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Abstract | Surface enhanced Raman scattering (SERS) is of interest for biomedical analysis and 

imaging due to its sensitivity, specificity and multiplexing capabilities. The successful application of 

SERS for in vivo biosensing necessitates probes to be biocompatible and procedures to be minimally 

invasive, challenges that have respectively been met by the design of nanoprobes and instrumentation. 

This Review presents recent developments in these areas, describing case studies in which sensors 

have been implemented, as well as outlining shortcomings that have to be addressed before SERS 

sees clinical use.  

 

In 1928, C. V. Raman first reported the scattering phenomenon that now bears his name.1,2 Raman 

scattering has since become a powerful analytical technique, including for biomedical applications,3 

where label-free and objective tissue diagnostics4-6 ex vivo and in vivo, as well as drug-cell interaction 

studies in vitro have been conducted.7-9 The majority of incident photons experience elastic (Rayleigh) 

scattering, with only about 1 in 107 photons undergoing inelastic (Raman) scattering.10 In 1974, 

Fleischmann and co-workers described a phenomenon that would later become known as surface 

enhanced Raman scattering (SERS)11. They observed a large enhancement in inelastic scattering from 

pyridine when the analyte was adsorbed onto a Ag electrode, an effect that had previously been 

mentioned by the team of A. J. McQuillan in 1973,12 with Van Duyne later attributing the signal 

enhancement to the roughened metal surface via the physical phenomenon he coined SERS.13 Unlike 

conventional Raman spectroscopy, SERS analyses require samples to be labelled, a disadvantage 

offset by the large intensity enhancement that makes SERS an important analytical tool with high 

sensitivity and low detection limits.14,15 The exact mechanism of SERS is not fully understood but an 

electromagnetic enhancement factor plays the major role16, whereby free electrons in a metal 

nanoparticle (NP) encounter applied radiation whose electromagnetic field varies at a frequency 

matching the oscillation frequency of electrons in the NPs. Such plasmon resonance at the NP surface 

arises from an intense electric field, which intensifies Raman modes arising from molecules near or 

attached to the NP surface. The Raman signals can also be enhanced due to the formation of charge-

transfer complexes between the roughened metal surface and molecules bound to it. We now leave 

our discussion of the SERS mechanism, but refer readers interested in these fundamental principles to 

some comprehensive articles on the subject.17-19 

 

Well-known selection rules allow for one to predict if a given vibrational mode is infrared- and/or 

Raman-active. Indeed, by considering the magnitude of the change in dipole moment or polarizability 

associated with a vibration, one can rationalize infrared or Raman data, respectively. Compared to 

Raman spectroscopy, SERS involves analyte molecules interacting with a roughened metal substrate, 

such that the symmetry of the system, and thus the selection rules, are now unclear.16 Moving from 

Raman to SERS, this adsorption or complexation of the molecules to the surface can result in peaks 

appearing or disappearing, peak intensities changing dramatically, and peak broadening. Molecules 

can also orient themselves in a variety of ways relative to the metal surface, with different orientations 

giving rise to different SERS spectra. One requirement for SERS, which is the reason a roughened 

rather than a smooth metal surface is required, is a polarizability component perpendicular to the 

metal surface. Different orientations of the same molecule have different polarizability components 

parallel and perpendicular to the surface, and may thus have stronger or weaker SERS as a result. In 

terms of analyte functionality, ʌ-conjugated systems tend to possess strong Raman scattering cross 

sections due to their distributed electron clouds that can be easily polarized in the presence of an 

electric field.  



 

The unique characteristics of SERS have motivated investigations applying the technique in 

biosensing and biomedical contexts, with the majority of these reports describing analyses of in vitro 

and ex vivo biofluid samples. Since the first SERS characterization of an organic compound in 1984,20 

many studies have focused on the detection of oligonucleotide sequences or proteins in biofluid 

samples with a view to diagnosing diseases. Accordingly, SERS-based immunoassays were realized 

in 1989,21 followed by a SERS-based gene probe in 199422. SERS has major advantages over the 

(primarily fluorescence-based) biological assays in use, with the former being potentially more 

sensitive and more amenable to multiplexed measurements — those in which multiple analytes are 

detected simultaneously. The latter is possible because SERS signals are typically much sharper than 

fluorescence peaks. The first SERS detection of two different DNA sequences was reported in 200023, 

with more recent work extending this to six oligonucleotide sequences24, as well as, in 2014, the first 

quantitative multiplexed bioassay25. SERS probes have also been used for in vitro studies, in which 

interactions between small molecules and cells can be studied with a view to screen and develop 

drugs.26,27 In addition to biofluid samples, immuno-Raman microspectroscopy has been used for 

antigen detection on tissue samples for disease diagnosis28; this, and other major advances in SERS 

sensing are depicted in Figure 1. 

 

Although SERS has found extensive use for in vitro and ex vivo analyses, its incorporation into in vivo 

bioanalytical methods has proven more difficult. This Review will describe studies towards this lofty 

goal, as well as outlining the technological challenges still faced by those undertaking such research. 

Indeed, SERS has yet to be adopted in a clinical setting for detecting analytes in human subjects, and 

significant optimization will be required for us to realize the benefits of this distinct technique. In the 

43 years since its discovery in 1974, it took 15 years for SERS to be applied in the context of a 

biological assay in 1989,21 and 32 years before its application in vivo in 2006.29 Despite not yet being 

applied for in vivo analysis in the clinic, SERS has seen success in an ex vivo platform, with the 

Fungiplex assay for detection of 12 different fungal pathogens, developed by Renishaw Diagnostics, 

being released for clinical application in 2015.30-32 This came 26 years after the first report of a SERS 

based biological assay. It stands to reason that the next 15 years could prove crucial for advancing in 

vivo SERS diagnosis in the clinic, with this year being only 11 years after the first application of 

SERS in an animal model in vivo. 

 

In the sections that follow, this Review will address two major concerns associated with in vivo SERS 

measurements: nanosensor design and instrument selection and optimization. SERS makes use of 

metal NPs and is thus not considered a ‘label-free’ technique. Although NPs have been used in 

medical applications such as imaging and photothermal therapy (PTT),33 the toxicity of NPs is a major 

concern associated with moving SERS in vivo. Despite this, there is substantial evidence for the 

biocompatibility of NPs (particularly those of Au), with some already having been approved for use in 

other clinical settings. Before focusing on SERS developments exclusively, it is important to be aware 

of other methods, including spontaneous Raman, as well as the nonlinear techniques coherent anti-

Stokes Raman spectroscopy (CARS) and stimulated Raman spectroscopy (SRS). The vigour of efforts 

aimed at bringing SERS to the clinic is matched by the impetus behind these three methods, which 

have an obvious advantage over SERS in that they are label-free such that their biocompatibility rests 

only on the degree of laser exposure required. These alternative methods give rise to weaker signals 

(that is, they are less sensitive) and although there are overlaps in the applications of the techniques, 

each can be seen as having a particular clinical application. Spontaneous Raman spectroscopy has 

been applied in vivo for clinical applications, which involve a monochromatic laser interrogating the 

tissue site and scattered Raman photons being detected. This technology has already been used on 

human subjects for skin care,34,35 the diagnosis of cervical36 or bladder cancer,37 gastrointestinal 

endoscopy,38 breast cancer tumour resection,39 and brain tumour resection.40 In 2016, BBC News 

notably reported the use of a Raman probe in surgery for real-time imaging of tumour boundaries 

during a brain tumour resection.41 In spontaneous Raman spectroscopy, the discrimination between 

cancerous and non-cancerous tissue generally relies on complicated and robust machine-learning 

models that often discriminate based on very small spectral differences. Given that spontaneous 

Raman spectroscopy does not need a label, relative to SERS it has fewer safety considerations and has 



found greater success in the clinic. With SERS, one not only needs to meet International Standards for 

laser exposure, but also consider the toxicology hurdle surrounding NP application in vivo. Once this 

is surmounted, there is vast scope for improved detection. Research into clinical spontaneous Raman 

spectroscopy has given rise to commercially available products such as the skin-cancer-sensing 

Verisante “Aura” probe,42,43 which is adaptable to nanoprobes and thus will also help make in vivo 

SERS a reality. 

