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Abstract 

Malaria is an ubiquitous disease that can affect more than 40% of the world’s population who 

live with some risk of contracting this disease. The World Health Organization (WHO) has 

recently highlighted the high spread of this disease in Sub-Saharan Africa. Despite the 

considerable fall in mortality rate over the past decade, the development of resistance against 

main treatment strategies still exists. This problem has provoked scientific efforts to develop 

various treatment strategies including use of vaccines, drug delivery systems, and bio-

therapeutics approaches.  

A vaccination strategy is being implemented to trigger direct clearance of the causative 

parasites from the human host. However, the complex life-cycle of Plasmodium parasites with 

continuous antigenic mutations has partly hindered this approach so far.  The application of 

different types of drug delivery systems for the delivery of anti-malarial drugs is also being 

considered in order to improve the efficacy, pharmacokinetics, tolerability, and reduce toxicity 

of existing anti-malarial drugs. A third approach has emerged from the high success of 

antibodies to treat complex diseases like cancer and autoimmune diseases. Various antibody 

engineering methods and formats have been proposed to tackle the notable sophisticated life-

cycle of malaria.  

Within the malaria research field, the characteristics of these diverse treatment strategies, 

individually, are broadly acknowledged. This review article considers the current status of 

these approaches and the future outlook.  
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Introduction 

Malaria is an infectious disease that is caused by the parasite Plasmodium. This transmittable 

disease affects around 200 million annually, killing about 650,000 people per year, especially 

children less than 5 years old living in sub-Saharan Africa [1]. The WHO 2015 Fact Sheet 

reported that over 15 years (2000-2015), there was a global reduction in malaria incidence rates 

and mortality by 37% and 60%, respectively. However, the subsequent Fact Sheet in 2016 

confirmed the emergence of parasite resistance to antimalarial medicines and mosquito 

resistance to insecticides, which could trigger a rise in global malaria mortality if ignored. 

 

The five main parasite species in this respect are P. vivax,!P.knowlesi, P. ovale, P. malariae, 

and P. falciparum; the latter represents the most lethal [2]. The parasite life cycle in humans 

typically begins by injection of sporozoites via the skin, which can then migrate to hepatocytes 

in less than one hour [3], where they replicate and generate merozoites. These merozoites 

complete the journey to erythrocyts of the patient (clinical stage), and then differentiate into 

gametocytes that eventually reach the parasite holder (the mosquito) through infected human 

blood [4]. 

Various reports have indicated the growth in malaria mortality rate, due to emergence and 

spread of multidrug-resistant P. falciparum against established antimalarial compounds [5,6]. 

Moreover, therapeutic failure of some anti-malarial medications has been attributed to their 

toxic side effects as well as their inconvenient dosing schedules. Therefore, there is an urgent 

requirement to identify new treatment strategies against malaria [7]. These approaches have 

been directed towards enhancing the characterisation of natural products, adaptation of 

effective vaccine and drug delivery strategies, and the development of specific bio-therapeutic 

agents [8–13]. The main objective of this article is to review the anti-malarial role of bio-
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therapeutic formulations, and to evaluate their potential as effective treatments to malaria in 

the future.  

Vaccines and immune-conjugates 

Significant efforts have been dedicated over the past decades to develop vaccines that can 

protect humans against malaria parasites. Vaccine development has been directed to different 

infection stages including transmission blocking vaccines, pre-erythrocytic vaccines, and 

blood-stage vaccines; these have been reviewed comprehensively for both P. falciparum and 

P. Vivax [14–16]. Generally, vaccines have either been subunits of well-defined and conserved 

parasite antigens, or whole attenuated sporozoites. The most advanced malaria vaccine (RTS,S: 

MosquitixTM) is currently in Phase III clinical trial, and contains the conserved central repeat 

and C-terminal regions of the P. falciparum circumsporozoite protein (CSP) that is expressed 

on sporozoites in early liver stages [17,18]. Despite this advancement, vaccine development 

against malaria has been dishearteningly hindered by the complex life cycle of the parasites, 

which results in several morphological changes and displays antigenic variations.  

