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ABSTRACT

We propose  a model  for  describing surface  effects  on micro gas flows.  This  model  consists  of  the Navier-Stokes  
equations (NS) with discontinuous velocity slip boundary conditions and a description of a geometry-dependent and  
effective viscosity due to special consideration of the molecular collisions with solid boundaries. By  extending NS with 
an effective viscosity we obtain a non-linear stress/strain-rate relationship which captures some of the near-wall effects  
that the conventional NS are unable to describe. We show results of NS extended by using our effective viscosity applied  
with Maxwell's boundary condition as well as a second order boundary condition achieved by partly incorporating  
higher order methods, the Maxwell-Burnett boundary condition proposed by Lockerby et al. (2004). With this proposed  
model the simple isothermal planar channel case of 2D Poiseuille flow is solved. The results of our proposed model  
are compared with the conventional NS using similar boundary conditions, the BGK-method and experiments. On the  
one hand it is seen that our extended NS model yields results that are asymptotic to the results of conventional NS for  
large flow scales. On the other hand, when comparing results on the micro scale, we see that our extended NS model  
yields results that are closer to the results of the BGK-method and the experiments than the conventional NS. Our 
extended NS-model shows signs of capturing the physics of the flow to a certain rarefaction degree where it does not  
predict the mass flow minimum shown by the BGK-method and the experiments. 
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1. INTRODUCTION

Interest in micro channel flows has grown with the recent vast improvements in manufacturing techniques on 
the  microscale.  Techniques  for  manufacturing  micro  turbines,  fuel  cells  and  MEMS  (micro  electronic 
mechanical systems) are today becoming reality, but as we reach production of yet smaller devices it is also 
realised that microscale gas flows cannot be modelled in the same way as macroscale flows. Further research 
into  modelling  microscale  gas  flows  is  therefore  needed  in  order  to  understand  and  more  effectively 
manufacture devices in which micro gas flows occur. [1]

To describe the degree of rarefaction, or state of non-equilibrium, of gas flows the key parameter is the 
Knudsen number,

                                              (1)

This parameter expresses the ratio of the average travelling distance of molecules between collisions i.e. the 
mean  free  path,  , to  the  characteristic  length  scale  of  the  flow,  L.  We  consider  flow configurations 
comprising planar wall channels in this study, and will therefore use the channel height, H, as a measure of 
the length scale. 

In  micro  gas  flows,  recognised  by  large  Kn due  to  small  length-scales,  certain  rarefaction  effects 
become  apparent.  Experiments,  such as  those performed  by Arkilic [2]  and Colin  [3] have  shown that 
Navier-Stokes equations (NS) at relatively large Kn cannot capture the right mass flow rates without having a 
slip  boundary  condition  applied.  The  argument  for  using  the  conventional  non-discontinuous  boundary 
conditions, commonly applied to NS, is valid for cases where the gas is in a state of near-equilibrium. Since 
micro gas flows of relatively large Kn depart from near-equilibrium these gas flows do not necessarily follow 
the  no-slip  boundary  conditions. The  lower  threshold  value  for  applying  a  slip  boundary  condition  is 
generally at Kn = 0.01, which therefore commonly is referred to as the lower limit of the slip regime. For gas 
flows  at  even  larger  Kn further  modelling  modifications  are  needed  because  the  linear  constitutive 
relationship of NS breaks down, which happens at about Kn 0.1. This level is the lower limit of the transition 
regime which is characterised by being in between a continuum description and a free molecular description 
and is the regime that we mostly focus on for modelling improvements. Due to the simplicity of NS it is 
often desirable to solve flow cases with this solution method for as high Kn flows as possible. A proposed 
method  of  extending the  validity  of  NS to  large  Kn  was proposed  by Erik Arlemark  et  al.  [4],  where 
molecular interactions with the wall were incorporated. Here we use the same method applied with the first 
order boundary condition as well as a second order boundary condition and concentrate on Poiseuille flow 
predictions and mass flow rate.

