Alberto Del Pia, Antoine Musitelli and Giacomo Zambelli

## On matrices with the Edmonds-Johnson property arising from bidirected graphs

## Item type <br> Article (Published version) (Refereed)

## Original citation:

Del Pia, Alberto, Musitelli, Antoine and Zambelli, Giacomo. (2017). On matrices with the Edmonds-Johnson property arising from bidirected graphs. Journal of Combinatorial Theory, Series B ISSN 0095-8956.

DOI: 10.1016/j.jctb.2017.09.013

Reuse of this item is permitted through licensing under the Creative Commons:
© 2017 The Author CC-BY-NC-ND 4.0
This version available at: http://eprints.Ise.ac.uk/84485/
Available in LSE Research Online: November 2017

LSE has developed LSE Research Online so that users may access research output of the School. Copyright © and Moral Rights for the papers on this site are retained by the individual authors and/or other copyright owners. You may freely distribute the URL
(http://eprints.Ise.ac.uk) of the LSE Research Online website.

# On matrices with the Edmonds-Johnson property arising from bidirected graphs 

Alberto Del Pia ${ }^{\text {a }}$, Antoine Musitelli, Giacomo Zambelli ${ }^{\text {b }}$<br>${ }^{a}$ Department of Industrial and Systems Engineering $8 \mathcal{W}$ Wisconsin Institute for Discovery, University of Wisconsin-Madison, USA.<br>${ }^{b}$ Department of Mathematics, London School of Economics and Political Science, United Kingdom.


#### Abstract

In this paper we study totally half-modular matrices obtained from $\{0, \pm 1\}$-matrices with at most two nonzero entries per column by multiplying by 2 some of the columns. We give an excluded-minor characterization of the matrices in this class having strong Chvàtal rank 1. Our result is a special case of a conjecture by Gerards and Schrijver [11]. It also extends a well known theorem of Edmonds and Johnson [10].

Keywords: Integer Programming, Combinatorial Optimization, Strong Chvátal rank, Edmonds-Johnson property, excluded minors, bidirected graphs


## 1. Introduction

Given a rational polyhedron $P \subseteq \mathbb{R}^{n}$, the Chvátal closure of $P$ is the polyhedron defined by all the inequalities of the form $\alpha x \leq\lfloor\beta\rfloor$, where $\alpha \in \mathbb{Z}^{n}$ and $\alpha x \leq \beta$ is a valid inequality for $P$. Repeatedly applying the Chvátal closure operation results in the integer hull of $P$ after a finite number of iterations [4, 18], which justifies the definition of the Chvátal rank of $P$ as the smallest number $t$ such that the $t$-th Chvátal closure of $P$ is integral.

The strong Chvátal rank of a rational matrix $A$ is the smallest number $t$ such that the polyhedron defined by the system

$$
\begin{align*}
b & \leq A x \leq c \\
l & \leq x \leq u \tag{1}
\end{align*}
$$

has Chvátal rank at most $t$ for all integral vectors $b, c, l, u$. The existence of such a number $t$ is guaranteed by a theorem of Cook et al. [7] (we refer the reader to [19] for an exposition on the subject). Matrices with strong Chvátal rank 0 are exactly the totally unimodular matrices. Matrices with strong Chvátal rank at most 1 are said to have the Edmonds-Johnson property (EJ property).

[^0]While the class of integral matrices with strong Chvátal rank 0 is well understood, no general characterization is known for integral matrices with the EJ property. Few classes of matrices with such property are known. Edmonds and Johnson [10] showed that any integral matrix in which the sum of the absolute values of the entries in each column is at most 2 has the EJ property (see [20] for a thorough survey). Gerards and Schrijver [12] proved that an integral matrix in which the sum of the absolute values of the entries in each row is at most 2 has the EJ property if and only if it does not contain an odd$K_{4}$ minor. Recent results of Conforti et al.[6] and Del Pia and Zambelli [9] imply that any matrix obtained from a totally unimodular matrix with at most two nonzero entries per row by multiplying by 2 some of the columns has the EJ property. The operations of pivoting, multiplying rows and columns by -1 and taking submatrices preserve the EJ property (see [12], Section 2.I), therefore also all matrices derived from the above classes through these operations have the EJ property. These include the integral binet matrices, shown in [3] to have the EJ property, since they are obtained from the matrices of Edmonds and Johnson [10] by pivoting and taking submatrices.

A vector or matrix $A$ is half-integral if $2 A$ is integral. An integral matrix $A$ is said totally half-modular if, for each nonsingular square submatrix $B$ of $A, B^{-1}$ is half-integral (these are referred to as 2-regular in [1]). Appa and Kotnyek [2] show that $A \in \mathbb{Z}^{m \times n}$ is totally half-modular if and only if, for all $b \in \mathbb{Z}^{m}$, the Chvátal closure of $\{x: A x \leq$ $b, x \geq 0\}$ is defined by the inequalities $\lfloor\mu A\rfloor x \leq\lfloor\mu b\rfloor$ for all $\mu \in\{0,1 / 2\}^{m}$.

All the known classes of matrices with the EJ property are totally half-modular. Gerards and Schrijver [11] conjectured a characterization of the class of totally halfmodular matrices with the EJ property in terms of minimal forbidden minors. We explain the conjecture next.

