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 Two-degree-of-freedom VIV of circular cylinder with variable natural frequency ratio is 

experimentally investigated 
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Abstract 

Slender offshore structures possess multiple natural frequencies in different directions which can 

lead to different resonance conditions when undergoing vortex-induced vibration (VIV). This 

paper presents an experimental and numerical investigation of a two-degree-of-freedom VIV of a 

flexibly mounted circular cylinder with variable in-line-to-cross-flow natural frequency ratio. A 

mechanical spring-cylinder system, achieving a low equivalent mass ratio in both in-line and 

cross-flow directions, is tested in a water towing tank and subject to a uniform steady flow in a 

sub-critical Reynolds number range of about 2x10
3
-5x10

4
. A generalized numerical prediction 

model is based on the calibrated Duffing-van der Pol (structure-wake) oscillators which can 

capture the structural geometrical coupling and fluid-structure interaction effects through system 

cubic and quadratic nonlinearities. Experimental results for six measurement datasets are 

compared with numerical results in terms of response amplitudes, lock-in ranges, oscillation 

frequencies, time-varying trajectories and phase differences of cross-flow/in-line motions. Some 

good qualitative agreements are found which encourage the use of the implemented numerical 

model subject to calibration and the sensitivity analysis of empirical coefficients. Moreover, 

comparisons of the newly-obtained and published experimental results are carried out and 

discussed, highlighting a good correspondence in both amplitude and frequency responses. 

Various patterns of figure-of-eight orbital motions associated with dual two-to-one resonances 

are observed experimentally as well as numerically: the forms of trajectories are noticed to 

depend on the system mass ratio, damping ratio, reduced velocity parameter and natural 

frequency ratio of the two-dimensional oscillating cylinder.   

 

Keywords: Vortex-induced vibration, Cross-flow/in-line motion, Circular cylinder, Experimental 

investigation, Numerical prediction 
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Nomenclature 

 

Ax/D, Ay/D Dimensionless in-line and cross-flow amplitudes 

Axm/D, Aym/D Dimensionless maximum attainable amplitudes 

CD, CL  Fluctuating drag and lift coefficients of an oscillating cylinder 

CD0, CL0   Fluctuating drag and lift coefficients of a stationary cylinder 

CM   Potential added mass coefficient 

D  Cylinder diameter  

f*   Cylinder in-line to cross-flow natural frequency ratio 

FD, FL  Fluctuating drag and lift forces 

Fx, Fy  Hydrodynamic forces in streamwise and transverse directions 

fnx, fny Natural frequency in still water of cylinder 

fox, foy Dominant frequency of the oscillating cylinder 

Lc (Lp) Cylinder submerged (pendulum) length 

Lc/D Aspect ratio 

MD, ML  System mass parameters 

mf Fluid added mass 

ms  Cylinder mass  

p, q  Reduced vortex drag and lift variables 

Re Reynolds number 

St   Strouhal number 

SGX, SGY Skop-Griffin mass-damping parameter 

t Dimensionless time 

T  Dimensional time 

V  Uniform flow velocity 

Vr Reduced velocity parameter 

Y  Dimensional transverse displacement 

X, Y Streamwise and transverse coordinates 

x, y   Dimensionless in-line and cross-flow displacements  

Įx, Įy, ȕx, ȕy  Dimensionless geometrically-nonlinear coefficients 

Ȗ  Stall parameter 

İx, İy  Wake oscillator coefficients 

ș  Direction of effective lift (drag) force measured from Y (X) axis 

șx, șy  Phase angles 

Ȝx, Ȝy  Combined fluid-structural damping terms  

ȁx, ȁy  Wake-cylinder coupling coefficients 

ȝ, m* Mass ratios 

ȟx, ȟy, ȟ Structural reduced damping or damping ratios 

ȡ  Fluid density 

ȍ    Ratio of vortex-shedding to cylinder cross-flow natural frequencies 
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1. Introduction 

Vortex-induced vibration (VIV) has received a considerable amount of interest over the years due 

to the variety of nonlinear phenomena governed by the fluid mechanics, structural dynamics and 

fluid-structure interactions. In many ocean and offshore engineering applications, VIV continues 

to be of great concern in the context of fatigue analysis, design and operation of deep water 

structures exposed to ocean currents. From a theoretical and practical viewpoint, both 

experimental tests and numerical prediction models – capable of capturing VIV occurrences and 

behaviors in a wide range of both the hydrodynamics and the structural parameters – are 

important. However, in spite of many published studies, the vast majority of the research 

literature has focused on one-dimensional cross-flow VIV of a circular cylinder for which the 

transverse response is typically observed to be the largest  ADDIN EN.CITE (, and on the related 

semi-empirical modelling of a 1-degree-of-freedom (DOF) cross-flow-only VIV (Gabbai and 

Benaroya, 2005). While there are some recent computational fluid dynamics and flow 

visualization studies to advance the comprehension of VIV phenomena (Bao et al., 2012; Jauvtis 

and Williamson, 2003; Jeon and Gharib, 2001; Williamson and Jauvtis, 2004), experimental 

investigations and comparisons with numerical prediction results for two-dimensional in-line (X) 

and cross-flow (Y) or 2-DOF VIV are still rather limited (Hansen et al., 2002; Pesce and Fujarra, 

2005; Stappenbelt and O'Neill, 2007) and therefore needed to be further addressed 

comprehensively.  

 In this study, new experimental VIV results of a 2-DOF circular cylinder with equivalent mass 

ratio in both X-Y directions ( * *
x ym m= ) and variable in-line-to-cross-flow natural frequency ratio 

(f*= fnx/fny) are presented and compared with the associated numerical outcomes predicted by new 

nonlinear structure-wake oscillators (Srinil and Zanganeh, 2012). Some insightful VIV aspects 

are also discussed in the light of other published experimental results with variable f* but * *
x ym m

 

(Dahl et al., 2006). Note that the condition of * *
x ym m=  is more relevant in practice than that of

* *
x ym m  to real cylindrical offshore structures including risers, mooring cables and pipelines. The 

f* variation is also of practical relevance because such a distributed-parameter system contains an 

infinite number of natural frequencies in different directions entailing various f* (Srinil and Rega, 

2007; Srinil et al., 2007). These can result in different lock-in or resonant conditions with the 

vortex shedding frequencies of the fluctuating lift and drag forces. As the drag oscillation has 

double the frequency of the lift oscillation, a perfect two-dimensional resonance case might occur 
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when f*=2. This circumstance could lead to a large-amplitude response for a system with low 

mass and damping. 

 Recent experimental studies have highlighted some interesting features of 2-DOF VIV of 

circular cylinders and meaningful contributions from the in-line VIV to the overall dynamics, 

depending on several control parameters. In general, the freedom of the system to oscillate in the 

in-line direction can cause an increase of the cross-flow response amplitude and widen the lock-

in range (Moe and Wu, 1990; Sarpkaya, 1995); it has been suggested that these effects may result 

from an enhanced correlation of the transverse force along the cylinder span (Moe and Wu, 

1990). With respect to the flow field visualization, a new 2T (two of vortex triplets) wake mode 

has been observed for the cylinder with significant combined X-Y motion (Williamson and 

Jauvtis, 2004) in addition to the typical 2S (two single vortices) and 2P (two vortex pairs) modes 

defined in the Y-only cylinder motion case (Khalak and Williamson, 1999). In the framework of 

2-DOF forced vibration where the amplitudes and oscillation frequencies (fox and foy) of the 

cylinder are specified a priori, Jeon and Gharib (2001) found that, in the case of fox/foy = 2, a 

small amount of in-line motion can inhibit the vortex formation of the 2P mode. They also 

suggested a possible change in the relative phases between the lift and drag forces: this implies 

the possible energy transfer between the oscillating body and the wake forces in the free vibration 

case. Recently, Laneville (2006) proposed that the level of X-Y motion depends on a ratio of the 

time derivatives between in-line and cross-flow responses. 

