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Abstract. We describe a nonlocal linear partial differential equation arising in the

analysis of dynamics of a nematic liquid crystal. We confirm that it accounts for the kick-

back phenomenon by decoupling the director dynamics from the flow. We also analyse

some of the mathematical properties of the decoupled director equation.

1. Introduction. Consider a thin layer of nematic liquid crystalline fluid sandwiched

between two parallel glass plates separated by a gap of width 2d. Suppose it is subjected

to a large magnetic field aligned in the direction normal to the plates. The dynamics

of the solution is then essentially one dimensional [13], and is well described by the

director angle θ(z, t), which is the average angle a rod-like nematic liquid crystal molecule

forms with the plane of the plates, and by the flow speed v(z, t) parallel to the plates.

Here z ∈ (−d, d) is the coordinate in the direction of the normal. We assume that the
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system is strongly anchored, which means that for all time t, θ(−d, t) = θ(d, t) = 0 and

v(−d, t) = v(d, t) = 0. Suppose that, with the magnetic field applied, we allow the system

to reach equilibrium. At equilibrium, for large magnitudes of the applied magnetic field,

apart from a transition layer close to the glass plates, the director is aligned to the

magnetic field, so that in the bulk θ(z, t) ≈ π/2, as we show later. Now suppose that,

say, at t = 0, we switch off the magnetic field.

The equations governing the dynamics of the director and the flow speed after the

magnetic field is turned off [13, pp. 225–226] are

γ1θt =
(

K1 cos
2 θ +K3 sin

2 θ
)

θzz

+ (K3 −K1) sin θ cos θ (θz)
2 −m(θ)vz, (1.1)

ρvt = (g(θ)vz +m(θ)θt)z , (1.2)

where

m(θ) = α3 cos
2 θ − α2 sin

2 θ, (1.3)

g(θ) =
1

2

(

α4 + (α5 − α2) sin
2 θ + (α3 + α6) cos

2 θ
)

+ α1 sin
2 θ cos2 θ, (1.4)

γ1 and αi are various viscosities, Kj are elastic constants, and ρ is the fluid density.

The (Ericksen–Leslie) equations (1.1)–(1.2) are supplemented with homogeneous Di-

richlet boundary conditions and initial conditions for θ and v. For the director angle the

initial condition is θ(z, 0) = θ0(z), where θ0(z) is the solution of the quasilinear field-on

equilibrium equation, which is [13]

(K1 cos
2 θ0 +K3 sin

2 θ0)θ0zz + (K3 −K1) sin θ0 cos θ0 (θ0z)
2

(1.5)

+ μ0ΔχH2 sin θ0 cos θ0 = 0,

where H is the magnitude of the magnetic field, μ0 is the permeability of free space, Δχ

is the magnetic anisotropy, and θ0(±d) = 0. Since we have assumed that the magnetic

field has been applied for a sufficiently long time to achieve equilibrium, the fluid will be

stationary just before we switch the field off. We therefore take the initial condition for

the fluid speed to be v(z, 0) ≡ 0.

If we now perform the rescaling (z, t) �→ (x, s) by letting

z = d x, t = τ1 s, (1.6)

introducing θ̂(x, s) = θ(z, t) and v̂(x, s) = v(z, t), and the new constant parameters

λ := −α2d

K3

, ζ :=
γ1d

K3

, τ1 :=
d2γ1
K3

, τ2 := −d2ρ

α2

, k :=
K1

K3

, (1.7)

the problem (1.1)–(1.2) becomes

θ̂s =
(

k cos2 θ̂ + sin2 θ̂
)

θ̂xx

+ (1− k) sin θ̂ cos θ̂
(

θ̂x

)2

+ m̂(θ̂) (λ v̂x) , (1.8)

τ2
τ1

(ζ v̂s) =
(

−ĝ(θ̂) (ζ v̂x)− m̂(θ̂)θ̂s

)

x
, (1.9)
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where

m̂(θ̂) = a3 cos
2 θ̂ − sin2 θ̂, (1.10)

ĝ(θ̂) =
1

2

(

a4 + (a5 − 1) sin2 θ̂ + (a3 + a6) cos
2 θ̂

)

+ a1 sin
2 θ̂ cos2 θ̂, (1.11)

and ai = αi/α2 for i = 1, 3, 4, 5, 6. The parameter k is a measure of the deviation from

elastic isotropy and is often taken to be one in order to simplify the equations. We will

not need to use this simplification in this paper.

