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Abstract: Regression using Gaussian process models is applied to time-series data 

analysis. To extract from the data separate components with different frequency 

scales, the Gaussian regression methodology is extended through the use of multiple 

Gaussian process models. Fast and memory-efficient methods, as required by 

Gaussian regression to cater for large time-series data sets, are discussed. These 

methods are based on the generalised Schur algorithm and a procedure to determine 

the Schur decomposition of matrices, the key step to realising them, is presented. In 

addition, a procedure to appropriately initialise the Gaussian process model training 

is presented. The utility of the procedures is illustrated by application of a multiple 

Gaussian process model to extract separate components with different frequency 

scales from a 5000-point time-series data set with gaps. Copyright © 2006 

USTRATH 
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1. INTRODUCTION 
 
Following the early work by MacKay (1998) and 

Williams (1999), there has been increasing interest in 

the application of Gaussian process prior models to 

data analysis (Gibbs and MacKay, 2000; Yoshioka, 

and Ishii, 2001), including data filtering and fitting, 

statistical modelling and system identification. 

Gaussian regression based on models with two 

stochastic processes is discussed in Leithead et al 

(2005b). During training of the prior model the two 

Gaussian processes are conditioned on data subject 

to the condition that they remain independent. 

Separate components in the data with different 

characteristics or, more precisely, their description 

by probability distributions can then be extracted. 
 
In this paper, the application of Gaussian regression 

to time-series data analysis is considered. A brief 

overview of Gaussian regression is given in Section 

2. The methodology based on Gaussian process 

models with two stochastic processes is extended in 

Section 3 to models with M stochastic processes. 

When applied to time-series data, separate 

components with different frequency scales can then 

be extracted. However, for a data set of size N, many 

matrix manipulations requiring O(N3) operations and 

O(N2) memory-storage, such as matrix inversion and 

log-determinant, are necessary during training and 

prediction. Since the matrices, encountered in the 

application of Gaussian regression to the analysis of 

large time-series data sets, are Toeplitz-like, fast and 

memory-efficient methods for matrix manipulation 

are possible. Methods, based on the Schur algorithm 

rather than the Modified Levinson-Durbin�s 

algorithm (Zhang and Leithead, 2004), are more 

general and so are preferred; for example, when 

analysing time-series data with gaps. Fast and 

memory-efficient methods based on the Schur 

algorithm, with the focus on the key step of 

determining the Schur decomposition, are discussed 

in Section 4. A procedure to determine the Schur 

decomposition is proposed. In addition, training of 

the Gaussian process prior models is non-convex. 



     

Hence, it may be inefficient and can converge on an 

incorrect model. A procedure to ensure appropriate 

initialisation, when applying Gaussian regression to 

time-series data, is presented in Section 5. Finally, 

the utility of the above procedures is illustrated in 

Section 6 by application of a multiple Gaussian 

process model to extract independent components 

from a time-series data set with gaps. 
 
 

2. GAUSSIAN PROCESS PRIOR MODELS 
 

A   brief   explanation   of   the    standard    Gaussian 

regression methodology and its application to data 

analysis is reviewed in this section. Consider a 

smooth scalar function f(.) dependent on the 

explanatory variable, pℜ⊆∈ Dz . Suppose N 

measurements, ( ){ }N

iii 1
y, =z , of the value of the 

function with additive Gaussian white measurement 

noise, i.e. yi=f(zi)+ni, are available and denote them 

by M. It is of interest here to use this data to learn the 

mapping f(z) or, more precisely, to determine a 

probabilistic description of f(z) on the domain, D, 

containing the data. Note that this is a regression 

formulation and it is assumed the input z is noise 

free. The probabilistic description of the function, 

f(z), adopted is the stochastic process, fz, with the 

E[fz], as z varies, interpreted to be a fit to f(z). By 

necessity, to define the stochastic process, fz, the 

probability distributions of fz for every choice of 

value of D∈z  are required together with the joint 

probability distributions of 
izf  for every choice of 

finite sample, {z1,�,zk}, from D, for all k>1. Given 

the joint probability distribution for 
izf , i=1..N, and 

the joint probability distribution for ni, i=1..N, the 

joint probability distribution for yi, i=1..N, is readily 

obtained since the measurement noise, ni, and the 

f(zi) (and so the 
izf ) are statistically independent. M 

is a single event belonging to the joint probability 

distribution for yi, i=1..N. 
 
