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Abstract

We present and discuss a solution to the growing demand for satellite telecom-

munication coverage in the high-latitude geographical regions (beyond 55◦N),

where the signal from geostationary satellites is limited or unavailable. We

focus on the dynamical issues associated to the design, the coverage, the main-

tenance and the disposal of a set of orbits selected for the purpose. Specifically,

we identify a group of highly inclined, moderately eccentric geosynchronous

orbits derived from the Tundra orbit (geosynchronous, eccentric and critically

inclined). Continuous coverage can be guaranteed by a constellation of three

satellites in equally spaced planes and suitably phased. By means of a high-

precision model of the terrestrial gravity field and the relevant environmental

perturbations, we study the evolution of these orbits. The effects of the different

perturbations on the ground track (which is more important for coverage than

the orbital elements themselves) are isolated and analyzed. The physical model

and the numerical setup are optimized with respect to computing time and ac-

curacy. We show that, in order to maintain the ground track unchanged, the key
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parameters are the orbital period and the argument of perigee. Furthermore,

corrections to the right ascension of the ascending node are needed in order to

preserve the relative orientation of the orbital planes. A station-keeping strat-

egy that minimizes propellant consumption is then devised, and comparisons

are made between the cost of a solution based on impulsive maneuvers and one

with continuous thrust. Finally, the issue of end-of-life disposal is discussed.

Keywords: Orbits, Geosynchronous, Perturbations, Station-Keeping,

Maneuvers, Low-thrust, Disposal, Communications

1. Introduction

We present a detailed analysis of a group of geosynchronous, highly inclined

orbits for telecommunication satellites. The analysis includes the orbital prop-

agation, a complete station-keeping strategy and an end-of-life disposal plan.

The motivations of the study reside in the growing demand for coverage in the5

high-latitude regions, approximately beyond 55◦N. Geostationary (GEO) links

work well at low and mid latitudes, with the coverage progressively degrading

when moving northwards, for example through Canada, Alaska or the Arctic.

The demand for communications service is not limited to land users (television

and radio signals, voice and data transmission), but includes aircraft on po-10

lar routes, UAVs and maritime navigation. Traditionally, global coverage has

been guaranteed by constellations in Low-Earth Orbit (LEO) consisting of many

satellites. For example, the Iridium constellation [1] is made up of 66 satellites

orbiting at an altitude of approximately 800 km. Classical middle-to-high alti-

tude alternatives are the Molniya and Tundra orbits, with periods of 12 and 2415

hours, respectively. Both types are characterized by critical inclination (63.4◦)

and argument of perigee of 270◦, so that the apogee is at high latitudes. The

eccentricity is moderate for Tundra (∼ 0.26) and high for Molniya (∼ 0.75).

[2] analyzes the orbital evolution and lifetime of the Russian Molniya satellites.

The influence of several perturbing factors on the long-term orbital evolution is20

found to be related to the choice of the initial value of the right ascension of
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the ascending node and the argument of perigee. [3] studies a constellation of

satellites in Tundra orbits, and analyzes in detail the effect of each perturbation

(Earth’s aspheric potential, solar and lunar gravity, solar radiation pressure,

atmospheric drag) on the orbital elements. Frozen orbital elements are identi-25

fied using a double-averaged potential function for the third-body perturbation.

This reduces station-keeping costs as far as the eccentricity and argument of

perigee are concerned. The maneuver strategy consists in a bang-bang control

method. [4] presents the orbital evolution and station-keeping corrections for

a geosynchronous polar orbit, called Tundra Polar due to its similarities with30

the traditional Tundra in terms of orbital period and eccentricity. The orbit is

intended to serve mission objectives such as weather monitoring for the North

Pole and Canada. The physical model consists of a 12 × 12 gravity field, solar

and lunar gravity and solar radiation pressure perturbations. Thanks to its 90◦

inclination, the Tundra Polar orbit is not affected by the drift of the ascending35

node due to the second terrestrial zonal harmonic. The orbital parameters are

selected so as to limit the variation of the right ascension of the ascending node

and the inclination. In this way, only in-plane maneuvers for eccentricity and

argument of perigee correction must be implemented. [5] is an extended anal-

ysis of satellite constellations for the Arctic communications system. A total40

of 15 solutions are considered, consisting in inclined, eccentric orbits with peri-

ods of 12, 16, 18 and 24 hours, respectively. The assessment is carried out on

the basis of coverage, elevation, azimuth, launch cost, radiation exposure and

station-keeping requirements. The physical model accounts for the Earth’s grav-

itational potential developed to the second zonal harmonic and an estimation45

of the effects of the luni-solar third-body perturbations. The study identifies

the best solution as that consisting in three satellites in three equally-spaced

orbital planes and characterized by a 12 hours period. Other possibilities are

the so-called responsive orbits subdivided by [6] into five types: Cobra, Magic,

LEO Sun-Synchronous, LEO Fast Access, LEO Repeat Coverage, with periods50

ranging from typical LEO values (1.5-2 hours) to 8 hours (Cobra orbit) and

requiring 6 to 24 satellites operating in different orbital planes. [7] describes the
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Wonder orbit, a low-altitude, highly elliptical orbit with critical inclination and

designed to obtain a non-drifting repeating ground track. To provide coverage

at high latitudes (60◦N) with minimum elevations of 35◦, a constellation of ten55

satellites in two planes, with orbital period of 3.4 hours and perigee height of

600 km is suggested. [8] develops an extension of the critical inclination through

the application of continuous low-thrust propulsion. The resulting orbit is called

Taranis and enables continuous observation of regions beyond 55◦ latitude using

only four spacecraft, and beyond 50◦ latitude using five spacecraft.60

From 2000 to 2015, the Sirius constellation brought digital radio service to

high-latitude users in the continental United States and Canada [9, 10]. Satel-

lites Radiosat 1 through Radiosat 3 flew in geosynchronous highly-elliptical

orbits with a 23 hours, 56 minutes orbital period (one sidereal day). The ellip-

tical path of this constellation ensured that each satellite spent about 16 hours65

a day over the continental United States, with at least one satellite over the

country at all times. The inclinations ranged from 63.4◦ to 64.2◦. The advan-

tage of a geosynchronous inclined orbit is that its period is equal to that of the