It is known [12] that the class of totally half-modular matrices with the EJ property is closed under the following operations:
(i) deleting or permuting rows or columns, or multiplying them by -1 ;
(ii) dividing by 2 an even row (i.e. a row where all entries are $0, \pm 2$ );
(iii) pivoting on a +1 entry,
where pivoting on the top-left entry of $\left(\begin{array}{cc}1 & g \\ f & D\end{array}\right)$ results in $\left(\begin{array}{cc}-1 & g \\ f & D-f g\end{array}\right)$ (here $f$ is a column vector and $g$ a row vector). We say that a matrix $A^{\prime}$ is a minor of $A$ if it arises from $A$ by a series of operations (i)-(iii), and $A^{\prime}$ is a proper minor of $A$ if $A^{\prime}$ is a minor of $A$ but $A$ is not a minor of $A^{\prime}$. The following totally half-modular matrices are minimal forbidden minors for the EJ property,

$$
A_{3}:=\left(\begin{array}{lll}
1 & 2 & 0 \\
1 & 2 & 2 \\
1 & 0 & 2
\end{array}\right) \quad, \quad A_{4}:=\left(\begin{array}{llll}
2 & 1 & 1 & 0 \\
2 & 1 & 0 & 1 \\
2 & 0 & 1 & 1
\end{array}\right)
$$

That is, $A_{3}$ and $A_{4}$ do not have the EJ property, but all their proper minors do. Gerards and Schrijver [11] conjectured that $A_{3}$ and $A_{4}$ are the only minor-minimal totally half-modular matrices without the EJ property.
Conjecture 1. A totally half-modular matrix has the EJ property if and only if it has no minor equal to $A_{3}$ or $A_{4}$.

The above conjecture seems to be extremely hard. Furthermore, the matrix $A_{3}$ does not appear as a forbidden minor in any of the classes of totally half-modular matrices for which Conjecture 1 has been proven so far. In order to make progress and to gain insight on the role of the minor $A_{3}$, we prove the conjecture for a special class of matrices. Conforti, Di Summa, Eisenbrand and Wolsey [5] proved that, if $A$ is a matrix obtained from the node-edge incidence matrix $\bar{A}$ of a bipartite graph by multiplying by 2 some of the columns of $\bar{A}$, and if $b$ is an integral vector, deciding if $A x=b$ has a nonnegative integral solution is $\mathcal{N} \mathcal{P}$-hard. Since incidence matrices of bipartite graphs are totally unimodular, such a matrix $A$ is totally half-modular. Therefore, even characterizing which of the matrices in this class have the EJ property is interesting. Furthermore, we know that $A_{4}$ is never a minor of any of these matrices (this follows from the fact $A_{4}$ is obtained from the Fano matroid by multiplying a column by 2 , and the fact that $\bar{A}$ cannot contain the Fano matroid as a minor since it is totally unimodular [21]). Thus, according to Conjecture $1, A_{3}$ should be the only forbidden minor in this class.

In this paper we prove Conjecture 1 for a wider class of totally half-modular matrices. The following is the main result of our paper.

Theorem 1. Let A be a totally half-modular matrix obtained by multiplying by 2 some of the columns of a $\{0, \pm 1\}$-matrix with at most two nonzero entries per column. The matrix $A$ has the EJ property if and only if it does not contain $A_{3}$ as a minor.

Note that, in the above theorem, the $\{0, \pm 1\}$-matrix corresponding to $A$ does not need to be totally unimodular in order for $A$ to be totally half-modular.

### 1.1. Bidirected graphs and minors

It will be convenient to state our result in terms of bidirected graphs.
A bidirected graph is a triple $G=(V(G), E(G), \sigma(G))$, where $V(G)$ is the set of the nodes of $G, E(G)$ is the set of the edges of $G$ and $\sigma(G)$ is a signing of $(V(G), E(G))$, i.e. a map that assigns to each $e \in E(G)$ and $v \in e$ a $\operatorname{sign} \sigma_{v, e}(G) \in\{+1,-1\}$. The edges in $E(G)$ are of three types: ordinary edges, having two distinct endnodes, half-edges, having only one endnode, and loops, having two identical endnodes. Let $E_{0}(G), H(G), L(G)$ denote the sets of ordinary edges, half-edges, and loops, respectively. Parallel edges are allowed, that is, we allow for multiple edges (including half-edges and loops) having the same endnodes. For convenience, we define $\sigma_{v, e}(G):=0$ if $v \notin e$. When it is clear from the context, we write $E, \sigma, E_{0}, H$ and $L$ instead of $E(G), \sigma(G), E_{0}(G), H(G)$ and $L(G)$. The incidence matrix of $G$ is the $|V| \times|E|$ matrix $A_{G}=\left(a_{v, e}\right)$ such that $a_{v, e}=\sigma_{v, e}$ for all $e \in E \backslash L, a_{v, e}=2 \sigma_{v, e}$ for all $e \in L$. Given a bidirected graph $G$ and a subset $F$ of $E_{0}(G)$, we denote by $A(G, F)$ the matrix obtained from $A_{G}$ by multiplying by 2 the columns relative to edges in $F$.

Given $U \subseteq V(G)$, we denote by $\delta_{G}(U)$ (or $\delta(U)$ when there is no ambiguity) the set containing the edges $E$ that have exactly one endnode in $U$ (in particular, half-edges and loops belong to $\delta_{G}(U)$ if their endnode is in $\left.U\right)$. The subgraph of $G$ induced by $U$ is the bidirected graph $G^{\prime}=\left(U, E^{\prime}, \sigma^{\prime}\right)$ where $E^{\prime}$ is the set of edges of $G$ whose endnodes are all in $U$ and $\sigma^{\prime}$ is the restriction of $\sigma$ to $E^{\prime}$. We denote by $G \backslash U$ the subgraph of $G$ induced by $V \backslash U$. Given $v \in V$, we often write $G \backslash v$ instead of $G \backslash\{v\}$.

