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Quantum state tomography (QST) is the gold standard technique for obtaining an estimate

for the state of small quantum systems in the laboratory [1]. Its application to systems

with more than a few constituents (e.g. particles) soon becomes impractical as the effort

required grows exponentially with the number of constituents. Developing more efficient

techniques is particularly pressing as precisely-controllable quantum systems that are

well beyond the reach of QST are emerging in laboratories. Motivated by this, there is

a considerable ongoing effort to develop new state characterisation tools for quantum

many-body systems [2–11]. Here we demonstrate Matrix Product State (MPS) tomography

[2], which is theoretically proven to allow the states of a broad class of quantum systems to

be accurately estimated with an effort that increases efficiently with constituent number. We

use the technique to reconstruct the dynamical state of a trapped-ion quantum simulator

comprising up to 14 entangled and individually-controlled spins (qubits): a size far beyond

the practical limits of QST. Our results reveal the dynamical growth of entanglement and

description complexity as correlations spread out during a quench: a necessary condition for

future beyond-classical performance. MPS tomography should therefore find widespread

use to study large quantum many-body systems and to benchmark and verify quantum

simulators and computers.

An MPS is a way of expressing a many-particle wave function which, for a broad class of physical

states, offers a compact and accurate description with a number of parameters that increases only

polynomially (i.e. efficiently) in system components. [12]. MPS tomography recognises that

the information required to identify the compact MPS is typically accessible locally; that is, by

making measurements only on subsets of particles that lie in the same neighbourhood [2]. In

such cases, the total effort required to obtain a reliable estimate for the state in the laboratory

increases at most polynomially in system components [2, 6]. States suited to MPS tomography

and its generalisations to higher dimensions [2] include those with a maximum distance over which

significant quantum correlations exist between constituents (locally-correlated states) e.g. the 2D

cluster states—universal resource states for quantum computing—and the ground states of a broad

class of 1D systems [13–15]. We find that MPS tomography is also well-suited to characterise

the states generated during the dynamical evolution of systems with short-ranged interactions, as

found in many physical systems (Methods and [16]).

Consider an N-component quantum system initially in a product state (or other locally-
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correlated state) in which interactions are abruptly turned on. In the presence of finite-range

interactions, information and correlations spread out in the system with a strict maximum group

velocity [17–19]. Therefore, after a finite evolution time, there is a maximum distance over which

correlations extend in the system (the correlation length, L), beyond which correlations decay

exponentially in distance. The information required to describe the state is largely contained in

the local reductions: the reduced states (density matrices) of all groups of neighbouring particles

contained within L. In 1D systems, such states can be described by a compact MPS [15, 20]

and, to identify and certify the total N-component MPS, the experimentalist need only perform

the measurements required to reconstruct the local reductions [16]. Each local reduction can be

determined by full QST, requiring measurements in at most 3L bases. Since the number of local

reductions increases only linearly in N, the total number of measurement bases scales efficiently

in this parameter. The local reduction estimates are passed to a classical algorithm which finds

an MPS estimate in a time polynomial in N [2, 7] (see Figure 1). We find that the total num-

ber of measurements required to obtain a desired fidelity for the state reconstruction also scales

efficiently in N (Methods).

Our strategy is not restricted to 1D systems nor to those with strictly finite range interactions. In

any of those cases, we benefit from the fact that MPS tomography and its natural generalisations

to higher spatial dimensions [2] make no prior assumptions about the form of the state in the

laboratory (e.g. that it is pure or well-described by a compact MPS), because the state estimate

can be certified: an efficient assumption-free lower bound on the fidelity with the laboratory state

ρlab is provided [2]. For example, the correlation length L need not be known a priori. If, after

measurements on k-sites, the certified minimum fidelity Fk
c between the MPS estimate |ψk

c〉 and

the state in the laboratory ρlab is deemed not high enough, then one can try again for larger k.

Generalisation of our method to higher spatial dimensions and to mixed-state estimates using

matrix product operators [6, 7] is possible, although no general certification method is currently

known for mixed states [29].

For finite range interactions, the correlation length L can increase at most linearly in time as

entanglement grows and spreads out in the system, demanding exponentially growing number of

measurements to estimate each local reduction [21, 22]. This puts practical limits on the evolution

time until which the system state can be efficiently characterised: once correlations have spread out

over the whole system the effort for MPS tomography becomes the same as full QST. MPS tomog-

raphy is able to verify evolution towards classically-intractable regimes: as the system evolves, the
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size of the local reductions required to obtain an accurate pure MPS description should continue

to increase (as seen in our data).

Our quantum simulator consists of a string of trapped 40Ca+ ions. In each ion j=1 . . .N, two

electronic states encode a spin-1/2 particle. Under the influence of laser-induced forces, the spin

interactions are well described by an ‘XY’ model in a dominant transverse field B, with Hamil-

tonian HXY=~
∑

i< j Ji j(σ
+
i σ
−
j+σ

−
i σ
+
j ) + ~B

∑

j σ
z
j. Here Ji j is an N × N spin-spin coupling matrix,

σ+i (σ−i ) is the spin raising (lowering) operator for spin i and σz
j is the Pauli Z matrix for spin j.