Earth’s rotation (repetition of orbital pattern), which gives the ground trace

a characteristic figure-eight shape centered at the chosen reference longitude.70

Furthermore, if the orbit is eccentric and the perigee is placed at the point of

lowest latitude, the apogee dwell occurs over the northern hemisphere and al-

lows long contacts per orbit of the same satellite with the users. Full coverage is

obtained by using three satellites on equally-spaced orbital planes (i.e, at 120◦

separation, see Fig. 1).75

In this contribution, we consider a group of geosynchronous, inclined, ec-

centric orbits whose orbital elements secure communication service in regions

affected by insufficient GEO coverage. This work is a continuation of the study

developed in [11]. This paper provides an improved description of the numerical

models and algorithms used. A more detailed analysis of the orbital perturba-80

tions and station-keeping strategy is presented. Specifically, corrections of the

right ascension of the ascending node and their effect on the argument of the

perigee are analyzed, both for continuous low-thrust and impulsive maneuvers.
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Besides, even though their effect on the ground track is very limited, pertur-

bations of the orbital eccentricity and inclination are also addressed. A section85

presenting a disposal strategy at end of life concludes the analysis.

The relevance and originality of the present work reside mainly in the treat-

ment of the perturbations, whose degree of approximation is adjusted to the

desired accuracy level, and in the station-keeping strategy, which aims at main-

taining the ground tracks rather than the orbital elements themselves. Besides,90

a procedure has been implemented which uses the coverage require-

ments and the population distribution in geographical coordinates

to limit the number of orbital elements sets to be investigated. We

address the issue of the end-of-life orbit disposal, in observance of the current

space regulation against the accumulation of space debris in the more populated95

orbits.

Section 2 illustrates the criteria adopted for the selection of the orbits. Sec-

tion 3 describes the physical model, whereas Sect. 4 discusses the simulations

setup. The orbital evolution is illustrated in Sect. 5. The station-keeping strat-

egy and the result of its application are explained in Sect. 6. Section 7 illustrates100

the end-of-life disposal plan. The conclusions are drawn in Sect. 8.

Figure 1: The Sirius constellation: ground track (left) and three-dimensional view of the orbits

(right).
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Figure 2: Distribution of world population by latitude and longitude as of 1995 [12, 13].

2. Orbits selection

Following [5] and inspired by the case of the Sirius satellites, we have con-

sidered orbits derived from the traditional Tundra. These orbits are geosyn-

chronous, hence their orbital mean motion n0 is equal to 7.292 · 10−5 rad/s105

(i.e., the value of the Earth’s sidereal rotation rate). As a consequence, their

orbital period T0 equals 86165.5 s and the semimajor axis a0 is of 42164.6 km.

Furthermore, these orbits are inclined and eccentric. In order to provide service

to high-latitude users, the perigee is positioned at the point of lowest latitude,

corresponding to an argument of perigee ω0 of 270◦. In this way, the apogee is110

the point of highest latitude, and the service takes full advantage of the so-called

apogee dwell. We have chosen the values of eccentricity e0 and inclination i0

which bring satisfactory coverage to select regions, as described here below.

2.1. Coverage analysis: selection of eccentricity and inclination

We have examined the world population distribution in latitude and longi-115

tude, and we have identified the most populated areas in the northern hemi-

sphere. According to Fig. 2, such areas are centered in longitude around

λ1 = 100◦W (North America), λ2 = 10◦E (Europe) and λ3 = 100◦E (Russia and
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China). We have chosen these three values of the longitude as the most econom-

ically sensible for operation of a constellation of communication satellites, and120

we have assessed the coverage provided by constellations of three satellites on

geosynchronous orbits with several values of e0 and i0. Following the example

of the Sirius satellites, we have defined the visibility requirement as a minimum

elevation of 60◦ over the horizon. The three orbital planes are equally spaced

and the orbital phases (e.g., the mean anomaly or the true anomaly) of each125

satellite at the starting time are set by the requirement that the three ground

tracks coincide. By tracking the three satellites of the constellation along their

orbits, we have mapped the points on the Earth’s surface in which the visibility

requirement is satisfied by at least one satellite at all times. By trying different

combinations of e0 and i0, we have identified the values of these two parameters130

which yield satisfactory coverage over the area of interest. The population dis-

tribution diagrams of Fig. 2 indicates scarcity of inhabitants above 55◦N, with

an extremely small percentage of people living in areas beyond 65◦N. Therefore,

coverage in regions above this value of the latitude has not been considered as

it is not economically justifiable. Moreover, special applications like maritime,135

aircraft and UAV navigation can be served without the requirement for high el-

evation angles (tall obstacles blocking the view of the sky are very scarce in the

Arctic region). As a result of our assessment, we have identified nine combina-

tions of (e0, i0) to use for orbital simulations. These combinations are reported

in Table 1, where they are referred to as sets. Initially, in view of the areas to140

cover, inclinations of 55◦, 60◦, 65◦ and 70◦ were considered. However, it was

finally decided to use the critical inclination (63.4◦) instead of 65◦ to allow di-

rect comparisons with the evolution of a classical Tundra orbit. Evenly-spaced

values of the eccentricity (0.25, 0.30, 0.35 and 0.40) have been chosen as they

make it easier to interpret trends in the data. Coverage maps for each of the145

nine sets have been determined for each value of the reference longitude (λ1 to

λ3). A sample of such maps can be found in Figs. 3 and 4.

To each (e0, i0) set we have assigned six equally-spaced values for the right

ascension of the ascending node Ω0, namely 0◦, 60◦, 120◦, 180◦, 240◦ and 300◦.
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Table 1: The nine sets of initial eccentricities e0 (second column) and inclinations i0 (third

column), and the values rπ0 (fourth column) and rα0 (fifth column) of the pericenter and

apocenter radii of the corresponding geosynchronous Keplerian orbits.