Given $E^{\prime} \subseteq E$, we let $G \backslash E^{\prime}=\left(V(G), E(G) \backslash E^{\prime}, \sigma^{\prime}\right)$, where $\sigma^{\prime}$ is the restriction of $\sigma$ to $E \backslash E^{\prime}$.

Paths and cycles in $G$ are defined in the standard way in the undirected graph ( $V, E_{0}$ ). In particular, cycles have always length at least 2. The odd edges of $G$ are the edges $v w \in E_{0}$ such that $\sigma_{v, v w}=\sigma_{w, v w}$, whereas the other edges in $E_{0}$ are even edges. A cycle or path $Q$ in $G$ is even if the number of odd edges in it is even, odd otherwise. Note that a cycle $Q$ is even if and only if the sum of the signs on the edges in $Q$ is divisible by 4 (i.e. $\left.\sum_{v w \in E(Q)}\left(\sigma_{v, v w}+\sigma_{w, v w}\right) \equiv_{4} 0\right)$.

A bidirected graph is said bipartite if it does not contain any odd cycle. (Note that, when $E=E_{0}$ and all edges are odd, this notion coincides with the usual definition of bipartite graph.) By a theorem of Heller and Tompkins [14], $G=(V, E, \sigma)$ is bipartite if and only $V$ can be partitioned into sets $V_{1}, V_{2}$ such that, for every $e \in E_{0}$, $e$ has one endnode in $V_{1}$ and the other in $V_{2}$ if $e$ is odd, and $e$ has both endnodes in either $V_{1}$ or $V_{2}$ if $e$ is even.

We will show in Lemma 4 that a matrix $A(G, F)$ is totally half-modular if and only if $(G, F)$ satisfies the following.

Cycles condition: no odd cycle of $G$ contains edges in $F$.
Next we restate the notion of minor of a matrix $A(G, F)$ in terms of operations on the pair $(G, F)$.
Switching signs. Given a node $v \in V$, the signing $\sigma^{\prime}$ obtained from $\sigma$ by setting $\sigma_{v, e}^{\prime}=-\sigma_{v, e}$ for all $e \in E$ is said to be obtained by switching signs on the node $v$.
Given $e \in E$, the signing $\sigma^{\prime}$ obtained from $\sigma$ by setting $\sigma_{v, e}^{\prime}=-\sigma_{v, e}$ for all $v \in V$, is said to be obtained by switching signs on the edge e.

Deletion. Given a node $v \in V$, the pair $\left(G^{\prime}, F^{\prime}\right)$ obtained from $(G, F)$ by deleting node $v$ is defined as follows. $V\left(G^{\prime}\right)=V \backslash\{v\}, E\left(G^{\prime}\right)$ contains all edges of $E(G)$ not incident to $v$ and, for each edge $v w \in E_{0}(G), E\left(G^{\prime}\right)$ contains a loop on $w$ if $v w \in F$ or a half-edge on $w$ if $v w \notin F$, where in both cases the sign of the new loop or half edge is $\sigma_{w, v w}$. We will identify such new loops and half-edges in $G^{\prime}$ with the corresponding edges incident to $v$ in $G$. The signing on the edges of $G^{\prime}$ coincides with $\sigma$ on $G \backslash v$, while $F^{\prime}=F \cap E_{0}\left(G^{\prime}\right)$. (Note that our definition of node deletion is non-standard, since we do not remove all the edges incident to $v$, but we replace them with loops or half-edges, so $G^{\prime} \neq G \backslash v$.) Given a subset of nodes $U \subseteq V$, the pair $\left(G^{\prime}, F^{\prime}\right)$ is obtained from $(G, F)$ by deleting the nodes in $U$ if $\left(G^{\prime}, F^{\prime}\right)$ is obtained from $(G, F)$ by deleting one by one the nodes in $U$. Note that the result is independent on the order in which we delete the nodes in $U$.

Given an edge $e \in E,\left(G^{\prime}, F^{\prime}\right)$ is obtained from $(G, F)$ by deleting edge $e$ if $G^{\prime}=G \backslash\{e\}$ and $F^{\prime}=F \backslash\{e\}$.
Contraction. Let $e=v w \in E_{0}(G)$ such that $\sigma_{v, e} \neq \sigma_{w, e}$ (this can always be achieved by switching signs on $v$ or $w$, and we will always assume that we do so if needed before we contract an edge). We say that $\left(G^{\prime}, F^{\prime}\right)$ is obtained from $(G, F)$ by contracting edge $e$ if $G^{\prime}$ is the bidirected graph obtained by replacing the nodes $v, w$ with one new node $r \notin V$, by deleting all even edges parallel to $e$, by replacing every odd edge $e^{\prime}$ parallel to $e$ by a loop in $r$ with $\operatorname{sign} \sigma_{v, e^{\prime}}$, by replacing each edge $u u^{\prime} \in E_{0}(G)$ with $u^{\prime} \in\{v, w\}$ by an edge $u r$ in $E\left(G^{\prime}\right)$ with sign $\sigma_{u^{\prime}, u u^{\prime}}$ on node $r$, by replacing each half-edge (resp. loop) on $v$ or $w$ by a half-edge (resp. loop) in $r$ with the same sign, and by letting the signing in $G^{\prime}$ coincide with $\sigma$ on $E\left(G^{\prime}\right)$. Let $F^{\prime}=F \cap E_{0}\left(G^{\prime}\right)$. We will identify each edge of $G^{\prime}$ incident to $r$ with the original edge of $G$.