Interactions reduce approximately with a power-law Ji j ∝ 1/|i − j|α with distance |i − j|. Here

1.1<α<1.6, for which the predominant feature of spreading wave packets of correlations is never-

theless evident [23–25]. Applying MPS tomography to study complex out-of-equilibrium states,

generated by interactions that are not strictly finite-range, represents a most stringent test of its

scope of application.

The largest application of full QST was for a simple 8 qubit W-state, employing measurements

in 6561 different bases taken over ten hours [26]. We begin experiments with 8 spin (qubit) quench

dynamics, and accurately reconstruct complex 8-spin entangled states using measurements in 27

bases taken over ten minutes. We measure in sufficient bases to reconstruct all k-local reductions of

individual spins (k = 1), neighbouring spin pairs (k = 2) and spin triplets (k = 3), during simulator

evolution starting from the initial highly-excited Néel state |φ(0)〉 = |↑, ↓, ↑, ↓ ...〉 (Methods). The

local measurements directly reveal important properties: single-site ‘magnetisation’ shows how

spin excitations disperse and then partially refocus (Figure 2a); in the first few milliseconds, strong

entanglement develops in all neighbouring spin pairs and triplets, then later reducing, first in pairs

then in triplets, consistent with correlations spreading out over more spins in the system (Figure

2c–d).

Certified fidelity lower bounds Fk
c ≤ 〈ψk

c| ρlab |ψk
c〉 from MPS tomography during the 8-spin

quench are shown in Fig 3a. The results closely match an idealised model where MPS tomography

is applied to exact local reductions of the ideal time-evolved states |φ(t)〉 (Methods). Measurements

on k = 1 sites at t = 0 yield a certified MPS state reconstruction |ψ1
c〉, with F1

c = 0.98 ± 0.01 and

|〈ψ1
c |φ(0)〉|2 = 0.98, proving that the system is initially well described by a pure product Néel state.

As expected, the fidelity lower bounds based on single-site measurements rapidly degrade as the

simulator evolves, falling to 0 by t = 2 ms. Nevertheless, an accurate MPS (pure-state) description

is still achieved by measuring on larger (k = 2) and larger (k = 3) reduced sites. The model

fidelity bounds F3
c begin to drop after t = 2 ms, consistent with the time at which the information
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wavefronts are expected to reach next-nearest-neighbours (light-like cones, Figure 2a), allowing

for correlations beyond 3 sites to develop. Measurements on k = 3 sites reveal an MPS description

with more than 0.8 fidelity up to t = 3 ms, before the lower bound rapidly drops to 0 at 6 ms.

This is consistent with the model and the entanglement properties measured directly in the local

reductions (Figure 2b–c): At t = 3 ms, entanglement in spin triplets maximises before reducing

to almost zero at 6 ms, as correlations have then spread out to include more distant spins. Beyond

t = 3 ms it becomes increasingly difficult to uniquely distinguish (and certify) the global state

based on 3-site local reductions (although the estimate can still be a good description).

The data in Figure 3a clearly reveal the generation and spreading-out of entanglement during

simulator evolution, up to 3–4 ms, and are consistent with this behaviour continuing beyond this

time. To confirm this, it would be necessary to measure on increasingly large numbers of sites,

demanding measurements that grow exponentially in k. That the amount of entanglement in the

simulator is growing in time can be seen from the inset in figure 3a: the half-chain entropies of

the certified MPSs |ψ3
c〉 are seen to grow as expected for a sudden quench [27]. For all times at

which F3
c > 0 (except t = 0), the pure MPS-reconstructed states |ψ3

c〉 are non-separable across all

partitions.

Figure 3b–c compares spin-spin correlations (‘correlation matrices’) present in |ψ3
c〉 at t = 3 ms

(F3
c > 0.84± 0.05), with those obtained directly in the lab via additional measurements. The certi-

fied MPS captures the strong pairwise correlations in the simulator state and correctly predicts the

sign and spatial profile of correlations beyond next-nearest neighbour: that is, of state properties

beyond those measured to construct it (beyond k = 3).

Figure 4 presents results from a 14 spin quench: far beyond the practical limits of full QST. Full

QST on 14 spins would require measuring in more than 4 million bases. We reconstruct a certified

MPS estimate using only 27 local measurement bases. At t14 = 4 ms, strong entanglement, in

neighbouring pairs and triplets, has developed right across the system. Measurements on 3 sites,

at t14 yield an MPS estimate |ψ3
c〉 with a certified minimum fidelity of F3

c = 0.39 ± 0.08. Since Fk
c

are only lower bounds, it is natural to ask exactly what the state fidelity is. Using the estimated 14-

spin MPS state |ψ3
c〉 from MPS tomography, we perform Direct Fidelity Estimation (DFE) [4, 5]

with the experimentally generated state using an additional set of measurements, obtaining a result

of 0.74 ± 0.05 (Methods and FIG. S10).