Set e0 i0 rπ0 rα0

(degree) (km) (km)

1 0.25 55.0 31623.5 52705.8

2 0.25 60.0 31623.5 52705.8

3 0.30 60.0 29515.2 54814.0

4 0.25 63.4 31623.5 52705.8

5 0.30 63.4 29515.2 54814.0

6 0.35 63.4 27407.0 56922.2

7 0.40 63.4 25298.8 59030.4

8 0.35 70.0 27407.0 56922.2

9 0.40 70.0 25298.8 59030.4

This results into 54 sets of orbital elements. These are used to initialize the150

orbit simulations.

3. The physical model

The physical model employed for orbit propagation accounts for

the gravitational acceleration due to the terrestrial gravity field, the

accelerations caused by the gravity of Moon and Sun as described by155

[14] (with the positions of the two celestial bodies approximated as

in [15, 16]), the effect of the solar radiation pressure (as in [14] with

the shadow factor computed according to the double-cone model)

and the term associated to the relativistic correction to gravity [17].

The effect of atmospheric drag on the orbit has not been taken into160

account given the very high perigees (radial distances > 2.5 · 104 km)

of the orbits considered.

As for the terrestrial gravitational acceleration, the traditional
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Figure 3: Geographical coverage at 60◦ minimum elevation for three-satellite constellations

based on the orbital parameters of sets 1 (top left), 2 (top right), 3 (middle left), 4 (middle

right), 5 (bottom left) and 6 (bottom right), respectively. The ground tracks are centered at

the longitudes of interest, i.e., 100◦W, 10◦E or 100◦E.

formulation of the gravitational potential in outer space based on a

spherical harmonic expansion in Associated Legendre Functions [18]165

has been replaced with a singularity-free representation in Cartesian

Earth-fixed coordinates due [19] in which the spherical harmonics are
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Figure 4: Geographical coverage at 60◦ minimum elevation for three-satellite constellations

based on the orbital parameters of sets 5 (top left), 7 (top right), 8 (bottom left) and 9 (bottom

right), respectively. The ground tracks are centered at the longitudes of interest (in this case,

100◦W or 100◦E).

expressed in terms of Helmholtz polynomials (see [20, 21]). This for-

mulation was improved by [22, 22, 23] with implementation of stable

recursion schemes on the Helmholtz polynomials and through the ac-170

cumulation of so-called lumped coefficients (harmonic sums over the

degree), which yields better performance. The adopted geopoten-

tial model is the Earth Gravitational Model 2008 [24] in its zero-tide

version. It provides the fully-normalized, dimensionless, Stokes coef-

ficients and their associated error standard deviations. The model is175

complete to degree and order 2159.
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4. Numerical setup

The choice of the perturbations to model depends on the level of accuracy

sought. For Tundra-like orbits, it has been decided that station-keeping to

within 1◦ accuracy is sufficient for the intended applications. As a matter of180

fact, a satellite angular displacement of 1◦ corresponds to a shift in the ground

trace of some 100 km. This is a small distance compared to the size of the

coverage area (typically several thousand kilometers). This study considers the

station-keeping requirements over two years. This time interval is twice the

period of the slowest-varying cyclic perturbation (solar), and is thus considered185

representative of the long-term evolution. To be able to sense 1◦ errors in

position after two years, the discretization error of the orbit propagator must

be small compared with this value. A uniform drift of 1◦ over two years is

equivalent to 0.0014◦ per orbit (i.e., per sidereal day). Given the altitude of the

orbits under study (the lowest perigee height is of 19000 km, approximately),190

this corresponds to a distance of more than 450 m per orbit. Therefore, the

error in the trajectory propagation must be at least 10 times smaller, i.e., 45

m/orbit. We set a conservative value of 40 m/orbit. The propagator tolerance

and time step must be chosen so as to respect the target accuracy. It has been

determined through numerical experiments that using a relative tolerance of195

10−6 and a maximum time step of 600 s produces errors well below the required

40 m/orbit threshold. The required accuracy also determines the magnitude

of the perturbing forces to consider. A constant acceleration of 10−8 m/s2

acting for one day (the orbital period) causes a drift of 40 m. This means that

perturbing accelerations below such value can be neglected without altering the200

quality of the results. Note also that most perturbations are likely to oscillate

along the orbit instead of remaining constant, so their cumulative effect will

be smaller (this is a worst-case scenario estimate). According to this criterion,

the perturbations due to atmospheric drag and relativistic corrections (close

to 10−9m/s2) can be ignored as they fall well below the 10−8 m/s2 level. For205

standard communication satellites with an area-to-mass ratio of 0.01 m2/kg, the
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effect of solar radiation pressure in these orbits yields accelerations below 10−7

m/s2, which is barely appreciable and with a marginal effect on the station-

keeping requirements.

4.1. Choice of the expansion degree of the geopotential210

When performing the harmonic synthesis of the geopotential and its first-

order gradient, the number of spherical harmonics to retain (i.e., the expansion

degree) is determined by the accuracy requirement. Given that higher-order

harmonics decay rapidly with altitude, the expansion degree necessary to meet

the target accuracy decreases with height. To make the computations as efficient215

as possible, the number of degrees to retain must be determined dynamically

while the trajectory is being computed. To determine the optimum expansion

degree at each altitude, a sample of 36 longitudes and 17 latitudes has been

analyzed (corresponding to points spaced 10◦ along a sphere). The expan-

sion degree required to reduce the truncation error below 10−8m/s2 for all the220

points of the grid has been determined, i.e., the degree for which the difference

between the complete EGM2008 model and the truncated series is less than the

threshold acceleration. This procedure has been repeated for several altitudes

in geometric series with ratio 2 starting at an altitude of 250 km and covering

the complete trajectory envelope. The table containing the required expansion225

degree as a function of altitude is used by the numerical integrator to compute

the gravitational acceleration, guaranteeing the required accuracy while keeping

the computational cost to a minimum (Fig. 5).

5. Simulations230

The physical model has been coded in Fortran. The executable has been

called CHEOPs which stands for Cartesian Harmonic synthEsis Orbit Propaga-

tor. CHEOPs incorporates a 7(8) Runge-Kutta-Fehlberg numerical integrator.
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Figure 5: Expansion degree required to achieve the target accuracy for each height.