 With * *
x ym m=  and f*=1, Jauvtis and Williamson (2004) showed that there is a slight influence 

on the cross-flow response of the cylinder with m* > 6 when comparing the results obtained 

between 1- and 2-DOF models. When m* < 6, there is a super-upper branch in the cross-flow 

response with the peak amplitude Ay/D ≈ 1.5 coexisting with the in-line response with the peak 

amplitude Ax/D ≈ 0.3, along with response jump and hysteresis phenomena. Similar nonlinear 

responses and ranges of maximum Ax/D and Ay/D have been experimentally reported by 

Stappenbel et al. (2007) and Belvins and Coughran (2009), and numerically captured by Zhao et 

al. (2011). A two-dimensional lock-in range is found to be mainly influenced by the variation of 

the mass ratio (Stappenbelt et al., 2007). However, both mass (Stappenbelt et al., 2007) and 

damping (Blevins and Coughran, 2009) parameters can influence on 2-DOF peak amplitudes as 

in the 1-DOF cases (Khalak and Williamson, 1999). 

 With * *
x ym m  and f*1, different qualitative and quantitative features of 2-DOF VIV responses 

appear. In particular, a two-peak cross-flow response has been noticed by Sarpkaya (1995) and 
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Dahl et al. (2006) with f*=2 and 1.9, respectively. Dahl et al. (2010) further highlighted various 

figure-of-eight patterns in different subcritical and supercritical Reynolds number (Re) ranges 

(1.5x10
4 

< Re < 6x10
4
 and 3.2x10

5 
< Re < 7.1x10

5
) and described a figure-eight occurrence as a 

representation of “dual resonance”. Under this dual resonance, the frequencies of the unsteady 

drag and lift forces are resonantly tuned with fox and foy, respectively, such that fox/foy ≈ 2. In 

addition, a large third harmonic component of the lift force was observed although the main 

cross-flow response was primarily associated with the first-harmonic lift force. This is in 

agreement with a direct numerical simulation work by Lucor and Triantafyllou (2008) and a lab 

experiment of a flexible cylinder by Trim et al. (2005). 

 In spite of the above-mentioned studies, the most practical case of * *
x ym m=  and variable f * has 

not been thoroughly investigated. For a particular flow with very low Re = 150 and zero 

structural damping, Bao et al. (2012) recently have performed direct numerical simulations of a 

circular cylinder with f* = 1, 1.25, 1.5, 1.75 and 2. They showed dual resonances in all f* cases 

and illustrated how the oscillating drag component is maximized when f* = 2 with the appearance 

of the P+S vortex wake mode associated with the maximum in-line response. Nevertheless, more 

experimental and numerical investigations in a higher Re range are still needed along with the 

improvement of relevant prediction models. 

 The main objectives of the present study are to (i) experimentally investigate 2-DOF VIV of a 

flexibly mounted circular cylinder with * *
x ym m=  and variable f*; (ii) compare the obtained 

experimental results with numerical prediction outcomes in order to improve the newly-proposed 

coupled oscillators (Srinil and Zanganeh, 2012) with a proper choice of system coefficients; and 

(iii) compare various observations from the present experimental campaign with other studies. To 

calibrate model empirical coefficients, particular attention is placed on the determination of 

cylinder maximum attainable amplitudes, associated lock-in ranges (both the onset and the end of 

synchronization), two-dimensional orbital X-Y motions and oscillation frequencies, by comparing 

various cases of f*1 and f*=1. These analysis outcomes based on a 2-DOF rigid cylinder could 

be practically useful in the improvement of VIV prediction tools and design guidelines for cross-

flow/in-line VIV of flexible cylinders with multi DOF and various f*, as conducted, for instance, 

by Srinil (2010, 2011) for cross-flow-only VIV cases. 

 This paper is structured as follows. In Section 2, details of the new experimental arrangement 

used for the 2-DOF VIV study of a flexibly mounted circular cylinder are presented along with 

the test matrix. The associated numerical prediction model and governing equations are explained 
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in Section 3. Depending on system parameters, comparisons of experimental and numerical 

prediction results of six measurement datasets are made in Section 4 which also demonstrates the 

sensitivity analysis and the influence of key geometrical parameters on VIV predictions. In 

Section 5, various new and published experimental results are compared and discussed. Some 

insightful aspects from a mathematical modelling, numerical prediction and experimental 

viewpoint are summarized in Section 6. The paper ends with the conclusions in Section 7. 

 

2. Experimental Arrangement and Test Matrix 

A new experimental test rig for the study of 2-DOF VIV of a flexibly mounted, smooth and rigid 

circular cylinder subject to a uniform steady flow has been developed for use in the towing tank 

at the Kelvin Hydrodynamics Laboratory (KHL) of the University of Strathclyde, Glasgow, UK. 

The design of this rig was motivated by a recent collaborative work conducted at the University 

of Sao Paulo, Brazil (Assi et al., 2012). The KHL tank has dimensions of 76 m long by 4.57 m 

wide; water depth can be varied from 0.5-2.3 m. The tank is equipped with a self-propelled 

towing carriage on which the experimental apparatus can be firmly installed, and a variety of 

damping systems to calm the water rapidly between runs.  

 Figure 1 displays the experimental set-up where the test cylinder is mounted vertically and 

connected at its upper end to a long aluminum pendulum with total length of about 4.1 m (Lp). 

The pendulum is attached to the supporting framework via a high-precision universal joint at the 

top of the frames. The test cylinder adopted in the present study is made of thick-walled cast 

nylon tube, having an outer diameter (D) of 114 mm and a fully submerged length (Lc) of 1.037 

m. The lower end of the cylinder is located 50 mm from the bottom of the tank, and the upper end 

is located 50 mm beneath the static free surface. Such lower end condition was deemed to 

produce a negligible effect on the peak amplitudes (Morse et al., 2008). It should be noted that 

the pendulum effect on the uniformity of the local flow field is believed to be insignificant since 

the maximum roll and pitch angles of the cylinder about the universal joint were found to be only 

about 2 degrees in all tests. The blockage is about 2.5 % and the aspect ratio (Lc/D) of the 

cylinder is about 9 being comparable to Lc/D in some recent studies (Jauvtis and Williamson, 

2004; Sanchis et al., 2008; Stappenbelt et al., 2007).  

 The mechanical system is restrained to allow the cylinder to oscillate freely with arbitrary 

amplitudes in both in-line (X) and cross-flow (Y) directions by using two pairs of coil springs 

(with lengths of about 50 cm) rearranged perpendicularly in the horizontal X-Y plane. Each spring 

obeys Hooke’s law (i.e. with a linear constant stiffness); nevertheless, as the cylinder oscillates 
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two-directionally due to VIV, the assembly creates the geometrically nonlinear coupling of cross-

flow/in-line displacements. These non-linear effects are accounted for in the numerical prediction 

model (see Section 3). Measurement of cylinder motions was carried out using a Qualisys optical 

motion capture system with a fixed sampling frequency of 137 Hz. Four infrared cameras were 

used to identify and optimize the three-dimensional positions of several reflective markers 

mounted on the pendulum, and calibration was performed with an average residual across all 

cameras of less than 0.3 mm. Key outputs were the roll and pitch angles with a degree resolution 

of 0.001. In contrast with traditional displacement measurement instruments, the non-contact 

nature of this system ensures that no unwanted additional damping or restoring forces are applied 

to the pendulum. Note that establishing the systematic uncertainty of measurements of the optical 

motion-tracking systems is more challenging than the contact-based measurements since this 

uncertainty depends upon the position and orientation of both the cameras and the reflective 

markers. Procedures for formal assessment of uncertainty for use in future campaigns are 

currently being developed. The acquisition time for each steady-state response was about 2 

minutes and the waiting time between each two consecutive measurements was about 5 minutes. 