Clearly MPS tomography provided an accurate estimate of the 14-spin simulator state, and

the fidelity lower bound of F3
c = 0.39 ± 0.08 is correct. However, the bound is conservative and
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even lies quite far from the one expected from an idealised system model (0.78). We find that the

certification process is compromised by errors in initial state preparation, introducing mixture at

the single spin level (Methods). The current increase in state initialisation error per-spin, as our

current simulator is scaled-up in size, limits the ability to accurately and efficiently characterise

its state. A new optical setup yielding improved single-qubit operations should allow for a small

constant error-per-spin beyond 20 spins.
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FIG. 1: Generation and efficient characterisation of locally-correlated quantum states. a. Quantum

spins fixed on a 1D lattice and initialised into some separable pure state. Finite-range spin-spin interactions

are then abruptly turned on. In the subsequent dynamics, quantum correlations spread out with a maximum

group velocity [17–19, 23, 28], producing light-like cones (grey arrows, only a few are shown) and a locally-

correlated entangled state. b. After the particular evolution time shown, quantum correlations have spread

to neighbouring spin triplets (not all shown). The established correlation length is L = 3. The total N-spin

state can be accurately described by a compact MPS, efficient in N. The correlation length increases at most

linearly in time. c. To obtain an accurate MPS estimate for the state in the laboratory, the experimentalist

need only perform sufficient measurements to reconstruct all N − L + 1 neighbouring spin triplet reduced

density matrices (local reductions). At any given evolution time, the experimental effort therefore increases

linearly in spin number N.
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FIG. 2: Local measurement results for an 8 spin system quench. a. Single spin magnetisation 〈σz
i (t)〉

during quench dynamics. Two (out of eight) example light-like cones are shown, exemplifying an estimate

for the maximum speed at which correlations spread. The interaction range α ≈ 1.6. Lefthand time axis

is renormalised by the average nearest-neighbour J couplings. See Methods and FIG. S4. b. Absolute

value of the density matrix (local reduction) of spins 3 & 4 at time t = 3 ms, reconstructed via full QST

and standard maximum likelihood estimation. The state is entangled, with a bipartite logarithmic negativity

of LN2 = 0.41 ± 0.01 and a fidelity with an ideal theoretical model of 0.99 ± 0.01. More properties of

the local reductions are presented in FIG. S8. c.-d. Entanglement in all neighbouring spin pairs (c.) and

spin triplets (d.) at three evolution times, as labelled: values calculated from experimentally-reconstructed

density matrices, e.g. panel b. (FIG. S6). Entanglement is characterised by bipartite logarithmic negativity

(LN2) for spin pairs and tripartite logarithmic negativity (LN3) for spin triplets (Methods). Error bars are 1

standard deviation derived from Montecarlo simulation of finite measurement number.
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FIG. 3: MPS tomography results for an 8 spin quench. a. Certified lower bounds Fk
c on the fidelity

between the 8 spin MPS estimate |ψk
c〉, reconstructed from measurements over k sites, and the quantum

simulator state ρlab, as a function of simulator evolution time. Shapes: data points with errors of 1 standard

deviation confidence (uncertainty due to finite measurement number). Dashed lines: model, MPS tomogra-

phy algorithms applied to exact knowledge of k-site local reductions derived from idealised simulator states

|φ(t)〉 (Methods). Differences between model and data are largely due to the finite number of measurements

used to estimate local reductions (FIG. S2). Insert: half-chain Von Neumann entropy of the pure global

state. Red triangles: from data (|ψ3
c〉). Black line: directly from ideal states (|φ(t)〉). b. Complete spin pair

correlation matrices showing 〈Z(t)iZ(t) j〉 − 〈Z(t)i〉〈Z(t) j〉 at t = 3ms, for spins i and j. The second term in

this correlation function removes pure state classical correlations such as those present in the initial state (at

t = 0 the matrices contain all zero entries to within error). Results directly measured on ρlab are compared

with those present in |ψ3
c〉 (see labels). c. Same as b. but for 〈Y(t)iY(t) j〉 − 〈Y(t)i〉〈Y(t) j〉. Correlation matri-

ces from an idealised model |φ(t)〉 are presented in FIG. S7(a). Note: X,Y and Z are the standard Pauli spin

operators.
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FIG. 4: MPS tomography results for a 14 spin quench. a.-b. Direct results from local measurements.

a. Single spin magnetisation 〈σz
i (t)〉 with two (out of 14) example approximate light-like cones (Methods,

FIG. S5). b. Entanglement in all neighbouring spin pairs (bipartite logarithmic negativity, top blue bars)

and spin triplets (tripartite logarithmic negativity, bottom black bars) at t14 = 4 ms (Methods). Values calcu-

lated from experimentally-reconstructed local density matrices. Errors are 1 standard deviation derived from

Montecarlo simulation of finite measurement number. c.-e. Comparison of two-spin correlation matrices di-

rectly measured in the laboratory and from the MPS estimate |ψ3
c〉 at t14, showing 〈A(t)iB(t) j〉−〈A(t)i〉〈B(t) j〉.