The parameters λ and ζ have dimensions of the inverse of velocity and provide two

fluid velocity scales. The first velocity scale 1/λ derives from the flow induced by the

reorientation of the director due to the elastic effects and, as can be seen in equation (1.7),

the second, 1/ζ, is simply a rescaling of the first by the ratio of viscosities −γ1/α2. (Note

that γ1 > 0 and α2 < 0 for liquid crystals consisting of elongated rod-like molecules. For

liquid crystals consisting of disc-like molecules α2 > 0 and the obvious changes of sign

in parameters such as λ would be used.)

There are also evidently two time scales in this problem, τ1 and τ2. The first time scale,

τ1, with which we have rescaled time, is the typical time for elastic effects to reorient

the director. The second time scale, τ2, is the time scale at which the fluid inertia reacts

to changes in director orientation. In a standard liquid crystalline material these two

time scales are considerably different. For example, in the liquid crystal 5CB, using the

parameter values provided in [13, Appendix D], and assuming we have a liquid crystal

layer of thickness d = 1× 10−5 m (a typical device thickness) we find

τ1 = 0.948 s , τ2 = 1.256× 10−6 s. (1.12)

Because of the vast difference in time scales of these two effects, which mean that τ2/τ1
is significantly smaller than 1, it is common to neglect the inertial term in equation (1.9).

This can be justified in a formal way using a multiple time scale analysis [15], and it is

found that, on the time scale of director reorientation τ1, the velocity field is essentially

a “slave” variable to the director angle. On this time scale, which is the one we are

interested in, the simplified equations are then

θ̂s =
(

k cos2 θ̂ + sin2 θ̂
)

θ̂xx

+ (1− k) sin θ̂ cos θ̂
(

θ̂x

)2

+ m̂(θ̂) (λ v̂x) , (1.13)

0 =
(

ĝ(θ̂) (ζ v̂x) + m̂(θ̂)θ̂s

)

x
. (1.14)

On this time scale the time s = 0 is in fact the time after which the velocity has re-

configured, through inertia effects, to allow equation (1.14) to be satisfied. Therefore,

although the initial condition for θ̂(x, 0) = θ̂0(x) remains the one obtained from the

field-on governing equation (1.5) appropriately rescaled using equation (1.6), the initial

condition for the flow speed must be altered and is obtained by solving (1.13) at s = 0

for θ̂s and then solving (1.14) for v̂. However, the procedure we suggest in this paper

makes this unnecessary.

The term kickback refers to the fact that once the magnetic field is switched off, the

profile θ̂(x, s) rearranges itself and typically rises significantly above max(θ̂0(x)) in the
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middle of the layer, before decaying to the rest state θ̂(x, s) ≡ 0; see for example [12,

Fig. 11]. It was first described under the name of “optical bounce” in the experimental

literature [6, 14, 1] in the mid-1970s and analysed in [2]. We would like to explain the

observed dynamics of the early stages of kickback, from which experimentalists obtain

information about the physical properties of the liquid crystal. The very complex and

time-consuming procedure of fitting optical measurements to numerical solutions of (1.1)–

(1.2) is described in [3, 12].

Certainly, it is difficult to see how to analyse (1.13)–(1.14) other than by numerical

methods. However, a different approach [2] is as follows: for large H, the director aligns

with the magnetic field direction, and θ̂0(x) is exponentially close to π/2 in the bulk.

Hence for s > 0 sufficiently small, the dynamics in the bulk (i.e., away from boundary

layers) is well described by evaluating the nonlinear terms in (1.1)–(1.2) at θ̂ = π/2,

which gives
{

θ̂s = θ̂xx − λv̂x,

0 = v̂xx + βθ̂xs,
(1.15)

for s > 0 and |x| < 1, and where we have defined the nondimensional parameter β =

−α2/(ζη2) with η2 = (α4+α5−α2)/2, which is a Miesowicz viscosity and always positive.