Immuno-conjugation refers to the use of a delivery system to deliver a conjugated drug to 

facilitate its delivery into a target tissue. An example of this strategy is the delivery of 

Angiopep-2 conjugated paclitaxel through the use of the low-density lipoprotein receptor-

related protein (LRP) as a carrier. This contrasts with the concept of drug delivery systems that 

can be used with either conjugated or unconjugated drugs [19].  Immuno-conjugation strategies 

can be used as "Trojan-horses" for specific delivery of antimalarial drugs, to reduce the 

emergence of resistant strains, and curtail the adverse drug reactions and toxicity of these 

medicines. This approach is broadly implemented in various medical applications, especially 

to target cancer cells [19–22]. Generally, anti-malarial conjugates can be ferried to the infected 
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host cells by parenteral routes through either passive or active targeting [23]. Passive targeting 

has been accomplished by conventional nano-carriers such as micelles, liposomes and 

polymerosomes [24–27]. Whilst, active targeting can be achieved by functionalisation of the 

nano-carriers with specific biomolecules such as antibodies, proteins, or peptides [23]. 

Considering the peculiarities of erythrocytes, liposomal nanocarriers are premeditated as a 

promising approach for the targeted delivery of antimalarial drugs [28]. For instance, 

artemether and lumefantrine were co-loaded into nanostructured lipid carriers, and their 

antiplasmodial effect was evaluated [29]. Similarly, curcuminoid-loaded liposomes in 

combination with arteether has prevented the recrudescence of malaria in mice [30]. An 

advancement to liposomal research was actualised through the introduction of nanomimics 

based on polymersomes for blocking invasion, and causing augmented exposure of the 

infective form of P. falciparum to the immune system [31]. Moreover, advanced drug delivery 

systems based on conjugation of, for example, artesunate to nanoerythrosomes have shown 

controlled delivery to evade drug leakage, improve stability, and reduce cost and toxicity [32]. 

Passive targeting could also be achieved by surface modification of the nano-carrier with 

poly(ethyleneglycol) (PEG) to delay phagocytosis, thus prolonging the plasma half-life of the 

drug, resulting in alteration in the pharmacokinetic profile of the drug [33]. Another 

conceptualisation has involved the iron uptake systems of microorganisms to deliver 

siderophore–drug complexes, which are recognised by specific siderophore receptors, and is 

thereupon actively transported across the outer bacterial membrane [34], and could be useful 

against malaria [35]. Conjugation of desferrioxamine B to methyl anthranilic acid or nalidixic 

acid have, for instance, evinced significant effects against multidrug resistant P. falciparum 

[36].   
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The essential role of cysteine proteases in the malaria parasite is widely appreciated, and both 

small  inhibitors, like leupeptin and vinyl sulphones, and macromolecular inhibitors, such as 

falstatin expressed in P. falciparum, were analysed [37,38]. These promising macromolecule 

inhibitors are mostly competitive, and utilise loop-like structures to interact with malarial 

cysteine proteases [39]. A recent example has implemented computational approaches to better 

understand falcipains structure and ligand binding [40]. It is also essential when new drugs are 

established to concurrently study resistance processes in order to avoid a seemingly inevitable 

outcome [41]. The new approach of targeting "hot-spot" protein-protein interactions of 

macromolecular inhibitor-enzyme complexes is less liable to drug resistance point mutation, 

and represents a promising field in drug development. These hot spots can also include 

potential targetable steps in the protein export pathway that are essential for parasite survival 

[42]. Drug repurposing is another possibility to find approved drugs that could have efficacy 

against malaria parasites.  A recent example is illustrated by the development of the protein 

farnesyltransferase inhibitors (PFTIs), that block the transfer of a farnesyl group as a post-

translational modification onto specific proteins [43]. A panel of PFTIs was tested to inhibit in 

vitro growth of P. falciparum parasites, and a series of tetrahydroquinoline (THQ) PFTIs was 

identified with excellent potency [44].  

Delivery systems for anti-malarial drugs 

Since the initial conceptualisation of the "magic bullet" principle by Paul Ehrlich, which was 

based on specifically destroying foreign microbes without harming the human body itself, the 

drug delivery field has evolved noticeably. Drug delivery is based on using a delivery carrier 

to carry and release a therapeutic agent to a particular site in the body at a specific rate [45]. 