A, B as labelled. Not all correlations were measured in the lab (hatched squares). The 14-spin MPS estimate

|ψ3
c〉 at t14 is seen to capture many of the correlations between spins up to 4 sites apart (see FIG. S9 for ideal

model). The weak correlations over greater distances in the laboratory state develop effectively instantly in

quench dynamics, due to the long-range components of our interactions. The entanglement content and dis-

tribution in |ψ3
c〉 is consistent with the amount expected from an ideal model and the state has no separable

partitions. Note: X,Y and Z are the standard Pauli spin operators.
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I. METHODS

Trapped ion simulator and laser control. We refer to the ‘axial’ direction along the ion string

principle axis as z and the two ‘radial’ directions, orthogonal to the string principle axis, as the x

and y axes. The frequencies of the centre of mass vibrational modes are: ωz = 2π × 0.214 MHz,

ωy = 2π × 2.69 MHz, ωx = 2π × 2.71 MHz. Two electronic Zeeman states |S 1/2,m = +1/2〉 and

|D5/2,m′ = +5/2〉 in each trapped 40Ca+ ion encode the |↓〉 and |↑〉 states of a spin-1/2 particle,

respectively, and are coupled by an electric quadrupole transition at 729 nm. The quantum states

are coherently manipulated using a Ti:Sa CW laser with a linewidth of about 1 Hz. Two laser

beam paths are employed. First, a global beam illuminates the ion string approximately equally

(intensity difference between outermost and middle ion ∼ 15%), from a direction perpendicular

to the ion string z axis and at an angle approximately half way between x and y. Consider the

standard Pauli spin operators σx, σy and σz. The global beam is used (i) to implement standard

frequency-resolved sideband cooling and optical pumping on the quadrupole transition, (ii) to

perform σx and σy rotations simultaneously on all spins and (iii) to realise the spin-spin interaction

Hamiltonian (see later). Second, a single-ion-focused beam comes in parallel to the global beam

but from the opposite direction. The direction of this beam can be switched to have its focus

pointing at different ions within 12 µs, using an acousto-optic deflector. The single-ion-focused

beam is frequency-detuned by about 80 MHz from the spin transition and thereby performs an

AC-Stark rotation (σz) on the ion in focus. The combination of the global resonant and the

focused detuned beam enables arbitrary single-spin rotations [30].

Simulator initialisation. Each experimental sequence begins with Doppler cooling (∼ 3 ms) and

optical pumping (∼ 500 µs) to initialize all N ions in the string into the |↓〉 state. Next, all 2N radial

motional modes, transverse to the string, are cooled to the ground state via ∼10 frequency-resolved

sideband cooling pulses (10 ms in total), followed by a second frequency-resolved optical pump-

ing step of ∼ 500 µs. From this pure electronic and motional quantum state |↓〉⊗N
= |↓, ↓, ↓ ...〉, the

Néel state |↑, ↓, ↑ ...〉 is created by flipping every second spin to the |↑〉 state. This is done using

a composite pulse sequence that is robust to inhomogeneities in the laser-ion coupling strength

across the string (e.g. due to weak gaussian intensity profiles). See Supp. Mat. Sec. I.B. for details.

Implementing and modelling spin-spin interactions. Spin-spin interactions, parametrised
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by Ji j, are realised via the global laser beam when containing three frequencies (a trichromatic

beam), two of which off-resonantly drive all 2N radial vibrational modes of the string and are

symmetrically detuned by ±∆ from the spin flip transition. The magnitude of the detuning |∆| is

larger than the highest radial COM mode ωx by 2π · 79 kHz (8 spins) or 2π · 76 kHz (14 spins).

The third frequency is 1 MHz detuned from the spin flip transition and compensates for AC Stark

shifts (shifts in the transition frequencies of spins across the string). When uncompensated, these

AC Stark shifts are inhomogeneous across the string and arise from the Gaussian intensity profile

of the global beam coupling to far off-resonant dipole transitions. Finally, an additional overall

detuning δ of all three frequencies by B = 2π · 3 kHz (8 spins) or B = 2π · 5 kHz (14 spins)

generates an effective transverse field (quantified by B in HXY).

The model spin-spin coupling matrix Ji j is calculated from the aforementioned ion string vibra-

tional mode frequencies, laser detunings, ionic mass and laser-ion coupling strength (see supple-

mentary material of [23]). Maximum values are Ji j = 2π · 25 Hz (8 spins) and Ji j = 2π · 15 Hz (14

spins). For more details on the experimental implementation of the spin-spin interaction Hamilto-

nian see [23, 24].

The full Hamiltonian is given by HIsing = ~
∑

i< j Ji jσ
x
iσ

x
j + ~

∑N
i=1(B + Bi)σ

z
i . That is, an Ising-

type model with an overall transverse field B, set experimentally by the detuning δ. H includes

small spin-dependent perturbations Bi (at the few Hz level), resulting from e.g. electric quadrupole

shifts which vary along the string and magnetic field curvature across the string (in addition to our

standard constant 4 Gauss field). In the limit B ≫ |Ji j|, which holds in all our experiments, the

HIsing is equivalent to an XY model in a transverse field (HXY), as given in the main text.

The ideal time-evolved states can easily be calculated by brute force matrix exponentiation

for 8 spins, e.g. |φ(t)〉 = exp(−iHIsingt/~) |φ(0)〉. For 14 spins we use two different methods.