In the Bayesian probability context, the prior belief is 

placed directly on the probability distributions 

describing fz which are then conditioned on the 

information, M, to determine the posterior 

probability distributions. In particular, in the 

Gaussian process prior model, it is assumed that the 

prior probability distributions for the fz are all 

Gaussian with zero mean (in the absence of any 

evidence the value of f(z) is as likely to be positive 

as negative). Only a definition of the covariance 

function ]f,f[),(
ji

EC ji zzzz = , for all zi and zj, is 

required to complete the statistical description. The 

resulting posterior probability distributions are also 

Gaussian. This model is used to carry out inference 

as follows. 
 

Clearly, by Bayes� rule, p(fz|M)=p(fz,M)/p(M) where 

p(M) acts as a normalising constant. Hence, with the 

Gaussian prior assumption, 
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where Y=[y1,�yN]T, ȁ11 is E[fz, fz], the ijth element 

of the covariance matrix ȁ22 is E[yi, yj] and the ith 

element of vector ȁ21 is E[yi, fz]. Both ȁ11 and ȁ21 

depend on z. Applying the partitioned matrix 

inversion lemma, it follows that 
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with Yz

1
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Therefore, the prediction from this model is that the 

most likely value of f(z) is the mean, zf� , with 

variance ȁz. Note that zf�  is simply a z-dependent 

weighted linear combination of the measured data 

points, Y, using weights 1

2212

−ΛΛ . The measurement 

noise, ni, i=1,..N, is statistically independent of f(zi), 

i=1,..N, and has covariance matrix B. Hence the 

covariances for the measurements, yi, are simply 

]f,f[E]fy[E;B]f,f[E]yy[E ,, zzzzz iji iijji =+=  

 
The prior covariance function is generally dependent 

on a few hyperparameters, ș. To obtain a model 

given the data, M, the hyperparameters are adapted to 

maximise the likelihood, p(M|ș), or equivalently to 

minimise the negative log likelihood, L(ș), 

YY 1)(
2

1
|)(|log

2

1
)( −+= θθθ CCL T  (1) 

where 22)( Λ=θC , the covariance of the 

measurements. 

 

When, as here, the data set is a time series, the 

explanatory variable is simply time, i.e. zi=ti. A 

common choice of the covariance function for time 

series analysis is ])tt(exp[ 2

2
1

jida −− , where the 

hyperparameter, d, is related to the length-scale of 

the data and the hyperparameter, a, to the amplitude 

of the data such that ]f,f[E tt ii
a = . Assuming the 

measurement noise is white, its covariance function 

is ijnδ , where n is the noise variance such that 

],[E ii nnn = . It follows that the covariance function 

for the measured data and so the ij-th element of C(θ) 

is 

{ }ijji bda δ+−− ])tt(exp[ 2

2
1  (2) 

where abn = . The hyperparameters for the prior 

model (2) are θ=(a,d,b). 
 
 

3. MODELS WITH MULTIPLE GAUSSIAN 

PROCESSES 
 

The procedure outlined in Section 2 is very effective 

when used to identify a single function. However, 

suppose that the measurements are the sum of the 

values of M functions, each with different 

characteristics; that is, the measured values are 

iiii ny +++= )(f)(f M1 zz K . The case with M=2 is 

discussed in detail in (Leithead et al 2005b). A 

possible probabilistic description of 

)(f)(f)(h M1 zzz ++= K  is by means of the sum of 

M independent Gaussian processes, zz M1 f,..,f . Let 

the covariance functions for these independent 



     

Gaussian processes be ),( jif1
zzC ,�, ),( jifM

zzC , 

respectively, then zzz M1 ffh ++= L , is itself a 

Gaussian process with covariance function 

M1 ffh CCC ++= L . 
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kkk K
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1 zzzF L= , the ijth element of  

],[E �~�~ zz

FF

zz FF nm
nm =Λ  is nm

ji

ff
�~ zzΛ . The prior joint 

probability distribution for zF �1 ,�, zF �M  and Y is 

Gaussian with mean zero and covariance matrix 
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where MM11 FF

zz

FF

zzBQ ΛΛ +++= L  and B is the noise 

covariance matrix. Applying the partitioned matrix 

lemma, the posterior joint probability distribution for 

zF �1 ,�, zF �M   conditioned on the data, Y remains 

Gaussian with mean, M , and covariance matrix, Λ , 

where 
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The mean and covariance matrix for 

zzz FFH �M�1� ++= L  are, respectively, YQ
H
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1
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H

zz

H

zz Q �
1

��� ΛΛΛ −− , where MM11
���

FF

zz

FF

zz

H

zz ΛΛΛ ++= K . 