Different types of drug delivery systems can be used for this purpose including liposomes, 

niosomes, lipid nano-emulsions, poly(lactideco-glycolide) (PLGA), and natural polymers such 
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as collagen and chitosan [46–48]. The most commonly used delivery systems for the delivery 

of anti-malarial agents are summarised in Table 1. 

Liposomes are the most extensively studied system for the delivery of different therapeutic 

agents. As lipid based nanoparticles, they are formed by the self-assembly of their lipid 

components into bilayer structures encapsulating an aqueous moiety. This results in a versatile 

structure in which hydrophilic drugs can be encapsulated in the inner aqueous core while 

hydrophobic agents will be embedded in the lipid bilayer structure [49]. Several research 

groups have investigated the use of liposomal formulations for the delivery of different anti-

malarial agents in order to improve their pharmacokinetics or therapeutic index. Gabriels et al. 

(2003) developed a formulation that can improve patient compliance towards artesunate, which 

is an anti-malarial agents that requires frequent administration due to its rapid elimination, 

through the use of liposomes [50]. They developed a slow release preparation by encapsulating 

artesunate into liposomes containing egg-phosphatidylcholine/cholesterol in a molar ratio of 

4:3 [50]. 

Chloroquine (CQ) is an effective anti-malarial drug against all five species of parasites. The 

activity of CQ is thought to take place in the parasite's acidic digestive vacuole (DV) against 

the intraerythrocytic stage of the human malaria parasite [51]. However, inside the acidic DV, 

CQ becomes protonated and less membrane-permeable leading to its accumulation in the DV 

with subsequent efflux out of the DV, away from its primary site of accumulation and action, 

and reduction in the anti-malarial activity of CQ [52]. In order to reduce the efflux of CQ from 

DV, chitosan–tripolyphosphate (CS–TPP) nanoparticles (NPs) were conjugated to CQ and 

examined in Swiss mice infected with attenuated of P. berghei [11]. These NPs were 

demonstrated to act as an effective formulation, eliminating parasites, while protecting 

lymphocytes, serum and red blood cells against P. berghei infection at a dose of 250 mg/kg 
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body weight for 15 days treatment. Another approach was adopted using galactose coated poly-

l-lysine dendrimers loaded with CQ, and haemolytic toxicity was drastically reduced by at least 

50% through a sustained drug release behaviour compared to free CQ both in vitro and in vivo 

[53]. 

Primaquine (PQ) is another anti-malarial drug which exerts a broad spectrum activity against 

various stages of parasitic malaria. PQ targets latent liver stage of malaria infection caused by 

different plasmodia such as P. vivax and P. ovale [54]. Moreover, PQ is also prescribed for 

terminal prophylaxis to prevent infection by P. falciparum and P. vivax. However, PQ can 

cause severe tissue toxicity including haematological and gastrointestinal related side effects  

[55]. PQ targeting of the liver, would possibly help to reduce therapeutic dose and subsequently 

its dose related toxic effects. Encapsulation of PQ in different delivery systems such as 

liposomes was initially designed, and shown to significantly increase the LD50 and LD90 in 

mice, as a result of changing the distribution pattern of PQ after encapsulation [56]. In an 

attempt to target PQ to hepatocytes, Dierling et al. (2005) encapsulated PQ into chylomicron 

emulsion, with an average particle size of 180 nm, which led to significantly enhanced 

accumulation of PQ in the liver compared to free PQ [10]. Whilst the in vitro anti-leishmanial 

activity of PQ-loaded polyisohexylcyanoacrylate (PIHCA) NPs showed a 21-fold increase in 

ED50 compared with free PQ [57]. Moreover, when PQ was incorporated into an oral lipid 

nanoemulsion, PQ exhibited improved oral bioavailability, and was taken up preferentially by 

the liver with a drug concentration 45% higher than the free PQ. This resulted in a 25% lower 

dose required to achieve effective antimalarial activity against a P. bergheii infection in Swiss 

albino mice compared to free oral doses of PQ [58]. Other systems investigated for PQ delivery 

include dendrimeric NPs [59], poly(lactide) NPs [60], and the use of gum arabic microspheres 