First, as a diagnostic tool to model the k-spin local reductions in the laboratory, we employ the

more time-efficient Krylov subspace projection methods (Arnoldi and Lanczos processes) which,

in the case of sparse Hamiltonians, give a substantial speed up and well controlled error bounds

[31]. Second, to calculate the full N-spin time evolved ideal states, and compare them with the

MPS estimates, we use the library function scipy.sparse.linalg.expm_multiply [32]. Both

methods produce equivalent states at the time scales considered in our experiments.

Regarding the model Hamiltonian HXY , all spins down |↓z〉⊗N is the ground state, spins pointing

up |↑z〉 are quasiparticle excitations which disperse and scatter in the system [24]. The Néel state

is chosen for the initial state as it is highly excited (N/2 excitations) and leads to the emergence of
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locally-correlated entangled states involving all N particles. Furthermore, the subsequent quench

dynamics evolves in a subspace whose size, contrary to those of low-excitation subspaces (the

subject of our previous work [23]), grows exponentially with N.

Measurements. After preparing the initial simulator state, spin interactions are abruptly turned

on (a quench) and then off after any desired evolution time t, freezing the generated state and

allowing for spin measurement. At the end of every such experimental run, the state of each spin

is determined individually via the standard electron shelving technique: laser light at 397 nm (and

866 nm, repumping) is sent to the ion string for several milliseconds, coupling to the strong dipole

S 1/2 → P1/2 transition. 397 nm light is scattered if the electron is in the |↓〉 state and detected

using a single-ion resolving CCD camera. Such a measurement setting corresponds to measuring

each spin in the Z-basis, that is, projecting each spin into either of the two eigenstates of the Pauli

σz operator. Through repeated preparation and measurement, the probabilities for single-spin

outcomes, or multi-spin outcomes (correlations between spin outcomes), can be estimated. We

can measure any individual spin in any single-spin basis by first implementing laser-driven spin

rotations that map the eigenstates of the desired single-spin-operators onto the eigenstates of the

Pauli σz operator, then carrying out electron shelving as before. In this way we could e.g. measure

the first spin in the Z basis, the second in X, the third in Y, etc.

MPS tomography requires the estimation of the local reduced density matrices of all blocks of

k neighbouring spins. For a 1D chain of N spins, there are N − k + 1 such blocks. We estimate

each neighbouring k-spin block by measuring in 3k bases, corresponding to all combinations of

projecting each spin into the eigenstates of the three Pauli operators. Each of the 3k settings has

2k distinguishable outcomes, which in total adds to 3k × 2k = 6k outcome probabilities. This set

of 6k local outcome probabilities is sufficient to estimate the local k-spin reduced density matrix.

Rather than measuring the N − k + 1 blocks separately, we implement a straightforward scheme

to measure them at the same time, requiring a total of 3k measurements bases for the entire string

(see Supplementary Material Sec. III). We carry out each of the 3k measurement settings 1000

times. The measurement outcomes are then (i) passed to the MPS tomography algorithm which

finds an N-spin state estimate and certificate (see later) (ii) used directly to obtain local k-spin

reduced density matrices ρ(k) (e.g. Figure 2b) via standard maximum likelihood estimation [33].

Bipartite and tripartite negativity. The entanglement values in local reductions presented in

14



Figures 2c–d and 4b are derived from the experimental reconstructed local states ρ(k) (maximum

likelihood reconstructions), with error bars obtained via standard Monte-Carlo simulations

of quantum projection noise. Two ways to represent entanglement are chosen: Logarithmic

negativity is an entanglement measure that can be computed for a generic bipartite mixed state ρ,

from the trace norm of its partial transpose ρTA [34] LN(ρ) = log2 ‖ρTA‖1. This expression vanishes

for unentangled states and we use it to quantify the degree of entanglement in the reduced 2-qubit

density matrices ρ(2) of neighbouring spin pairs: LN2(ρ(2)) = log2 ‖ρTA‖1 = log2 (2 · |
∑

n µn| + 1) ,

where µn are the negative eigenvalues of ρTA . For a qualitative discussion of entanglement

evolution in neighbouring spin triplets ρ(3) we define tripartite logarithmic negativity LN3 as

the geometric mean of the three bipartite logarithmic negativities (similar to the definition

of tripartite negativity in [35]): LN3(ρ(3)) = 3
√

LN2(ρI−JK) · LN2(ρJ−IK) · LN2(ρK−IJ) , where

LN2(ρI−JK) = log2 (2 · |
∑

i µ̃i| + 1), with µ̃i as negative eigenvalues of ρTI , the partial transpose of

ρ(3) with respect to subsystem I.

Light-like cones and interaction ranges. Figures 2a and 4a show light-like cones representing

the maximum speed at which most of the quantum information and correlations spread in our

system [23]. Since we do not have finite-range interactions, these are not strict maximum speeds,

however they still provide a practically useful description of the spreading of correlations and

information in our system [23]. The black lines t = d/v in Figures 2a and 4a delineate the

light-like cones for a version of our system with effective nearest-neighbour interactions only

(d = |i − ic| denotes the distance from the centre ion ic in terms of the ion sites i = 1...N). The

spread velocity v is estimated as follows. We consider a nearest-neighbour only model of our

system with homogenous coupling strength set to the average nearest-neighbour coupling of

the original (full) coupling matrix Ji j. We calculate the eigenmode spectrum and determine the

gradient between every pair of consecutive eigenvalues. The largest of these gradients corresponds

to the maximum velocity vmax at which energy and correlations disperse in the truncated system.