 

We view the prospect of having a ‘yes or no’ response according to the presence or absence of a 

SERS spectrum as being a clean and simple detection method, one that could be translated into a 

simple colour or sound response to the clinician. Although SERS has recently been applied to in vivo 

imaging, we believe that the major strength of SERS is its sensitivity, possible because the data 

feature strong SERS enhancement and minimal background signal, which can be rapidly converted to   

a ‘yes or no’ response for one or multiple markers. Vast efforts have been made to use spontaneous 

Raman for objective ex vivo diagnosis of tissue sections, this method being an alternative to standard 

histology protocols that rely on subjective analysis by a trained pathologist.5 Raman has yet to emerge 

victorious here, and must also compete against Fourier transform infrared spectroscopy, a much faster 

method. SERS has also been used for diagnosis in tissue sections ex vivo28 but there is a more equal 

push towards the in vivo detection capabilities of SERS. The primary advantage of CARS and SRS 

over spontaneous Raman is speed. Being nonlinear techniques, CARS and SRS allow rapid image 

acquisition, although they only probe one vibrational transition rather than a spectral range. Therefore, 

their applications are highly focussed on real-time structural and dynamic data acquisition of carefully 

selected vibrational transitions of native biological species.44-47 

 

On considering the examples described above, it would appear that cancer detection is the most 

prominent application for in vivo Raman spectroscopies. Yet, SERS has also found use in the 

continuous monitoring of glucose levels in diabetic patients. Spontaneous Raman spectroscopy would 

be much less amenable to this use, which requires the selective detection of one specific molecule in a 

complex biological environment. The high sensitivity required is not well met by the weak nature of 

spontaneous Raman scattering. On the other hand, SERS probes can be designed that selectively bind 

to glucose and enhance its signals, and indeed there are applications in which SERS is superior to 

spontaneous Raman techniques.48 Like any technique, SERS has its pitfalls, and work is continuously 

being undertaken to, for example, address the binding of poorly selective glucose probes that also 

bind other sugars with similar structures. For example, the use of non-targeting and targeting probes 

allows specific and non-specific binding to be discerned during cancer detection,49 and more 

sophisticated nanoprobes have improved glucose selectivity.50 

 

We are hopeful that the full benefits of SERS will be realised in the coming years, as the technique 

continues to be pushed further towards in vivo clinical use. Despite only 11 years having passed since 

the first in vivo study, many promising studies have already surfaced, including some in glucose 

sensing29,48,51 and cancer diagnosis.52,53 These key advances will be discussed, as will applications to 

other diseases. In addition to diagnostics, SERS has been used for intraoperative guidance for tumour 

removal,54 and, when in combination with drug delivery and PTT, enables targeted tumour detection 

and treatment.55 We will highlight prominent examples in these areas, describing the challenges that 

have already been overcome, as well as those that still need to be addressed before these analytical 

tools find clinical use.  

 

[H1] Nanosensor design 

To observe a SERS signal, a Raman-active molecule must be adsorbed onto, or lie in close proximity 

to, a roughened metal surface. Although one can directly detect analytes such as biomolecules,56,57 a 

typical procedure involves using a strongly absorbing dye or a Raman reporter molecule with an 

affinity for the metal surface and a large Raman cross section, so that further enhancement can be 

achieved.58-60 The application of the metal NPs and Raman reporter in vivo can come only after 

careful consideration of their properties. The toxicity of NPs has consequently been studied 

extensively and has been the subject of detailed reviews.61-65 Briefly, the toxicity and biocompatibility 

of NPs is largely dependent on their size, shape, charge and surface chemistry,66-69 as well as other 



factors such as their propensity to aggregate.70 Each of these properties must be carefully considered 

when designing nanosensors for in vivo applications and toxicological effects must be assessed when 

fabricating or altering probes for bioanalysis. As we noted above, Au NPs are considered relatively 

safe (certainly more so than Ag NPs), and can be made even safer upon protective coating. As long as 

one keeps in mind the particle properties and dosage, Au NPs show good biocompatibility and are 

suitable for application in vivo, although not before detailed investigations into the effects these NPs 

have on cells. Long-term changes in cells following exposure to Au NPs under different conditions 

can lead to changes in gene expression of the cells69. Although Au NPs have generally been found to 

be non-cytotoxic, with negligible changes in cell viability or proliferation following exposure, small 

changes in morphology and gene regulation can occur, these being more apparent for acute rather than 

chronic NP exposure.69 This is relevant to the use of NPs for biosensing in that exposure would 

generally be in an acute dose. The interactions that NPs have with cells depend both on the NP surface 

— which may or may not be coated — as well as the cell type. In addition to considering the toxicity 

of the metal NPs and the overall biocompatibility of the SERS-active probes, it is crucial that the 

whole sensor remains intact in vivo to produce the desired signal, after which the NPs should be 

promptly expelled from the body. Furthermore, it is essential that a SERS signal can be obtained 

using laser wavelengths that are safe and suitable in vivo. For these reasons, many factors have to be 

considered when building a nanosensor for biomedical applications. These design principles and the 

technologies that best satisfy them are depicted in Figure 2. 

 

[H3] SERS substrates. Au and Ag NPs have been the traditional choices when it comes to signal-

enhancing metal surfaces for SERS. This is partly due to the energies of their surface plasmon 

resonance (SPR) absorption bands, which lie in the visible region and are conveniently probed by 

readily available lasers. In vivo SERS applications will benefit instead from excitation in the near 

infrared (NIR) region, as the background signals from tissues and biomolecules are much weaker in 

this region71. Additionally, NIR light induces less photodegradation and penetrates tissue more 

deeply, which is beneficial for in vivo detection. The optical properties of NPs are readily tuneable by 

varying their size, shape and chemical composition. Consequently, extensive research has been 

undertaken to design SERS substrates with localised surface plasmon resonances (LSPRs) in the NIR 

region and to investigate whether or not the substrates provide an improved SERS enhancement. 

These materials can take the form of solid surfaces modified with signal-enhancing metal layers or 

films,72-74 or colloidal suspensions of particles with varying size and shape. For most in vivo 

applications, the latter are more suitable since NP solutions can simply be injected into live animals, 

whereas the solid support requires implantation. Despite this, solid SERS-active substrates are useful 

for certain biomedical applications, and can be incorporated into glucose-sensing implants.72,75 AgNPs 

afford strong SERS signals, although the toxicity of Ag NPs remains a concern for in vivo 

applications.76-78  AuNPs are more biocompatible, give rise to more reproducible signal intensities and 

have surfaces that are more easily functionalized for bioconjugation.79 Additionally, Au 

nanostructures tend to exhibit LSPRs at longer wavelengths, rendering them more suitable for use 

with NIR-SERS. Therefore, the majority of in vivo applications involve the use of Au as the 

enhancing metal substrate. 

 

Thin metal nanoshells, when encircling a dielectric core, can feature a plasmon band whose energy is 

tuneable from UV to NIR by altering the core diameter and shell thickness.80-82  Indeed, by carefully 

adjusting the diameter of a SiO2 core and the thickness of an Au shell surrounding it, the SPR can be 

tuned from 800 nm to around 1060 nm in order to match the wavelengths of NIR Raman lasers.82 

NIR-SERS has also made use of Au/Ag alloy shells,83,84 the synthesis of which involves a redox 

reaction between dissolved [AuCl4]− and a Ag template.85 Each SiO2 nanosphere is coated by many 

such hollow Au/Ag shells, and the composite can be injected into live animals, in which they enable 

multiplexed detection using NIR-SERS84. The diameter of the hollow shell centre and the Au:Ag 

atomic ratio can be varied to red-shift plasmon bands from Ȝmax = 480 to 825 nm. The Au/Ag shells 

that cover the SiO2 core have been further encapsulated in a SiO2 shell, and samples of the material 

have been functionalized with three different Raman chromophores. Each of the three nano-

assemblies (“NIR SERS dots”), along with a mixture of all three, were injected into different sites in a 

mouse and intense Raman signals were obtained for all three reporters upon 785 nm laser excitation. 



Additionally, peaks from each of the Raman reporters appeared in the spectrum of the mixed sample, 

which may thus represent a useful nanoprobe for in vivo multiplexed detection. 

 

In addition to the metal shells described above, in which a hollow Ag sphere is surrounded by a layer 

of Au, one can also prepare hollow Au nanoshells (HGNs) by depositing Au with concomitant 

oxidation of a Co template. The resulting spherical particles are small (50 – 80 nm), and tuning the 

core diameter and shell thickness gives control over the LSPR properties of relevance to NIR-

SERS.86-89 When the concentrations of the reactants are optimized, the HGNs are relatively well-

defined, with particle diameters of 78.7 ± 22.5 nm and shell thicknesses in the range 8.8 ± 1.34 nm90. 

These particles are smaller than earlier HGNs and gave an effective SERS response at 1064 nm (a 

common wavelength for a Nd:YAG laser) when functionalised with seven different Raman reporters. 