Note that, if $(G, F)$ satisfies the cycles condition (2), then contracting one by one the edges of an odd cycle $C$ results in a new node with a loop on it.

Given a pair $(G, F)$ satisfying the cycles condition (2), a pair $\left(G^{\prime}, F^{\prime}\right)$ is a minor of $(G, F)$ if it is obtained from the latter through some of the following operations:
(O1) Switching signs on a node or on an edge of $G$;
(O2) Deleting a node or an edge in $(G, F)$;
(O3) Contracting an edge $e=v w$ in $E_{0}(G) \backslash F$;
(O4) Contracting an edge $e=v w$ in $F$ such that $\delta(v) \subseteq F \cup L(G)$;
We observe that the class of pairs $(G, F)$ such that $A(G, F)$ is totally half-modular and has the EJ property is closed under taking minors. Clearly operations (O1),(O2) correspond to multiplying by -1 or removing rows and columns of $A(G, F)$. Assuming that $(G, F)$ satisfies the cycles condition (2), operation (O3) corresponds to pivoting on the entry $(v, e)$ in $A(G, F)$ and removing the row corresponding to $v$ and the columns corresponding to all edges $v w$ such that $\sigma_{v, v w} \neq \sigma_{w, v w}$, while operation (O4) corresponds to dividing by 2 the row of $A(G, F)$ corresponding to $v$ (which is even because $\delta(v) \subseteq$ $F \cup L)$, pivoting on the entry $(v, e)$, and then removing the row corresponding to $v$ and the columns corresponding to all edges $v w$ such that $\sigma_{v, v w} \neq \sigma_{w, v w}$. Operation (O5) corresponds to dividing by 2 the column of $A(G, F)$ indexed by $f$. See Figure 1 for an example of the operation of deleting a node, and Figure 2 for an example of the operation of contracting an edge. In the figures, boldfaced edges represent edges in $F$.


Figure 1: Example of the operation of deleting a node. The pair $\left(G^{\prime}, F^{\prime}\right)$ on the right is obtained by deleting node $v_{1}$ in the pair $(G, F)$ in the left.


Figure 2: Example of the operation of contracting an edge. The pair $\left(G^{\prime}, F^{\prime}\right)$ on the right is obtained by contracting edge $e$ in the pair $(G, F)$ in the left.

Let $\mathscr{G}_{4}=\left(G_{4}, F_{4}\right)$ be defined as follows: $V\left(G_{4}\right)=\left\{v_{1}, v_{2}, v_{3}\right\}, E\left(G_{4}\right)=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$, with $e_{1}=v_{1} v_{2}, e_{2}=v_{1} v_{3}, e_{3}=v_{1} v_{1}, e_{4}=v_{2} v_{3}, F_{4}=\left\{e_{4}\right\}$, and $G_{4}$ has +1 sign on all edges, except $\sigma_{v_{2}, e_{1}}=-1$. See Figure 3 .

Note that $\mathscr{G}_{4}$ satisfies the cycles condition (2). One can verify that the matrix $A\left(\mathscr{G}_{4}\right)$ contains $A_{3}$ as a minor (pivot on the +1 entry ( $v_{1}, e_{1}$ ) and delete the column corresponding to $\left.e_{1}\right)$. Thus, if a pair $(G, F)$ satisfying the cycles condition contains $\mathscr{G}_{4}$ as a minor, then $A(G, F)$ does not have the EJ property.


$$
A\left(\mathscr{G}_{4}\right)=\left(\begin{array}{cccc}
1 & 1 & 2 & 0 \\
-1 & 0 & 0 & 2 \\
0 & 1 & 0 & 2
\end{array}\right)
$$

Figure 3: Representation of $\mathscr{G}_{4}$ and corresponding matrix $A\left(\mathscr{G}_{4}\right)$.

In the remainder of the paper, we denote by $\mathscr{C}$ the family of pairs $(G, F)$, where $G$ is a bidirected graph, $F \subseteq E_{0}(G)$ and $(G, F)$ satisfies the cycles condition and does not contain $\mathscr{G}_{4}$ as a minor. We will prove the following.

Theorem 2. Given a pair $(G, F)$ that satisfies the cycles condition, $A(G, F)$ has the EJ property if and only if $(G, F)$ does not contain $\mathscr{G}_{4}$ as a minor.

We show that Theorem 2 implies Theorem 1. Indeed, let $A$ be a totally half-modular matrix obtained by multiplying by 2 some of the columns of a $\{0, \pm 1\}$-matrix with at most two nonzero entries per column. If $A$ contains $A_{3}$ as a minor, then $A$ does not have the EJ property, because $A_{3}$ does not have the EJ property. Vice versa, assume $A$ does not contain $A_{3}$ as a minor, and let $(G, F)$ be a pair such that $A=A(G, F)$. Since $A\left(\mathscr{G}_{4}\right)$ contains $A_{3}$ as a minor, $(G, F)$ does not contain $\mathscr{G}_{4}$ as a minor. Thus, by Theorem $2, A$ has the EJ property.