 

However, the requirement here is to determine the 

posterior probability distribution for zF1 ,�, zFM , 

conditioned on the data, subject to the condition that 

they remain independent. It is met (Leithead et al 

2005b) through a transformation of the zF1 ,�, zFM  

such that the mean and covariance of the posterior 

joint probability distribution become, respectively, 





















−−
−

−−

−

YQBQ

YQBQ

YQ

1

MM

1

1M

1

22

1

1

1

11

Λ

Λ
Λ

    and   





















−
−

−
−

−−

−

BQBQ

BQBQ

BQ

1

1MM

1

1M

1

22

1

1

1

11

Λ

Λ
Λ

M
diag  

where kk

k

FFFF

ZZZZ
ΛΛΛ ++= L11  and BQ += kk Λ . 

(Note, the likelihood of the data remains unaffected 

by the transformation). 

 

When applied to time-series data, these multiple 

Gaussian process models enable separate 

components with different frequency scales to be 

extracted. 
 

 
4. GENERALISED SCHUR ALGORITHM  

 
For time-series data with a constant sampling 

interval, as here, the covariance matrix, C(ș), is 

Toeplitz (or, when there are gaps in the data, block-

Toeplitz), and has low displacement rank. Applying 

the generalised Schur algorithm (Kailath and Sayed, 

1999), many manipulations of these low 

displacement rank matrices require only O(N2) 

operations, rather than O(N3). These fast memory-

efficient methods then enable the use of Gaussian 

regression with large time-series data. 
  

Consider a positive-definite matrix, NNR ×∈R . The 

triangular decomposition is denoted by 
TLLDR 1−=  

where D = diag{d0,d1,..dN-1} is a diagonal matrix. 

The lower triangular matrix L is normalised so that 

the elements on its main diagonal are the {di}. This 

LDL-decomposition can be obtained through the 

Schur reduction algorithm. 
 
The Schur algorithm applies to strongly regular 

Hermitian Toeplitz-like matrices, R, satisfying 
** GJGFRFRR ≅−=∆ , IJJJ T == 2,  (3) 

for some full rank generator matrix G, and lower 

triangular matrix, F, for which the diagonal elements, 

}{ if , satisfy 

01 * ≠− ji ff  for all i, j (4) 

The signature matrix, J, is defined to be J-unitary, 

)( qp IIJ −⊕= , where p and q are, respectively, the 

number of strictly positive and strictly negative 

eigen-values of ∆R. K=p+q, the total number of non-

zero eigen-values, is the displacement rank of R. 
 
A key requirement is a procedure to determine 

explicitly the rank-revealing decomposition, {G, F 

and J}. In the context of Gaussian process prior 

models, R is real, symmetric and positive-definite. 

(Its successive Schur complements are also positive-

definite.) J is simply defined to be )( 2/2/ KK II −⊕ , 

i.e. p = q. F is the strictly lower-triangular shift 

matrix, )(
321
K⊕⊕⊕= NNN ZZZF , depending on 

the number of inner Toeplitz-blocks inside R. Matrix 

ZN is defined here to be a square lower-triangular 

shift matrix with ones on the first subdiagonal and 

zeros elsewhere (i.e. a lower-triangular Jordan block 

with eigenvalue equal to zero). The generator matrix, 

G, can be obtained by the following procedure. 
 
Procedure 1: 

1) Let NNR ×∈R  be a symmetrical and Hermitean 

matrix, with low displacement rank, K<<N, such that 

the reduced-row echelon form (RREF) is 
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where [ ]TT BAB
~~

=  and 2/2/ KKA ×∈R  is 

symmetric. Any symmetric Hermitean block-Toeplitz 

matrix can be transformed into a matrix with the 

above RREF by permuting its rows and columns. Let 

EDE =Γ  be the eigen-value decomposition of  
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where D is diagonal. The non-zero eigen-values of 

ǻR are real and positive and identical to the eigen-

values of Γ. In addition, the eigen-vectors of ǻR are 

real and equal to the columns of YIBX T]0[+  

where KKTTT EYX ×∈= R][ . 

2) The values of some of the eigen-values of G 

can be very similar. For numerical reasons, the 

computed eigen-values and eigen-vectors can then 

include complex conjugate pairs, i.e. D and E are 

complex. Although, the imaginary parts of these 

computed eigen-values are extremely small, the 

imaginary parts of the eigen-vectors can be large. 