Consequently, they have shown significant potential for human cell or tissue analysis and would be 

particularly suitable for in vivo applications such as PTT.91 

 

As well as the spherical particles discussed thus far, rod-92-95 and star-shaped nanostructures96-100 also 

have optical properties that make them appropriate for use as NIR-SERS substrates, including for in 

vivo applications. Au nanostars have been used in Raman imaging for the detection of tumours of 

various cancer types at different stages. The success of this methodology, which uses experimental 

conditions similar to those used in a clinical setting96, arise from the exceptional specificity and 

sensitivity of the SERS nanostars, which afforded a detection limit of the nanostars as low as 1.5 fM. 

Raman imaging was also carried out in situ, signifying the potential application of this system for 

intraoperative detection. Au nanostars have also proven useful for in vivo NIR-SERS analysis of 

animal tumours using transdermal detection, using 785 nm laser irradiation at powers that would be 

acceptable for human skin97. The method also allowed for nanostars to be detected when embedded in 

ex vivo human skin graft samples or when dispersed in a biocompatible hydrogel as a carrier matrix. 

Lastly, SERS-encoded nanostars can be embedded in a tissue-integrating polymer scaffold and 

implanted into live rats and pigs, in which signals from the probes could be detected. Spectra could 

also be obtained from the pig over a period of 6 days using a handheld Raman system, without the 

need for anaesthesia, further demonstrating the versatility of this detection method for clinical 

applications. 

 

It is not essential that the LSPR frequency of the SERS substrate matches the laser frequency, but we 

reiterate that significant efforts have been made to develop substrates suited to excitation at longer 

wavelengths, with such radiation penetrating tissue more deeply and giving rise to less intense 

background signals. Additionally, apart from tuning substrate LSPR and size, the most useful 

materials are biocompatible such that they are suitable for a variety of biomedical applications, from 

detection and imaging, to drug delivery and PTT. 

 

[H3] Functionalizing the substrate. Although NIR lasers are preferred for in vivo SERS applications, 

Raman scattering of these long wavelengths is intrinsically weak. Therefore, as well as selecting the 

most suitable metal substrate, one must choose a Raman reporter molecule that significantly enhances 

SERS at these wavelengths. A good SERS reporter molecule will produce a strong Raman signal and 

have an affinity for the metal surface. Therefore, Raman reporters often possess ʌ-conjugated 

systems, due to their distributed electron clouds, and functional groups such as thiols, isothiocyanates 

or amines for surface attachment. Additionally, further enhancement can be obtained by incorporating 

a chromophore as the Raman reporter, and selecting a laser excitation wavelength which matches an 

electronic transition of the chromophore, resulting in resonance Raman scattering with enhancement 

in signal of up to 106 being achievable. Further, if multiplexed detection is desired, then each reporter 

should exhibit distinct spectral features that are easily resolved.101,102 Fluorophores25, UV-vis dyes,103 

as well as non-resonant aromatic reporters104 are all useful in terms of their high scattering 

efficiencies. However, alternative molecules with improved NIR sensitivity and strong affinity for 

suitable metal substrates have also been investigated as potential SERS reporters. A selection of 80 

tricarbocyanine reporters with varying amine structures were used in combination with AuNPs for 

NIR-SERS at 785 nm laser excitation.53 Those consisting of mostly aromatic amines gave the most 

intense SERS signals, with CyNAMLA-381 yielding a 12-fold increase in sensitivity relative to the 



commonly used 3,3ƍ-diethylthiatricarbocyanine (DTTC) reporter molecule. One can move truly in the 

NIR region by instead using chalcogenopyrilium dyes, 14 different examples of which were loaded on 

separate HGN samples. These dyes possess a range of absorption maxima from 653 nm to 826 nm, 

varying substituents which give unique Raman spectra and they each possess multiple S or Se groups 

which allow strong adsorption onto the Au surface for maximum SERS enhancement. In each case, 

excitation with a 1280 nm laser afforded intense and unique SERS spectra with detection limits 

ranging from 1.5 ± 0.1 – 32.8 ± 2.4 pM for 12 of the 14 dyes105. It was elucidated that the dye which 

gave the strongest SERS signal did so because of its significantly red-shifted absorption maxima of 

826 nm, making it NIR-active, and the presence of the selenophene groups, which result in stronger 

binding to the Au surface than the alternative thiolates. SERS of the same dyes with spherical Au and 

Ag NPs was significantly weaker, and no SERS signal at all could be observed when the common 

NIR-Raman reporters 1,2-bis(4-pyridyl)ethylene or 4,4ƍ-azopyridine were combined with HGNs and 

irradiated at 1280 nm. This highlights the importance of specifically designing nanotags for a 

particular excitation wavelength, as well as the correct combination of SERS substrate and Raman 

reporter. Even more sensitive than the examples above are thiophene-substituted chalcogenopyrilium 

dyes, with these NIR Raman reporters enabling a detection limit of 100 aM106. They were also applied 

for in vivo tumour imaging, and their unique fingerprint spectra make them suitable for the detection 

of multiple markers in vivo. More recent work describes two new chalcogenopyrilium dyes with 

absorption maxima at 959 and 986 nm, which, when used with 100 nm AuNPs and excited at 

1550 nm, gave intense SERS spectra with detection limits of 50.6 ± 4.6 and 62.9 ± 4.8 pM, 

respectively.107 Achieving such sensitivity using a retina-safe laser is particularly impressive since 

Raman scattering is inherently weak in this NIR region, yet is advantageous for biomedical 

applications. 

 

Certain examples of NIR-active cyanine dyes not only give rise to SERS but also allow for 

simultaneous photoacoustic (PA) imaging108. Strong SERS and PA signals were observed from a 

chloro-substituted Cy7 dye, of which one indole can be tethered to a lipoic acid residue to anchor the 

dye to AuNPs. Covalent attachment allows for robust and reproducible Raman scattering, and the 

nanoprobes can then be encapsulated in poly(ethylene glycol) (PEG) to enhance their stability and 

aqueous solubility. The coated nanoprobes were dosed into cells, which exhibited close to 100% 

viability and were thus subjected to in vivo SERS detection and PA imaging. In addition, nanoprobes 

could also be further labelled with an antibody that increases the selectivity of the particles for cancer 

cells over healthy cells. Both SERS and PA analyses indicated that accumulation of probes in a 

tumour is maximized after 6 hours and 24 hours for the labelled and unlabelled nanoprobes, 

respectively. The particles also accumulated in the liver and spleen, but, encouragingly, they are 

excreted from the mice after ~72 hours. Combining PA imaging with SERS detection allows deep 

penetration for successful tumour identification, as well as excellent sensitivity to help ensure one can 

find and remove even small tumours. More generally, the development of biocompatible probes for 

multimodal imaging is extremely useful for in vivo biosensing because the limitations of each 

technique can be overcome by combining their advantages. 

 

Careful design of SERS substrates and reporters enables one to continually lower the detection limits 

for biological species. Indeed, sensitivity is one of the most important factors when designing new 

diagnostic tests, as early detection of disease improves patients’ prognoses. In terms of sensitivity, 

SERS measurements can be superior to fluorescence-based measurements in vivo,109 and the former 

offer greater multiplexing capabilities and specificity due to the unique fingerprint spectra arising 

from specific molecular vibrations. Certain reporter molecules, such as DTTC, can be utilised for 

dual-mode imaging using both SERS and fluorescence. One can favour either SERS or fluorescence 

by modifying the distance between the reporter and the metal surface. Multilayer-coated Au nanorods, 

functionalized with DTTC, have tuneable optical properties. Their fluorescence allows one to quickly 

identify potential areas of interest, such as tumour sites, while the sharp SERS signals from the DTTC 

allow a more accurate localization of the tumours, particularly because the signals were significantly 

more intense from the specific sites where NPs had accumulated94. This combination of techniques is 

extremely useful but also highlights the potential SERS has in vivo, where a specific signal, with little 

to no background signal from other regions, can be obtained from an area of interest. This level of 



specificity is of utmost importance in moving towards clinical applications where a clear-cut 

distinction between a healthy and diseased state is essential. 