5.1. Preprocessing: removal of the linear drift of the ascending node due to J2

It is well known (see e.g. [25] p. 347) that the longitude of the ascending235

node drifts at a uniform rate due to the second zonal harmonic J2 (0.0010826) of

the terrestrial gravity field. Due to this effect, the orbital plane of the satellite

precesses at a rate given by

Ω̇J2 = −
3

2

(

RE

a0

)2
n0J2 cos i0
(1− e20)

2
, (1)

which, in turn, would cause the ground track to move eastwards at the same

rate. On the other hand, the ground track of a Keplerian orbit with a slightly240

different mean motion n would move to the East at a rate n − n0. Thus, the

eastwards drift of the ground track due to J2 can be countered by changing the

period of the (originally) geosynchronous orbit in such a way that both effects

cancel out. That is,

n = n0 − Ω̇J2. (2)

Note that Eq. 2 assumes the change in orbital period is small, so there is no245

need to modify the rate of precession given by Eq. 1. Once the required period

of the orbit T = 2π/n has been determined, the initial conditions for the orbit

propagator must be obtained. Given that the real orbit is not Keplerian, the
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semimajor axis cannot be computed directly from Kepler’s third law. Defining

T as the time between passages through the ascending node, its value can only250

be determined after a set of initial conditions has been chosen and the orbit

has been numerically propagated. Therefore, the initial conditions must be

determined iteratively. From Kepler’s third law we can derive the approximate

variation δT of period that corresponds to a given change δa in semimajor axis:

δT ≈
6π2

GME

a2

T
δa. (3)

Starting with an approximation of the semimajor axis ai, an improved estimate255

ai+1 can be obtained by combining Eqs.2-3:

2π

n0 − Ω̇J2

= Ti +
6π2

GME

a2
i

Ti

(ai+1 − ai), (4)

leading to the following iterative formula:

ai+1 = ai +

(

2π

n0 − Ω̇J2

− Ti

)

GME

6π2

Ti

a2
i

. (5)

For all the orbits tested, the change in period respect to the ideal geosynchronous

case, ∆T = T−T0, amounts to just a few seconds. Therefore, the approximation

made in Eq. 2 is acceptable.260

5.2. Orbital evolution

The 54 sets of initial conditions presented in Sect. 2 have been propagated

over intervals of two years, to encompass all the cycles present in the model.

Due to the high altitudes of these orbits, the code automatically sets the expan-

sion degree to 4 or less (see also Fig. 5). The evolution of the orbits under the265

forces accounted for in the model is summarized in Table 2, which provides the

maximum and typical (i.e., representative of the median value)) variation

of the orbital parameters of interest as well as a reference (i.e., the set and the

initial value of the right ascension of the ascending node) to the representa-

tive orbit for each case. The orbital parameters given are the eccentricity e,270

inclination i, argument of perigee ω, right ascension Ω of the ascending node,

and the longitude LAN of the ascending node, which measures the East-West

14



Table 2: Maximum and typical variation of the orbital parameters of interest and a refer-

ence (i.e., the set and the initial value of the right ascension of the ascending node) to the

representative orbit for each case.

Element Maximum var. Set Ω0 Typical var. Set Ω0

e 0.07 9 120◦ 0.03 5 60◦

i 1.2◦ 1 300◦ 0.5◦ 4 120◦

ω 15◦ 9 180◦ 6◦ 8 0◦

Ω 11◦ 7 0◦ 9◦ 6 300◦

LAN 150◦ 1 60◦ 100◦ 4 300◦

(E-W) motion of the ground track. Note that the semimajor axis is not shown

because it is related to the orbital period, so its effect is lumped into LAN, i.e.,

in the loss of synchronism with respect to the rotation of the Earth. Figures 6275

illustrates the evolution of e, i, ω and LAN for the most representative cases of

the table, i.e., sets 1 and 9, with the six values of Ω0. The evolution of Ω for

the worst case (set 7) and for a typical case (set 6) is given in Fig. 7. The most

important secular perturbation is due to the Moon, which causes variations of

the orbital period which in turn move the ground track in the E-W direction.280

The displacement can reach hundreds of degrees over a two-year span and needs

a major axis correction in order to keep the ground track fixed. On the other

hand, the fluctuations of eccentricity and inclination have a very limited effect

on the ground track and do not require correction over a two-year period (as

far as the ground track is concerned). The maximum drift of the argument285

of perigee observed is around 15◦ over two years and needs to be periodically

corrected.

6. Station keeping

Two different station-keeping strategies are devised. A classical one relying

on impulsive maneuvers, and another suitable for electric propulsion with the290

corrections applied over thrust arcs spanning an important fraction of the or-
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Figure 6: Evolution of the relevant orbital parameters of the orbits of sets 1 and 9: eccentricity

e, inclination i, argument of perigee ω, longitude of the ascending node LAN.
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Figure 7: Drift of the ascending node: sets 6 (top) and 7 (bottom).
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bital period. To determine the details of the low-thrust maneuvers (including

duration) the value of the acceleration of the spacecraft is needed. This, in

turn, requires knowledge of the vehicle mass and the thrust available. An initial

spacecraft mass of 3000 kg and maximum thrust of 79 mN have been assumed in295

this study yielding an acceleration of 2.63 · 10−5 m/s2. The maximum available

acceleration increases as propellant is consumed (assuming no degradation of

the propulsion system). However, the acceleration has been taken equal to the

initial value at all times, which is a conservative assumption. This simplifies

greatly the interpretation of the charts relating the length of the thrust arcs to300

the change in orbital elements. Moreover, the mass fraction of propellant in a

spacecraft using electric thrusters is likely small, reducing the changes in accel-

eration. The duration of the thrust arcs can be of several hours and may require

changes in spacecraft attitude. Therefore, to avoid disrupting normal satellite

operations, it has been assumed that all low-thrust maneuvers are applied near305

the perigee (where the satellite does not provide coverage and can thus be safely

taken offline).