Theorem 2 extends a theorem of Edmonds and Johnson [10], mentioned in the introduction, stating that incidence matrices of bidirected graphs have the EJ property. The theorem also suggests the natural question of deciding if a given $(G, F)$ contains $\mathscr{G}_{4}$ as a minor. It is an open question to find a polynomial-time algorithm to solve this recognition problem.

The paper is organized as follows. In Section 2 we show that we can reduce ourselves to studying systems of the form $A x=c, x \geq 0$, and we describe the irredundant nontrivial Chvátal inequalities for such systems. Section 3 describes structural properties of the pairs $(G, F) \in \mathscr{C}$, while Section 4 introduces the concept of balanced bicoloring of the edges of $(G, F)$ and discusses when elements in $\mathscr{C}$ admit such a bicoloring. The results of Sections 3 and 4 are needed in the proof of Theorem 2, given in Section 5.

## 2. Chvátal closure

We show that, to prove Theorem 2, we can reduce ourselves to studying systems in standard form.

Lemma 3. If, for every $(G, F)$ in $\mathscr{C}$ and every $c \in \mathbb{Z}^{E(G)}$, the system

$$
\begin{gather*}
A(G, F) x=c  \tag{3}\\
x \geq 0 .
\end{gather*}
$$

has Chvátal rank at most 1, then $A(G, F)$ has the EJ property for every $(G, F)$ in $\mathscr{C}$.
Proof. Let us assume that (3) has Chvátal rank at most 1 for every $(G, F)$ in $\mathscr{C}$ and every integral vector $c$. Given $(G, F) \in \mathscr{C}$, let $b, c, l, u$ be integral vectors. Let $A:=A(G, F)$.

We need to show that the polyhedron $P:=\left\{x: b_{\tilde{\sim}} \leq A x \leq c, l \leq x \leq u\right\}$ has Chvàtal rank at most 1. Observe first that, if we define $\tilde{b}=b-A l, \tilde{c}=c-A l, \tilde{u}=u-l$, the polyhedron $\tilde{P}:=\left\{x: b^{\prime} \leq A x \leq c^{\prime}, 0 \leq x \leq u^{\prime}\right\}$ is the translate of $P$ by $-l$, i.e. $\tilde{P}=P-l$. Since $l$ is integral, it follows that the first Chvàtal closure of $P$ is integral if and only if the first Chvàtal closure of $\tilde{P}$ is integral. Therefore we may assume that $l=0$, thus $P=\{x: b \leq A x \leq c, 0 \leq x \leq u\}$.

The polyhedron $P$ has Chvàtal rank 1 if and only if the polyhedron $\tilde{P}:=\{(x, s)$ : $A x+s=c, 0 \leq x \leq u, 0 \leq s \leq c-b\}$ has Chvàtal rank 1. Indeed, note that $\tilde{P}=$ $\{(x, c-A x): x \in P\}$, from which one can conclude that the Chvátal closure $\tilde{P}^{\prime}$ of $\tilde{P}$ is integral if and only if the Chvátal closure $P^{\prime}$ of $P$ is integral, by observing that $\tilde{P}^{\prime}=\left\{(x, c-A x): x \in P^{\prime}\right\}$.

Observe that the constraint matrix $(A, I)$ of the system $A x+s=c$ is of the form $A(\tilde{G}, F)$, where $\tilde{G}$ is the bidirected graph obtained from $G$ by introducing a half-edge with sign +1 on every node of $G$.

Thus, it suffices to show that, for every $(G, F) \in \mathscr{C}$, for every $c \in \mathbb{Z}^{V(G)}, u \in \mathbb{Z}^{E(G)}$, and for all $I \subseteq E(G)$, the polyhedron $\left\{x \in \mathbb{R}_{+}^{E(G)}: A(G, F) x=c, x_{e} \leq u_{e}, e \in I\right\}$ has Chvátal rank at most 1.

The proof is by induction on $|I|$, where by assumption the statement holds for $|I|=0$. Let $(G, F) \in \mathscr{C}, c \in \mathbb{Z}^{V(G)}, u \in \mathbb{Z}^{E(G)}$, and $I \subseteq E(G)$ such that $I \neq \emptyset$. Let $P:=\{x \in$ $\left.\mathbb{R}_{+}^{E(G)}: A(G, F) x=c, x_{e} \leq u_{e}, e \in I\right\}$ and let $\bar{x}$ be a point in the first closure $P^{\prime}$ of $P$. We need to show that $\bar{x}$ is a convex combination of integral points in $P$.

Let $\bar{e} \in I$. Assume first that $\bar{e} \in E_{0}(G)$, say $\bar{e}=v w$. Let $(\tilde{G}, \tilde{\sigma})$ be the bidirected graph defined as follows; let $V(\tilde{G})=V(G) \cup\{z\}$, where $z$ is a new node, let $E(\tilde{G})=$ $E(G) \backslash\{\bar{e}\} \cup\left\{e_{v}, e_{w}\right\}$, where $e_{v}=v z, e_{w}=w z$, and let $\tilde{\sigma}_{z, e_{v}}=\tilde{\sigma}_{z, e_{w}}=+1, \tilde{\sigma}_{v, e_{v}}=\sigma_{v, \bar{e}}$, $\tilde{\sigma}_{w, e_{w}}=-\sigma_{w, \bar{e}}$. If $\bar{e} \notin F$, let $\tilde{F}=F$, else $\tilde{F}=F \cup\left\{e_{v}, e_{w}\right\}$. It can be easily verified that $(\tilde{G}, \tilde{F}) \in \mathscr{C}$. Define $\tilde{x}_{e_{v}}:=\bar{x}_{\bar{e}}, \tilde{x}_{e_{w}}:=u_{\bar{e}}-\bar{x}_{\bar{e}}$, and $\tilde{x}_{e}:=\bar{x}_{e}$ for all $e \in E \backslash\{\bar{e}\}$. Finally, let $\tilde{c}:=A(\tilde{G}, \tilde{F}) \tilde{x}$. Observe that $\tilde{c}_{w}=c_{w}-\sigma_{w, \bar{e}} u_{\bar{e}}, \tilde{c}_{z}=u_{\bar{e}}$ if $\bar{e} \notin F$, while $\tilde{c}_{w}=c_{w}-2 \sigma_{w, \bar{e}} u_{\bar{e}}, \tilde{c}_{z}=2 u_{\bar{e}}$ if $\bar{e} \in F$. Furthermore, $\tilde{c}_{t}=c_{t}$ for all $t \in V(G) \backslash\{w\}$.