 

As we have seen, the properties of a SERS substrate and reporter molecule are paramount in obtaining 

SERS signals in vivo. It is also important that the SERS nanoprobe finds its way to the desired 

location before its signal is measured. Although passive targeting is suitable in certain in vivo 

applications, more commonly employed is active targeting, in which the nanoprobe is functionalized 

with a recognition moiety. This moiety, which may take the form of an antibody,109 aptamer110 or folic 

acid,111 allows more sensitive detection of specific antigens in vivo. A lot of in vivo SERS-based 

biosensing research has focused on cancer detection, in which nanotags are functionalised with 

antibodies specific to antigens — such as epidermal growth factor receptor (EGFR) and human 

epidermal growth factor 2 (HER2) — that are overexpressed in tumours.52,53 Of course, this targeted 

approach is not unique to cancer imaging, and a wide range of antibodies specific to other diseases are 

commercially available. For example, antibody-conjugated Au NPs allow in vivo detection of 

intercellular adhesion molecule 1 (ICAM-1), an inflammation marker of many inflammatory, 

autoimmune and infectious diseases109. By attaching a Raman reporter, 2,2-dipyridyl, to Au NPs, 

coating them with a SiO2 shell and functionalizing them with a ICAM-1-specific antibody, one 

obtains specific SERS signals in vivo with double the sensitivity of two-photon fluorescence. Again, 

this highlights the sensitivity of SERS, which is unparalleled by other analytical methods. 

 

As was alluded to above, in vivo applications call for nanosensors to be coated, such that their 

biocompatibility, stability, resistance to aggregation, and SERS signal are enhanced, the latter on 

account of the reduced desorption of the Raman reporters once trapped inside the coating. The 

protective coating may also be made to include functional groups that allow subsequent conjugation 

to targeting molecules. Various approaches have been investigated for the encapsulation of SERS 

nanoprobes, and coatings such as polymers,112-114 SiO2,115-117 proteins,53 PEG108,118,119 and 

chitosan120,121 have been explored. One particular type of ‘all-in-one’ NP coating is NIR dye-loaded 

poly(N-(2-hydroxypropyl)methacrylamide) (pHPMA), the terminal thiol of which binds AuNPs to 

afford NIR-SERS-active probes (Au@IR-pHPMA).112 Aside from having a built-in dye, the polymer 

coating improves biocompatibility and in vivo stability of the AuNPs, increasing intravascular 

circulation times such that a strong SERS signal is observed even over 24 hours. In contrast to SiO2 

coatings, the ‘all-in-one’ coating affords small particles (< 20 nm) that can still be readily 

functionalized. These nanoprobes enabled in vivo imaging of lymph nodes, and, when three different 

probes were used, allowed for multiplexed analysis. 

 

[H1] Optimizing instrumentation 

In vivo SERS relies not only on the effectiveness of probes but also the efficiency of instrumentation, 

particularly in terms of portability, durability, cost, and ease of use for non-specialists. Common 

instrument configurations for Raman and SERS analysis include simple point-and-shoot devices, plate 

readers and more advanced mapping instruments. However, none of these configurations are 

optimized for in vivo measurement, for which specific devices are required. One of the primary 

considerations when designing a SERS instrument for in vivo sensing is obtaining a signal from a 

SERS substrate deep inside a body. Many early in vivo SERS studies were performed in rat or mouse 

models using mapping instruments with a configuration optimised to obtain signals from SERS 

probes subcutaneously. For example, a large 20 × 200 µm  spot can be generated using a Renishaw 

inVia Raman microscope with a 12× open field lens and defocused beam122. The high numerical 

aperture objectives used for standard mapping experiments focus the laser into a small spot, limiting 

the time that the beam can be focused on a single location before damaging the sample. This limits the 

number of scattered photons detectable from that spot due to diffuse scattering from tissue. Instead, if 

a defocused beam with a larger spot size is used, one can obtain maximum signal from the SERS 

probes in the relevant tissue. Granted, using larger spot sizes lowers spatial resolution, but this is less 

of a problem in mapping applications, for which one is not so much concerned with detailed imaging 

but rather whether or not a positive or negative SERS response is rapidly obtained from a particular 

region. These mapping instruments, popular largely due to their availability to researchers studying 

these probes, are typically used for high resolution mapping experiments, such as in vitro cell and ex 



vivo tissue analyses, but for in vivo SERS studies their highly spatially resolved mapping capabilities 

are largely not required and therefore more optimally designed instrumentation would be beneficial. 

  

A rapid, dedicated small animal Raman imaging (SARI) instrument has been developed to image 

subjects after dosing them with nanoprobes123. In contrast to previous in vivo Raman systems, SARI is 

optimised for rapid imaging of larger areas, for which the high image resolution capabilities of 

commercial systems are not required. The SARI system uses a line-scanning setup and a 2D electron-

multiplying charge-coupled device (EMCCD) detector, and does not require the sample to be 

translated in x and y direction, because the laser is raster scanned along x and y. The capabilities of the 

SARI system for multiplexed imaging of four nanoprobes injected in living mice, were compared to 

the performance of the commercial Renishaw inVia system operating in Streamline mode. SARI is an 

order of magnitude faster at imaging, with an area of 5 mm × 5 mm being imaged in 1.5 min on SARI 

and 15 min on the inVia system. The SARI system imaged with a spatial resolution of 250 × 64 µm 

and a detection limit of 3.1 pM. It may prove difficult to apply the SARI instrument to larger animals 

— ultimately humans — because larger areas may need to be imaged and nanoprobes will potentially 

be more deeply buried within the body. The depth penetration of the SARI system was <4 mm, a 

figure that could be increased by combination with spatially offset Raman spectroscopy.  For SERS to 

see clinical use we will need still further improvements in penetration, a problem that is being 

addressed using fibre optic endoscopic probes and surface enhanced spatially offset Raman scattering 

(SESORS) probes, which we now describe. 

 

Endoscopic probes are widely used by pathologists, who analyse video images and can identify 

potentially cancerous lesions, for example, in the gastrointestinal tract (FIG. 3a,b). Efforts have been 

made towards developing a fibre-optic Raman endoscopic probe that would allow SERS detection of 

cancerous tissue, a more objective analysis that typically makes use of NPs designed to target a 

cancer-specific antigen. For example, a fibre-based Raman device insertable through a clinical 

endoscope is capable of multiplexed detection of up to ten labelled SERS nanoprobes with excellent 

sensitivity.124 The fibre-optic bundle consists of a single-mode illumination fibre for 785 nm 

illumination, and 36 multimode fibres for collection. The highest laser power used was 42 mW, with 

the integration time being 300 ms, figures that are within the maximum permissible exposure (MPE) 

level for clinical use set out by the American National Standards Institute (ANSI). Under these 

conditions, the NPs themselves could be detected down to 440 fM, although this has also been 

interpreted in terms of a detection limit of a specific target receptor where the nanoparticles are 

functionalized with a receptor targeting ligand. Approximately 400 targeting ligands could be 

appended onto each nanoprobe, allowing for the target receptor to be detected at < 1 fM, with similar 

fluorescence-based endoscopic strategies only being useful down to 10 fM125. Thus, the SERS method 

has superior sensitivity, as well as the capability of multiplexed detection of up to ten nanoprobes 

using a single monochromatic laser beam. In comparison, multiplexing with fluorescence is difficult 

due to the breadth of emission spectra, and the requirement to excite with multiple laser wavelengths. 

The SERS endoscope has already been approved and demonstrated for clinical use, and the hurdle 

that remains in the approval of the nanoprobes for clinical use. Significantly, topical application of 

nanoprobes prior to colonoscopy improved delivery of NPs to the desired site and reduced toxicity.126-

128 In a robust study using over 120 mice, it was found that intrarectal topical application caused the 

NPs to localise on the colon only, with most never crossing to the systemic circulation before being 

excreted from the subjects after 24 hours. In contrast, intravenous injection proves more toxic, 

resulting in the NPs accumulating in the liver and spleen for prolonged time periods. 

 

More recently, a device has been reported that allows both fluorescence and Raman detection, 

representing a dual modality system that can be inserted in a clinical endoscope for simultaneous 

fluorescence and SERS detection of HER2 and EGFR from breast cancer tumours129. The nanoprobes 

are first located by looking for intense fluorescence, and then multiplexed detection of the two protein 

analytes is possible due to the sharp Raman bands of the rhodamine- and fluorescein-based dyes. The 

method is also applicable to esophageal cancer, with multiplexed detection of HER2 and EGFR being 

possible after topical application of targeted SERS NPs and detection with an endoscopic probe.130 

These studies demonstrated the suitability for in vivo SERS-based cancer detection in relation to 



gastrointestinal tract cancers, which can be easily surveyed using endoscopic systems with Raman 

modality. Any tissues accessible to an endoscope could be probed in this manner, including skin, 

bladder, stomach, lungs, esophagus, cervix and vagina, and with many of the endoscopic Raman 

probes being approved for clinical use, the major barrier to surmount for this approach now surrounds 

nanoprobe toxicity. Many of these studies deploy nanoprobes topically, which circumvents dangers 

associated with nanoprobes entering the circulatory system, and is also advantageous compared to 

intravenous injection, which often results in that the probe accumulating in the liver and spleen. In 

related work, a unique endoscopic opto-electro-mechanical Raman device has been developed that 

allows rapid imaging of large tissue surfaces during gastrointestinal endoscopy by adding a rotating 

mirror between the collimating lens and tissue (FIG. 3a–d)131. They demonstrated the use of this 

endoscopy in phantoms, ex vivo porcine colon, and in vivo swine (FIG. 3a) for multiplexed detection 

of SERS nanoprobes. Images generated by the device could be displayed in both 2D and 3D, and 

background signal could be used to generate a 3D topography (FIG. 3c). This device allows large 

areas of hollow organs to be imaged rapidly and translated to an image easily interpretable by a 

physician, a vital aspect in clinical adoption of this technique. 

