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NEURAL NETWORKS

An unplanned outage can be costly for a utility, and gas 
turbines are expensive pieces of equipment to repair or 
replace. It is therefore vital that anomalous behaviour is 
lagged before damage can occur that may cause a prolonged 
outage. An anomaly detection system is proposed for gas 
turbines to monitor the related parameters and raise alarms 
when anomalies are identiied.
The proposed system incorporates machine learning 
algorithms based on artiicial neural networks (ANN). By 
using ANNs trained on normal plant behaviour, it is possible 
to identify anomalous behaviour by the high residuals between 
actual and predicted outputs. Within this paper, the data 
mining methodology is described and the process followed 
before arriving at the successful approach is documented. 
Results from testing the approach on an industrial case 
study are presented and, based on these results, areas for 
further development are identiied. It is intended to deploy 
the system along with several other algorithms as part of a 
multi-agent system for plant-wide condition monitoring. This 
paper will focus on the design and testing of the developed 
anomaly detection system. 

1. Introduction

Maintaining the condition of generation assets is a vital part of 

electricity generation. Any unscheduled loss of service is costly to 

the energy provider, both in direct inancial terms and in damage 
to its reputation among existing and potential customers. Because 
of this, detailed, timely and accurate condition monitoring and 
diagnostic support for generation assets is important to safely 
operate a power plant. This paper will focus on anomaly detection 
algorithms for gas turbines, but the technique developed here will 
form part of a larger leet-wide plant condition monitoring system 
based on multi-agent system (MAS) technology.

Gas turbines (GT) are used in several ways, such as for peaking 
power or for cold-starts in large units. However, when they are used 
in combined cycle gas turbine (CCGT) units they are required to 
run for long periods of time where they are used for base load. 
This limits the down-time for manual inspection and testing, 
while increasing the wear on the gas turbine. Therefore, an online 

system that can detect problems while the turbine is operating is a 
valuable commodity. This paper will detail the use of a data mining 
methodology and machine learning techniques to derive a novel 
condition monitoring algorithm for use with gas turbines.

The paper is organised as follows: Section 2 outlines the 
problems that the proposed condition monitoring system must 
overcome; Section 3 provides a brief review of work in the field 
of condition monitoring, with particular focus on CCGT and GTs; 

Section 4 outlines the data mining methodology and its application 
using a case study; Section 5 documents the implementation and 
testing of the selected algorithm; and Section 6 is the conclusion.

2. Problem description

A major utility has experienced signiicant outages in a CCGT 
plant, related to failure of gas turbine components. The utility 
requires a data-based technique capable of detecting these faults, 
and an appropriate technique can be selected through the use of 
data mining. Finally, the system must be tested and shown to be 
successful in detecting the required faults. 

The technique will ultimately form an intelligent agent within 
the larger condition monitoring system. Intelligent agents are 
constructs, in this case software, capable of both reactive and 

proactive behaviour, and incorporating social ability(1,2). Several 
intelligent agents deployed together are considered a multi-agent 
system. The algorithm described in this paper will be the core of an 
intelligent agent, which will form part of a fleet-wide monitoring 
system(3).

3. Related work

The following is a review of existing research in the ield of 
condition monitoring. Particular attention is given to CCGT-speciic 
applications, focused primarily on the gas turbine, before notable 
examples of more general condition monitoring techniques. This 
section describes the current state-of-the-art. 
3.1 Approach to condition monitoring

A great deal of research has been undertaken into CCGT condition 
monitoring(4). However, the wide assortment of techniques can 
generally be divided into two approaches:

q Anomaly detection monitors parameters related to the subject, 
and, if they differ suficiently from a perceived notion of normality, 
the subject is considered to have entered an anomalous state and 
an alarm may be raised. In this type of condition monitoring there 
is no diagnosis of the nature of the fault, only that the monitored 
parameters have deviated from normal values.

q Fault diagnosis attempts to diagnose a problem by analysing 
data and determining the particular fault which has occurred. 
Fault diagnosis is often used to determine the most likely type 
or cause of a fault that is known to have occurred, and does 
not necessarily include a capability to distinguish normal from 
faulty behaviour. This is in contrast to anomaly detection, where 
the presence of a fault is identiied, but not the type or source of 
the fault.