6.1. Correction of the longitude of the ascending node

It is important to realize that from the point of view of operation, the po-

sition of the orbital plane is of minor importance compared with the correct310

placement of the ground track. The orbital perturbations cause the right ascen-

sion of the ascending node to change and therefore affect the E-W position of

the ground track. However, this effect is very small compared with the changes

caused by fluctuations of the orbital period. If the orbital period of a geosyn-

chronous orbit were to change by ∆T for any reason, this would cause a drift315

∆LAN of the longitude of the ascending node,

∆LAN = −360

(

∆T

T0

)

degrees per orbit. (6)

The magnitude of this drift is so important that it overshadows the effect of

the orbital plane precession. Therefore, the station-keeping strategy must focus

on adjusting the orbital period to keep the ground track in place. Any E-W
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drift of the ground track caused by the different perturbations is countered by320

introducing an appropriate change in the orbital period. This is achieved with a

two-burn maneuver which changes the semi-major axis while keeping the other

orbital elements unchanged. The first burn takes place at the perigee of the

initial orbit and the second at the apogee of the final orbit. From Kepler’s third

law, the variation ∆a in semimajor axis needed to change the orbital period by325

a small amount ∆T is

∆a =
T0GME

6π2a2
∆T. (7)

The impulse for the two-burn maneuver can be linearized (assuming small

changes in velocity) yielding:

∆V =
GME

4a2

(

1 + e

Vπ

+
1− e

Vα

)

∆a. (8)

where Vπ and Vα denote the perigee and apogee velocities, respectively. Using

Eqs. 7 and 8, the cost of the period control maneuver can be determined. For330

the cases under study the fluctuations in orbital period are very small (35 s over

two years for the worst-case scenario, set 1, Ω0 = 60◦). A change of orbital

period of 35 s can be accomplished with an impulse ∆V I

LAN of just 0.22 m/s.

Therefore, the contribution to the overall impulse budget (totaling hundreds of

m/s) can be safely neglected.335

6.2. Correction of the right ascension of the ascending node

The motion of the ascending node is mostly due to lunisolar perturbations,

with the Moon accounting for roughly two thirds of the drift observed. Further-

more, numerical experiments show that the effect depends on the inclination of

the satellite orbit relative to the orbital plane of the Moon. The drift of the340

ascending node is fastest when both orbits are almost coplanar and vanishes

when they are perpendicular. At the epoch of the start of the simulations (July

1st 2013), the ascending node of the lunar orbit has a right ascension of 5◦ and

an inclination of 28◦ respect to the equator. The minimum relative orbital incli-

nation (satellite respect to Moon) is obtained when the ascending nodes of the345
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Moon and satellite coincide. Therefore, the orbital planes needing the largest

Ω correction are those with Ω0 = 0◦ and 60◦.

As stated in the previous section, the E-W position of the orbital plane has

a minor effect on the position of the ground track, which is controlled through

very small adjustments of the orbital period. However, in order to have a350

properly working constellation, a 120◦ spacing between the orbital planes must

be maintained. To optimize the propellant consumption, it was decided to

correct only the drift Ω̂ of each orbital plane with respect to the mean motion

of the constellation. Let ∆Ω̃ be the mean change in Ω of the constellation:

∆Ω̃ =
1

3

3
∑

i=1

∆Ωi. (9)

Here, Ωi denotes the right ascension of the ascending node of plane i and ∆Ωi355

its variation. The station keeping maneuvers are designed to correct the change

in Ω̂, defined as

∆Ω̂i = ∆Ωi −∆Ω̃. (10)

By removing the mean drift of the constellation, the cost of the station-keeping

maneuvers is reduced compared to a simpler strategy based in controlling each

orbital plane independently. To illustrate the gain obtained with this strategy,360

Fig. 8 depicts the evolution of Ω̂ for typical (set 3) and worst-case scenarios (set

9). While, as shown in Table 2, the maximum change in Ω over 2 years is 11◦

(set 7, Ω0 = 0◦), the largest change in Ω̂ is just 3◦ (set 9, Ω0 = 180◦). That is,

the impulse budget is cut down by 70%. The typical correction, on the other

hand, is reduced from 9◦ to just 1◦ (a 90% decrease).365

6.2.1. Impulsive maneuver

When the perigee argument is 90◦ or 270◦ and in the limit of small

corrections, the change in Ω is achieved with a single burn near the apogee or

perigee which rotates the velocity vector by an angle γ [26, 27]:

γ ≈ ∆Ωsin i. (11)
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Figure 8: Drift of Ω̂: sets 3 (top) and 9 (bottom).
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Note that the expression above is only valid if ∆Ω ≪ 1 rad. Given that the370

magnitude of the impulse is proportional to the satellite velocity at the time of

the burn, it is preferable to apply the maneuver at the apogee. The impulse

needed is then:

∆V ≈ V γ ≈ Vα∆Ωsin i, (12)

where small angles are assumed. For the orbits under consideration, the typical

magnitude of the impulse is 34 m/s for each degree of correction. For a worst-375

case scenario of 3◦ Ω correction over two years (set 9, Ω0 = 180◦), the total

impulse ∆V I

Ω is 100 m/s. It is worth noting that this maneuver causes a change

in argument of perigee as a side effect. For a burn near the apogee, the variation

in ω is approximately

∆ω ≈ ∆Ωcos i. (13)

This, depending on the sign of the relevant terms, reduces or increases the cor-380

rection of the argument of perigee needed to compensate orbital perturbations.

Given that the signs change for different orbits of the same set, the next section

(correction of ω) assumes a worst-case scenario to obtain a conservative estimate

of the impulse budget (i.e., the magnitude of the correction is always increased).