A trailing wheel of very accurately defined circumference was attached to the carriage, and the 

angular velocity of the wheel was determined using a high-precision magnetic encoder and a 

counter-time which outputs the velocity signal representing the carriage speed. 

 When the cylinder is towed, the mean drag causes a mean in-line displacement of the cylinder 

in the flow direction; however, only the fluctuating displacements are of main interest. In order 

that the mean position of the cylinder for the measurements is vertical in the in-line direction to 

avoid the possible cylinder inclination effect on VIV, this displacement was initially adjusted by 

pre-tensioning the upstream in-line spring such that the cylinder mean position, as measured 

using the Qualisys system, remains nearly vertical during the VIV test. While the pre-tension is 

meaningful in the evaluation of hydrodynamic forces which is beyond the scope of this study, 

overall VIV measurements were conducted after such an adjusted equilibrium position was achieved. A 

thorough treatment of a similar spring arrangement is contained in Stappenbelt (2010).  

 As actual slender structures have multiple natural frequencies in different directions (Srinil et 

al., 2007), attention in the present study is placed on the cylinder model with varying ratios 

between in-line (fnx) and cross-flow (fny) natural frequencies in still water (f*= fnx/fny). This was 

achieved in practice by using springs with differing stiffness. The reported experimental cross-

flow (Ay/D) and in-line (Ax/D) amplitudes normalized by the cylinder diameter are referred to as 

the maximum displacements at the bottom tip of the cylinder. Based on a free decay test in air, 
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the experimental apparatus with and without the cylinder-spring system was found to be lightly 

damped at around 0.5 % and 0.2 % of the critical damping, respectively. A series of free decay 

tests in calm water were performed to identify fnx, fny and the associated damping ratios (x, y) 

in both X and Y directions. Small initial displacements were assigned independently in each X or 

Y direction to ensure that no geometric nonlinear coupling took place: fnx and fny were obtained 

from the free damped responses whose maximum amplitudes were about 0.1 of the diameter in 

all datasets. The representative averaged x and y values have been evaluated by subtracting the 

fluid damping component from the total damping of the system (Sumer and Fredsoe, 2006). 

 Table 1 summarizes a test matrix of 6 datasets (labeled as KHL1-KHL6) in which two mass 

ratios ( * * *
x ym m m= = =1.4 and 3.5) of the cylinder are considered. These m* were considered to be 

low, being less than 6 (Jauvtis and Williamson, 2004), to encourage the effect of in-line VIV and 

the overall large-amplitude responses. Due to the amplitude-dependence nature of the structural 

and fluid-added damping in water, variable x and y values (between 1-5 %) are reported. The 

combined mass-damping values are in the range of 0.014 < m* < 0.081. The m* = 1.4 case 

(KHL1-KHL5) corresponds to the initial apparatus setup, whilst in later tests m* was increased 

by adding lump masses to the rig system such that m* = 3.5 (KHL6). Such an increased m* case 

allows us to evaluate the prediction model (Section 4) whose empirical coefficients have been 

calibrated based on the experiments with varying m* (Stappenbelt et al., 2007). For m* = 1.4, 

five tests with different f* ≈ 1.0, 1.3, 1.6 and 1.9 were performed to justify the occurrence of a dual 

2:1 resonance regardless of f* and as the drag fluctuation has double the frequency of the lift fluctuation. 

In all datasets, the reduced velocity Vr range in which Vr = V/fnyD was about 0 < Vr < 20, 

corresponding to 2x10
3
 < Re < 5x10

4
 of the sub-critical flows and the flow speed V of 0.02-0.6 

m/s. This considered range encompassed a Vr value at which the peak amplitude occurred. Some 

tests were repeated in the neighborhood of peaks and response jumps. 

 With the aim of comparing our experimental results with other published studies by also 

focusing on the variation of f*, the experimental model performed at the MIT towing tank (Dahl 

et al., 2006) is herein considered. Their test matrix, comprising 6 datasets (labeled as MIT1-

MIT6) with Lc/D of 26, 0.041 < m* < 0.353, and 11x10
3 

< Re < 6x10
4
, is given in Table 2 in 

comparison with KHL datasets in Table 1. It is worth noting that both experiments have similar 

x and y values in the range of about 1-6 %. The role of damping will be again discussed in 

Section 6. Apart from being different in the experimental arrangement and procedure, in Lc/D, 

and variable  and f* values, the main distinction between KHL and MIT datasets is due to the 
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specified mass ratios: * *
x ym m=  in this study whereas * *

x ym m  in Dahl et al. (2006). This aspect 

along with other observations will be taken into account in the comparison of results in Section 5.  

 

3. Numerical Model with Nonlinear Coupled Structure-Wake Oscillators 

The capability to reasonably model and predict the VIV structural response excited by the 

unsteady flow field has been a major challenge to modelers and engineers for many years. 

Recently, a new semi-empirical model for predicting 2-DOF VIV of a spring-mounted circular 

cylinder in a uniform steady flow has been developed and calibrated with some published 

experimental results in the cases of * *
x ym m=

 
and f*=1 (Srinil and Zanganeh, 2012). As an extended 

study, the same model is improved and utilized to predict cross-flow/in-line VIV responses in the 

cases of variable f*, based on calibration with new in-house experimental results. Some modified 

empirical coefficients will be then suggested in Section 4 for a future use. 

 A schematic model of the cylinder restrained by two pairs of springs to oscillate in X and Y 

directions is displayed in Fig. 2a. The key aspect in the formulation of system equations of 

motions is to capture the quadratic relationship between in-line and cross-flow displacements 

(Vandiver and Jong, 1987). Following Wang et al. (2003), the two-directional unsteady fluid 

forces are exerted on the oscillating cylinder as opposed to the stationary one, by also accounting 

for the relative velocities between the incoming flow and the cylinder in-line motion. As a result, 

the instantaneous lift (FL) and drag (FD) forces coincide with an arbitrary plane making up an 

angle of ș with respect to the Y and X axes, respectively. Two cases can be realized depending on 

whether ș is counterclockwise (Fig. 2b) or clockwise (Fig. 2d). From our numerical simulation 

experience, it has been discovered that such ș direction plays a key role in the ensuing phase 

difference between cross-flow and in-line oscillations and, correspondingly, the figure-of-eight 

appearing shape. In general, the orbital plot exhibits a figure-eight trajectory with tips pointing 

upstream with a counterclockwise ș model (e.g. Fig. 2c) or downstream with a clockwise ș 

model (e.g. Fig. 2e). As both cases have been experimentally observed in the literature depending 

on the system parameters, they are herein accounted for in the improved model formulation. Note 

that only the counterclockwise ș model was proposed in Srinil and Zangeneh (2012). 