From the above description, it is clear that neither completely 
covers the requirements to detect and diagnose a fault in a 
monitored subject. For this reason, previous work has combined 
these approaches(5). In the cited case, an anomaly detection 
algorithm is used first to detect whether a fault has occurred and 
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if so, delegate the task of identifying the particular fault to a fault 
diagnosis algorithm. Such an approach allows a wider range of 
algorithms that may be particularly adept at anomaly detection or 
fault diagnosis, but not both. It combines the ability of anomaly 
detection to detect any deviation from normal behaviour, even if 
caused by a fault type not seen before, while allowing a dedicated 

fault diagnosis algorithm to classify the fault if it is of a known 
type.

3.2 CCGT monitoring

Anomaly detection, or alternatively ‘novelty detection’ as it 
is sometimes referred to, is often the most suitable avenue for 
condition monitoring of high integrity systems(6). This is especially 

true of GTs, where faults are relatively rare and a multi-class fault 
classiication approach is not possible due to the lack of data for 
even a sub-set of possible faults. It is therefore useful to instead 
model the normal behaviour of the GT, of which there is usually an 
abundance of data, and raise alarms when the behaviour deviates 
suficiently from normal.

The variation in gas turbine monitoring depends greatly on 
the original equipment manufacturer (OEM) and the original 
application of the turbine(7). Once the type and application of the 
turbine is known, the techniques can be considered. One possible 
approach is to build a probabilistic model of possible faults. Poncet 
et al(8) take this approach, by focusing on models that predict the 
likelihood of particular faults in the compressor and turbine, based 
on available symptoms. This is, however, extremely complicated, 
and would require extensive knowledge of the turbine and the 
operation and degradation of both components during each fault. 
The same is true for any mathematically-derived model. 

Ultimately, some kind of machine learning approach is more 
appropriate in a case where knowledge of the equipment is limited 
but data is abundant. The DADICC system(9), which utilises artificial 

neural networks (ANN) as models for components of a CCGT, 
shows the application of such a technique. While the effectiveness 
of this approach has been demonstrated through deployment on an 
Iberdrola CCGT plant, it is stated that the choice of variables is 
vital to the success of such models. This strongly suggests the need 
to use a structured data mining methodology (discussed further in 
section 4).

Another example, the ND Tool(10), is a fleet-wide application 
designed to learn the behaviour of a plant using entirely data-driven 
techniques. The example uses a form of K-means clustering and 
can be applied to any set of variables selected by the user. Using a 

training dataset based on normal operation, the clusters for normal 
behaviour are learned and stored. During testing, the Euclidean 
distance between the actual values and the cluster centres is 

calculated and used as a measure of normality. 
3.3 Condition monitoring of other assets

Considering other condition monitoring examples can be useful as 
many techniques are not domain speciic and can be applied to the 
GT problem domain. An example of the successful application of 
several machine learning techniques is given by McArthur et al(11), 
where an ANN, K-means and a rule induction engine are utilised 
for the purpose of transformer partial discharge fault diagnosis. 
Of note is the use of MAS technology to allow several techniques 
to work together as one system. It is intended that the technique 
applied in this paper will function in a similar way as part of a leet-
wide condition monitoring MAS.

Parallels can also be drawn between locomotive condition 
monitoring and the gas turbine field. The use of ANNs for anomaly 
detection(12) is similar to previous examples. The appropriateness of 
a machine learning approach over a physical model, in situations 
where complexity of the model and frequency of sampling is an 
issue, is also addressed. The example takes a ‘divide and conquer’ 
approach in order to allow the fault to be attributed to specific sub-

components, rather than model an entire locomotive system. This is 
similar to the philosophy behind the intended MAS.