We prove that $\tilde{x}$ is in the first closure $\tilde{P}^{\prime}$ of the polyhedron $\tilde{P}:=\{y: A(\tilde{G}, \tilde{F}) y=$ $\left.\tilde{c}, y \geq 0, y_{e} \leq u_{e}, e \in I \backslash\{\bar{e}\}\right\}$. Consider a valid inequality $\alpha y \leq \beta$ for $\tilde{P}$, where $\alpha$ is an integral vector. We need to show that $\tilde{x}$ satisfies the corresponding Chvàtal inequality $\alpha y \leq\lfloor\beta\rfloor$. By construction, the inequality $\alpha_{e_{v}} x_{\bar{e}}+\alpha_{e_{w}}\left(u_{\bar{e}}-x_{\bar{e}}\right)+\sum_{e \in E(G) \backslash\{\bar{e}\}} \alpha_{e} x_{e} \leq \beta$ is valid for $P$. Since $\bar{x} \in P^{\prime}$, it follows that $\bar{x}$ satisfies the Chvàtal inequality $\left(\alpha_{e_{v}}-\alpha_{e_{w}}\right) x_{\bar{e}}+$ $\sum_{e \in E(G) \backslash\{\bar{e}\}} \alpha_{e} x_{e} \leq\left\lfloor\beta-\alpha_{e_{v}} u_{\bar{e}}\right\rfloor$. Since $\alpha$ and $u$ are integral, $\left\lfloor\beta-\alpha_{e_{v}} u_{\bar{e}}\right\rfloor=\lfloor\beta\rfloor-\alpha_{e_{v}} u_{\bar{e}}$, therefore $\tilde{x}$ satisfies $\alpha y \leq\lfloor\beta\rfloor$. Thus $\tilde{x} \in \tilde{P}^{\prime}$. By induction, $\tilde{P}^{\prime}$ is an integral polyhedron, thus $\tilde{x}$ is a convex combination of integral points in $\tilde{P}$. It follows that $\bar{x}$ is a convex combination of integral points in $P$.

If $\bar{e} \in H(G)$ (resp. $\bar{e} \in L(G)$ ), where $e$ is incident to a node $v$, define $(\tilde{G}, \tilde{\sigma})$ as follows. Let $V(\tilde{G})=V(G) \cup\{z\}$, where $z$ is a new node, let $E(\tilde{G})=E(G) \backslash\{\bar{e}\} \cup\{\tilde{e}, \ell\}$, where $\tilde{e}=v z$ and $\ell$ is a half-edge on $z$ (resp. a loop on $z$ ), let $\tilde{\sigma}_{z, \tilde{e}}=\tilde{\sigma}_{z, \ell}=+1, \tilde{\sigma}_{v, \tilde{e}}=\sigma_{v, \bar{e}}$. Let $\tilde{F}:=F$ (resp. $\tilde{F}:=F \cup\{\tilde{e}\})$. It can be easily verified that $(\tilde{G}, \tilde{F}) \in \mathscr{C}$. Define $\tilde{x}_{\tilde{e}}=\bar{x}_{\bar{e}}$, $\tilde{x}_{\ell}=u_{\bar{e}}$, and $\tilde{x}_{e}=\bar{x}_{e}$ for all $e \in E \backslash\{\bar{e}\}$. Finally, let $\tilde{c}:=A(\tilde{G}, \tilde{F}) \tilde{x}$. Observe that $\tilde{c}_{z}=u_{\bar{e}}\left(\operatorname{resp} . \tilde{c}_{z}=2 u_{\bar{e}}\right)$, while $\tilde{c}_{t}=c_{t}$ for all $t \in V_{\tilde{P}}(G)$. One can show that $\tilde{x}$ is in the first closure $\tilde{P}^{\prime}$ of the polyhedron $\tilde{P}:=\left\{y: A(\tilde{G}, \tilde{F}) y=\tilde{c}, y \geq 0, y_{e} \leq u, e \in I \backslash\{\bar{e}\}\right\}$. The proof is similar to the previous case. As before, this implies that $\bar{x}$ is a convex
combination of integral points in $P$.
Lemma 4. Given a pair $(G, F)$, the matrix $A(G, F)$ is totally half-modular if and only if $(G, F)$ satisfies the cycles condition (2).