Hence, to ensure D and E are real, the following 

corrections are made, 

)()(

)(

EimagErealE

DrealD

+→
→

 

3) Each column of KNT YIBX ×∈Ψ=+ R]0[  is 

an eigen-vector of ǻR with eigen-value unchanged; 

that is, the diagonal elements of D. However, since 

all the eigen-values are not distinct, the columns of 

Ψ are not automatically orthonormal as required. To 

enforce orthogonality the columns of Ψ are updated 

recursively for k = 2,�K such that, ki ≥∀ , 

i

T

i

i

T

kk
ii ΨΨ

ΨΨΨ
−Ψ→Ψ −− )( 11  

where iΨ  is the i-th column of Ψ. To obtain 

orthonormality the columns are then rescaled such 

that, k∀ , 

k

T

kkk ΨΨΨ→Ψ /  

4) With KN×∈Ψ R , obtained as above, 

TDR ΨΨ≅∆ . D has a decomposition  
TT XHHXD )( Ω=  

where H is the unitary permutation matrix separating 

the positive and negative eigen-values, Ȝi from each 

other. X is a diagonal matrix with its diagonal 

elements comprised of the square-root of the 

absolute values of the eigen-values, iλ ; that is 

)||,,||( 1 KdddiagX L=  

The required decomposition of ǻR is obtained with 

XHG

J

Ψ=
Ω=

 

that is, TGJGR ≅∆ , where XHG Ω∆  is the 

generator matrix for ǻR. 
 
 

5. HYPERPARAMETER INITIALISATION 
 
As discussed in Section 2, in Gaussian regression the 

hyperparameters, on which the covariance function 

depends, must first be trained; that is, to obtain the 

Gaussian process prior model given some data M, 

the hyperparameters are adapted to maximise the 

likelihood of the data or equivalently to minimise the 

negative log likelihood, (1). However, in general, 

minimising the log likelihood is not a simple convex 

optimisation problem; for example, the log 

likelihood can have multiple local minima. The local 

minima can be associated with different aspects of 

the data. For instance, when the data is a time series 

consisting of a long length-scale component and a 

short length-scale component, one minimum may 

correspond to the long length-scale and another 

minimum to the short length-scale component. 

Depending on the choice of initial values for the 

hyperparameters, the outcome of the optimisation 

process could be a model of either. To obtain an 

efficient optimisation of the hyperparameters, that 

converges quickly, it is essential to choose 

appropriate initial values. In this section, a procedure 

for doing so, when Gaussian regression is applied to 

time-series data, is presented. 

 

For time-series data, suppose the mean of the data is 

zero. (if not it can always be made so). The initial 

values of the hyperparameters θ=(a,d,b) for the 

covariance function (2) are determined by the 

following procedure. The discussion is illustrated 

using the power spectral density in Fig.1. 
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Fig. 1. Power spectrum of time-series data. 

 
Procedure 2: 

1) Provided the time series data is of sufficient 

length, its variance is roughly equal to a+n, since the 

amplitude hyperparameter /Na T

ii
YY== ]f,f[E tt  

and the noise hyperparameter ],[E ii nnn = . Let Vy 

and Vn, respectively, be the variances of the 

measured data and the measurement noise. It follows 

that 

)1/()/(V/V bbnanv yn +=+≈=  

2) The value for Vy is easily estimated. Since 

different values of the hyperparameters, especially 

the length-scale hyperparameter, correspond to 

models with different length-scale, the value for Vn 

depends on the choice of time-series components that 

is interpreted to be noise. For example, the spectral 

density in Fig 1 clearly indicates that the 

corresponding time series data consists of several 

components with different length-scales. Only the 

long length-scale component with frequency less 

than χ1 might be of interest when all components 

with higher frequency are interpreted as noise. In this 

case, Vn would be estimated as the cumulative sum of 

the spectrum between χ1 and χ2, the Nyquist rate. 

Hence, a* and b*, initial value for a and b, are 

obtained from  

yny vvvbva V/V;)1/(,V)1( ** =−=−=  



     

3) Let C(θ)=aP(d,b) in (1). The negative log-

likelihood function becomes 

YY
11

2
1

2
1

2
1 ),(|),(|loglog)( −−++= bdPabdPaL Tθ  

The length-scale hyperparameter, a, can be explicitly 

eliminated from L(θ) by substituting the minimising 

value of a as a function of d and b. The log 

likelihood function is thus reformulated to be 

dependent on only two hyper-parameters, d and b, 

instead of three, viz., 

[ ]YY
1T ),(log|),(|log),(

~ −+= bdPNbdPbdL    (6) 

with 

NbdPa T /),( 1
YY

−=   (7) 

The initial value, d*, for the length-scale 

hyperparameter, d, is obtained by solving the 

nonlinear equation NbdPa T /),( 1***
YY

−= . 