3.4 Summary

From a review of related work, it is clear that the application of the 
condition monitoring algorithm presented in this paper is unique. 
While an ANN was ultimately chosen to detect anomalies in the 
GT, similar to the DADICC system, the application of the ANN is 
unique for a number of reasons. Primarily, DADICC is a collection 
of models, designed to model an entire plant. Conversely, the 
approach taken to this problem required detection of particular 
types of faults. The choice of variables and technique, driven by 
a data mining methodology, and the successful implementation to 
allow detection of previously undetectable faults, is the contribution 

and the novelty of this paper. 

4. Data mining

Data mining is considered as the non-trivial extraction of implicit, 
previously unknown and potentially useful information from 
data(13). A structure for data mining has been developed(14) and 

consists of a number of steps. The steps are outlined in section 4.1, 
and a case study demonstrating the application of this methodology 
to GT data is provided in section 4.2.

4.1 Description

The ive main steps are outlined below. They are normally 
performed in the order introduced here, but with iteration over the 
earliest steps until a satisfactory result is reached.

4.1.1 Familiarisation

This stage encompasses the initial discussions with the data 
provider, including domain experts and those already familiar with 
similar data. This will also include reading any literature or event 
reports relevant to the data. The aim of this stage is to improve 
general understanding and knowledge of the data and how it applies 
to the problem domain.
4.1.2 Visualisation

Visualisation includes analysis of the data at a relatively high level. 

This stage involves attempting to identify any visual inconsistency 
or pattern in the data made apparent through the use of different 
techniques. These techniques can include trending, clustering or 
transformations (for example Fast Fourier transform (FFT)) on the 
data.

Dimensionality reduction is often performed at this stage, 
allowing high dimensional data to be displayed in two- or three- 
dimensional diagrams to allow patterns to be more easily identified 
visually. This process is also often used as a data reduction 

technique and may be a pre-processing stage for some algorithms, 
such as Independent Component Analysis (ICA)(15).

4.1.3 Data reduction and cleaning

After familiarisation with the data and identifying patterns through 
visualisation, it may then be possible to reduce the amount of 
data being considered. This may include removing redundant or 
irrelevant data, especially in multivariate data where some readings 
may be strongly correlated or where variables are not related to 
the relevant outcome being considered. The aim of this stage is to 
remove data unnecessary to identifying the state or condition of the 
monitored asset.

Some examples of techniques used at this stage include ICA, to 
identify the independent components that make up a multivariate 
signal, or clustering, to identify state transitions in potentially high-
dimensional data. After performing this stage, the preceding steps 
are repeated. This process continues until it is possible to move on 
to the succeeding stage.
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4.1.4 Technique selection

After performing the preceding steps a suficient number of times 
to identify features within the data and reducing the dimensionality 
of the data as much as possible, the possible techniques for 
anomaly detection or fault diagnosis must be considered. The exact 
methods considered depend on the data (real or complex, linear or 
non-linear), the application (anomaly detection, fault diagnosis, or 
both) and the requirements (accuracy, particular requirements such 
as a low number of false positives, a single outcome or a vector 
of possibilities, etc). There may be a number of possibilities, but 
a single technique will be selected and the process will proceed to 
implementation and testing.
4.1.5 Implementation and testing

The selected technique must be implemented, which would include 
the training stage for machine learning algorithms. The technique 
must then be tested on blind data to ensure that it is applicable to 
data beyond the data presented to it during training. If the technique 
proves unsatisfactory the process will revert to technique selection 
and so on until a satisfactory technique has been identiied and 
veriied through testing.
4.2 Application

The following is a case study of the application of the data mining 
methodology in an effort to ind an acceptable anomaly detection 
algorithm for the GTs in a CCGT plant. A step-by-step account of 
the development of the technique is given and an analysis of its 
performance during testing is provided.
4.2.1 Familiarisation