Finally we renormalise vmax by the algebraic tail of the original coupling matrix. Specifically, we

choose the central ion ic = 5 (7) respectively for 8 (14) ions and average between the left and right

algebraic tail, resulting in the normalisation factor G = 1
2J

∑

i, j

(

J j,ic + Jic, j

)

such that v = vmax

G
with

averaged nearest-neighbour interaction J (next section). To quantify the approximate interaction

range in our system we find a best fit between the eigenmode spectrum of our full Ji j system

model with the eigenmode spectrum of an interaction that reduces with a power-law Ji j ∝ |i − j|−α
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[23]. The decay parameter α yielding the best fit gives an effective interaction range of α = 1.58

(8 spins) and α = 1.27 (14 spins).

Normalised time units (1/J). Time axes in our plots are labeled in two ways: one way in-

dicates the real laboratory time (in ms) passed during the evolution (e.g. Figure 2a right y-axis),

while the other way shows the time normalised by the averaged nearest-neighbour interaction

strength of the original coupling matrix Ji j (e.g. Figure 2a left y-axis): J = 1
N−1

∑N−1
i=1 Ji,i+1 .

Certified MPS tomography. Here we give an overview of how we identify an MPS esti-

mate of the unknown state in the laboratory and determine a fidelity certificate with a statistical

uncertainty. In the Supplementary Material Sec. IV A a more detailed description can be found

and FIG. S1 shows a schematic overview. The experimental data comprises the outcomes of 1000

repetitions of the 3k different measurement settings (each setting consists of a measurement basis

for all N spins with distinguishable 2N outcomes). These samples are split into two parts of 500

samples each. The first part is used to obtain an MPS estimate |ψk
c〉 of the unknown state ρlab in

the laboratory. The second part is used to obtain a certificate, i.e., a lower bound on the fidelity

between the unknown state ρlab and our MPS estimation |ψk
c〉 of this state. We split the data in

order to ensure statistical independence of the process of obtaining the MPS estimate |ψk
c〉 and the

process of obtaining the value of the fidelity lower bound.

The first part of the experimental data is used to estimate the 6k local outcome probabilities on

each of the N − k + 1 blocks of k neighbouring spins (see Measurements above). Linear inversion

is used to obtain estimates of the local k-spin reduced density matrices. These reduced density

matrices are input into the modified SVT algorithm from Ref. [2] to obtain a pure MPS estimate.

This pure state is used as the start vector for the iterative likelihood maximization algorithm over

pure states from Ref. [7]. Likelihood maximization uses the local outcome probabilities as input

and returns an initial MPS estimate |ψest〉 of the unknown lab state. Both algorithms search for

an MPS with a small bond dimension which is compatible with the local outcome probabilities.

Usually, the initial estimate |ψest〉 reproduces the local outcome probabilities well but it may or

may not be close to the unknown state ρlab in the laboratory.

We certify the initial estimate |ψest〉 using a so-called parent Hamiltonian obtained from a set

of candidate Hamiltonians (which may not correspond to any physical energy in the system). We

compute the local reduced density matrices ρs of |ψest〉 on spins s, s + 1, . . . , s + k − 1. Candi-

16



date Hamiltonians are given by Hτ =
∑N−k+1

s=1 11,...,s−1 ⊗ hs ⊗ 1s+k,...,N where hs = Pker(Tτ(ρs)) is the

orthogonal projection onto the kernel of the linear operator Tτ(ρs) and Tτ replaces eigenvalues of

ρs smaller than or equal to τ by zero. (If |ψest〉 is a so-called injective MPS [36] then it is the

non-degenerate ground state of Hτ=0 [36, 37]. This is generally not the case for our choice of k.)

For all Hamiltonians Hτ we compute a ground state |ψGS〉 and the smallest and second smallest

eigenvalues E0 and E1. The typical range of E1 is the interval [0, 1] (without units because Hτ

is a sum of unit-less orthogonal projections). For 14 spins, we use an MPS-based ground state

search [12]. Among all Hamiltonians Hτ with non-degenerate ground state and E1 − E0 > 10−6,

we choose the Hamiltonian H which minimizes

cD(|ψest〉 , |ψGS〉) − (E1 − E0). (1)

c = 5 is a constant and D(|ψ〉 , |ψ̃〉) = ‖ |ψ〉〈ψ| − |ψ̃〉〈ψ̃| ‖1/2 =
√

1 − | 〈ψ|ψ̃〉 |2 is the trace dis-

tance [38]. We denote by H the Hamiltonian that we have chosen and by |ψk
c〉 the non-degenerate

ground state of H; |ψk
c〉 is the final estimate of the unknown state in the laboratory ρlab. (If all Hτ

have degenerate ground states, we do not obtain a final estimate |ψk
c〉 or a fidelity lower bound.)