[61]. 
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Anti-malarial antibodies 

Alternatively, the active targeting of malaria parasites can be achieved using antibodies, which 

has high proven efficacy against cancer and several other autoimmune diseases [62–65]. The 

antimalarial drug CQ showed improved efficacy when delivered inside immunoliposomes 

targeted with the pRBC-specific monoclonal antibody BM1234 [28]. Likewise, CQ-loaded 

MAb F10-liposomes were able to clear not only CQ-susceptible, but also CQ-resistant parasites 

in mice [66].!Antibodies are glycoproteins belonging to the immunoglobulin (Ig) superfamily, 

and have been widely used in different biomedical applications. The antibody molecule is 

structurally composed of two heavy and two light polypeptide chains, linked together by 

disulphide bonds [67]. One light chain type (λ or κ) can be linked to one heavy chain (µ, δ, γ1-

4, α1-2, or ε) to create any of the nine antibody subclasses in humans (IgM, IgD, IgG1-4, IgA1-2, 

or IgE) [68–72]. Functionally, an antibody consists of three fragments: a fragment crystallisable 

region (Fc) that represents the stem of the "Y" shaped molecule, and two fragment antigen-

binding (Fab) regions (Figure 1A). While the Fab fragments are responsible for antigen 

binding, the Fc fragment interacts with other elements of the immune system including Fc-

receptors (FcRs), pattern recognition receptors (PRR), and components of the complement 

cascade, to promote removal of the antigen [73,74]. Within the Fab region, each of the variable 

heavy (VH) or light (VL) chains consist of three complementarity determining regions (CDRs), 

which are accountable for antigen recognition [75]. 

Antibodies are prominent immune modulators that bridge innate and acquired immunity, and 

therefore, can be effective against micro-organisms, if they do not mediate a direct biological 

effect within the infection process [76]. This perception has sustained their candidacy to 

combat malaria by, for instance, curtailing the damage associated with any inappropriate host 

inflammatory responses [77]. The role of antibodies in malaria protection can also be attributed 
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to inhibition of merozoite invasion of erythrocytes [78], antibody-mediated phagocytosis 

through FcR and complement pathways [79], and antibody-dependent cellular inhibition 

[80,81]. Both autoantibodies and antibody immune complexes can drive B-cell responses, 

through the PRR toll-like receptor-9, and support their potential in malaria [82]. Several years 

of repeated infections are, however, required to develop protective responses to malaria [83], 

in defiance of the critical importance of humoral immunity in the development of acquired 

immunity to malaria [84,85].Variation of surface antigens and antigenic diversity facilitates the 

development of recurrent infections over the years, as new infections seem to exploit gaps in 

the repertoire of variant-specific antibodies [84,86]. P. falciparum expressed antigens on 

erythrocyte surfaces, for instance, appear to be highly polymorphic and undergo clonal 

antigenic diversity, and antibodies against these antigens typically inaugurate a high degree of 

strain specificity [87,88]. 

Previous studies have acknowledged the fact that upon exposure to a new malaria infection, 

parasite-specific antibody levels rise noticeably within 1-2 weeks [89,90]. The boosted 

antibodies then reduce quickly after the infection is controlled, and accordingly signify that 

protective memory for a specific antibody response is either not provoked or is being 

debilitated [91].  Passive transfer of IgG from immune African adults to African children was 

observed to be highly effective against malaria parasites [80,92]. Furthermore, transfer of 

serum from partially immune individuals to non-immune persons induces significant anti-

malarial activity [92,93]. This anti-malarial response was verified to be associated with malaria 

specific antibodies [94,95]. Nevertheless, serum therapy is notoriously correlated with high 

difficulty of finding a sufficient number of donors, possibility of transferring other infectious 

diseases, and the impracticality of dealing with human blood products. In addition, sera 

normally consists of polyclonal antibodies, which might contain numerous nonspecific 

antibodies [96,97]. Consequently, serum treatment is associated with several limitations, and 
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adoption of a bespoke antibody engineering approach is essential to match the sophisticated 

life cycle of this parasite and the scale of this ubiquitous disease.  