 Consequently, by assuming a small ș, the unsteady hydrodynamic forces Fx and Fy may be 

simplified and expressed after resolving FL and FD into the X and Y directions as  

cos sin ,x D L D LF F F F VF Yθ θ=≈    (1) 
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cos sin ,y L D L D YF F F F VFθ θ= ± ≈ ±   
(2) 

where Y is the dimensional transverse displacement, a dot denotes differentiation with respect to 

the dimensional time T, 2 2/ 2,  / 2,D D L LF DV C F DV Cρ ρ== ρ is the fluid density, CD and CL are 

the time-varying drag and lift coefficients, the minus (positive) and positive (minus) sign in Eq. 

(1) (Eq. (2)) corresponds to the case of counterclockwise and clockwise ș, respectively.  

 By assigning the fluid vortex variables as p = 2CD/CD 0 and q = 2CL/CL0  (Facchinetti et al., 

2004) in which CD 0 and CL 0 are the associated oscillating drag and lift coefficients of a 

stationary cylinder (assumed as CD 0=0.2 (Currie and Turnbull, 1987) and CL 0=0.3 (Blevins, 

1990)), the time variation of p and q may be assumed to follow the self-excitation and -limiting 

mechanism of the van der Pol wake oscillator (Bishop and Hassan, 1964). By introducing the 

dimensionless time t = ȦnyT and normalizing the displacements with respect to D, the nonlinearly 

coupled equations describing the in-line (x) and cross-flow (y) oscillations of the cylinder subject 

to the fluctuating fluid force components (p, q) are expressed in dimensionless forms as  

( ) ( )2 3 2 2 22*

x x x D L rx x f x x xy M p M q y V ,λ   Ω π Ω+ + + + =   (3) 

( )2 2 ,2 1 4x xp p p p xε Ω Ω + − + =   (4) 

( )3 2 2 22 ,y y y L D ry y y y yx M q M p y Vλ   Ω π Ω+ + + + = ±   (5) 

( )2 2 ,1y yq q q q yε Ω Ω + − + =    (6) 

 

in which 2 2
0 16ʌ StD DM C µ= , 2 2

0 16ʌ StL LM C µ= , ( ) 2 ,s fm m Dµ ρ= +
 

*2x x fλ  γΩ µ= + ,

2 ,y yλ  γΩ µ= + ȍ=StVr, mf =ʌȡD2
CM/4, ms is the cylinder mass, mf the fluid added mass, CM  

the potential added mass coefficient assumed to be unity for a circular cylinder (Blevins, 1990), 

St the Strouhal number, Ȗ the stall parameter which is directly related to the sectional mean drag 

coefficient and assumed to be a constant equal to 0.8 (Facchinetti et al., 2004), and co-subscripts 

x and y identify properties in these directions. Note that the mass ratio definition in the literature 

is variable but the widely recognized one with 
* 4 Mm Cµ π= −  is herein considered (Williamson 

and Govardhan, 2004). 

 In contrast to typical VIV models which consider a linear structural oscillator to describe the 

cylinder displacement (Gabbai and Benaroya, 2005), Eqs. (3) and (5) account for the effects of 

geometric and hydrodynamic nonlinearities on the oscillating cylinder. These equations are so-

called Duffing oscillators (Nayfeh, 1993). It is also worth mentioning the following key points. 
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i. Cubic nonlinear terms capture the effect of nonlinear stretching (x
3
, y

3
) and physical 

coupling of cross-flow and in-line displacements (xy
2
, x

2
y), depending on the geometrical 

parameters (Įx, Įy, ȕx, ȕy).  

ii. Quadratic nonlinear terms ( ),qy py   capture the effect of wake-cylinder interaction; these 

have been found to be responsible for the figure-of-eight appearance associated with a 

dual 2:1 resonance (Srinil and Zanganeh, 2012).  

iii. In Eqs. (3) and (5), the maximum cross-flow/in-line amplitudes are unaffected by the 

choice of ș since the associated velocities are trivial, making / / 0r rqy V py V≈ ≈  . 

iv. In qualitative agreement with a 1-DOF VIV study of Facchinetti et al. (2004), the linear 

coupling terms based on the cylinder accelerations ( )x yx, y    in Eqs. (4) and (6) have 

been found to produce a better 2-DOF VIV prediction than the displacement ( )x yx, y   

and velocity ( )x yx, y    models (Zanganeh and Srinil, 2012).  

v. The mean drag force component is omitted from Eq. (1) and (3) by assuming that it does 

not affect the fluctuating displacement components as considered by Kim and Perkins 

(2002). However, the nonlinear terms in Eq. (3) can generate the in-line static drift 

(Nayfeh, 1993) of the cylinder; this drift is disregarded from the numerical simulations as 

attention is placed on the evaluation of the oscillating amplitude components. 

 The analysis of coupled cross-flow/in-line VIV depends on several empirical coefficients (İx, 

İy, x, y) and geometrical parameters (Įx, Įy, ȕx, ȕy). In this study, Įx, Įy, ȕx and ȕy are also 

treated as empirical coefficients to account for the time- and amplitude-dependent uncertainties 

during the experiment such as the spatial correlation of vortices along the cylinder span, the fluid-

added damping, the free surface effect and the wake-cylinder interaction. Based on calibration 

with experimental results (Stappenbelt et al., 2007) with f*=1 and varying m*, it may be assumed 

that (Srinil and Zanganeh, 2012, 2013) 

( )0.228 *
0.00234 .

m
y eε =  

(7) 

 To reduce the time-consuming task involving the tuning of individual coefficients, İx = 0.3, x 

= y = 12, and Įx = Įy = ȕx = ȕy = 0.7 are initially assumed in the f*=1 cases following Srinil and 

Zanganeh (2012). However, some of these values will be modified in Section 4 based on the 

comparisons with experimental results in the f*1 cases. Nonlinear coupled Eqs. (3)-(6) can be 

numerically solved by using a fourth-order Runge-Kutta scheme with an adaptive time step 

enabling solution convergence and stability, and with assigned initial conditions at t = 0 of x = y 
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= 0, p = q = 2 and zero velocities. In all numerical simulation cases, Vr is increasingly varied in 

steps of 0.1 and at least 60 cycles of the vortex shedding frequency are accounted for in the 

evaluation of steady-state responses.  

 

4. Comparisons of Experimental and Numerical Prediction Results 

Experimental and numerical prediction results are now compared based on KHL data in Table 1. 

As typical figure-of-eight orbital motions with tips pointing downstream (e.g. Fig. 2e) are mostly 

observed in the present experiments, the system equations of motions (Eqs. 3-6) used in 

numerical simulations are based on the model configuration shown in Fig. 2d. To facilitate the 

comparison and discussion, two sets of results are classified depending on f*: (i) f*=1 (KHL1, 

KHL5, KHL6) and (ii) variable f* with f*=1.29 (KHL2), 1.60 (KHL3) and 1.85 (KHL4). Both 

maximum and root-mean-squared (RMS) values of cross-flow (Ay/D) and in-line (Ax/D) 

amplitudes are evaluated. 

 Results in the f*=1 cases are plotted in Fig. 3 which illustrates a fairly good qualitative 

comparison of numerical (lines) and experimental (symbols) responses. From the experiments, 

pure in-line responses are observed in a marginal range of about 2 < Vr < 4 (Fig. 3b, d and f) 

whereas coexisting cross-flow/in-line VIV responses take place in the range of about 4 < Vr < 

17.5 (Fig. 3a and c) or 4 < Vr < 12.5 (Fig. 3e), depending on m*. As expected from both a 

numerical and experimental viewpoint, both KHL1 and KHL5 datasets with the lower m*=1.4 

exhibit a wider synchronization region. With increasing Vr, some jumps of peak amplitudes from 

upper to lower branches (Figs. 3c-f) are experimentally as well as numerically (denoted by 

vertical dashed lines) observed. These jumps are in agreement with several recently published 

experimental results of 2-DOF VIV with f*=1 (Blevins and Coughran, 2009; Jauvtis and 

Williamson, 2004; Stappenbelt et al., 2007).  