These equations are subjected to the boundary conditions

θ̂(−1, s) = θ̂(1, s) = 0, v̂(−1, s) = v̂(1, s) = 0, for s > 0, (1.16)

and the initial condition remains as

θ̂(x, 0) = θ̂0(x), for |x| < 1. (1.17)

Using (1.7) and the thermodynamical restrictions referred to in [13, page 230], it also

follows that

λβ =
α2
2

η2γ1
∈ (0, 1) . (1.18)

The approximation used above, that θ0 ≈ π/2, perhaps needs some further justifica-

tion. In the bulk of the liquid crystal the alignment with the magnetic field means that

this will be an acceptable approximation. However, we have insisted that θ̂(±1, s) = 0 so

that this approximation cannot be accurate close to the boundaries. For sufficiently long

times the effects of these boundary conditions will surely be transmitted (through elastic

relaxation) into the bulk of the cell. The question is, will kickback occur before the error

in this approximation becomes apparent in the bulk of the liquid crystal? No analysis of

this question will be considered in this paper, and it remains an interesting open problem.

Instead we simply provide numerical evidence which justifies this approach for a standard

liquid crystal. In Figure 1 we have numerically solved the system based on the nonlinear

equations (1.13)–(1.14) as well as the system based on their linear counterparts (1.15),

i.e., where the equations were “frozen” using the assumption that nonlinear terms are

evaluated using θ̂ = π/2. We have used the material parameters for the liquid crystalline

material 5CB (values taken from [13]) and the magnetic field value of H = 107 A/m

(equivalent to approximately 12Tesla). Figure 1 shows that for t < 0 the director angle

in the middle of the cell is π/2 and increases when the magnetic field is removed (at

t = 0); this increase in director angle is the kickback effect. It is clear that the “frozen
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Fig. 1. Comparison between nonlinear (dashed) and linear (solid)
solutions: the director angle at the middle of the cell θ(0, t) as a
function of time. For both cases we have neglected inertia. (b) is a
zoomed plot of (a), close to when the magnetic field was turned off.

bulk” approximation has not qualitatively affected the kickback effect and in fact makes

very little difference quantitatively. If we use θn(z, t) and θl(z, t) to denote the nonlinear

and linear solutions, respectively, and we let Tn and Tl be the time for which the director

angle reaches its maximum for the two cases, then the time of maximum kickback has

been changed by 1.2%, i.e., (Tn−Tl)/Tn = 0.012, and the maximum director angle value

is reduced by 7.9%, i.e, (max(θn(0, t)) − max(θl(0, t)))/max(θn(0, t)) = −0.079. Given

that these are typical parameters for a liquid crystal cell, we are confident that the linear

approximation will not overly affect the analysis in this paper.

With confidence in our approximations, the system (1.15) is thus the object of inves-

tigation of the present paper. This system is the same as equations (4.3)–(4.5) in [2].

Everywhere below we remove the carets for simplicity. The main result below, Theorem

3.1, shows why these equations account for kickback. In [8], we propose a scheme for the

determination of some of the physical characteristics of the liquid crystal based on the

scalar linear nonlocal equation for the initial stages of the evolution of the director field

which is derived from (1.15) and analysed in the present work.
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2. Decoupling. We can now decouple the equations in (1.15). First, let us integrate

the first equation in (1.15) with respect to x from −1 to 1 and use (1.16) to get
∫ 1

−1

θs dx =

∫ 1

−1

θxx dx. (2.1)

In (2.1) the v term disappears due to the boundary conditions v(−1) = 0 = v(1).

If we now integrate the second equation in (1.15) with respect to x from −1 to x, we

obtain

vx(x, s)− vx(−1, s) = −βθs(x, s), (2.2)

where the boundary condition θ(−1) = 0 (which implies that θs(−1) = 0) has been used

to simplify the right-hand side.

Substituting vx(x, s) from (2.2) into the first equation of (1.15) gives

μθs = θxx − λvx(−1, s). (2.3)

By (1.18),

μ ≡ 1− λβ > 0, (2.4)

and we will show below that this condition is sufficient for well-posedness of (2.3).