 

The hyperparameter values a*, d* and b*, obtained by 

procedure 2 are appropriate initial values for 

minimising the log likelihood, whether (1) or (6). 

The latter has the advantage of only being dependent 

on two hyperparameters and so converges more 

quickly. There are two cases. In the first, all the 

hyperparameters are adjusted during the optimisation 

to converge on a nearby local minimum 

corresponding to the prior model with the required 

length-scale characteristic. In the second, the 

optimisation may fail to locate a suitable local 

minimum, when all the hyperparameters are 

adjusted. In the latter situation, d* needs to be held 

constant during the optimisation.  It may then be 

necessary to adjust manually the value of d* and 

repeat the optimisation to obtain the prior model with 

the required length-scale characteristic. 
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Fig. 2. Data and long length-scale prediction with 

confidence intervals. 
 
 

6. APPLICATION TO DATA WITH GAPS  
 
In this section, by exploiting the procedures 

presented in Sections 4 and 5, the Gaussian 

regression methodology of Sections 2 and 3 are 

applied to a data set of 5,000 points sampled at 1Hz 

(CATS Benchmark, 2004). It contains four gaps, 

specifically, the intervals, (981s-1000s), (1981s-

2000s), (2981s-3000s), (3981s-4000s) and (4981s-

5000s). When applying Gaussian regression to data 

with gaps, depending on the context, a single 

Gaussian process model with covariance function 

having more than one term or a multiple Gaussian 

process model may be required (Leithead et al 

2005b). The data is shown in Fig. 2 (the grey line) 

together with its spectral density function in Fig. 3 

(the grey line). The data has a component with 

length-scale longer than the gaps at frequencies less 

than 0.045Hz, a component with length-scale similar 

the gaps at frequencies between 0.045Hz and 

0.095Hz and a component with length-scale shorter 

than the gaps above 0.096Hz. Here, to extract each of 

the above components separately, a multiple 

Gaussian process model with three processes is 

employed. 
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Fig. 3. Power Spectra of the three components. 
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Fig. 4. Medium length-scale component prediction 

with confidence intervals. 
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Fig. 5. Short length-scale prediction with confidence 

intervals. 

 

The values of the hyperparameters, a and d, for the 

long, medium and short length-scale components are 

determined sequentially, the first from the data, the 



     

second from the residues of the long length-scale 

prediction and the third from the residues of the 

combined long and medium length-scale prediction. 

The fast and memory efficient generalised Schur 

algorithm of Section 4 is used together with 

initialisation algorithm of Section 5. The 

hyperparameter values for the three components are 

a=2.422x104 & d=0.0038, a=83.6391 & d=0.0473 

and a=55.962 & d=1.274, respectively. The noise 

hyperparameter value is n=35.9130. The long length-

scale component prediction and confidence intervals 

are shown in Fig. 2 (black lines). A typical section, 

from 2850s to 3150s, of the medium length-scale 

component prediction and confidence intervals are 

shown in Fig. 4 and a typical short section, from 

2900s to 3100s, of the short length-scale component 

prediction and confidence intervals in Fig. 5. The 

spectral density functions for the three components 

are depicted in Fig. 3. In addition, the differences 

between the data and the predictions from the 

complete three Gaussian process model together with 

the confidence interval (grey lines) are shown in Fig. 

6. As would be expected, the confidence interval is 

much wider during the gaps. 
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Fig. 6. Complete model: difference between 

prediction and data with confidence intervals. 
 

 
7. CONCLUSION 

 
The application of Gaussian regression to time-series 

data analysis is examined. Through the use of models 

consisting of multiple independent Gaussian 

processes, the general methodology is extended such 

that the individual Gaussian processes are 

conditioned on the data subject to the condition that 

they remain independent. When applied to time-

series data, separate components with different 

frequency scales can be extracted. 

 

Fast and memory-efficient methods for the matrix 

manipulations required by the Gaussian regression 

methodology are discussed. A procedure to 

determine the Shur decomposition of Toeplitz-like 

matrices, a key issue, is presented. A procedure to 

ensure appropriate initialisation, when training the 

prior model, is also presented. 

 

A multiple Gaussian process model is applied, using 

the above procedures, to extract separate components 

with different frequency scales from a 5,000-point 

time-series data set with gaps. The effectiveness of 

the methods is clear. 
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