Proof. For the "if" direction, suppose $G$ contains an odd cycle $C$ such that $F^{\prime}:=$ $E(C) \cap F \neq \emptyset$. Let $\Sigma=\left(\sigma_{v, e}\right)_{v \in V(C), e \in E(C)}$. Since $C$ is odd, all entries of $\Sigma^{-1}$ are $\pm \frac{1}{2}$. The matrix $A(C, F \cap E(C))^{-1}$ is obtained from $\Sigma^{-1}$ by multiplying by $\frac{1}{2}$ the rows corresponding to elements in $F^{\prime}$. It follows that some of the entries of $A(C, F \cap E(C))^{-1}$ have value $\pm \frac{1}{4}$.

For "the only if" direction, assume $(G, F)$ satisfies the cycles condition, and let $A:=$ $A(G, F)$. We may assume that $G$ is connected, otherwise it suffices to prove the statement for each connected component of $G$. Since any submatrix $A^{\prime}$ of $A$ is of the form $A^{\prime}=$ $A\left(G^{\prime}, F^{\prime}\right)$ for some pair $\left(G^{\prime}, F^{\prime}\right)$ that satisfies the cycles condition, it suffices to show that, if $A$ is square and nonsingular, then $A^{-1}$ is half-integral. Suppose $A$ is a $k \times k$ nonsingular matrix. Then $V(G)=\left\{v_{1}, \ldots, v_{k}\right\}$ and $E(G)=\left\{e_{1}, \ldots, e_{k}\right\}$. Since $G$ is connected, we may assume that $e_{1}, \ldots, e_{k-1}$ induce a spanning tree of $G$. Let $\Sigma:=\left(\sigma_{v, e}\right)_{v \in V, e \in E}$. The matrix $A^{-1}$ is obtained from $\Sigma$ by multiplying the rows corresponding to elements in $F \cup L(G)$ by $\frac{1}{2}$. If $e_{k} \in H(G) \cup L(G)$, then the matrix $\Sigma$ is totally unimodular, thus $\Sigma^{-1}$ is integral and $A^{-1}$ is half-integral.

If $e_{k} \in E_{0}(G)$, then it is contained in the unique cycle $C$ of $G$. If $C$ is even, then $\Sigma$ is singular, and so is $A$. Therefore $C$ is odd. Up to permuting rows and columns, $\Sigma=\left(\begin{array}{cc}P & Q \\ 0 & R\end{array}\right)$, where $P$ is the incidence matrix of the cycle $C$. It can be readily verified that $\operatorname{det}(P)= \pm 2$ and $R$ is totally unimodular, therefore $P^{-1}$ is half-integral while $R^{-1}$ is integral. Also, $\Sigma^{-1}=\left(\begin{array}{cc}P^{-1} & -P^{-1} Q R^{-1} \\ 0 & R^{-1}\end{array}\right)$, therefore the first $|C|$ rows of $\Sigma^{-1}$ are half-integral, while the other rows are integral. Since $(G, F)$ satisfies the cycles condition, $E(C) \cap F=\emptyset$, therefore $A^{-1}$ is obtained from $\Sigma^{-1}$ by multiplying by $\frac{1}{2}$ some of the last $k-|C|$ rows. It follows that $A^{-1}$ is half-integral.

Let $P$ be a polyhedron and let $P^{\prime}$ be its Chvátal closure. A Chvátal inequality $\alpha x \leq \beta$ for $P$ is nontrivial if it is not valid for $P$, and is irredundant if it is not the sum of two inequalities that are valid for $P^{\prime}$ and that define faces of $P^{\prime}$ different from the one defined by $\alpha x \leq \beta$. Two inequalities $\alpha x \leq \beta$ and $\alpha^{\prime} x \leq \beta^{\prime}$ valid for $P^{\prime}$ are equivalent if they define the same face of $P^{\prime}$.

Lemma 5. If $A$ is a totally half-modular matrix and $c, u$ are integral vectors, any irredundant nontrivial Chvátal inequality for $A x=c, 0 \leq x \leq u$ is equivalent to an inequality of the form $\left(\mu A+\gamma^{0}-\gamma^{u}\right) x \geq\left\lceil\mu c-\gamma^{u} u\right\rceil$ such that $\mu, \gamma^{0}, \gamma^{u}$ have $0, \frac{1}{2}$ entries, $\mu A+\gamma^{0}-\gamma^{u}$ is integral, and $\mu c-\gamma^{u} u$ is not integral.

Proof. It is well known that the first Chvátal closure of $A x=c, 0 \leq x \leq u$ is obtained by adding the inequalities

$$
\begin{equation*}
\left(\mu^{+} A-\mu^{-} A+\gamma^{0}-\gamma^{u}\right) x \geq\left\lceil\mu^{+} c-\mu^{-} c-\gamma^{u} u\right\rceil \tag{4}
\end{equation*}
$$

for all vectors $\mu^{+}, \mu^{-}, \gamma^{0}, \gamma^{u}$ with entries in the interval $[0,1)$ such that $\mu^{+} A-\mu^{-} A+$ $\gamma^{0}-\gamma^{u}$ is integral and $\mu^{+} c-\mu^{-} c-\gamma^{u} u$ is not integer. By Caratheodory's theorem,
we may assume that the positive components of $\mu^{+}, \mu^{-}, \gamma^{0}, \gamma^{u}$ correspond to linearly independent inequalities. As each nonsingular square submatrix of $A$ has half-integral inverse, it follows that $\mu^{+}, \mu^{-}, \gamma^{0}, \gamma^{u}$ have $0, \frac{1}{2}$ entries.