If we then integrate equation (2.3) from −1 to 1, we obtain

μ

∫ 1

−1

θs dx =

∫ 1

−1

θxx dx− 2λvx(−1, s). (2.5)

Using equations (2.1) and (2.5), we can write vx(−1, s) in terms of
∫

θxx, and then

substituting this into equation (2.3) gives us the decoupled equation for the director angle

θ,

μθs = θxx − λβ

2

∫ 1

−1

θxx dx. (2.6)

Finally, by a further time rescaling s = μτ , writing u(x, τ ) ≡ θ(x, s), we obtain from

(1.15)–(1.16) the initial boundary value problem
⎧

⎪

⎨

⎪

⎩

uτ = uxx − α

2

∫ 1

−1

uxx dx for |x| < 1 and τ > 0,

u(−1, τ ) = u(1, τ ) = 0 for τ > 0,

(2.7)

where α = λβ ∈ (0, 1), with suitable initial condition u(x, 0) = u0(x).

Remark. Once the director angle u(x, τ ) is available, and therefore so is θ(x, s), it

can be used to compute the flow speed v(x, s) as follows: differentiating the first of (1.15)

with respect to x and using the second equation in (1.15) to solve for θsx, we have that

(av − θx)xx = 0, x ∈ (−1, 1), (2.8)

where

a =
d

K3

(

γ1η2
α2

− α2

)

.

Note that by [13, pp. 156–158], a �= 0 and that sgn(a) = sgn(α2) (positive for rod-like

molecules and negative for disc-like ones). Integrating (2.8), we have

av(x, s)− θx(x, s) = f1(s) + f2(s)x.
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By symmetry of θ(x, s) around x = 0 and the boundary conditions on v(x, s), we have

that f1(s) ≡ 0. The same argument also gives us that

f2(s) = −θx(1, s),

so that

v(x, s) =
1

a
(θx(x, s)− xθx(1, s)) .

The dimensional version of this solution and θ(x, s) are then found using the rescalings

in equations (1.6).

3. Kickback. If in (2.7) α = 0, the parabolic maximum principle precludes kickback,

but we will show below that the inclusion of the nonlocal term makes it possible. We

have

Theorem 3.1. For every α ∈ (0, 1) there exists a magnitude of the magnetic field, Hα,

such that for all H > Hα (2.7) with the initial condition u0(x) = θ0(x) displays kickback.

Proof. A sufficient condition for kickback is that, at time τ = 0, when the magnetic

field is switched off, the solution u(x, τ ) of (2.7) satisfies uτ (0, τ ) > 0 for all small times

τ . In order to have this, we must have that

u0 ∈ Sα :=
{

u ∈ Y |uxx(0)−
α

2

∫ 1

−1

uxx dx > 0
}

,

where Y is an appropriate function space, e.g., Y = H1
0 (−1, 1) ∩ H2(−1, 1). Note that

as we will work with functions that are concave and symmetric with respect to x = 0,

we need only care about the behaviour at x = 0.

For each α the set Sα is nonempty; in particular, any concave positive function v(x)

such that v′′(0) = 0 is in Sα for all α, and so (2.7) supports kickback.

However, we would like to establish that the initial condition u0(x) ≡ θ0(x), the

equilibrium solution of the equations with the magnetic field switched on, belongs in Sα

for sufficiently large amplitude of the magnetic field H. By [13], θ0(x) satisfies the scaled

version of equation (1.5),

(k cos2 θ0 + sin2 θ0)θ0xx + (1− k) sin θ0 cos θ0 (θ0x)
2

(3.1)

+
μ0Δχd2H2

K3

sin θ0 cos θ0 = 0,

with the boundary conditions θ0(±1) = 0.

First of all, by an easy adaptation of the results in [4] to the present boundary condi-

tions, we have

Lemma 3.2. The nonnegative solution θ0 : [−1, 1] → R of (3.1) with θ0(±1) = 0 is a

concave function.

To motivate our reasoning in the general case, it is best to start with the one-constant

case k = 1 (i.e., K1 = K3). Then (3.1) becomes

ǫ2θ0xx + sin θ0 cos θ0 = 0, θ0(±1) = 0. (3.2)
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Here we have put

ǫ =
1

dH

√

K3

μ0Δχ
≪ 1.

This is a standard singularly perturbed boundary value problem, and we use matched

asymptotic expansions (see, e.g., [11, Ch. 2] or [16, Ch. 3–6]) to find a uniformly valid

approximation.