6.2.2. Low-thrust maneuver385

To change the ascending node, thrust must be applied perpendicular to the

orbital plane [25]. Following [28] and denoting with f the magnitude of the

acceleration imparted by the motor, the execution of thrust arcs symmetric

with respect to the perigee yields a variation in Ω

∆Ω = −
a2f

GME

√
1− e2 sin i

(

−3eĒ + 2 sin Ē + 2e2 sin Ē −
1

2
e sin 2Ē

)

. (14)

As usual, a, e and i are semimajor axis, eccentricity and inclination (all left390

constant by the maneuver), whereas Ē is the half-span of the thrust arc (mea-

sured in terms of eccentric anomaly). If β denotes the thrust elevation over

the orbital plane, then for a positive change in Ω the thrust vector must be

antiparallel (β = −90◦) to the orbital angular momentum when the satellite is
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Figure 9: Right: change in Ω per orbit achieved as a function of the eccentricity and total

duration of the thrust arc for an orbit with 70◦ inclination by thrusting perpendicular to the

orbital plane. Left: effect of the maneuver on the argument of perigee ω.

in the southern hemisphere and parallel (β = +90◦) in the remaining part of the395

orbit. Figure 9 (right) shows the change in Ω per orbit achieved as a function

of the eccentricity and total duration of the thrust arc for an orbit with 70◦

inclination. The thrust arc is symmetric with respect to the perigee. So, for

example, a total duration of 10 hours corresponds to an arc spanning from 5

hours before perigee to 5 hours after perigee. Note that the curves show a point400

of zero slope. This happens when the satellite crosses the Equator, causing the

net torque with respect to the line of nodes to vanish. Therefore, care must be

taken not to apply the maneuver close to the nodes, as it would waste propel-

lant. As was the case for the impulsive maneuver, there is a change in argument

of the perigee associated with the correction of Ω:405

∆ω = −
f

cot i

√

1− e2
(

−3eĒ + 2 sin Ē + 2e2 sin Ē −
1

2
e sin 2Ē

)

. (15)

The magnitude of the coupling is depicted on the left graph of Fig. 9. For a

worst-case scenario of 3◦ Ω correction over two years for the most eccentric orbit

(set 9, Ω0 = 180◦), the correction per orbit is 0.0041◦. A thrust arc of 4.2 hours

is required with an associated change in ω of 0.0014◦ per orbit (1◦ over two

years). Note that the duration of the arc is within the acceptable range, as it410

takes place in the area where the slope of the curves is large (i.e., the satellite

is far enough from the Equator). The total impulse is computed as the product

23



of the spacecraft acceleration times the duration of the thrust arc. This yields

a change in velocity of 0.4 m/s per orbit or ∆V LT

Ω = 290 m/s over two years.

6.3. Correction of the argument of perigee drift415

Computations show that, for the worst-case scenario, roughly 20% of the

perigee drift is due to the harmonics of Earth’s gravitational field, 25% is caused

by the Sun and 55% by the Moon. Classical Molniya orbits use critical incli-

nation to minimize changes in ω due to J2. For Tundra-like orbits, however,

lunar perturbations prevail due to the higher altitude. Thus, the advantage of420

critically inclined orbits largely vanishes. As was the case with the ascending

node, lunar perturbations depend on the relative orientation of the satellite and

Moon orbits (i.e., the right ascension of the ascending node). In this case, how-

ever, the effect is maximum for the orbital planes with ascending nodes opposite

to the Moon (i.e., 180◦ and 240◦). Among the different sets analyzed, it425

is noteworthy that orbits with e0=0.25 and 55 degrees of inclination

(see Fig. 6) experience the slowest average drift of the perigee (2.2

degrees per year when averaged across the six values of Ω).

6.3.1. Impulsive maneuver

To carry out an in-plane rotation of the major axis of the orbit, an optimized430

impulsive two-burn maneuver has been used. It involves an elliptical transfer

orbit with the major axis oriented halfway between the initial and final orbits

[29]. Due to the symmetry of the problem, the two burns have the same magni-

tude. The transfer has two degrees of freedom, the eccentricity of the transfer

orbit and the true anomaly of the first burn. These must be determined by435

minimizing the total impulse. As the optimization method described in the

reference is very cumbersome to implement in software, an alternative, more

computer-friendly strategy has been developed. The optimum combination is

determined with a two-stage algorithm. For a given value θ of the true anomaly

of the first burn, the eccentricity e⋆ of the transfer orbit yielding the minimum440
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impulse can be found by solving the equation

∂∆V (e⋆, θ)

∂e⋆
= 0. (16)

This is easily accomplished numerically using the secant method, because the

partial derivative has a simple analytical expression. This has been implemented

in a function which calculates the minimum of ∆V (θ). Next, this function is

passed as the argument of a robust minimization algorithm which does not445

require gradients (Brent’s method [30]) and returns the optimum values of the

true anomaly and impulse. The worst-case correction of the argument of the

perigee over two years is 16◦, of which 15◦ are due to orbital perturbations and

1◦ to the coupling with the Ω correction. This requires a maximum impulse

∆V I
ω of 182 m/s, with the typical impulse being some 50% lower.450

6.3.2. Low-thrust maneuver

Let the components of the acceleration f imparted by the motor be denoted

with f1, f2 and f3 in a radial-transverse-normal reference frame. It is possible

to change ω while keeping the semimajor axis a and the eccentricity e constant,

by applying the following in-plane acceleration over thrust arcs symmetric with455

respect to the perigee [28]:

f1 = f

(

cosE − e

1− e cosE

)

(17)

f2 = −f

(√
1− e2 sinE

1− e cosE

)

(18)

f3 = 0 (19)

Here E is the instantaneous value of the eccentric anomaly (which means the

components of the acceleration vector change along the thrust arc). This accel-

eration causes a variation in ω

∆ω =
af

√
1− e2

GMEe

(

−3Ē + 2e sin Ē +
1

2
sin 2Ē

)

, (20)

where Ē is the absolute value of the eccentric anomaly at either end point of460

the thrust arc. The length of the propelled arc is determined by the magnitude
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Figure 10: Change in ω per orbit achieved as a function of the eccentricity and total duration

of the thrust arc. Thrust vector is in the orbital plane.

of the correction ∆ω as shown in Fig. 10. The correction per orbit needed to

compensate the worst-case perturbations is 0.0205◦. Another 0.0014◦ must be

added due to the coupling with the Ω maneuver (see Sect. 6.2.2) for a total of

0.022◦ per orbit. Note that the central part of the arc (i.e., the neighborhood465

of the perigee) is not available, as it is used for the ascending node correction.

