machine time); t

FFi
, forming time, divided 

in preliminary operations (t
(pre,ops)i

)ending operation (t
(end-ops)i

) and working time (t
(operative)i

) (machine 
working, idle worker time); part unloading, released worked part from the machine (machine stopped, 
idle machine time); t

Qcheck
, quality check time, assigned only to a ixed sample of pieces (not idle 

time, in parallel with other operations). Usually low forming pieces did not need change clamping 
references during operations, so, forming pass can be done consecutively (Figure A4).

Total time low forming, including quality check, can be written as in (34).
 

Consecutively, labor cost could be deined as (35).
 

(27)Ltransverse,pass−i =

NT
∑

K=1

LTk

(28)tforming,pass i =

Fpass−i

Lforming,pass i

(29)ttransverse,pass i =

vpass−i

Ltransverse,pass i

(30)toperative,pass i = tforming,pass i + ttransverse,pass i

(31)CTotal/piece = CDirect−Variable + CDirect−Fixed + CIndirect

(32)CDirect,Variable = CMaterial + CLabor + CTool + CWorking

(33)CMaterial = Vpreform�cmaterial

(34)ttotal/piece = tset-up +

n−passes
∑

i=1

(

t
(load)i + t

(unload)i + t
(pre,ops)i + t

(operative)i + t
(end - ops)i

)

+ tQcheck

(35)CLabor = Cskilled worker + Cunskilled worker

(

tset-up + tload + tunload + tFFI + tQcheck

)
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With, C
Labour

, total labor cost (£); c
labour

, labor cost per min (£∕min); t
set-up

, set-up time (min); t
FFI

, 
forming time (min); t

unload
, unloading time (min); t

load
, loading time (min); t

Qcheck
, quality check 

time(min).
Forming operation cost can be formulated as in (36)
 

With, C
Working

, total working cost (£); W
forming–i

, forming power calculated through the energy based 
model (Appendix 4); W

transverse–i
 machine transverse energy, considered as (W

transverse
 = 0.01W

forming
); 

c
energy

, energy cost (£∕W).
Tools cost could be written as follows, giving a rough estimation of tool life (37).

 

C
Tool

, tool cost imputable to low forming operation (£); Csingle tool, single tool set cost (£); Ttool life, 
medium tool life (min); 

Ttool life

(top I+…)
, portion of tool life used by process (%). Fixed costs were assigned to 

all the process because they were speciically not assigned to a single operation, as in (38).
 

Machine deprecation is deined as in (39) (Kalpakjian & Schimd, 2009),
 

With, CMachine Depreciation, depreciation cost (£); CMachine, total machine cost (£); t
total/piece

, lead-time 
(min); y

depreciation
, machine ixed depreciation years (years); d

working
, machine working days per year 

(days/years); h
working

, machine working hours per day (min/days). Maintenance cost (40) can be 
expressed as a part of the machine depreciation (39).

 

(36)CWorking =

n−passes
∑

i=1

(

Wforming−i +Wtransverse−i

)

cenergytFFi

(37)CTool = C
single tool

Ttool life

(top I +…)

(38)CDirect, Fixed = CMachine Depreciation + CMaintenance +…

(39)CMachine Depreciation = CMachine

ttotal/piece

ydepreciationdworkinghworking60

(40)CMaintenance = 0.07CMachine Depreciation

Figure A4. flow forming process time model schematization.
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