 

SESORS is a new technique that overcomes the problems associated with detecting SERS from 

nanosensors implanted in tissue samples, far from the laser source and detector (FIG. 3e,f). 

Subcutaneous detection of SERS sensors buried in tissue is difficult due to loss of signal as a result of 

photons being scattered by the tissue. SESORS overcomes this problem by collecting scattered light 

in regions different from where the light was incident on the sample (FIG. 3e). In a standard Raman 

instrument, light is collected from the same point as the incident light, and this gives the greatest 

signal response from the surface of the sample. By collecting at regions of the sample offset from the 

position of the incident light, signals from deeper within the sample become predominant. This 

technique was first demonstrated using a transmission SESORS setup that could detect signals from 

nanoparticles buried 25 mm into a tissue sample132. In another study, four different SERS 

nanoparticles, located up to 50 mm within the sample, could be measured in tissue (FIG. 3f)133. The 

first example of targeted SESORS imaging in bone, used bis(phosphonate)-tagged nanoparticles to 

localize at bones and be detectable even through 20 mm of porcine muscle tissue134. In a more recent 

study, Sharma et al.135 have also demonstrated the capability of SESORS to obtain SERS signals 

through bone. SESORS could be vitally important for translating SERS analysis into an in vivo 

environment, allowing subcutaneous measurements to be obtained, particularly where the tissue site is 

not accessible by an endoscopic probe. 

 

Although the instruments discussed so far tend to be limited to use in a specialist clinical 

environment, and are designed primarily for detection of specific disease markers, it may be desirable 

to develop a portable, user-friendly and cheap instrument. These considerations are particularly 

important to enable SERS probes to be used in blood glucose sensing, in which a diabetic patient 

would ideally be able to continuously monitor their blood glucose level with a device worn on the 

body. Raman instruments — including handheld devices — are becoming increasingly advanced, yet 

none are optimized for glucose sensing. Therefore, although SERS appears a promising approach to 

monitor such biological markers, there is a need for efforts in instrument design to follow suit and 

allow analytical advances to be of use to patients.  

 

[H1] Key advances in in vivo sensing 

[H3] Glucose sensing. A particular SERS sensing application that has been studied extensively for in 

vivo analysis is the quantification of glucose in blood. Pioneering studies focussed on developing 

SERS substrates suitable for ex vivo analyses, after which the materials were adapted to in vivo 

environments. SERS is a promising analytical technique for development of a continuous glucose 

monitoring device for improved care in diabetic patients. The state-of-the-art for glucose monitoring 

in diabetics has not advanced far from the first electrochemical sensor, the Ames Reflectance 

Meter,136 which was first used in hospitals in the 1970s, and in homes in the 1980s.137 This method 

uses glucose oxidase (GOx) to convert glucose to its corresponding lactone, with concomitant 

reduction of O2 to H2O2. This ‘gold standard’ method is not ideal in that it requires blood to be drawn 

and it does not allow continuous monitoring, such that instances when blood glucose concentrations 



are potentially dangerous may be missed. Continuous blood glucose monitoring can help minimize 

the long-term effects of hyperglycaemia and avoid hypoglycaemia by allowing more accurate control 

and administration of insulin. Recently, monitors have become available that address present 

shortcomings. One such device is FreeStyle Libre, which allows glucose measurements, acquired 

using an implanted needle patch, to be recorded more rapidly using a wireless scanning device.138 

Commercial devices enabling continuous glucose monitoring are also emerging, including a 

fluorescence-based detector developed by Dexcom.139 Further optimization of continuous glucose 

monitors are necessary to improve the health of diabetic patients by providing a complete picture of 

fluctuating blood glucose levels. Ultimately, this could pave the way for using an artificial pancreas to 

combat diabetes by allowing feedback control for optimal operation. 

 

When optimized, SERS has shown potential for overcoming many of the downfalls of other 

techniques. Early studies focused on developing a SERS substrate that would effectively and 

accurately detect and monitor glucose in real time  in a minimally invasive fashion. One method uses 

Ag film over nanosphere (AgFON) and Au film over nanosphere (AuFON) substrates, which are to be 

implanted in vivo.72 (FIG. 4) SERS detection of the analyte requires it to be within a few nanometers 

of the substrate, which must be functionalised in order to more strongly and selectively bind glucose. 

Functionalization can involve the growth of a self-assembled monolayer (SAM) on the FON surface, 

which can now readily adsorb glucose such that it is in close proximity to the signal-enhancing metal. 

1-Decanethiol (DT) afforded effective glucose-binding monolayers,140 but its hydrophobicity was not 

amenable to an aqueous in vivo environment. Relative to DT SAMs, those based on (1-

mercaptoundeca-11-yl)tri(ethylene glycol) showed increased stability (up to 10 days),72 reversibility, 

selectivity and biocompatability.75 These SAMs are not easily prepared, and a good practical 

alternative was found in monolayers comprising DT and mercaptohexanol (MH), which were used for 

in vivo measurements after establishing the real-time quantitative glucose monitoring capabilities for 

this SAM–FON ex vivo (FIG. 4a)141. The year 2006 saw the first use of this SAM–AgFON SERS 

sensor for glucose monitoring in vivo29, incorporating an optical window into a live mouse to allow 

data collection. In 2010 came the first transcutaneous measurement using SESORS with the SAM–
AgFON probe in a live rat48 (FIG. 4b). This approach is superior in that a window is not required 

because the SERS sensor is implanted subcutaneously into the rat. SESORS-based measurements can 

now monitor glucose in vivo for more than than 17 days. More recently, the DT/MH system has been 

replaced with one based on a thiol-containing bis(boronic acid) receptor, which rapidly and 

preferentially binds glucose over other sugars50. The resulting Raman data could be interpreted using 

multivariate statistical analysis to distinguish normal, hypoglycemic and hyperglycemic responses. 

This development takes in vivo SERS closer to the clinic, and is superior to earlier SERS technologies 

that already satisfy the hypoglycemic detection limits of the International Organisation Standard. 

Finally, an alternative SERS-based approach for glucose sensing involves quantifying GOx by 

interrogating its Raman-active flavin adenine dinucleotide142. Indeed, GOx bound to the surface of 

AgNPs gives a strong SERS signal, which is attenuated when glucose competes with the AgNP 

surface for GOx binding. This was the first report using SERS detection of GOx to measure glucose 

concentration, with the strong SERS enhancement allowing good sensitivity, and the use of an 

enzyme ensuring specificity towards glucose. 

 

[H3] Cancer detection. SERS-based monitoring is very much amenable to the diagnosis of diseases, 

most notably cancer. Increasingly accurate and available techniques for cancer detection will 

ultimately lead to earlier diagnosis and increased survival rates. State-of-the-art clinical cancer 

diagnostics involve a trained pathologist examining a tissue biopsy sample and providing a diagnosis 

(histopathology).5 The procedure is inherently subjective and inevitably results in some incorrect 

diagnoses. Further, removing tissue from a patient during a biopsy and preparing it for analysis is time 

consuming and costly. Significant efforts have been made to develop infrared and Raman protocols to 

provide a more objective diagnosis according to the spectral signatures of disease markers present in 

the tissue section.5 However, these vibrational spectroscopic techniques have yet to be optimised for a 

clinical setting or prove superior to histopathology, and do not remove the need for cumbersome 

sample preparation. 