Because |ψk
c〉 is a ground state of H, H is called a parent Hamiltonian of |ψk

c〉. As the ground state

|ψk
c〉 is non-degenerate, a lower bound to the fidelity between |ψk

c〉 and ρlab is given by [2]

〈ψk
c|ρlab|ψk

c〉 ≥ 1 − E − E0

E1 − E0

= Fk
c (2)

where E = tr(Hρlab) is the energy of the unknown lab state in terms of H. Knowledge of local

k-spin reduced density matrices enables us to determine E because H consists of terms hs which

act only on k neighbouring spins.

We use the second part of the experimental data to determine estimates of the fidelity lower

bound Fk
c and its statistical uncertainty caused by a finite number of measurements. In order to

estimate the statistical uncertainty, we express the energy E as weighted sum of local outcome

probabilities, E =
∑N−k+1

s=1

∑6k

i=1 csi psi. The coefficients csi are derived from the Moore–Penrose

pseudoinverse of the linear map which takes a local reduced density matrix to local outcome

probabilities. E is estimated using estimates of the local outcome probabilities psi. We estimate

the variance of our estimate of E by estimating the covariances between each pair of local

outcome probabilities. If two local outcome probabilities have been estimated from measurements

in the same basis, their covariance is estimated from the measurement outcomes with a simple

outcome counting scheme; otherwise, their covariance is equal to zero. Supplementary Material
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Sec. IV.A.4 provides full details and also considers estimating one outcome probability from

more than one measurement basis is also considered.

Ideal model of MPS tomography. Main text Figure 3a shows fidelity lower bounds Fk
c based

on an ideal model of the tomographic process (Dashed lines). The ideal model takes the ideal

time-evolved states |φ(t)〉 = exp(−iHIsingt/~) |φ(0)〉. From these states, the exact values of the 6k

probabilities describing the measurement outcomes of the 3k k-fold tensor products of the Pauli

X, Y and Z matrices for each of the N − k + 1 local blocks are calculated. These probabilities are

used to seed the MPS tomography algorithms. Computing the energy E = tr(Hρlab) of the (now

known) ideal lab state |φ(t)〉 in terms of the parent Hamiltonian H is simplified considerably as

we can compute the exact local reductions of ρlab. As a consequence, the resulting fidelity lower

bounds (plotted in Figure 3a as dashed lines) are known without uncertainty. The same model is

used to obtain the idealised fidelity lower bound for the 14 spin state after 4 ms of evolution (see

below). Such a numerical simulation represents a highly idealised experiment, requiring perfect

initial state preparation, simulator evolution, and an infinite number of perfect measurements that

would be required to obtain exact knowledge of local reductions.

In experiments, 1000 measurements per setting were performed, leading to imperfect

knowledge of local reductions. The outcome of a numerical simulation of this finite number

of measurements (on ideal states) is described in the Supplementary Material Sec. IV.B and

presented in FIG. S2. The results show that most of the differences between data and idealised

model in Figure 3a are due to finite measurement number effects.

Errors in the initial simulator state. In the main text, we state that the differences between the

experimentally-obtained and ideal-simulator model fidelity bounds F3
c at t14 = 4 ms are largely

explained by errors in the initial Néel state preparation for 14 spins. The initial 14-spin Néel state

was prepared with a (directly-measured) fidelity of 0.89 ± 0.01, compared to 0.967 ± 0.006 for

the 8-spin case. This corresponds to a significantly larger error-per-particle for the 14-spin case

(e.g. error per particle can be quantified by log (F)/N, where F is the state fidelity). In order

to determine the effect of an error in the initial state on the MPS reconstruction, we repeat the

numerical simulation of the ideal-simulator model with a noisy model initial state. Out of 1000

times that we prepared and measured the initial 14-spin Néel state in the Z-basis, 893 times we

observed the Néel state, 93 times we observed a state with one spin flip error and 12 times we
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observed two spin flip errors. The noisy model initial state is built as an appropriately weighted

mixture of the ideal Néel state and single spin flip errors. At t14 = 4 ms, the fidelity lower bounds

from the ideal model, the noisy model with 1000 simulated measurements and the experiment are

F3
c = 0.78, 0.49 ± 0.07 and 0.39 ± 0.08. Of course, the described errors in the initial state are

not the only errors in the experiment, however, we conclude that they are largely responsible for

the difference between the fidelity lower bounds obtained from experimental data and from an

idealised model of a perfect simulator.

MPS tomography is efficient for the dynamics of 1D local systems. Certified MPS to-

mography can fail because no parent Hamiltonian with non-degenerate ground state can be found.

For a product state |ψ(0)〉 which evolves into |ψ(t)〉 = exp(−iHt) |ψ(0)〉 under a Hamiltonian

H with one-dimensional strictly finite-range interactions, we prove the following result in the

Supplementary Material (Sec. VII): The state |ψ(t)〉 can be certified with measurement and

post-processing resources which scale, at any fixed evolution time t, polynomially in N and

inverse-polynomially in 1 − FLB. N is the number of spins and FLB is the minimal permissible

value of the fidelity lower bound. This means that there is a state |ψ′〉 such that the fidelity

between |ψ(t)〉 and |ψ′〉 can be lower bounded by (at least) FLB using only local measurements on

|ψ(t)〉. In addition, the resources required to construct |ψ′〉 obey the same polynomial scaling as

it is obtained from the ǫ-QCA decomposition shown in FIG. S11 [39]. Determining whether the

certificate proof can be generalised to higher spatial dimensions will be the subject of future work.