For this case study, 10 months of data from a CCGT station’s gas 
turbine units, sampled at 1 minute intervals, was available. This 
data included 187 variables, covering all sensors within the turbine, 
including pressure, vibration and temperature. An event ile was 
also made available, containing all shutdowns and trips, stating 
causes and reasons, and differentiating scheduled shutdowns from 
unplanned outages. Two major failures in GT2 occurred during this 
time: a combustor failure in month 6 and a compressor blade failure 
during month 10.
4.2.2 Visualisation and data reduction

Before beginning any analysis it was irst necessary to reduce the 
number of variables under consideration, from the 187 (per turbine) 
provided, to a more manageable subset. Two groups of variables 
with potential to show precursors related to compressor blade failure 
were identiied: exhaust temperature and vibration. This was due to 
compressor failure often being caused by compressor surge, and 
both are known to show precursors. Exhaust temperature related 
variables were irst identiied and a set of eight were selected for 
further analysis.

Table 1. Exhaust gas variable set

Gas Fuel Flow Kg/s
Compressor Pressure Ratio Ratio
Absolute compressor discharge pressure Bar
Combustion Reference Temperature °C
Combustion Monitor Actual Spread 1 °C
Combustion Monitor Actual Spread 2 °C
Combustion Monitor Actual Spread 3 °C
Ex Temp Median Corrected by Average °C

4.2.3 Technique selection

A number of techniques were initially tried before a successful 
approach prevailed. These included clustering (K-Means(16) and 

DBScan(17)), independent component analysis and self-organising 

maps. Ultimately, none of these techniques provided a clear sign 
of an anomaly around the time of the compressor blade failure 
in month 10 and were discounted as viable approaches for this 
case study. After considering other approaches, and in light of 

previous successful use in the condition monitoring ield(18), an 

artiicial neural network was selected and successfully applied. The 
implementation of this technique is documented in the following 
sections.

5. Technique implementation

While following the data mining methodology, an ANN was 
selected and implemented using GT data. The following section 
gives a description of the technology behind ANNs, before detailing 
the speciic implementation and testing for the GT case study. 
5.1	 Artiicial	neural	networks	(ANN)
An artiicial neural network(19) is a type of machine learning 
algorithm. ANNs are made up of several nodes that mimic the iring 
and interconnection of neurons in the brain. Each link between 
nodes has a weight applied to it and by adjusting this the output 
of the node will change. The interconnections between nodes and 

the subsequent manipulation of the weights of the nodes allow the 
network to ‘learn’. All ANNs have two modes: training, where the 
network learns the relationships between inputs and output; and 
testing, where the network estimates the output for a set of given 
inputs.

The type of ANN used in this paper is called a multi-layer 
perceptron(20). This is a feed-forward ANN consisting of multiple 
layers. The use of a feed-forward network simplifies the training 
process as it is known that data can only travel one way between 
nodes. Layers will typically consist of an input layer, one or more 
hidden layers and an output layer. The hidden layer is so called 

because the inputs and outputs of these nodes are hidden from the 
outside.

Testing, and how it is carried out, is an important part in using 
MLPs. It is desirable to divide data into training and testing sub-
sets. This is to ensure that the network has not simply learned the 
specific cases presented in the training set, but rather has learned 

the underlying relationship. Where it has learned the relationship 
and tests well on the new data, it is said to have generalised well. 

When the network shows good results on the training data but not 
on new data outside this set, it is known as overfitting(20).

5.2 Implementation

It was attempted to use a feed-forward ANN to learn the relationships 
between exhaust temperature variables under normal operating 
behaviour, with the aim that a breakdown of the relationship could 
be identiied before a failure. The exhaust temperature median 
(corrected by average) was used as the classiier. The individual 
residual for each time step was directly output, rather than a 
correlation coeficient or other metric of similarity (mean square 
error etc). This was as a result of requests by the utility, which 
requested residuals so that results could be directly compared with 
other methods they have used.