 



Studies making use of SERS for in vivo cancer diagnosis could be the beginning of a push that may 

eventually allow in vivo detection without the need to remove and prepare biopsy tissue samples. This 

goal motivated the design of a SERS probe consisting of Au NPs decorated with 

diethylthiatricarbocyanine (a Raman reporter), and surrounded by a protective PEG layer. The surface 

of each particle is functionalized with single-chain variable fragment antibodies, moieties that 

selectively bind the EGFR, a protein overexpressed in many cancers118. These SERS probes, relative 

to fluorescent quantum dots, are more than 200× brighter, and exhibit SERS bands that are sharper 

and more distinguishable than the emission from the quantum dots. In a mouse, the Au NP-based 

probes selectively localize in tumours sites, which can then be visualized even when 1–2 cm from the 

skin surface. 

 

The sensitivity of the above analyses has also been seen in related multiplexing experiments, and the 

sharp SERS peaks of four different probes have been resolved in vivo122. This work also included 

mapping experiments, in which the nanoprobes preferentially accumulate in a mouse liver, such that 

this region can be imaged in vivo. Likewise, three different SERS probes have been designed to 

actively target the EGFR, CD44 and TGF beta receptor II breast cancer biomarkers, enabling in vivo 

multiplexed detection in a mouse xenograft tumour52. Although SERS probes enable analyses with 

high sensitivity, ongoing efforts towards improving this are necessary because when in vivo, the 

Raman intensity is greatly attenuated as it travels through tissue, which can scatter a lot of light, 

particularly at long path lengths. As was presented earlier, efforts to address this involve designing 

Raman reporters optimized for NIR wavelengths, energies that are less well scattered by tissue. In this 

regard, crystal-violet-derived reporters can be functionalized with lipoic acid (LA), the disulfide 

group of which allows attachment to Au NPs143. The resulting probes enable in vivo detection of 

EGFR and HER2 proteins, with more recent work with NIR-SERS reporters now allowing for 

multiplex detection of these biomarkers (FIG. 5).144 

 

There has been an increasing number of studies that not only focus on tracking SERS probes for in 

vivo cancer detection, but also address the imaging of tumours in vivo. We are of the opinion that the 

major advantage of SERS for in vivo detection does not lie in imaging, but rather its amenability to 

detect a real-time ‘yes or no’ response in a sensitive manner. The ability to rapidly image tumours 

could further improve this technology, perhaps most notably by allowing exact tumour margins to be 

visualized for resection. The major drawback of SERS imaging has been the time required for image 

acquisition, such that real-time analysis during surgery is not within our present capabilities. This is in 

part addressable by using wide-field imaging to enable rapid image acquisition, as has been used to 

image targeted SERS nanoprobes in vitro, ex vivo, and in vivo145. Thus, multiple SERS nanoprobes, 

topically applied to tumour regions, could be located in vivo. This work made use of two EGFR-

targeting probes as well as a non-targeting probe, the latter enabling non-specific binding to be 

accounted for to improve image contrast. This SERS method thus enables quantitative background 

correction, something not possible with fluorescence methods. As mentioned above, Raman has 

allowed for biomolecule detection down to 100 aM by making use of ultra-bright chalcogenopyrlium 

dyes that absorb in the NIR106. Probes decorated with these dyes gave three times brighter EGFR 

imaging than those featuring the typical cyanine dye IR792 when intravenously injected in A431 

xenograft nude mice (FIG. 5d,e). More recently, the benefits of topical probe dosage and acquisition 

of SERS background from non-targeted probes have been combined in a technique dubbed “topically 
applied surface-enhanced resonance Raman ratiometric spectroscopy (TAS3RS)”49. Here, the NPs 

were administered intraperitoneally, in contrast to many other in vivo SERS studies that involve 

intravenous injection. We reiterate that the latter dosage method results in substantial probe 

concentrations in the liver and spleen, such that uptake into the regions of interest — tumour sites — 

is low. In addition, intraperitoneal administration avoids toxicity problems that can arise when NPs 

enter the systemic bloodstream. Therefore, although the progression of SERS into the clinic has been 

slowed by concerns over nanoparticle toxicity and biodistribution, these recent studies are beginning 

to surmount these barriers using alternative experimental design.  

 

[H3] Intraoperative guidance. In order to ensure complete removal of tumours, it is extremely 

beneficial to perform selective imaging while surgery is being undertaken. SERS has shown promise 



for intraoperative guidance because it is relatively fast, sensitive, and affords the possibility of 

obtaining fingerprint spectra with high specificity. Towards this, a dual-probe approach has been used 

whereby tissues from mouse tumours were incubated with two types of SERS-active NP, one 

featuring a EGFR-specific antibody and one with no targeting moiety. EGFR concentrations in fresh 

tissue samples can thus be measured by subtracting the background signals obtained146. A single 

excitation wavelength was used to obtain distinct spectra from the two different probes, and it seems 

that the method will be extendable to include additional probes targeting different cancer markers, 

enabling significantly more accurate tumour detection. The method was later used to quantitatively 

phenotype tissue surfaces and could potentially lead to intraoperative detection of residual tumours in 

less than 15 minutes.54 

 

Earlier in this Review, we described a dual probe that could be interrogated using PA and SERS 

analysis. Building on this, a triple modality NP has been developed that allows simultaneous magnetic 

resonance imaging (MRI), PA and Raman imaging (MPR)147. This MPR method combines the 

advantages of each technique to meet the needs for surgical resection of brain tumour patients. Each 

probe consists of a 60 nm AuNP functionalized with the Raman reporter 1,2-bis(4-pyridyl)ethylene, 

which is further protected by a 30 nm SiO2 coating and a layer containing Gd(III) complexes, the 

paramagnetism of which (S = 7/2) provides good MRI contrast (FIG. 6a). The particles were 

visualized by consecutive magnetic resonance, PA and Raman imaging analyses, with detection limits 

of 4.88 pM for MRI, 1.22 pM for PA and 610 fM for Raman imaging. In live mice, the probes gave 

less sensitive magnetic resonance and PA responses due to the background signals from tissue. 

However, Raman imaging suffered negligible interference from tissue signals, and the particles could 

be clearly observed down to 50 pM, the lowest concentration investigated in vivo. Following injection 

of the particles into mice having brain tumours, each of the three methods allowed visualization of the 

cancerous regions, even through the intact skin and skull (FIG. 6b). By imaging the interface between 

the tumour and the healthy tissue, a strong Raman signal could be observed from within the tumour 

but not from surrounding areas (FIG. 6c). This is because the MPR particles accumulate in the tumour 

region but are too large to cross the blood-brain barrier, and therefore do not accumulate in healthy 

brain tissue. Due to the sensitivity of the SERS method, Raman signals could also be obtained from 

tumour protrusions and microscopic tumour foci. Indeed, Raman imaging has been employed to guide 

tumour resection, and images obtained at each stage correlate well with photographs. Additionally, 

when the tumour appeared to be completely removed by visual inspection, Raman signals could still 

be observed from small areas, regions that were later found to be cancerous extensions into the 

surrounding tissues. Although they were not visually apparent, they were detectable by Raman 

imaging due to the selective accumulation of MPR particles in the cancerous regions. These particles 

also allowed the same probe to be observed before and during surgery, enabling brain tumour 

resection with improved accuracy. The sensitivity of Raman imaging was important in allowing 

detection of microscopic tumour deposits not otherwise visible, thus allowing complete removal of 

cancerous tissues. This was due to the strong, unique spectra obtained from SERS imaging and the 

lack of background signals, which are apparent in other imaging techniques, in which fluorescence 

from surrounding tissues can interfere with the output signal. 

  

[H3] Drug delivery and photothermal therapy. Au NPs have unique optical properties, 

biocompatibility and ease of functionalization that makes them particularly suitable in drug 

delivery,95,99,148 controlled DNA release,149-151 active tumour targeting,52,118,144 photodynamic therapy 

(PDT)94,152 and PTT.92,98,100,153 Additionally, the use of NPs in these applications provides enhanced 

signals in Raman imaging and allows the processes to be monitored using SERS. Relative to healthy 

tissue, tumours are more permeable to NPs and retain them for longer, such that NP-based imaging 

agents or drugs can reach the tumour site and have the desired effect specifically in the target region. 

One can prepare Au nanospheres that bind the anticancer drug doxorubicin (DOX) via an acid-

sensitive linkage, such that the drug can be delivered to lysosomes in single cells154. When in the 

lysosomes, the acidic environment induces DOX release from the NPs, such that SERS is attenuated 

and fluorescence increases because DOX is further from the quenching NP surface. By monitoring the 

rise of one signal and fall of the other, one can track drug release using both fluorescence and SERS. 