By expanding in a regular perturbation expansion in ǫ, we find the outer approximation

(θ0)o = π/2 + EST, where we denote by EST exponentially small terms. Clearly, this

solution, if extended to the boundary, will not satisfy the boundary conditions at x =

±1, so we expect boundary layers close to both endpoints of the interval [−1, 1]. Let

us consider the situation close to x = −1. Following the usual procedure for finding

significant degenerations [16, Ch. 4], we see that the correct variable is ξ = (x + 1)/ǫ,

i.e., the boundary layer is of length ofO(1/H). For the leading order inner approximation,

say ψ(ξ), in this boundary layer we obtain the equation

ψξξ + sinψ cosψ = 0

subject to

ψ(0) = 0, lim
ξ→∞

ψ(ξ) = π/2.

It is easily found (this is just the standing kink solution of the sine-Gordon equation [5])

that the solution we need is

ψ(ξ) = 2 arctan(exp ξ)− π/2.

Treating the other boundary layer in the same way, but using the anti-kink solution,

matching [16, p. 276], and passing to the original variables, we obtain

θ0(x) ≈ 2 arctan

(

exp

(

Hd

√

μ0Δχ

K3

(x+ 1)

))

+ 2arctan

(

exp

(

−Hd

√

μ0Δχ

K3

(x− 1)

))

− 3π

2
.

Now we note the following features: θ0xx(0) is exponentially small, since the nonlin-

earity in (3.2) is Lipschitz; θ0x(1) = −θ0x(−1) by symmetry and θ0x(1) = CH + o(H),

C < 0, C = O(1). On the other hand,
∫ 1

−1

θ0xx = 2θ0x(1) = 2CH + o(H).

Hence in this particular case of K1 = K3, we have that θ0(x) ∈ Sα for H large enough.

The same argument works for a large H approximation to the positive solution of

(3.1). The outer approximation to any order is π/2 plus exponentially small terms,

which means that θ0xx(0) is exponentially small. Since the inner approximation at, say,

the boundary layer close to x = −1, is an expansion in the variable (x+ 1)H, the width

of the boundary layer at both boundaries is O(1/H), and since the value of the solution

at the boundary, θ0(±1) = 0 has to match the O(1) values in the bulk, the derivative

θ0x must be O(H) somewhere in the boundary layer. However, by Lemma 3.2 θ0(x) is
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concave. Therefore the maximum and the minimum of the derivative are taken at the

boundary. Thus, θ0x(±1) = O(H). These two facts together imply as above that for

every α ∈ (0, 1), we can find Hα large enough so that the solution θ0(x) of (3.1) is in Sα

for all H > Hα. �

4. Analysis of (2.7). In this section we collect mathematical results on the decou-

pled equation (2.7) with homogeneous Dirichlet boundary conditions. In particular, we

will analyse the spectrum of the nonlocal operator that generates the semiflow of (2.7)

and show that its eigenfunctions form a complete set. This is necessary for the applica-

tions of this equation in estimating liquid crystal characteristics γ1, η2, K3, and α2 as is

explained in [8]. We start by establishing a generation theorem.

Let X := L2(−1, 1), and let ‖ · ‖ represent the norm and 〈·, ·〉 the inner product in

X. Define D(A) := H1
0 (−1, 1) ∩ H2(−1, 1), and let A : D(A) → X be the Dirichlet

Laplacian operator Au := −uxx. Now let P be the orthogonal projection onto the

subspace of constant functions in L2(−1, 1), i.e.,

Pf =
1

2

∫ 1

−1

f .

Then we can write
α

2

∫ 1

−1

uxx = −αPAu,

and hence

Lu := −uxx +
α

2

∫ 1

−1

uxx = Au− αPAu = (I − αP )Au for u ∈ D(A),

which defines a linear nonlocal operator with domain D(A).

Lemma 4.1. The linear operator −L is sectorial in X and hence is an infinitesimal

generator of an analytic semigroup in X.

Proof. For u ∈ D(A), we have ‖αPAu‖ ≤ α‖P‖ ‖Au‖ = α‖Au‖. Since A is a positive

self-adjoint operator and α < 1, the assertion follows from a well-known perturbation

result (e.g., [10, Theo. 1.3.2.]). �

This result gives the well-posedness of the Cauchy problem defined by (2.7) given an

initial condition u0 ∈ X.