Several training sets were tried, all of them using the exhaust 
gas variables in Table 1. Initially, only full load data was used but 
resulted in residual spikes whenever a turbine was shut down, even 
for scheduled shut downs. While this may still be useful, it would be 
desirable to limit alarms to only abnormal events during shutdown 
or start-up. To this end, normal start-up and shutdown data was 
added to the training set. This removed several of the residual 
spikes around scheduled shutdowns and successful start-ups. 

Further work was undertaken to improve the performance of the 
technique using addition values from previous time steps. Figure 1 
shows a scheduled shutdown, to which residuals should be as low 

as possible. The load is overlaid in purple to better illustrate the 



behaviour of the system output. The t-1 and t-2 residuals are lower, 
suggesting better accuracy. Greater delays were experimented 
with, but increased the training time while not improving accuracy 
proportionally. For this reason, a t-1 level delay was considered the 
best compromise and is implemented in subsequent test cases.

The technique could be used to raise alarms, based on the residual 
exceeding a certain threshold. Typical values of normal operation 
residuals are usually single figure or less, while the largest spikes 
can be in excess of 100. This represents a good dynamic range, 
which should make it easy to identify when to raise an alarm. Based 
on the results from testing carried out on the entire 10-month period 
for GT1, a threshold of 10 is suggested.
5.3 Testing

Initial testing was performed to check performance of anomaly 
detection for the large failures on GT2 identiied by the utility. The 
residuals for the large failures in months 6 and 10 are shown in 
Figure 2 and Figure 3, respectively. 

The clear definition of the residual ‘spike’ is particularly 
impressive as the training data was from GT1, while both failures 
were in GT2, suggesting good generalisation of the ANN. As GT2 
may have had a pre-existing fault that precipitated the failure, and 
the desire to exclude any potential precursors from the training set 
to ensure their recognition as ‘abnormal’, GT1 was chosen as the 
source of ‘normal’ data to train on.

The Figures below show promising results from the technique. 
Figure 4 shows a scheduled outage, with the residuals never greater 
than the threshold of 10. Figure 5 shows detection of an exhaust gas 
anomaly. Figure 6 shows what was thought to be a false positive, 
but upon examination with a load trace can be attributed to a sensor 
error shown in the negative load values. Figure 7 shows a trip not 
related to exhaust gas temperature, suggesting the technique is 
useful for detecting other types of problems.

The results show good identification of anomalies within 5 
minutes of occurrence. These results are validated and tested on 
industrial data representing actual GTs in service in the field.

Figure 1. Comparison of use of delayed values for ANN input. 
Data from a scheduled shutdown. Load trace shown in purple, 
using right axis in MW

Figure 2. Residuals for GT2 in month 6. Residual spike due to 
trip for high exhaust temperature and vibration. Secondary axis 
is load (MW)

Figure 3. Residuals from GT2 for month 10. Spike corresponds 
to trip related to exhaust gas temperature. Secondary axis is 
load (MW)

Figure 4. Scheduled outage. Note the small value of the residuals 
throughout

Figure 5. Residual spike following trip related to exhaust gas 
temperature

Figure 6. A residual spike; caused by an error in the load value 
resulting in high negative values
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6.  Conclusion

This paper has summarised the process of data mining applied 
to algorithm development and presented a case study where 
it is successfully used for anomaly detection on gas turbines. 
In the example, meaningful information was extracted from a 
large set of data using the data mining methodology, resulting in 
implementation of a novel application of an ANN for anomaly 
detection. Following extensive testing, the technique successfully 
identiied two particular faults that previously went undetected. 
This result demonstrates the beneit of the application of the data 
mining methodology in the development of the technique, along 
with the technique’s ability to detect the required faults.

This work is intended to operate as one agent within a suite 
of agents, providing various diagnostic capabilities across a 

generation fleet. Further work will include expanding this suite 
of agents to include dynamic models for gas turbines, with the 
intention of identifying precursors to faults such as those detected 

in this paper.
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