 



Au nanorods (AuNRs) coated with PEG groups and a DTTC reporter have been found to passively 

accumulate in tumours, allowing photothermal heating of only the tumour region. SERS from the 

reporter could be obtained from the tumour in vivo, such that the AuNRs could potentially be used as 

a hyperthermia agent in cancer treatment, with effective monitoring by SERS95. They also 

demonstrated the thermally controlled release of DOX using temperature-sensitive lipid components, 

and found that the photothermal effect from the AuNRs significantly increased the toxicity of DOX to 

the cancer cells, and improved the accumulation of the drug in tumours in vivo (FIG. 7a–c). Two 

separate NP formulations were used to demonstrate the hyperthermia effect and drug release 

capabilities, with fluorescence imaging being employed for the latter95. However, SERS could also be 

utilized here by replacing the fluorophore with a Raman reporter. Later work showed that AuNRs 

functionalized with various Raman reporters, on 785 nm laser excitation, gave significant, 

distinguishable SERS that could be detected in vivo. The same tagged AuNRs could be heated rapidly 

to 70 °C in vivo, following irradiation at 810 nm, with no loss in SERS signal intensity.92 In an 

interesting and novel development, use has been made of a dye-free approach, in which AuNRs were 

functionalised only with a conducting polymer, which serves both as a biocompatible coating and a 

NIR Raman reporter113. These nanoprobes showed excellent biocompatibility and have been applied 

to SERS imaging and PTT of tumours in vitro and in vivo. More recently developed probes include 

Au nanostars (AuNSs), which can be functionalized with the anticancer drug mitoxantrone (MTX). 

The distinct Raman spectrum of MTX, combined with the significant SERS enhancement from the 

nanostars, allows one to track delivery and release of MTX in vivo and in real-time using SERS99. 

Related work has illustrated the value of AuNSs in SERS imaging as well as PTT in vivo (FIG. 7d–
f)100. AgNPs coated with AuNSs are biocompatible, and on functionalization with DTTC, give rise to 

intense SERS spectra in vitro and in vivo. These Ag@Au-DTTC materials are further useful in that 

the AuNSs are extremely efficient for PTT98. AuNSs can be decorated with Gd(III) complexes such 

that SERS and MRI can be combined in sensitive and high resolution imaging to guide PTT and 

monitor response155. Here, the AuNSs provide significant enhancement of SERS signals and 

photothermal heating, while Gd(III) acts as a magnetic resonance imaging contrast agent. Irradiating 

into the 800 nm absorption band of the magnetic Au nanostar-based nanocomposites (MAuSNs) gave 

rise to excellent photothermal heating, and the probes are relatively stable once coated in an 

organosilica layer. Even under laser irradiation, the MAuSNs showed negligible toxicity towards two 

healthy cell lines across a range of particle concentrations. In vivo SERS with irradiation at 785 nm 

allows one to pinpoint the Raman reporter in different sites within a tumour, and no signal is observed 

from other skin areas or from a tumour injected with saline in place of the NPs. SERS imaging of NP 

distribution within the tumour is also possible, an analysis that may well help guide therapy. 

However, as previously mentioned, we believe that the real advantages of in vivo SERS come from its 

sensitivity, specificity and multiplexing capabilities. Thus, a ‘yes or no’ signal can be obtained 

specifically from multiple targets in a desired area with high sensitivity and resolution and little 

interference from surrounding tissues. Nonetheless, the imaging aspects are useful here, particularly 

when combined with MRI, to confirm the accumulation of the NPs in the tumour prior to PTT tests. 

Cancerous mice injected with MAuSNs, on exposure to 785 nm laser irradiation, experienced 

significant heating around their tumours, with negligible heating observed when saline solution was 

injected as a control. The role of PTT is undeniable — MAuSN treatment and irradiation completely 

killed the tumours after two days, while cancerous regions in the control groups underwent rapid 

growth. The in vivo toxicity of MAuSNs was also investigated, and they inflict no significant damage 

to tissues, nor do they change blood properties tested, indicating that they should be safe for clinical 

application.  

 

The many examples above illustrate that the properties of Au NPs — particularly nanorods and 

nanostars — are well suited to imaging and therapeutic applications. SERS has significant potential as 

the detection technique in these cases due to its sensitivity, unique fingerprint signals and the fact that 

enhanced spectra can be obtained specifically from areas where NPs accumulate. Additionally, the 

biocompatibilities of many of these particles indicate that they are safe for in vivo application. 

Although more thorough investigation must precede translation to the clinic, the use of these NPs in 

conjunction with SERS, holds substantial promise in biosensing. We envisage this will attract a great 

deal of focus in the coming years. 



 

[H1] Conclusions 

Significant progress has been made in developing nanosensors for the application of SERS in vivo. 

Suitable metal substrates with highly tuneable optical properties now allow high SERS signal 

enhancements at laser wavelengths that are safe to the body and do not give rise to interference from 

tissues and biomolecules. SERS reporters exist that are not only sensitive at long wavelengths, but 

also allow for additional advantages such as multiplexing. The biocompatibility of nanoprobes has 

also been improved by careful selection of the substrate, and application of protective coatings. Yet, 

cytotoxicity remains a concern that holds back clinical application of SERS, and extensive research 

will be necessary to determine the most biocompatible and stable nanoprobes for use in humans. 

Many recent studies have indicated that the topical application of nanoprobes (as opposed to 

intravenous injection) could be particularly successful in helping SERS detection into the clinic. 

Topical application has already been shown to result in decreased toxicity and more effective 

targeting because nanoprobes do not pass into the systemic bloodstream or accumulate in the liver or 

spleen. Nanoprobes can be administered topically when tissues are accessible via endoscopic probes, 

a procedure that appears amenable to human use. 

In terms of instrumentation, new designs can be portable and penetrate tissue more deeply, which is of 

particular benefit to in vivo applications. In many applications, particularly glucose monitoring, 

clinical use will demand instrumentation to be yet more straightforward and user-friendly than the 

rather specialised equipment in use at the time of writing this Review. A number of Raman 

accessories suitable for insertion into standard endoscopic probes have been developed, including a 

device capable of rapid 2D or 3D imaging easily interpretable by a physician.131 The convenience 

afforded by these recent studies, in our opinion, will be key in moving SERS into the clinic. 

Incredible developments have been made in regard to SERS applications in glucose sensing and 

cancer detection. The technique offers the requisite sensitivity, specificity, throughput and non-

invasiveness that will no doubt attract further interest and continued research in biosensing and 

biomedical contexts. Additionally, SERS imaging has shown potential in theranostics, for 

intraoperative guidance, and for the detection and monitoring of drug treatment and therapy. Useful in 

isolation, SERS can also be combined with other methods such as fluorescence, MRI and 

photoacoustic imaging. Such multimodal analyses offer improved sensitivity, specificity and accuracy 

in the detection and diagnosis of disease, as well as allowing for greater treatment efficacy. With all of 

this in mind, we foresee that SERS will continue to be explored extensively for in vivo applications, 

which may well lead to SERS eventually finding clinical use for efficient diagnostics and therapy 

guidance. Since the first detection of biomolecules using SERS almost 30 years ago, the technique has 

shown enormous promise in biomedical applications. A decade has passed since the first application 

of SERS in vivo. This Review has largely discussed the development and application of SERS 

sensors, work that mostly involves animal models. We predict that research in the next decade will 

aim toward progression into in vivo detection in humans and the use of SERS in a clinical 

environment. 
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Figure 1 | Some key developments in SERS research for in vivo applications. The most prominent 

advances are outlined in black. Advancements in understanding Raman and SERS (blue), developing 

ex vivo SERS for biological analysis (green), designing nanoprobes for in vivo biosensing (purple), 

applying SERS in vivo (yellow), and SERS instrumentation (red), are presented in their respective 

colours. SERS, surface enhanced Raman scattering; NIR, near-infrared; LSPR, localized surface 

plasmon resonance; HGNs, hollow gold nanoshells; SESORS, surface enhanced spatially offset 

Raman scattering; MRI, magnetic resonance imaging. 



 
Figure 2 | In vivo SERS makes use of nanosensors, each of which typically features a signal-

enhancing metal substrate, a Raman reporter, an analyte-targeting molecule and a protective 

coating. Examples are given for each component, with the absorption maxima Ȝmax given for the 

substrates and Raman reporters, highlighting the most suitable choices for NIR-SERS. 