Amongst the four IgG subclasses, anti-malarial protective antibodies are restricted to a panel 

of IgG1 and IgG3 subclasses [81]. The IgG2 subclass can compete with IgG1 and IgG3, and 

interfere with their protection effectiveness [98], although others have suggested IgG2 

antibodies participate in protection if individuals possess a rare mutated allele encoding an Fc 

gamma receptor-type IIA (FcγRIIA) that can bind IgG2, IgG3, and IgG1 subclasses [99]. On 

the other hand, IgG4 antibodies are considered as completely non-protective [98,100–102]. 

Subsequently, the IgG3 subclass is epitomised as the prevailing isotype of antibody responses 

incarnated with protection against malaria [101–103]. The propagated antibodies were 

primarily of the IgG2a and IgG3 subclasses [104,105]. In addition, immunisation with an 

antigen preparation derived from P. falciparum merozoite surface protein (MSP)-1 has induced 

a shift to IgG2b [106], even though most protein antigens in a murine model are expected to 

induce IgG1 antibodies. Interestingly, mouse IgG2b is to a certain degree the equivalent of 

human IgG3 [107], and has a shorter half-life than other mouse IgG subclasses [108]. 

Consequently, a human vaccine aimed at eliciting antibody protection against blood-stage P. 

falciparum would preferentially generate IgG1 and/or IgG3 antibody responses against the 

selected candidate antigens, and downregulate a concomitant IgG4 and IgG2 antibody 

response. Therefore, an anti-malarial vaccine should ideally be administered in combination 

with an adjuvant that stimulates the production of cytokines, such as interleukin (IL)-10 and/or 

transforming growth factor (TGF)-β [109,110], in target cells to switch Ig responses to IgG1 

and IgG3.  

Along with IgG class, other Ig classes were explored to envisage whether infection with 

Plasmodium parasites can be preferentially inhibited. The therapeutic inappropriateness of IgE 
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antibodies to treat malaria was commonly suggested, due to their observed role in malaria 

pathogenesis [111,112]. Nevertheless, a reduced risk of subsequent malaria infection was also 

linked to the existence of high levels of parasite-specific IgE antibodies [113]. Pentameric IgM 

antibodies were additionally implemented as an adjuvant for malaria vaccine development, 

through their ability to stimulate the development of acquired T-cell immunity [114]. Whilst 

the ability to steer IgA antibodies to target FcαR have shown remarkable potential in 

eliminating serum pathogens [115]. Re-appraisal of the role of IgA in malarial infections is 

necessary, since Plasmodium-specific IgA antibodies were detected at high levels in humans 

breast milk [116,117] and serum [118].  

Different antibody formats can be accoutred to neutralise Plasmodium parasites, ranging from 

a full monoclonal antibody (mAb) to smaller fragments including Fab, a single chain antibody 

(scFv), or even a single domain antibody (sdAb) (Figures 1 and 2). Whole mAbs are time-

honoured bio-therapeutic molecules, through their ability to maximise the benefits of activating 

the cellular response by Fc regions [119]. In the murine malaria model, the recruitment of 

effector cells by Fc is vital, as the passive transfer of specific antibodies to malarial MSP1 

could not impede death in FcR-deficient and immunodeficient models [81,120]. However, the 

utilisation of mAbs in malaria might be inappropriate per se, especially if these antibodies 

interact with the incongruously inhibitory FcRs [115]. Moreover, high concentrations of anti-

malarial mAbs are requisite to compete for FcRs binding with infection induced low-affinity 

polyclonal antibodies [121]. These low-affinity antibodies were developed against short highly 

repetitive amino acid sequences, cross-reactive with several malarial antigens, and might be 

generated from a process of immune evasion [122].  