2. VELOCITY SLIP

 An early velocity slip boundary condition is proposed by Maxwell [4], and has the following form for 
isothermal cases:

                                              (2)

where U is the mass average velocity, τ is the stress tensor and μ is the dynamic viscosity. The tangential 
momentum accommodation coefficient, σ, describes the proportion of molecules being reflected diffusively 
(σ = 1) from the wall as opposed to those that experience specular reflections (σ = 0). If the reflections of the 
molecules are diffusive their tangential momentum is, on average, lost relative to the wall as opposed to 
specular reflections where the tangential momentum is kept. Here we will only consider purely diffusive 
reflections. In (2) “slip” denotes the discontinuous velocity difference between the wall and the gas next to 
the wall. The notation “wall” is used to describe a quantity that is taken at the boundary. The “±” sign is 
determined dependent on whether the wall normal coordinate increases or decreases with wall distance. 

2.1 First Order Slip Model

We obtain a first order velocity slip by inserting the stress tensor of the NS equations into (2). The 
velocity slip for isothermal planar walls can then be expressed as:
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                                              (3)

where y is the coordinate perpendicular to the wall which is zero in the middle of the channel. 

2.2 Second Order Slip Model

Some investigators of micro gas flows mention that a second order slip boundary condition should be applied 
for gas flows in the transition regime [1,6,7]. There are several suggested formulations for second order 
boundary conditions, for planar walls most of which have the following form:

                                              (4)

where  and  are two modelling parameters. There are various proposals for what values these parameters 
should be set to. Some of the proposals are purely theoretically derived, whereas others have been obtained 
through comparisons with experimental results [6]. As listed by Karniadakis et al. [7], the coefficient  is 
set to 1 by investigators like Deissler, Schamberg, Hsia and Domoto and Maxwell as opposed to Cercignani's 

 value of 1.1466. The commonly applied value for the  parameter varies  in the wider range from -0.5 to 
5π/12.   

A new high order boundary condition was proposed by Lockerby et al. [8] who used a high order stress 
tensor  from the Burnett  equations  in  (2).  For  isothermal  planar  wall  configurations  this  high order  slip 
boundary formulation is given by:

                                              (5)

where Pr is the Prandtl number and γ is the specific heat ratio. This slip boundary condition varies with Pr 
and γ and therefore depends on what gas is studied. By comparing (4) and (5) we can identify the two 
modelling parameters  and  as follows:

                                              (6)

In the next section we will propose a method for extending NS for micro gas flows by incorporating a non-
linear stress/strain-rate relationship.

3 NAVIER-STOKES EQUATIONS AND GEOMETRY DEPENDENT VISCOSITY 

Since micro gas flows are characterised by having a large ratio of confining boundary areas to their volumes, 
we  study the  flow behaviour  when  molecular  collisions  with  the  solid  boundaries  are  involved  in  the 
description of viscosity. This modelling modification is expected to have a significant effect as opposed its 
negligible effect only for confined micro gases, not for larger scales of gas flows.

The commonly used relationship between the dynamic viscosity, μ, and the mean free path, λ, which is 
discussed in further depth by Cercignani [9] is expressed as follows: 

                                              (7)

where ρ is the gas density,  R is the specific gas constant and T is the gas temperature. We propose that for 
micro  gas  flows  the  effect  of  the  increasingly  important  molecular  collisions  with  solid  boundaries  be 
incorporated in (7) by replacing the unconfined expression for a mean free path,  , with an effective and 
geometry dependent mean free path, . This yields a geometry-dependent effective viscosity,  which 

results in the new constitutive non-linear stress/strain-rate relationship for NS as follows:

                                              (8)

where κ is the bulk viscosity, I is the identity tensor and t is the transpose operator. With (8) incorporated in 
NS, without external forces, this yields the new governing momentum equation:
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                                              (9)

where   is the material derivative. For many steady state micro gas flow situations the 

conventional NS equations can be reduced to the Stokes equation [7], which for our proposed method has the 
following form:
   

                                            (10)

In the next section we present our proposed -expression and thereby .