 

Figure 3 | State-of-the-art instrumentation and experimental configurations used to conduct 

SERS biosensing in vivo. a | A white light image from a uniquely designed endoscopic probe with 

Raman accessory that enables rapid imaging inserted into a pig oesophagus with superimposed SERS 

signal corresponding to ratiometric SERS signal from two nanoparticle types used to account for non-

specific binding131. b | The gastrointestinal tract is easily accessed using endoscopic probes, through 

which fibre-optic Raman probes can be inserted. c | A 3D construction of colon topography generated 

using Raman background signals acquired using this device in a human. d | The Raman endoscopic 

probe detects cancer by locating SERS nanoparticles, which recognize cancer-specific antigens and 

localize at tumour sites. The probe has a single illumination fibre and 36 multimode collection fibres. 

A brushless motor rotates a mirror through 360° to image the colon wall. e | By comparison, SESORS 

measurements use a probe outside the body, with light being collected from a region offset from the 

illumination point. This new method enables detection of probes buried more deeply than those 

detectable by SERS. f | SESORS is amenable to multiplexed detection of four different SERS probes 

in porcine tissue133. Panels a–d are reproduced from REF. 131, PLOS. Panels e and f are reproduced 

from REF. 133, Royal Society of Chemistry. 



 
 

Figure 4 | In vivo glucose monitoring using implanted SERS probe and SESORS detection. a | 

SERS-based glucose quantitation makes use of a nanosphere array, over which is deposited a Ag or 

Au film. Such a ‘film over nanosphere’ (FON) surface then is decorated with a self-assembled 

monolayer (SAM) using decanethiol and mercaptohexanol, which acts to bind glucose near the FON 

surface.141 b | An Ag-coated sample (AgFON) was inserted subcutaneously into a rat and SERS 

spectra were acquired using a SESORS probe.48 c | Spectra of functionalised AgFON, rat skin with 

and without implanted SERS probe, and the response 6 to 20 days after insertion. Panel a is adapted 

from REF. 141, American Chemical Society. Panel b is reproduced from REF. 48, American 

Chemical Society. Panel c is reproduced from REF. 51, American Chemical Society. 

 

 
Figure 5 | In vivo cancer detection using near-infrared optimized SERS probes. a | Raman spectra 

of three SERS probes optimized for NIR detection (Ȝex = 785 nm, 60 mW laser power, 10 s 

acquisition). The probes are based on Au NPs, onto which the cyanine reporters CyNAMLA 381, 

Cy7LA and Cy7.5LA are chemically adsorbed. The bands highlighted in yellow are the most 

characteristic144. b | A living mouse was injected with the three probes in bovine serum albumin, with 

the entire chromophores making their way into the liver. Localization is evident on considering the 

multiplexed SERS spectrum, which features bands characteristic of each probe (red = Cy7LA, green = 

CyNAMLA 381, blue = Cy7.5LA (Ȝex = 785 nm, 30 mW laser power, 20 s acquisition). c | The 

AuNPs bearing Cy7LA and Cy7.5LA reporters were conjugated to anti-EGFR antibodies, while those 

bearing CyNAMLA 381 were functionalized with anti-HER2. The three probes were injected into the 



tail vein of a living xenograft mouse model with a tumour formed from oral squamous cell carcinoma 

cells, which show high EGFR and low HER2 expression. SERS spectra were acquired from tumour, 

liver and dorsal sites of the mouse and indicated that only the EGFR-targeting probes were detected in 

the tumour site, all probes were detected in liver and no probes were detected at the dorsal site (scale 

bar = 2000 counts; Ȝex = 785 nm, 30 mW laser power, 20 s acquisition). d | Structure and SERRS 

spectra of the reporter IR792 (cyan, 1.0 fM detection limit), as well as a recently developed ultrabright 

NIR chalcogenopyrylium dye (red, 0.1 fM detection limit)106, both of which were attached to the 

surface of 60 nm AuNPs and coated with a 15 nm SiO2 layer. e | The dye-conjugated AuNPs were 

functionalized with an EGFR-targeting antibody, and intravenously injected into mice with A431 

xenograft tumours (each probe was at a concentration 15 fmol g−1), which were imaged 18 h after 

injection (Ȝex = 785 nm, 10 mW laser power, 1.5 s acquisition, 5× objective). A white light image of 

the tumour site is shown, along with overlaid false colour images of each reporter generated using a 

direct classical least squares algorithm both separately and with the dyes overlaid. Signals for the 

chalcogenopyrilium nanoprobe (red) were approximately 3× more intense that those for IR792 

nanoprobe (cyan). Scale bars = 2 mm. 

Panels a–c are reproduced from REF. 144, American Chemical Society. Panels d and e are 

reproduced from REF. 106, Nature Research.  

 

 
Figure 6 | Brain tumour imaging and guided tumour resection using triple modality 

nanoparticles. Aa | MPR nanoprobes are based on AuNPs functionalized with a Raman reporter, on 

top of which is applied a SiO2 coating and a Gd(III) MRI contrast agent. The probes are injected into 

the tails of tumour-bearing mice and accumulate in the tumour without passing into healthy tissue147. 

Ab | Clinical use would involve initially locating the tumour using MRI, after which photoacoustic 

imaging can guide tumour resection. Raman can then be used to guide removal of residual tumour and 

for subsequent examination of samples ex vivo. Ba | Photoacoustic, Raman and magnetic resonance 

images of the brain (skin and skull intact) acquired before (2D) and 2, 3 and 4 h after (2D and 3D) 



injection. Bb | Quantification of acquired signal for each imaging method before and after injection of 

MPR nanoparticles. Ca | Sections from an eGFP+U87MG brain tumour, stained with enhanced green 

fluorescence protein (eGFP, green) to visualize the tumour margins and CD11b (red) to visualize glial 

cells, examined by laser scanning confocal microscopy. Cb | An adjacent slice was imaged using 

Raman to visualize MPR biodistribution. Raman signals were obtained from the eGFP+ cells, 

indicating the presence of the probe in the tumour but not in the adjacent healthy tissue. Scanning 

transmission electron microscopy (STEM) images verified the presence of MPRs in the brain tissue, 

while no MPRs were seen in the healthy brain tissue. Da | Photographs and Raman images after each 

step of the tumour resection. Following bulk removal of the tumour, small areas of Raman signal were 

still observed (outlined by dashed white box). Db | Histological analysis of these areas showing 

finger-like protrusions extending into the surrounding tissue. Raman signal was obtained from these 

areas due to the accumulation of the MPRs. Figure reproduced from REF. 147, Nature Research. 

 
Figure 7 | Nanoparticles and SERS for drug delivery and photothermal therapy in vivo. a | 

Nanoparticles are useful both in terms of detecting a disease using SERS (diagnostics), as well as 

treating it by releasing a drug or thermal energy (therapeutics). Such multifunctional nanoprobes are 

thus known as theranostic agents.95 b | Probes based on gold nanorods (AuNRs) can be injected into a 

tumour-bearing mouse, which can be imaged optically, thermally, and spectroscopically (by 

interrogating a Raman reporter).95 The IR thermal maps shown were obtained immediately before 

(left) and 5ௗmin after (right) irradiation with a diode laser (Ȝexௗ=ௗ810ௗnm, 0.75ௗW cm−2). Raman spectra 

(5 × 60ௗs acquisitions) were acquired from the tumour region (red trace) and from skin near the 

tumour (blue trace).95 c | The AuNRs can be loaded with doxorubicin (DOX) prior to being protected 

by a thermally sensitive liposome (TSL), control liposome with no thermal sensitivity (NSL) or a 

thermally sensitive micelle (TSM). The three samples are incubated with cells for 10 min at different 

temperatures, after which the amount of DOX released in vitro is quantified using fluorescence 

spectroscopy.95 d | In vivo SERS spectra of 30 nm (blue and pink) and 60 nm (black and red) gold 

nanostar (AuNS) nanoprobes with 4-mercaptobenzoic acid SAMs.100 Characteristic SERS peaks can 

be detected at 1067 and 1588 cm−1 in the tumour, but not in the normal muscle. e | Mouse with 

primary sarcomas 3 days after dosing with 30 nm AuNS.100 Significant AuNS accumulation can be 

seen in the tumour (T), but not in the normal leg muscle (N) of the contralateral leg. f | Photographs 

(top) and X-ray images (bottom) of mice before and after photothermal therapy with tumours circled 

in red.100 The control mouse images were taken 7 days after treatment and the images of the mouse 

with AuNS injection were taken 3 days after treatment. Dark discolouration in the tumour region for 

the AuNS mouse is due to nanoparticle accumulation in the underlying tumour. X-ray images show a 

clear decrease in tumour bulk for the mouse with AuNS injection, but a significant increase in tumour 



size for the mouse with buffer (PBS) injection. Panel a is adapted, and panels b and c are reproduced 

from REF. 95, Wiley. Panels d–f are reproduced from REF. 100, Ivyspring International. 
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