Therefore, the thrust arcs must be applied before and after the Ω correction

maneuver which, as shown in Sect. 6.2.2, lasts 4.2 hours. To determine the

bounds of the thrust arcs, the value of ∆ω for a duration of 4.2 hours is read from

Fig. 10 (0.023◦) and 0.022◦ are added obtaining 0.045◦. The time corresponding470

to this value (7 hours) indicates the bounds of the thrust arcs. That is, the thrust

arcs span 1.4 hours before and after the Ω correction (e.g., from 3.5 to 2.1 hours

before perigee for the first arc). The associated impulse is 0.27 m/s per orbit,

which amounts to a total ∆V LT
ω of 200 m/s over two years.

6.4. Correction of the eccentricity475

The change in eccentricity is due almost completely to the effect of the Moon.

The variation over a two-year period is small and has no appreciable effect on

the coverage footprint. Therefore, if left uncorrected it would not affect the

primary mission of the satellites. However, due to operational reasons (e.g., to
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avoid interfering with the orbits of other spacecraft) it may be desirable to keep480

e constant. The impulsive maneuver required is thus included for reference pur-

poses. The low-thrust option, on the other hand, has been disregarded because,

according to [28, 31], in order for the maneuver not to affect the semimajor axis,

thrust should be applied over the entire orbit, i.e., also around apogee when the

satellite is online for communication service.485

6.4.1. Impulsive maneuver

The maneuver consists in a pair of burns applied at the line of apsides. For

example, to increase e the apogee is raised with a forward impulse at the perigee,

while the perigee is lowered by the same amount with a reverse impulse at the

apogee. For small corrections, the total impulse can be linearized as follows:490

∆V =
GME

4a

(

1

Vπ

+
1

Vα

)

∆e. (21)

For a worst-case correction ∆e = 0.07 (set 9, Ω0 = 120◦) an impulse ∆V I
e of 60

m/s is required.

6.5. Correction of the orbital inclination

The change in inclination is due almost entirely to the lunar perturbation.

The variation is small and has little impact on the constellation coverage. Given495

that a change-of-plane maneuver requires a comparatively large impulse, it

should be carefully evaluated whether this correction is strictly necessary. For

the sake of completeness, the budget of the impulsive maneuver is included

(Sect. 6.5.1). The low-thrust option, however, has been discarded on the fol-

lowing basis: in order for the maneuver to cause the maximum rate of change500

of i, thrust must be perpendicular to the orbit plane and must be applied over

an arc centered at a point whose true anomaly (θi) depends on eccentricity (e)

and argument of perigee (ω) [31]:

sin(θi + ω) = −e sinω. (22)

For the orbits under consideration, such point falls in the northern hemisphere,

i.e., in the part of the orbit reserved for telecommunication service.505
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6.5.1. Impulsive maneuver

A change ∆i in the orbital inclination not affecting the position of the as-

cending node is achieved by an impulse applied at either node:

∆V = 2V sin

(

∆i

2

)

. (23)

For a worst-case correction ∆i = 1.2◦ (set 1, Ω0 = 300◦) an impulse ∆V I
i

of 62

m/s is required.510

6.6. Estimation of total station-keeping cost

The worst-case scenario (set 9, Ω0 = 180◦) for the most relevant maneuvers,

i.e., Ω and ω correction, corresponds to velocity variations of 282 m/s (= ∆V I

Ω+

∆V I
ω ), and 490 m/s (= ∆V LT

Ω +∆V LT
ω ), for the high and low thrust strategies,

respectively. The perturbations of e and i for this scenario are 0.027 and 0.17◦,515

respectively (observe these are not the worst-case values recorded in Table 2).

The impulses required to correct these perturbations are ∆V I
e = 23 m/s for

eccentricity and ∆V I
i

= 11 m/s for inclination. Therefore, the total impulse

budget over two years for the high-thrust maneuvers when all four parameters

are corrected is ∆V = 316 m/s.520

From the economic point of view, the combination of orbital pa-

rameters yielding the minimum station-keeping cost is extremely in-

teresting. The fact that each constellation includes three different

orbital planes subject to vastly different lunar perturbations (which

also change in time due to the precession of Moon’s orbit) means that525

there is no single set of optimum orbital parameters. However, it is

possible to find families of orbits that, over time, experience smaller-

than-average changes of the orbital elements. The largest slice of the

propellant budget (almost 60%) corresponds to ω corrections, offer-

ing the maximum potential for cost reduction. As stated previously,530

when all the different values of Ω0 in a set are considered, orbits with

e0=0.25 and 55 degrees of inclination experience the slowest average
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drift of the perigee. They are thus the most economically advanta-

geous.

7. End-of-life disposal535

Once a satellite reaches the end of its operational life, measures must be

taken to prevent it from interfering with the operation of active spacecraft.

Low-altitude satellites are often removed by the action of atmospheric

drag. For the orbits under consideration in this paper, artificially

de-orbiting the satellite to let it burn in the atmosphere is out of540

question due to the enormous impulse required (∼ 1 km/s). On the

other hand, allowing the natural orbital evolution to act may de-

crease significantly the de-orbiting cost. Recent studies show that

the orbital instabilities due to the lunisolar perturbations and the

associated resonances, produce an increase of the orbital eccentricity545

and may cause atmospheric reentry over medium to long time scales

(from decades to hundreds of years) [32, 33, 34]. However, if left

uncontrolled, a satellite in an inclined geosynchronous orbit quickly

enters the GEO protected ring. If this has to be avoided, a viable option

is to move the spacecraft to a circular orbit far from the most congested bands550

(e.g., avoiding conflicts with GPS and GEO satellites) [35]. In this section we

analyse the operational strategy and the cost associated to this type of disposal

by considering both impulsive and continuous thrust maneuvers.