 In view of quantitative comparisons, the highest values of experimental and numerical RMS 

amplitudes are found to be comparable in the range of about 0.9-1.25 for Ay/D (Fig. 3a, c and e) 

and 0.1-0.3 for Ax/D (Fig. 3b, d and f), depending on the system mass and damping. As regards 

the maximum attainable responses (Aym/D, Axm/D), Figure 3 shows a better comparison in the 

cross-flow VIV than in the in-line VIV, with both experimental and numerical responses 

providing 1.4 < Aym/D < 1.75. The numerical model apparently underestimates Axm/D although it 

predicts well the associated RMS values. These outcomes could be influenced by the temporal 

modulation of Ay/D and Ax/D. To exemplify this aspect, experimental (dashed blue lines) and 

numerical (solid pink lines) time histories of y and x responses of KHL1 data with Vr = 10.9 (Fig. 



13 

 

3a and b) and KHL5 data with Vr = 11.7 (Fig. 3c and d) are plotted in Fig. 4a-b and 4c-d, 

respectively. It is found that, in spite of the nearly-zero mean values of the time-varying x (about 

0.046 in Fig.4b and 0.013 in Fig. 4d), experimental in-line responses are seen to have a higher 

modulation when compared to the associated numerical ones. In contrast, both experimental and 

numerical y responses (Fig. 4a and c) are comparable, exhibiting a much less fluctuating signal. 

 In the case of f*1, experimental and numerical comparisons of Ay/D and Ax/D are shown in 

Fig. 5. To also demonstrate the effect of empirical coefficients, two sets of numerical results are 

plotted: one based on x = y = 12 (solid lines) and the other based on x = y = 15 (dashed 

lines), while keeping other parameters unchanged. This change in x and y has been motivated 

by a possible variation of both lock-in ranges and ensuing amplitudes (Srinil and Zanganeh, 

2012). With increasing f*, some VIV behaviors are noticed experimentally. First, the in-line-only 

responses seem to disappear with increasing f* = 1.6 (Fig. 5d) and f* = 1.85 (Fig. 5f). This is in 

agreement with the numerical prediction. Secondly, both cross-flow and in-line responses in Fig. 

5c and 5d (f* = 1.6) and Fig. 5e and 5f (f* = 1.85) reveal the flattening slopes of their upper 

branches with amplitudes starting from Vr ≈ 2.5 and ending at Vr ≈ 12.5. These amplitude 

profiles are qualitatively similar to the experimental results of Assi et al. (2009) with f* = 1.93. 

Nevertheless, overall experimental results show Aym/D ≈ 1.5 and Axm/D ≈ 0.5, and the 

associated excitation ranges are quite comparable, in all f* cases. Given the similar values of 

m*, these imply the negligible effect of varying f* on the maximum response outcomes based on 

this pendulum-spring-cylinder system. With respect to numerical comparisons, the predicted 

Aym/D and Axm/D are found to be overestimated and the associated upper branches show higher 

slopes being typical for resonance diagrams. These reflect the difficulty in matching numerical 

and experimental results in which several coefficients control the dynamic responses and some of 

the influential parameters are variable, i.e. x  y. However, with a demonstrated small 

increment of x and y, the qualitative prediction of lock-in ranges appears to be satisfactorily 

improved. Hence, values of x = y = 15 are hereafter considered. 

 Next, it is of practical importance to carry out a sensitivity study on the numerical model in 

order to understand the influence of varying parameters on the 2-DOF VIV prediction and the 

dependence of the latter on f*. To also capture possible qualitative and quantitative changes, the 

sensitivity analysis should be performed with respect to the parameters related to the greater y 

response (Srinil and Zanganeh, 2012). By ways of examples, the geometrical coefficient y or y 

is varied in the numerical simulations with f* = 1.3, 1.6 and 2. In each f* case, 1 4* *
x ym m .= =  and 
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the averaged x = 1.6 % and y = 1 % (based on KHL2-4 datasets) are assigned. Contour plots of 

Ay/D and Ax/D are displayed in Figs. 6 and 7 in the varying y and y cases, respectively. 

 For each f*, it is seen in Fig. 6 that Aym/D increases (Fig. 6a-c) whilst Axm/D decreases (Fig. 

6d-f) as y increases, with the associated peaks locating at higher Vr values. These reflect both 

the quantitative and qualitative influence of the cubic nonlinear stretching term which results in 

the bent-to-right response as yy
3
 becomes greater. On the other hand, it is found in Fig. 7 that, as 

y increases, both Aym/D (Fig. 7a-c) and Axm/D (Fig. 7d-f) decrease; the associated peaks are 

slightly bent for lower f* (Fig. a and d) or nearly vertical for higher f* (Fig. 7b-c and 7e-f). These 

show the mostly quantitative effect of the geometric coupling yyx
2
 term. Based on the above 

observations, the similar experimental response patterns with comparable y and x in Fig. 5 

might be more influenced by the displacement coupling terms than the stretching nonlinearities. 

For this reason, a suitable new fixed y value (e.g. 1.5) based on Fig. 7 may be suggested to 

improve the numerical quantitative comparison with experimental results in Fig. 5 whose Aym/D 

≈ 1.5 and Axm/D ≈ 0.5 in all f* cases. These sample contour plots might be applicable to a future 

prediction analysis once exact geometrical parameters are practically known. 

 Now, it is interesting to perform numerical and experimental comparisons of the time-varying 

orbital x-y motions as well as phase angles because this information could shed some light on 

how the fluid-cylinder interaction affects the resulting vortex-shedding modes. Corresponding to 

KHL1-6 results in Figs. 3 and 5, the x-y trajectory plots within several cycles of the oscillation 

are displayed in Fig. 8a with some chosen Vr. The normalized x-y phase differences (θx-2θy)/π of 

KHL3 and KHL4 datasets are also exemplified in Fig. 8b. Depending on f*, m* and  (Table 1) 

and initial conditions in both numerical simulations and experiments, various characteristics of 

figure-of-eight trajectories appear with variable phase differences between x and y motions. In 

particular, the crescent shapes are evidenced in the experiments (see blue lines in Fig. 8a) with 

their tips pointing mostly downstream (all KHL datasets) and occasionally upstream (KHL3 and 

KHL4 for Vr < 10). The former case justifies the use of system equations based on the model 

configuration in Fig. 2d. Similar orbital motions have been found in recent 2-DOF VIV 

experiments of rigid circular cylinders (Blevins and Coughran, 2009; Dahl et al., 2006; Dahl et 

al., 2010; Flemming and Williamson, 2005; Jauvtis and Williamson, 2004), and the present study 

confirms these studies with both experimental and numerical results.  