It is not hard to see that
∫ 1

−1
u2
x dx is a Liapunov function for (2.7), and hence using

results of Hale [9], we conclude that (2.7) has a compact attractor composed of equilibria

and that the ω-limit set of any initial condition u0 ∈ X belongs to the set of equilibria.

Furthermore, it can be readily seen that the only equilibrium of (2.7) is u ≡ 0, so solutions

through all initial conditions in X converge to 0.

Clearly, (2.7) preserves reflection symmetry around x = 0. We also have

Lemma 4.2. If u0 ∈ C2([−1, 1]) is a strictly concave function, the solution u(x, τ ) of

(2.7) with the initial data u(x, 0) = u0(x) is classical and strictly concave in x.

Proof. Regularity of the solution follows by standard parabolic theory [10]. Suppose

that u0xx(x) < 0 and assume that there is a time τ0 and a point x0 such that for
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all τ ∈ [0, τ0), u(x, τ ) is strictly concave but uxx(x0, τ0) = 0. First of all note that

x0 /∈ {−1, 1}. This follows since uτ (±1, τ ) = 0 for all time and so

uxx(±1, τ0) =
α

2

∫ 1

−1

uxx(s, τ0) ds < 0

by definition of τ0. Finally, by differentiating (2.7) twice with respect to x, we conclude

that

uxxτ (x0, τ0) = uxxxx(x0, τ0) ≤ 0,

which is a contradiction. �

Since α �= 1, the operator I − αP is boundedly invertible and its inverse is given by

Rf := (I − αP )−1f = f +
α

2(1− α)

∫ 1

−1

f

as one can easily check. The operator R−1 = I − αP is then given by

R−1g = g − α

2

∫ 1

−1

g for any g ∈ X (4.1)

and we can write the factorisation of L as L = R−1A.

The following result is then a straightforward consequence of this.

Lemma 4.3. The operator L has compact resolvent and 0 ∈ ρ(L).

Proof. The inverse of L is given by A−1R, which is a compact operator on L2(−1, 1)

since A−1 is compact and R is bounded. �

Let us now introduce a new inner product on L2(−1, 1):

〈f, g〉R := 〈Rf, g〉 for f, g ∈ L2(−1, 1).

Lemma 4.4. The operator L is self-adjoint with respect to the inner product 〈·, ·〉R.

Proof. Because of the factorisation L = R−1A, the operator L is symmetric with

respect to 〈·, ·〉R. It is self-adjoint since 0 ∈ ρ(L). �

The self-adjointness of L enables us to prove the following theorem. (For a definition

of a Riesz basis, see [7, Chapter 6].)

Theorem 4.5. The spectrum of L consists of a sequence of real eigenvalues that accu-

mulate at +∞. The corresponding eigenfunctions form a Riesz basis in L2(−1, 1).

Proof. Lemmas 4.3 and 4.4 imply that the spectrum of L consists of a sequence of real

eigenvalues. They accumulate only at +∞ since A is a positive operator. If the eigen-

functions (φn)n∈N are normalised with respect to the inner product 〈·, ·〉R, then they

form an orthonormal basis in (L2(−1, 1), 〈·, ·〉R). Hence (R1/2φn)n∈N is an orthonor-

mal basis in (L2(−1, 1), 〈·, ·〉), which implies that (φn) is a Riesz basis since R1/2 is a

homeomorphism. �

Considering the eigenvalue problem for L, i.e.,

−φxx +
α

2

∫ 1

−1

φxx dx = νφ, φ(−1) = φ(1) = 0,
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we see that there are two sets of eigenfunctions. The first set consists of odd functions

of the form φ(x) = sin(
√
νx) where the eigenvalues are ν2m−1 = (πm)2, m ≥ 1.

The second set of (even) eigenfunctions is of the form

φ(x) = cos(
√
νx)− α√

ν
sin(

√
ν).

In this case the boundary conditions φ(±1) = 0 imply that the eigenvalues ν2m, m ≥ 1,

are the positive numbers ν which satisfy

α tan(
√
ν) =

√
ν.