4. AN EFFECTIVE MEAN FREE PATH

The  proposed  effective  mean  free  path,  , which  describes  a  molecular mean  free  path  affected  by 

collisions with unyielding walls is derived in Arlemark et al. [4] for cases where the gas is confined by two 
infinitely wide walls that are planar and parallel to each other. We consider that the molecules of the gas are 
equally likely to travel in any azimuthal angle, θ, shown in figure 1. The dagger notations, †, in this model 
will be used to denote quantities for molecules that travel in a positive y-direction.

Figure 1: Left, a molecule confined between two planar walls separated by a wall distance H, a possible 
travelling path is denoted by r. Right, a three dimensional representation of a molecule close to a wall in a 
cylindrical coordinate system, where r=(H/2+y)/cos(θ). 

We use the probability function:

                                            (11)

to express the probability of a molecule travelling a distance  r  without experiencing a collision. The free 
path,  l, is then obtained by weighting the unconfined mean free path,  , with one half of the probability 
function P(r), which corresponds to the collision probability in cases where the molecule is moving in the 
negative y-direction, plus one half of P(r†), which corresponds to the collision probability in cases where the 
molecule is moving in the positive y-direction. The free path is, by this reasoning, expressed as:

                                            (12)

The  -expression is then obtained by taking the integral  mean value over all  possible molecular 

travelling directions of θ and θ† in the range of [-π/2, π/2] as follows:

                                            (13)

which allows us to express  in the form . In this paper the integration to obtain  is 
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done by Simpson's numerical integration method using 8 equally sized intervals2, which yields: 

                                     
(14)

In the remainder of this paper we will focus on the y dependence of K, as the dependence on  and H are 
determined through the rarefaction parameter Kn.

5. PLANAR POISEUILLE FLOW CASE

Here we calculate the velocity and the mass flow rate for isothermal fully developed Poiseuille flow in a 
planar wall channel using our proposed model. We use the modified Stokes equation, (10), and apply the first 
and second order boundary conditions in which  is replaced by . The solution method used here is the 

same as that in Kandlikar et al. [10], i.e. that the normalised velocity profile in a channel cross section of the 
flow is obtained by calculating the fully developed incompressible flow, but the density is recalculated using 
the ideal gas law in relation to temperature and pressure. 

In our planar wall configuration, the Stokes equation is expressed in the following form:
 

                                            (15)

where the velocity of the flow in the axial direction (x-direction) of the channel is , and this is assumed to 
vary only in the direction normal to the wall, the y-direction. We solve (15) using the first order boundary 
condition of (3) and then with the second order boundary condition of (5). From (6) the modelling parameter 

 of the boundary conditions is here set to 1, since only diffusive reflections are considered. The parameter 

 is set to 0.19, since the investigated gas is helium, which has a specific heat ratio, γ, of 5/3 and a Prandtl 
number of 2/3.

5.1 Velocity profile results

The expressions for the normalized velocity using the conventional NS, and our proposed extension to NS 
with an effective viscosity, NSeff, are listed in table 1. These two models are solved using both first and 

second order boundary conditions, where  is used for the conventional NS and  for the extended NS. 

Model Normalised velocity profile

NS, 
first order BC:

     (16) 

NS, 
second order BC:

     (17) 

NSeff,

first order BC:
     (18) 

NSeff, 

second order BC:
     (19) 

Table 1: The four normalized solution equations for the gas flow velocity profiles using NS and our proposed 
NS with effective viscosity, NSeff , for both first and second order boundary conditions, BC.  