 It is worth noting that experimental orbital motions exhibit a high modulation feature of 

amplitudes whereby the oscillating cylinder does not follow the same path from cycle to cycle. 
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This suggests a strong fluid-structure interaction effect associated with a 2:1 resonance during the 

test. On the contrary, numerical orbital motions are perfectly repeatable which justify the limit 

cycle character of the two pairs of coupled Duffing and van der Pol oscillators for which stable 

periodic solutions are attained. The numerical model is found to predict quite well overall 

qualitative behaviors of the figure-eight appearance due to the associated quadratic nonlinearities 

(Srinil and Zanganeh, 2012; Vandiver and Jong, 1987). The experimental (squares) and 

numerical (circles) comparisons of phase differences in Fig. 8b also reveal their good agreement 

in the range of about 8<Vr<14 where response amplitudes are maximized (Fig. 5). By following 

the cylinder movement at the top of the figure of eight (Dahl et al., 2007), several figures of eight 

of KHL3 and KHL4 datasets can be defined as counterclockwise (0 < θx-2θy < π/2 and 3π/2 <    

θx-2θy< 2π) or clockwise (π/2<θx-2θy<3π/2) paths. Yet, in the smaller-amplitude ranges of Vr<8 

or Vr >14, a qualitative difference between experimental and numerical phase angles is still seen; 

this suggests possible use of the alternative configuration in Fig. 2b for the numerical model. 

 Experimental results in Fig. 8a suggest similar vortex formation patterns for KHL1, KHL5 and 

KHL6 with f* = 1 since the associated figures of eight are qualitatively similar in all Vr cases. 

When increasing f* to be about 1.3 (KHL2), 1.6 (KHL3) and 1.9 (KHL4), the figure-eight orbits 

corresponding to some particular Vr cases are noticed to be modified and these imply the possible 

change in the vortex formation patterns (Bao et al., 2012).  

 A comparison of experimental and numerical oscillation frequencies (foy, fox) obtained from 

the amplitude responses within the main excitation ranges (Figs. 3 and 5) and normalized by the 

associated fny is exemplified in Fig. 9 based on the selected KHL1 (f* ≈ 1), KHL3 (f* = 1.6) and 

KHL4 (f* ≈ 1.9) data. Overall good qualitative agreement is appreciated, with x (Fig. 9b, d and f) 

and y (Fig. 9a, c and e) frequency responses exhibiting their dual 2:1 resonances irrespective of 

the specified f*. For the tested cylinder with low m*=1.4, the oscillation frequencies of all dataset 

increase with increasing Vr due to the decreasing value of the hydrodynamic added mass. This 

justifies the fundamental mechanism of 2-DOF VIV (Sarpkaya, 2004; Williamson and 

Govardhan, 2004).  

 

5. Experimental Comparisons with Other Studies 

It is of considerable theoretical and practical importance to understand the extent to which 2-DOF 

VIV results are sensitive to the various arrangements of test rigs and measurement procedures. A 

comparison is now presented between the results of the present study and those obtained by Dahl 

et al. (2006) at MIT using a very different test rig. The comparison between KHL (Table 1) and 
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MIT (Table 2) experimental data are considered by categorizing the results into four groups 

depending on the comparable values of f* as follows: 

a) KHL1, KHL5, KHL6 vs. MIT1, all with f* ≈ 1, 

b) KHL2 vs. MIT2 and MIT3, all with the averaged f*≈ 1.3,  

c) KHL3 vs. MIT4 and MIT5, all with the averaged f*≈ 1.6,  

d) KHL4 vs. MIT6, all with f*≈ 1.9.  

 Comparisons are made in terms of Ay/D and Ax/D diagrams (Fig. 10), the associated 

oscillation-to-natural frequency ratios foy/fny and fox/fny (Fig. 11) and the Griffin plots (Fig. 12) of 

peak amplitudes vs. the Skop-Griffin parameter 3 2
GXS 2 St *

x xmπ =  and 3 2
GYS 2 St *

y ymπ =  (Skop 

and Balasubramanian, 1997). Note that the value of Aym/D with MIT apparatus was limited to 

1.35 (Dahl et al., 2006). fox and foy are the dominant oscillation frequencies obtained from the fast 

Fourier transform analysis of relevant response time histories. 

 With f* ≈ 1, overall response amplitudes of KHL1, KHL5, KHL6 and MIT1 data show a 

variation of Aym/D in the range of about 1.35-1.75 (Fig. 10a) and Axm/D in the range of about 0.4-

0.8 (Fig. 10b). This disparity of peak responses may in part be due to the influence of variable y 

and x whose values are mostly y  x (except MIT1). The KHL6 and MIT1 results with 

comparable m* (3.3-3.8) provide a good qualitative agreement with a similar lock-in range of 4 < 

Vr < 12 in which both Ay/D and Ax/D are simultaneously excited. Good qualitative agreements 

are also appreciated by the comparison of KHL1 and KHL5 data. In these lower m* = 1.4 cases, 

the lock-in range is noticed to be broader (4 < Vr < 18). This influence of varying m* on the 2-

DOF lock-in range has recently been highlighted by the experiments of Stappenbelt et al. (2007) 

and the numerical predictions of Srinil and Zanganeh (2012).  

 With the averaged f*≈ 1.3 and f*≈ 1.6, the comparison of KHL2, MIT2 and MIT3 data (Fig. 

10c and d) and that of KHL3, MIT4 and MIT5 data (Fig. 10e and f) reveal their good qualitative 

agreement of Aym/D and Axm/D in a small range of about 1.35-1.5 and 0.4-0.6, respectively. As 

previously mentioned, a difference in the lock-in range between KHL and MIT results is possibly 

due to their different m* values, apart from assigning whether * *
x ym m=  (KHL) or * *

x ym m  (MIT). 

The effect of variable damping – which has been found to control the response amplitude rather 

than the lock-in range (Blevins and Coughran, 2009) – might in part again be responsible for the 

difference in response peaks as in the previous case of f* = 1.  
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 Both qualitative and quantitative differences are now realized when considering the results 

with the averaged f*≈1.9. For the MIT6 data with * *
x ym m  and y  x, results reveal a two-peak 

cross-flow response (Fig. 10g) – similar to those reported in Sarpkaya (1995) with f* = 2 

(although therein m* and  were not reported) – with the two Aym/D≈1 and 1.1 taking place at Vr 

≈ 5 and 8, respectively. Note that the MIT6 in-line response still exhibits a single peak of Ax/D ≈ 

0.3 at Vr ≈ 8 (Fig. 10h). These observations are in contrast with KHL4 results with * *
x ym m=  and 

y  x which show single-peak responses in both cross-flow and in-line responses. Recent 

numerical studies by Lucor and Triantafyllou (2008) have also found only single-peak responses 

with * *
x ym m=  and y = x. Owing to the lower m* and  of KHL4 data, the associated Aym/D ≈ 

1.3 (Fig. 10g) and Axm/D ≈ 0.5 (Fig. 10h) are greater and the associated lock-in range is wider of 

about 4 <Vr < 18. These qualitatively justify the present experimental results. 

 In Fig. 11, overall comparisons of foy/fny (a, c, e and g) and fox/fny (b, d, f and h) plots highlight 

good correspondence between KHL and MIT results. In general, foy/fny values vary from 0.5 to 2 

and fox/fny values vary from 1 to 3, with increasing Vr. These imply the variation of 

hydrodynamic added mass caused by VIV; that is, its value is first positive when foy/fny < 1 and 

fox/fny < 2, being zero at foy/fny ≈ 1 and fox/fny ≈ 2, and then becoming negative when foy/fny > 1 

and fox/fny > 2. Regardless of the assigned f*, the fox/foy values in Fig. 11 are nearly 

commensurable to 2:1 ratios in various Vr cases. These confirm the existence of dual resonance 

conditions (Bao et al., 2012; Dahl et al., 2006; Dahl et al., 2010) and demonstrate the intrinsic 

quadratic relationships between in-line and cross-flow responses (Vandiver and Jong, 1987) 

corresponding to the various figure-of-eight orbital motions traced out in Fig. 8a in comparison 

with numerical prediction results. These outcomes also confirm other recent experimental results 

of circular cylinders undergoing 2-DOF VIV with f* = 1 (Blevins and Coughran, 2009; Jauvtis 

and Williamson, 2004; Sanchis et al., 2008).  