5. Remarks. We have shown that, on the time scale of director rotation, under ap-

propriate conditions valid in the bulk in early stages of the system’s evolution, the θ

equation can be decoupled from the one for the flow variable v, and that the resulting

equation is governed by the second order nonlocal linear differential operator L, which,

as we have shown, has a complete set of eigenfunctions. In [8], we show that expanding

the solution θ(z, t) in eigenfunctions of the operator L can be used to obtain information

about elastic constants and viscosities of the liquid crystalline material, thus somewhat

simplifying very time-consuming procedures [3, 12]. Note that evaluating the nonlinear

terms at θ = π/2 eliminates the constants K1, α1, α3, α6, and the linear dynamics only

carries information about K3, α2, α4, α5, and γ1. However, there are relationships be-

tween the various parameters; e.g., see [13] for the Parodi relation between the viscosities.

Due to these, only two independent constants, K1 and α1, are eliminated because of the

linearisation. To find estimates of these “missing” constants, one needs to consider the

dynamics of the undisturbed liquid crystal layer (θ ≡ 0, v ≡ 0) as a sufficiently strong

magnetic field is switched on [13].

We have also shown that the linear equations (1.15) predict kickback if the applied

magnetic field is sufficiently strong. It would be interesting to prove a similar result for the

full Ericksen–Leslie equations (1.1)–(1.2), which will provide a long overdue theoretical

underpinning to experimental work such as [3, 12].
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[7] I. C. Gohberg and M. G. Krĕın, Introduction to the Theory of Linear Nonselfadjoint Operators,

Translations of Mathematical Monographs, vol. 18, American Mathematical Society, Providence,
RI, 1969. MR0246142 (39:7447)

[8] M. Grinfeld, M. Langer and N. J. Mottram, Nematic viscosity estimation using director kickback
dynamics, to appear in Liquid Crystals (2011).

[9] J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs,
vol. 25, American Mathematical Society, Providence, RI, 1988. MR941371 (89g:58059)

[10] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics,
vol. 840, Springer-Verlag, Berlin, 1981. MR610244 (83j:35084)

[11] M. H. Holmes, Introduction to Perturbation Methods, Texts in Applied Mathematics, Vol. 20,
Springer-Verlag, New York, 1995. MR1351250 (96j:34095)

[12] J. R. Sambles and L. Z. Ruan, Testing the dynamic theory of nematics using fully-leaky guided
modes and a convergent beam system J. Non-Newtonian Fluid Mech. 119 (2004), 39–49.

[13] I. W. Stewart, The Static and Dynamic Continuum Theory of Liquid Crystals: a Mathematical

Introduction, The Liquid Crystals Book Series, Taylor and Francis, New York, 2004.
[14] C. Z. van Doorn, Dynamic behavior of twisted nematic liquid crystal layers in switched fields, J.

Appl. Phys. 46 (1975), 3738-3745.
[15] M. D. van Dyke, Perturbation Methods in Fluid Mechanics, Parabolic Press, Stanford, 1975.

MR0416240 (54:4315)
[16] F. Verhulst, Methods and Applications of Singular Perturbations: Boundary Layers and Multiple

Timescale Dynamics, Texts in Applied Mathematics, Vol. 50, Springer-Verlag, New York, 2005.
MR2148856 (2006k:34001)

http://www.ams.org/mathscinet-getitem?mr=0246142
http://www.ams.org/mathscinet-getitem?mr=0246142
http://www.ams.org/mathscinet-getitem?mr=941371
http://www.ams.org/mathscinet-getitem?mr=941371
http://www.ams.org/mathscinet-getitem?mr=610244
http://www.ams.org/mathscinet-getitem?mr=610244
http://www.ams.org/mathscinet-getitem?mr=1351250
http://www.ams.org/mathscinet-getitem?mr=1351250
http://www.ams.org/mathscinet-getitem?mr=0416240
http://www.ams.org/mathscinet-getitem?mr=0416240
http://www.ams.org/mathscinet-getitem?mr=2148856
http://www.ams.org/mathscinet-getitem?mr=2148856

	1. Introduction
	2. Decoupling
	3. Kickback
	4. Analysis of (2.7)
	5. Remarks
	Acknowledgments
	References