In order to develop a “magic bullet” that would specifically neutralise and eradicate invading 

microbes, like malaria parasites, various antibody engineering approaches and formats have 
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been investigated. This includes bispecific antibodies (BsAbs) that were developed to 

recognise both P. yoelii MSP1 and human FcγR1 [9]. Another bispecific scFv combination, 

linked by a flexible peptide linker (Gly4-Ser)3, has been developed to target P. falciparum 

blood-stage malaria parasites, by linking CD3 antigen of human T-cells and MSP1[123]. Even 

a trispecific antibody has been developed in the malaria field, as previously involved in cancer 

treatment development, to link two potential targets of malaria [merozoite surface protein 1 

(MSP1) and malarial Apical Membrane Antigen-1 (AMA1)] with FCR [9,124]. An alternative 

antibody format, which has been extensively used in malarial research, is the binding “arm” 

Fab fragment. The comprehensive search for anti-malarial antibodies in the Protein Data Bank 

(PDB) has retrieved eleven mouse Fabs that were developed against different malaria targets 

(Table 2). The smallest binding domains, camelids (VHH) and shark (VNAR) sdAbs (Figure 

1 C and D), can also be used to neutralise malaria parasites since they are highly acclaimed to 

bind cryptic epitopes [125–127]. These cryptic cavities and clefts are secluded to full mAbs 

due to steric hindrance, and therefore, can be conveniently accessed by smaller sdAbs (Figure 

2). The selection and affinity maturation of two shark VNARs (PDB ID: 1VES and 1VER) 

targeting P. falciparum AMA1 were developed for diagnostic applications [128], as 

summarised in Table 2. Unusually, CDR3 of the 1VES sdAb has displayed an extended-hairpin 

structure (Figure 2), which has indulged this sdAb with a distinct selective advantage in 

accessing cryptic epitopes [129]. To achieve a comparable objective, camel VHH sdAb (PDB 

ID: 4GFT) was generated to target MyoA-binding domain (D3) of P. falciparum myosin tail 

interaction protein (MTIP) [130]. This sdAb binds favourably to an area that is slightly 

overlapping with the MyoA binding groove, and impedes MyoA binding by MTIP. Antibodies 

have been thoroughly investigated in targeting specific malarial antigens and antimalarial drugs 

for both therapeutic [131–137] and diagnostic [138–141] purposes. Moreover, antibodies 

possess high potential to deliver anti-malarial drugs directly to parasites, thus reducing the risk 
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of adverse drug reactions.  However, the exploitation of antibodies with respect to this concept 

remains not fully explored, and requires further pursuance in the future. 

Future perspectives 

Malaria is a highly infectious disease that has diminished the lives of millions around the globe. 

Treatment strategies to date are based on either natural/synthetic small molecules, or 

macromolecules such as vaccines and antibodies. Most treatment approaches have been 

hindered by the complex life-cycle of the parasite that has continuously caused the emergence 

of drug-resistant species. Despite this unprecedented difficulty, several promising drug 

delivery approaches, vaccines, and antibody formats have been developed to tackle this fatal 

disease. Future research should be directed to find new antimalarial candidates with either new 

mechanisms of action, resistance modifying actions or target novel metabolic pathways that 

are essential for parasite survival and applying new tools for designing these drugs. In addition, 

more novel combinations of small molecules or micro-macro complexes should be 

implemented as combination strategies or antibody-small molecule drug conjugates to 

synergise the treatment effect. In order to achieve this objective, additional funding is required 

to support the drug discovery process academically, and to attract pharmaceutical companies 

to invest within this highly pandemic, but not very commercially-attractive field.  
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Figure legends 1 

Figure 1: Antibody structure and alternative formats 2 

The refined structures of A) IgG2a mAb (PDB ID: 1IGT), and B) scFv formats of the same 3 

antibody for illustration. The antibody domains were colour coded as follow; VL: red, VH: 4 

blue, CL: green, CH1: yellow, CH2:  magentas/orange, CH3: cyan/grey and, and Linker: light 5 

grey. The IgG mAb is composed of two Fab and one FC regions. C) VNAR sdAb (PDB ID: 6 

1VES), and D) VHH sdAb (PDB ID: 4GFT). The atoms of C) and D) were coloured as carbon: 7 

green; Oxygen: red; nitrogen: blue. Structures were viewed and coloured by PyMOL 1.3 8 
(academic version). 9 

Figure 2: Binding site topography and CDRs orientation 10 

CDRs orientation of Fab (PDB ID: 2J5L), VHH (PDB ID: 4GFT), and VNAR (PDB ID: 1VES) 11 

domains were examined as top (T) and side (S) views. The CDR regions were colour coded for 12 