 Comparisons of various experimental 2-DOF VIV results (Blevins and Coughran, 2009; Dahl 

et al., 2006; Dahl et al., 2010; Stappenbelt et al., 2007) with Aym/D vs. SGY and Axm/D vs. SGX are 

now discussed through the Griffin plots in Fig. 12. Numerical prediction results with specified 

1 4* * *
x ym m m .= = =  (lowest value from KHL data) and 5.7 (highest value from MIT data), and f* = 

1 and 2 in each of these cases are also given. The numerical variation of SGY and SGX values 

(from 0.01 to 1) is performed by varying y and x, respectively, with a small increment. A 

general qualitative agreement can be seen in Fig. 12 where both Aym/D and Axm/D decrease as 
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SGY and SGX increase. However, for a specific SGY = SGX, experimental results with different 

values of m*,  and f* are scattered. The Re range might also play a role (Govardhan and 

Williamson, 2006) although the majority of the experimental results in Fig. 12 were based on the 

subcritical Re flows, except for some results in a supercritical Re range of Dahl et al. (2010). 

These imply how the combined mass-damping parameter fails to collapse different experimental 

2-DOF VIV data. Numerical results also capture these quantitative effects, by also providing the 

approximate ranges of peak amplitudes and highlighting a possibly influential role of f*. From a 

prediction viewpoint, both Aym/D and Axm/D increase as m* decreases; however, for a higher m*= 

5.7 value, the variation of Aym/D is slightly influenced by the varying f*. This observation is 

reminiscent of the experimental study of Jauvtis and Williamson (2004) where there was a slight 

influence on the cross-flow response with m* > 6 when comparing the results obtained between 

1- and 2-DOF models. In contrast, numerical Axm/D values are found to be susceptible to any 

change of system m*,  and f* parameters. The above-mentioned discussion and comparisons 

deserve further experimental explorations before we could draw a firm conclusion on whether 

and how each – or the combination – of these parameters actually governs the 2-DOF VIV of 

circular cylinders. 

 

6. Discussion 

As 2-DOF VIV of a flexibly mounted circular cylinder depends on several system fluid-structure 

parameters in both cross-flow and in-line directions, it is a very challenging task to quantitatively 

match numerical prediction results to experimental measurements. One of the main reasons 

suggested is that some of the key variables were not assessed with sufficient confidence during 

the testing campaign. In particular, values of the structural damping in water – used as one of the 

inputs in the numerical model – were found to be sensitive to the initial displacement condition, 

the change of springs’ stiffness and the apparatus arrangement leading to some repeatability 

issues in determining total and fluid-added damping from the free decay tests in water. This 

observation was in contrast to the measurements made in air for which the estimated damping 

was highly repeatable. As a consequence, the damping ratios x and y appeared variable and x 

 y when comparing and calibrating all datasets with different f*. To overcome this constraint, 

an improved means to assess and control equivalent damping values in both directions (Klamo, 

2009) or a systematic approach to measure system uncertainties (Hughes and Hase, 2010; Taylor, 

1997) should be implemented.  
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 Another aspect deals with the difference between the numerical model idealization and the 

real experimental setup. For the sake of generality, the cylinder is theoretically postulated to be 

infinitely long such that the flow field might be approximated to be two-dimensional. However, 

during the experiment, the three-dimensional flow field along with the free surface around the 

oscillating cylinder with a finite length could play an influential role. Although the structurally 

geometric coupling terms associated with the movement of two pairs of springs have been 

accounted for in the numerical model, exact geometrical x, y, x and y values of the present 

experimental pendulum-spring-cylinder model are presently unknown. Some of these have been 

shown through a sensitivity study to produce a qualitative and quantitative effect on the 

prediction of both peak amplitudes and lock-in ranges (Figs. 6 and 7).  

 Nevertheless, after substantial parametric studies involving calibration and tuning of model 

empirical coefficients and geometric parameters with various experimental results, the numerical 

prediction model based on double Duffing-van der Pol oscillators is capable of predicting quite 

well several important qualitative features observed in the experimental 2-DOF VIV. These 

include (i) the pure in-line VIV lock-in ranges in the case of f*=1 (Fig. 3) and their 

disappearances in the case of higher f* (Fig. 5), (ii) the two-dimensional lock-in ranges in all f* 

cases (Figs. 3 and 5), (iii) the response amplitude jump phenomena captured by system cubic 

nonlinearities (Fig. 3), (iv) various figure-of-eight trajectories representing periodically coupled 

x-y motions associated with dual 2:1 resonances and captured by system quadratic nonlinearities 

(Figs. 8 and 9) and (v) the independent effect of m*,  and f* (Fig. 12). The hysteresis effect and 

the occurrence of critical mass whereby maximum cross-flow amplitudes exhibit an unbounded 

lock-in scenario have recently been shown in Srinil and Zanganeh (2012). With suitably specified 

coefficients, the possible occurrence of two-peak cross-flow response in the case of f*=2 and 

* *
x ym m  has also been found during the parametric trials. Other insights into the effect of 

(displacement, velocity and acceleration) coupling terms in the wake oscillators, the appearance 

of smaller-amplitude higher harmonics in x-y motions and the occurrence of chaotic VIV have 

been presented in Zanganeh and Srinil (2012). As far as model empirical coefficients in Eqs. (3)-

(6) are concerned, one may preliminarily suggest εy based on Eq.(7), εx = 0.3, 12 < x = y < 15, 

and Įx = Įy = ȕx = ȕy = 0.7, based on calibration with experimental results in the present study. Of 

course, the sensitivity analysis should also be performed, by limiting the number of considered 

cases with the only variation of y-related parameters. 
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 It is of practical importance to ascertain whether the variable f* influences the maximum 

attainable cross-flow/in-line amplitudes. Based on the range of m*,  and Re considered, our 

experimental results reveal the small or even negligible effect of varying f* on the maximum 

attainable amplitudes of 2-DOF VIV. This suggests that the model developed for a rigid cylinder 

with 2 DOF might be applicable to the analysis of a flexible cylinder vibrating in two directions 

with multi DOF and various f* through, e.g., a nonlinear modal expansion approach (Srinil, 2010, 

2011; Srinil et al., 2009). However, the variation of f* can influence the phase difference between 

cross-flow and in-line motions (Fig. 8b) which in turn may result in the change in the vortex 

shedding formation in the wake due to the fluid-structure coupling mechanism (Bao et al., 2012). 

These KHL observations are in good qualitative agreement with MIT results (Dahl et al., 2006) 

since both studies consider the similar ranges of m*, , f* and Re. It is noticed that the lock-in 

ranges of KHL data are greater than those of MIT data owing to the lower m* of the former (Fig. 

10). Recent 2-D numerical simulation results of Bao et al. (2012) where 2 55* *
x ym m .= ≈ , x = y 

= 0 showed comparable Aym/D and Axm/D with f* increasing from 1 to 1.5. However, due to the 

very low Re = 150, their reported Aym/D and Axm/D values are quite small, being only about 0.6-

0.9 and 0.05-0.25, respectively, when compared to KHL/MIT data in Fig. 10 and others in Fig. 

12. Such difference in peak amplitudes in different Re data suggests a possible influence of Re on 

2-DOF VIV, similar to what has been observed in the field tests of flexible cylinders 

(Swithenbank et al., 2008). 