7.1. Impulsive disposal

The orbit can be circularized to an altitude intermediate between the perigee555

and apogee with a two-burn impulsive maneuver. For example, the maneuver

could start with a backward impulse at the perigee followed by a forward burn at

the apogee of the transfer orbit to circularize the trajectory. Alternatively, the

maneuver could start with a forward burn at the apogee followed by a backward

impulse at the perigee of the transfer orbit. It turns out that the best strategy560
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is to start the transfer at the apogee of the original orbit. Fig. 11 shows the

reduction in impulse achieved by starting the transfer at the apogee as a function

of the radius of the final circular orbit (for an initial orbit eccentricity e0 = 0.4).

Note that when the radius of the final orbit is the same as the perigee or apogee

of the initial orbit (25299 km or 59030 km respectively) the difference vanishes565

because the transfer becomes a single-burn maneuver. To determine the optimal

disposal altitude, the total impulse requirement is plotted against the radius of

the parking orbit, as shown in Fig. 12. It is clear from the plot that the cost

is minimum when the radius of the parking orbit is equal to the initial apogee.

Observe that the cost of disposal increases dramatically if the radius of the final570

orbit is higher than the initial apogee or lower than the initial perigee. Note also

that, from the operational point of view, the optimum circular disposal orbit is

perfectly viable, as it lies well above the GEO ring. Table 3 summarizes the cost

of impulsive disposal for the different eccentricities tested. The cost increases

with the initial eccentricity, with a maximum of 586 m/s for e0 = 0.4.

Table 3: Cost (third column) of the impulsive disposal in a circular orbit at initial apogee

altitude (second column). The first column gives the initial orbital eccentricity.

e0 Disposal orbit radius Disposal cost

(km) (m/s)

0.25 52706 368

0.30 54814 440

0.35 56922 513

0.40 59030 586

575

7.2. Low-thrust disposal

Circularisation at apogee altitude can be obtained by continuous in-plane

thrust. Results are here provided for a solution consisting in uninterrupted

thrust perpendicular to the major axis of the orbit (see also [28] and [36]).

Table 4 gives the performance of this maneuver for the four values of the initial580
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Figure 11: Reduction in impulse achieved by starting the disposal maneuver at the apogee

instead of the perigee, as a function of the radius of the final circular orbit (for an initial orbit

eccentricity e = 0.4).

Figure 12: Impulsive disposal in a circular orbit: total impulse requirement against the radius

of the final orbit (e0 = 0.4).
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eccentricity chosen. The disposal of the most eccentric orbit (e = 0.4) takes 344

days and corresponds to a velocity variation of 780 m/s.

Table 4: Characteristics (i.e., execution time and cost) of the low-thrust disposal in a circular

orbit at initial apogee altitude assuming uninterrupted in-plane thrust perpendicular to the

major axis of the orbit.

e0 Execution time Disposal cost

(days) (m/s)

0.25 217 490

0.30 259 590

0.35 301 680

0.40 344 780

8. Conclusions

A study of orbital evolution, station-keeping maneuvers and dis-

posal options for telecommunications satellites in highly-inclined geosyn-585

chronous orbits has been presented. A numerical model of the rel-

evant physical effects has been developed which, considering the ac-

curacy requirements of the mission and the instantaneous satellite

altitude, dynamically adjusts the expansion degree of Earth’s grav-

itational field to obtain maximum performance during orbit propa-590

gation. The model is applied to nine sets of constellations (defined

by orbital inclination and eccentricity) that serve areas of maximum

economic viability (i.e., housing the largest population). A station-

keeping strategy has been devised where, instead of keeping the or-

bital elements constant, only the ground track of the constellation595

is maintained while reducing the propellant expense. The impulse

budget for Ω corrections can thus be reduced by as much as 90%.

Due to the high altitude of the perigee, the most important per-

turbation is due to the Moon with the harmonics of the gravitational
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field of the Earth playing a minor role. The magnitude of the lu-600

nar perturbation depends strongly on the relative inclination of the

orbital planes of the satellite and Moon, which is a function of the

separation of their ascending nodes. Therefore, the three satellites

of a constellation experience vastly different evolutions at any given

time as their orbital planes are offset by 120 degrees. Note that, due605

to the dominance of lunar perturbations and the precession of Moon’s

orbit, the behavior of a satellite at an epoch different from that cho-

sen in the discussion (01/07/2013) can be roughly approximated by

a shift in Ω equal to the motion of lunar ascending node. Thus, the

data presented are also indicative of the evolution of spacecraft with610

arbitrary launch dates.

To provide an upper bound of the station-keeping cost, a worst-

case scenario (requiring the maximum impulse over a two-year pe-

riod) has been identified. For the sake of completeness, typical (i.e.

representative of the median value) changes of orbital elements are615

also provided. The impulse budget has been computed for high and

low-thrust maneuvers. The impulsive correction of the argument of

the perigee uses an elliptical transfer arc which minimizes the propel-

lant consumption. As there is no closed expression for the parameters

of the optimum transfer ellipse, an efficient solution has been found620

using a combination of minimization algorithms with and without

gradients. For the impulse strategy, the worst-case scenario requires

a total impulse of 316 m/s. This includes 182 m/s for ω corrections

and 100 m/s for Ω, with eccentricity an inclination accounting for

around 10% of the total budget. The low-thrust maneuvers, for their625

part, have ∆V requirements that are roughly twice as large.

Of the sets considered, orbits with e0=0.25 and 55 degrees of incli-

nation experience the slowest rate of drift averaged over the different

orbital planes. They are therefore the most attractive economically,

as the cost of ω corrections dominates the propellant budget.630
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Finally, an end-of-life disposal strategy has been outlined. Given

the high altitude of the perigee, lowering it to the point where atmo-

spheric drag de-orbits the satellite in a reasonable time frame is unfea-

sible (it calls for an impulse close to 1 km/s). Instead the spacecraft

is parked in a circular orbit far from operational satellites. Minimum635

impulse is required when the radius of the circular orbit coincides

with the apogee of the initial orbit. Cost of disposal increases with

the eccentricity of the orbit. For impulsive maneuvers 586 m/s are

needed for e0=0.4. The orbit can alternatively be circularized with

in-plane low-thrust perpendicular to the major axis at a cost of 780640

m/s (the maneuver taking almost a year to complete).
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