2 The difference in mass flow results for 4 respectively 8 integration intervals is 2.2% for Kn = 8.86, which yields reason 
to believe that further increase of integration intervals will only marginally affect the results.
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The following variables are used in table 1:

                                      

The results of the velocity profiles from the expressions in table 1 are shown in figure 2 and compared 
with the results of the BGK method provided by Sharipov [11]. We show results for three Kn cases: KnA = 

0.113,  KnB = 0.451 and  KnC = 0.903, calculated using the unconfined -value. It is seen in figure 2 that for 

the  KnA-case our proposed NSeff-model using a second order boundary condition concides with the BGK 

model except near the wall where the latter is slightly lower. The velocity profile of NSeff using the first 

order boundary condition is also reasonably close to the BGK model but slightly lower across the channel. 
The NS model using first and second order boundary conditions in the KnA-case are considerably lower than 

the BGK-model, except in the near wall area where they are on top of each other. For the KnB-case all the 

velocity profiles are separate from each other. It is however seen that the NSeff-model using second order 

boundary condition is the closest to the BGK model, except in the near-wall area where none of the models 
correctly describe the velocity profile (although the models using first order boundary conditions have the 
same velocity slip). In the KnC-case all the velocity profiles are separated from each other, but our proposed 

NSeff model using second order boundary conditions still presents the velocity profile which is most similar 

to the BGK-model. Although none of the models capture the right slip amount it is seen that the models 
using first order boundary conditions are closest to the BGK velocity profile at the wall.

Figure 2: Half-channel Poiseuille flow velocity profiles from conventional NS and our proposed effective 
viscosity extended NS, NSeff, using first and second order boundary conditions (BC) compared with BGK 

results  of  Sharipov  [11].  The  velocity  profiles  are for  three  different  Kn  i.e.  KnA=0.113  (bottom), 

KnB=0.451 (middle) and KnC=0.903 (top). For KnA=0.113 the two NS velocity profiles are on top of each 

other.

5.2 Mass flow results

In this section we concentrate on the issue of comparing our results with experimental results by Ewart et al. 
[6] of mass flow rates for various rarefaction degrees. Ewart's experimental measurements are for helium 
gas, driven by a pressure difference ratio of 5 between the inlet and the outlet of the channel. Mass flow rates 
are obtained in the Kn-range of 0.03 to 50. The experimental channel dimensions that are used are: height, 
H=9.38μm; width, W=492μm; and length, L=9.39mm. Since this channel is reasonably wide compared to its 
height it is assumed that a comparison with our 2D model channel is valid.  

© SHF 2008
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In order to be able to compare our results with the experimental results the velocity dependent mass flux 
is calculated using the following relation:

                                            (20)

where A is the area of the cross section of the channel and

                                            (21)

is the normalised average velocity across the channel width. We will here use the mass flow definition of 
(20) on the averaged velocities of the four NS-based velocity expressions (16)-(19) and normalise by the 
quantity

                                            (22)

We thereby obtain the normalised expression for the mass flux rate:

                                            (23)

Then (23) is expressed in terms of the inverse rarefaction parameter δ which is defined as follows:

                                            (24)

The expression for the δ-dependent mass flow rate is then formulated as:

                                            (25)

The results for our model mass flow rates are shown in figure 3, together with the BGK results achieved 
by Sharipov [11] and the experimental results of Ewart et al. [6].

Figure 3:  Mass flow results from NS and from our proposed NS-model using effective viscosity,  NSeff, 

using both first and second order boundary conditions (BC). The results are compared with BGK solutions 
by  Sharipov  [11]  and  experimental  results  by  Ewart et  al. [6].  The  height  of  the  error  bars  of  the 
experimental data is set to 4.5% of the normalised mass flow rate values, consistent with Ewart's own data. 

Although a simple model is prefered that describes flow characteristics correctly for the whole range of 
δ-values, it is found that the NS-based models are limited in effectiveness beyond a certain δ level. In table 2 
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the approximate range of applicability, within the  δ-inspection range of 0.1 – 20,  is listed for the various 
models. Here the applicability ranges are estimated by their ability to reproduce similar mass flow rates as 
the experimental data within a reasonable range of the error bars.