CDR1: red, CDR2: green, CDR3: blue, HV2 (1VES VNAR): yellow, and HV4 (1VES VNAR): 13 

magenta, CDRL1 (2J5L): cyan, CDRL2 (2J5L): orange, CDRL3 (2J5L): violet. The PDB 14 

entries of these crystal structures are depicted at the lower corner of each picture. Structures 15 
were viewed by PyMOL 1.3 (academic version). 16 

  17 
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Table 1: Outline of the anti-malarial drug delivery systems  

 

Anti-malarial 

drugs 
Delivery system used Purpose Reference 

artesunate liposomes 
Improve patient compliance for 

multiple administations 
[50] 

chloroquine 
chitosan–tripolyphosphate 
nanoparticles 

Treatment of chloroquine resistant 
malaria parasites 

 

[11] 

chloroquine dendrimers Reduce chloroquine toxicity [53] 

primaquine liposomes Reduce  primaquine toxicity [56] 

primaquine chylomicron emulsion Target primaquine to hepatocytes [10] 

primaquine 
polyisohexylcyanoacrylate 
(PIHCA) nanoparticles 

Reduce  primaquine toxicity [57] 

primaquine oral lipid nanoemulsion 
Improved primaquine oral 

bioavailability and liver targeting 
[58] 

chloroquine 

PEGylated poly- 

L 

-lysine-based dendrimers 

 

To induce controlled and sustained 
delivery 

[142] 

chloroquine 

PEGylated Neutral and 

Cationic Liposomes 

 

Treatment of chloroquine resistant 

malaria parasites 

 

[143] 
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chloroquine 

amidated pectin hydrogel 
beads 

 

Delay the release of oral 
chloroquine to distal parts of the 
gastrointestinal tract 

[144] 

chloroquine 
and 
primaquine 

dendritic derivatives 

 

Reduce the toxicity of the used 
anti-malarial drugs 

[145] 

chloroquine poly(amidoamines) drug 
conjugates 

Selectively deliver chloroquine to 
Plasmodium-infected red blood 
cells 

[146] 

monensin 

 
Liposomes 

Improving the anti-malarial 
activity of monensin 

 

[147] 
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Table 2: Summary of the crystal structures retrieved from the PDB 

PfRH5: P. falciparum reticulocyte-binding protein homologue 5; Pvs25: P. vivax P25 protein; 
AMA-1: Malarial Apical Membrane Antigen-1; PfEBA-175: P. falciparum EBA-175; MSP1: 
Merozoite surface protein 1; MyoA- MTIP: myosin A- myosin tail interaction protein; Fab: 
fragment antigen-binding; VNAR: single variable new antigen receptor domain antibody 
fragments; VHH: variable domain of heavy chain antibodies. 
 

 
PDB 

entry 

Resolution 

(Å) 
Species Format Target Reference 

 

1 4U1G 3.1 Mus musculus  Fab PfRH5 [131]  

2 4U0R 2.3 Mus musculus  Fab PfRH5 [131]  

3 1Z3G 3.3 Mus musculus  Fab  Pvs25 [148]  

4 2Q8B 2.3 Mus musculus   Fab AMA1 [132]  

5 2Q8A 2.4 Mus musculus  Fab AMA1 [132]  

6 3S62 4.01 Mus musculus  Fab Pvs25 [133]  

7 4QEX 4.5 Mus musculus  Fab PfEBA-175 RII [134]  

8 4K2U 2.45 Mus musculus  Fab PfEBA-175 F1 [134]  

9 2J5L 2.9 Mus musculus  Fab AMA1 [135]  

10 2J4W 2.5 Mus musculus  Fab AMA1 [135]  

11 1OB1 2.9 Mus musculus  Fab MSP1-19 [136]  

12 
1VER 

2.82 
Orectolobus 

maculatus  VNAR AMA1 
[129] 

 

13 
1VES 

2.18 
Orectolobus 

maculatus  VNAR AMA1 
[129] 

 

14 4GFT 1.6 Lama glama  VHH MyoA-MTIP [130]  



31 
 

 

 

 