Direct Fidelity Estimation. The fidelity lower bounds returned by the MPS certification

procedure are lower bounds. That is, the actual overlap (fidelity) between the lab state ρlab

(generally mixed) and the output MPS |ψ3
c〉 could take any value between the certificate and

unity. We implement the method of direct fidelity estimation (DFE) [4, 5] in a 14 spin system, to

estimate how big the overlap between the two states actually is.

The fidelity can be expressed as F
(

|ψ3
c〉 , ρlab

)

= 〈ψ3
c | ρlab |ψ3

c〉 =
∑4N

k=1 ρ
k
lab
σk where

ρk
lab
= tr(Pkρlab) is the lab state’s expectation value and σk = 〈ψ3

c | Pk |ψ3
c〉 the expectation

value of the MPS |ψ3
c〉, with the normalised Pauli string operators Pk. The brute force approach

of measuring all 4N observables is impractical for systems composed of more than a few qubits

as the number of observables to be measured increases with N. The DFE method leverages the

knowledge of the MPS estimate to overcome this infeasibility: the expression above is replaced
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by a preferential summation over those values of k for which MPS-estimate components σk

are likely to be large. In other words, more measurements are made in those Pauli operators

Pk for which |ψ3
c〉 has a large expectation value. Therefore, we first rewrite the fidelity as

the expectation value of the variable ρk
lab
/σk over the probability distribution qk def

= (σk)2:

F =
∑4N

k=1 qk ρ
k
lab

σk . Next, we evaluate this using a Monte Carlo approach: We draw M random

indices (k1, k2, ...kM) with ki ∈ {1, 2, ..., 4N} according to the distribution qk and approximate the

fidelity with F ≈ F = 1
M

∑M
i=1

ρ
ki
lab

σki
. In the experiment we set M = 250 and repeat the measurements

many times. Specifically, the number of copies Nk spent to measure a particular Pauli operator Pk

is proportional to the inverse square of its calculated expectation value σki . This way we prevent

the error in F to be dominated by those terms for which σki is small. This sums to a total of 5×105

copies of the state. FIG. S10(a) shows the experimentally measured ρ
ki

lab
and the corresponding

calculated expectation values σki for the M = 250 different observables. FIG. S10(b) depicts

the distribution of ρ
ki

lab
/σki for different i, from which we infer the fidelity estimate and its error:

0.74 ± 0.05. For a more detailed discussion, in particular error analysis, see Supp. Mat. Sec. VI.

Resource cost for a constant estimation error in MPS tomography. If a quantum state of N

spins in a linear chain is the only state compatible with its local reductions on k neighbouring

spins, MPS tomography aims to reconstruct that state from precisely those local reductions. Re-

construction of a reduced density matrix on k spins can be achieved by measuring in the 3k bases

described above. If we measure each basis on each of the N − k + 1 local blocks M times, the total

number of measurements is MT = M(N − k + 1)3k. MPS tomography is efficient if it achieves a

constant estimation error with a total number of measurements which scales polynomially with N.

The estimation fidelity is given by F = |〈ψideal|ψest〉|2 where |ψideal〉 is the state we want to estimate

and |ψest〉 is the estimate provided by MPS tomography. We quantify the estimation error with the

trace distance D =
√

1 − F between the density matrices of the two pure states.

In order to determine whether MPS tomography is efficient, we carried out numerical

simulations on a classical computer. Specifically, we take an N-spin state |ψideal〉 that would be

generated by a 3 ms quench of a nearest-neighbour model of our system with couplings and

fields set to the average values of the 8-spin model. The half-chain von Neumann entropies of

these states are around 0.58 (base-2 logarithm), i.e., the states contain significant amounts of

entanglement. On these states, we simulate M measurements in each k-spin basis as described

in the last paragraph. Tomography was repeated ten times to account for fluctuations in the
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reconstruction error due to the finite number of measurements. Results of this simulation are

shown in FIG. S3 for N ∈ {8, 20, 32, 48, 64} spins. The left part of the figure shows that the

estimation error decreases slightly with N if the ratio c = M/N2 is held constant. This means

that an (at most) constant estimation error can be achieved with a total number of measurements

given by MT = cN2(N − k + 1)3k which is only cubic in N. In principle, post-processing time

must also increase at least with N3 as this is how the size of the input data grows. However, with

our implementation it takes only a short time to convert the input data into linearly many local

expectation values. As a consequence, we observe that the time required by MPS tomography

increases roughly with ≈ N1.2; in any case, post-processing time increases at most cubically with

N. Hence, MPS tomography is efficient. Standard tomography is not efficient because the number

of observables which have to be measured scales exponentially with N. Moreover, FIG. S3 right

shows that the reconstruction error of MPS tomography scales roughly linearly with 1/
√

M where

M is the number of measurements per basis.

The data that support the plots within this paper and other findings of this study are available from

the corresponding author upon reasonable request.
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