Approximate range of applicability

Model In terms of δ In terms of Kn

NS, first order BC: 15-20 0.04-0.06

NS, second order BC: 15-20 0.04-0.06

NSeff, first order BC: 4-20 0.04-0.22

NSeff, second order BC: 1-20 0.04-0.89

BGK 0.1-20 0.04-8.89

Table  2:  List  of  the  applicability  ranges  of  the  tested  NS-based  models,  roughly  estimated  by visual 
comparison of model results with the experimental data of Ewart et al. [6] shown in figure 3.

 It can be seen from figure 3 that all of the presented models, together with the experimental values, are 
asymptotic for low Kn, which strengthens our assumption that the influence of  and , should have, a 

decaying effect with decreasing rarefaction degree. In figure 3 it is seen that our proposed NSeff-model using 

the second order  boundary condition  has  a  slightly high mass  flow rate  at  δ  = 20,  compared  with the 
validation data of Sharipov [11] and Ewart et al. [6]. However, in figure 2 it is seen that the same model has 
a seemingly correct velocity profile for the lower Kn of 0.113. It is assumed that the high mass flow rate is 
due to the slightly higher velocity values in the near wall region. It should also be noted that for higher δ-
values the mass flow results of the  NSeff-model using first order boundary conditions show better results 

compared to the  NSeff-model using second order boundary conditions. Among the NS-based models it is 

only the conventional NS model using the second order boundary condition that manages to produce a mass 
flow minimum at a δ value of about 1.5.

6. CONCLUSIONS AND DISCUSSIONS 

A velocity slip boundary condition is commonly applied to the continuum Navier-Stokes equation (NS) for 
micro gas flows in the slip regime in order to achieve good results. In this paper we have provided a method 
which attempts to model micro gas flows in the low Kn region of the transition regime by incorporating a 
partly molecular description to the NS as well as in the conventional slip boundary condition. The molecular 
description consists of incorporating molecular collisions with boundaries into the conventional definition of 
the  mean  free  path,  which  then  becomes  a  geometry-dependent  parameter.  This  new definition  of  the 
effective mean free path is then used to achieve an effective viscosity, which yields a non-linear stress/strain-
rate relationship to the NS model.

By using the proposed extension to NS, and the first order boundary condition of Maxwell or the second 
order Maxwell-Burnett boundary conditions, we can extend the validity of NS to Kn = 0.22 and Kn = 0.89 
respectively. It is found that the conventional NS using similar boundary conditions can satisfactory describe 
flows to a rarefaction degree of about Kn = 0.06. It should be noted that these conventional NS-models can 
produce results  which fit  our validation data better,  for  higher  Kn, by choosing different  values for  the 
modelling parameters  and  of the boundary conditions. It is however decided to use  = 1 which is 
consistent with the typical value used by different investigators [7] and the value of  = 0.19 which is from 
an  identification  of  gas  properties.  It  is  found  that  our  proposed  extended  NS-model  using  first  order 
boundary conditions makes a better gas flow description for lower Kn than the same model using the second 
order boundary conditions, which only coarsely captures the flow characteristics at higher Kn values. 

It is seen in the mass flow results of figure 3 that only the conventional NS-model using the second 
order boundary condition managed to capture the mass flow minimum. Corrections to our -description 

may be needed in order to capture the mass flow minimum within the framework of our continuum models. 
In the present work the -description requires that intermolecular collisions should be accounted for in the 
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same  way  as  molecular  collisions  with  the  boundaries.  However  intermolecular  collision  may  cause  a 
shortening of both molecules free paths, which is why we will investigate further the use of a modified 
formulation of the relation  that takes these differences of collisions into account. We will 

also investigate the predictions of the molecular mean free paths in the presence of boundaries by molecular 
dynamics.
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