 As a final remark, due to a finite length of the tank, it is presently unfeasible to perform a 

perfect sweeping test where a towing speed (i.e. V) is altered during a single run of the carriage. 

As this change (whether increasing or decreasing V) would require the time for the transient 

dynamics to die out in order to achieve the steady state responses (especially for large-amplitude 

2-DOF vibrations in the neighbourhood of the hysteresis), the carriage would reach the end and 

be terminated before the cylinder steady-state response takes place. Hence, possible coexisting 

responses associated with the jump and hysteresis – as usually observed in a water flume facility 

(Jauvtis and Williamson, 2004) – were not ascertained in our towing tank tests although the 

proposed numerical model can capture such important behaviours (Srinil and Zanganeh, 2012). 

Depending on system parameters and initial conditions, the jump and hysteresis phenomena 

should be further experimentally investigated in the framework of a 2-DOF VIV of circular 

cylinder with variable f* and in a higher Re range. 
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7. Conclusions 

Experimental investigations of 2-DOF VIV of a flexibly mounted circular cylinder with a low 

equivalent mass ratio (m*=1.4 and 3.5) and variable in-line-to-cross-flow natural frequency ratio 

(f* ≈ 1, 1.3, 1.6, 1.9) have been performed in a water towing tank. The VIV experiments cover a 

sub-critical Re range of about 2x10
3
-5x10

4
. A generalized numerical prediction model has also 

been investigated based on double Duffing-van der Pol (structure-wake) oscillators which can 

capture the structurally geometrical coupling and fluid-structure interaction effects through 

system cubic and quadratic nonlinearities. The model empirical coefficients have been calibrated 

based on new experimental results and parametric investigations, and their values have been 

suggested. Some important aspects in the 2-DOF VIV have been numerically captured which are 

in good qualitative agreement with experimental observations.  

 With low values of m*=1.4 equally in both directions, the two-dimensional VIV excitation 

ranges have been experimentally found to be in a broad range of the reduced velocity parameter, 

4<Vr<17.5, with maximum attainable cross-flow and in-line amplitudes achieving high values of 

about 1.25-1.6 and 0.5-0.7, respectively, depending on the level and combination of the x-y 

structural damping ratios in all f* cases. This damping parameter along with the two-directionally 

geometrical coupling coefficients might in part be responsible for the disparity of response 

amplitudes and the quantitative differences between experimental and numerical results, apart 

from the fact that actual three-dimensional features of the flow around the finite cylinder cannot 

be presently captured by the numerical model. As regards experimental comparisons, the present 

measurement results and MIT published data based on similar Re and mass-damping ratio ranges 

exhibit fairly good agreement with comparable response amplitudes, lock-in ranges and 

oscillation frequencies. However, there is no appearance of two-peak cross-flow response found 

in the present testing campaign as a result of the equivalent m* in the two motion directions. 

Regardless of the specified f* and overall hydro-geometric nonlinearities, various features of 

figure-of-eight orbital motions have been experimentally as well as numerically observed in a 

wide Vr range. These evidence the fundamental characteristics of dual 2:1 resonances of coupled 

in-line/cross-flow VIV responses. The proposed numerical model is able to capture these dual 

resonances associated with quadratic nonlinearities in addition to the reasonable estimation of 

response amplitudes, lock-in ranges and oscillation frequencies.  

 More experimental and computational fluid dynamics studies which assess and control the 

equivalence of system fluid-structure parameters in different directions with reduced uncertainty 

are needed to improve the model empirical coefficients and capability in effectively matching 
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numerical predictions to experimental outcomes. These should be furnished by the identification 

of vortex formation patterns in the cylinder wake using the flow visualization technique such as 

the particle image velocimetry. 
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TABLE Captions 

Table 1 KHL experimental data with variable m*,  and f* 

Table 2 MIT experimental data with variable m*,  and f* 

 

FIGURE Captions 

Figure 1  Experimental model of a flexibly mounted circular cylinder undergoing 2-DOF VIV  

Figure 2  A schematic numerical model of a spring-supported circular cylinder undergoing 2-

DOF VIV (a) due to effective lift/drag forces exerted on the oscillating cylinder (b) or (d): sample 

figure-of-eight trajectories (c) and (e) based on model in (b) and (d), respectively. 

Figure 3 Comparison of numerical (lines) and experimental (symbols) cross-flow and in-line 

amplitude responses based on KHL data with f*=1: blue lines and squares (pink lines and circles) 

denote maximum (RMS) values; dashed lines denote numerical response jumps. 

Figure 4 Comparison of numerical (pink solid lines) and experimental (blue dashed lines) 

cross-flow (a, c) and in-line (b, d) time histories: KHL1 data with Vr = 10.9 (a, b) and KHL5 data 

with Vr = 11.7 (c, d). 

Figure 5 Comparison of numerical (lines) and experimental (symbols) cross-flow and in-line 

amplitude responses based on KHL data with f*1: blue lines and squares (pink lines and circles) 

denote maximum (RMS) values; dashed (solid) lines with x=y=15 (12). 

Figure 6  Sensitivity analysis showing the influence of geometrical parameter y on cross-flow 

(a-c) and in-line (d-f) amplitude responses: f*=1.3 (a, d), f*=1.6 (b, e), f*=2 (c, f). 

Figure 7  Sensitivity analysis showing the influence of geometrical parameter y on cross-flow 

(a-c) and in-line (d-f) amplitude responses: f*=1.3 (a, d), f*=1.6 (b, e), f*=2 (c, f). 

Figure 8    (a) Comparison of numerical (red lines) and experimental (blue lines) x-y trajectories 

based on KHL datasets with variable f*; (b) comparison of numerical (circles) and experimental 

(squares) x-y phase differences for KHL3 (filled symbols) and KHL4 (open symbols) dataset.  

Figure 9    Comparison of experimental (circles) and numerical (squares) cross-flow/in-line 

oscillation frequencies as function of Vr for selected KHL datasets with variable f*. 

Figure 10    Experimental comparisons of cross-flow and in-line amplitudes between KHL and 

MIT data with variable f*. 

Figure 11    Experimental comparisons of normalized cross-flow and in-line oscillation 

frequencies between KHL and MIT data with variable f*. 

Figure 12   Griffin plots of maximum attainable cross-flow and in-line amplitudes based on 

several 2-DOF VIV experimental (symbols) and numerical prediction (lines) results. 



 

Table 1 

 

Dataset fny (Hz) fnx (Hz) y (%) x (%) *
ym  *

xm  f* 

KHL1 0.312 0.316 1.0 4.7 1.4 1.4 1.01 

KHL2 0.218 0.281 1.5 1.0 1.4 1.4 1.29 

KHL3 0.262 0.419 1.6 1.0 1.4 1.4 1.60 

KHL4 0.203 0.376 1.8 1.2 1.4 1.4 1.85 

KHL5 0.192 0.192 2.0 3.1 1.4 1.4 1.00 

KHL6 0.223 0.223 1.5 2.3 3.5 3.5 1.00 

 

 

 

 

Table 2 

 

Dataset fny (Hz) fnx (Hz) y (%) x (%) *
ym  *

xm  f* 

MIT1 0.715 0.715 2.2 2.2 3.8 3.3 1.00 

MIT2 0.799 0.975 1.3 1.7 3.9 3.8 1.22 

MIT3 0.894 1.225 1.1 2.5 3.9 3.7 1.37 

MIT4 0.977 1.485 1.6 3.2 4.0 3.6 1.52 

MIT5 0.698 1.166 2.6 2.9 5.5 5.3 1.67 

MIT6 0.704 1.338 6.2 2.5 5.7 5.0 1.90 
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