We define $\mu:=\mu^{+}-\mu^{-}-\left\lfloor\mu^{+}-\mu^{-}\right\rfloor$and observe that inequality (4) is the sum of the two inequalities $\left\lfloor\mu^{+}-\mu^{-}\right\rfloor A x \geq\left\lfloor\mu^{+}-\mu^{-}\right\rfloor c$, and $\left(\mu A+\gamma^{0}-\gamma^{u}\right) x \geq\left\lceil\mu c-\gamma^{u} u\right\rceil$. The first inequality is valid for the polyhedron defined by $A x=c, 0 \leq x \leq u$, and the second one is a Chvátal inequality. Finally, note that if $\mu^{+}, \mu^{-}$have $0, \frac{1}{2}$ entries, then so does $\mu$.

In the remaining of this paper, whenever $Z$ is a set, $Y \subseteq Z$, and $z$ is a vector in $\mathbb{R}^{Z}$, we denote by $z(Y)=\sum_{i \in Y} z_{i}$.

At some point in our proof of Theorem 2 it will be necessary to introduce upper bounds on the edges in $F \cup L(G)$. Hence in the following Lemma we describe the Chvátal inequalities for these more general systems.
Lemma 6. Let $(G, F)$ be a pair satisfying the cycles condition, $I \subseteq F \cup L, c \in \mathbb{Z}^{V}$, and $u \in \mathbb{Z}^{I}$. Let $\alpha x \geq \beta$ be an irredundant nontrivial Chvátal inequality for

$$
\begin{gather*}
A(G, F) x=c \\
x \geq 0  \tag{5}\\
x_{f} \leq u_{f}, f \in I
\end{gather*}
$$

Then, for some $U \subseteq V(G)$ such that $c(U)$ is odd, $\alpha x \geq \beta$ is equivalent to

$$
\begin{equation*}
x(\delta(U) \backslash(F \cup L)) \geq 1 \tag{6}
\end{equation*}
$$

Furthermore, for every $S \subset U, S \neq \emptyset$, there exists $v w \in E_{0} \backslash F$ such that $v \in S$ and $w \in U \backslash S$.

Proof. Let $A=A(G, F)$. By Lemma $5, \alpha x \geq \beta$ is equivalent to an inequality of the form $\left(\mu A+\gamma^{0}-\gamma^{u}\right) x \geq\left\lceil\mu c-\gamma^{u} u\right\rceil$, where $\mu \in\left\{0, \frac{1}{2}\right\}^{V}, \gamma^{0}, \gamma^{u} \in\left\{0, \frac{1}{2}\right\}^{E}, \gamma_{e}^{u}=0$ for all $e \in E \backslash I, \mu A+\gamma^{0}-\gamma^{u} \in \mathbb{Z}^{E}$, and $\mu c-\gamma^{u} u \notin \mathbb{Z}$. Let $U:=\left\{v \in V: \mu_{v} \neq 0\right\}$. Observe that all entries of $\mu A$ are integer, except for the entries corresponding to edges in $\delta(U) \backslash(F \cup L)$, which have value $\pm \frac{1}{2}$. Hence $\gamma_{e}^{0}=\frac{1}{2}$ for every $e \in \delta(U) \backslash(F \cup L)$. For every $e \in F \cup L$ we have $\gamma_{e}^{0}=\gamma_{e}^{u}=0$ since otherwise we have $\gamma_{e}^{0}=\gamma_{e}^{u}=\frac{1}{2}$ and the inequality is implied by the one obtained with the same multipliers except for $\gamma_{e}^{0}=\gamma_{e}^{u}=0$. Since $\mu c \notin \mathbb{Z}, c(U)$ is odd. Since $\lceil\mu c\rceil=\mu c+\frac{1}{2}$ and $\mu A x=\mu c$ for every $x$ that satisfies (5), $\alpha x \geq \beta$ is equivalent to $\gamma^{0} x \geq \frac{1}{2}$. Multiplying the latter by 2 , one obtains (6).

Finally, suppose there exists $S \subset U, S \neq \emptyset$, such that all the edges between $S$ and $U \backslash F$ are in $F$. Then $\delta(U) \backslash(F \cup L)=(\delta(S) \cup \delta(U \backslash S)) \backslash(F \cup L)$ and $(\delta(S) \cap \delta(U \backslash S)) \backslash(F \cup L)=\emptyset$. Also, since $c(U)$ is odd, by symmetry we may assume $c(S)$ is odd and $c(U \backslash S)$ is even. Hence $x(\delta(S) \backslash(F \cup L)) \geq 1$ is a Chvátal inequality, while $x(\delta(U \backslash S) \backslash(F \cup L)) \geq 0$ is implied by (5). The sum of the two latter inequalities is precisely (6), contradicting the assumption that $\alpha x \geq \beta$ is irredundant.

We will refer to inequalities of the form (6) as odd-cut inequalities (relative to $U$ ). When $G$ is an undirected simple graph, $F=\emptyset$, and $c$ is the vector of all 1 s , the oddcut inequalities reduce to the well known ones for the perfect matching polytope. The odd cut inequalities can be separated in polynomial time, since the separation problem
reduces to a minimum weight odd-cut. Thus, using the reductions in the proof of Lemma 3 , linear optimization over the first Chvátal closure of $b \leq A(G, F) x \leq c, l \leq x \leq u$, can be solved in polynomial time for all integral $b, c, l$, $u$ whenever $(G, F)$ has the cycles property. If $A(G, F)$ does not contain $A_{3}$ as a minor, by Theorem 1 linear optimization over the integer hull of $b \leq A(G, F) x \leq c, l \leq x \leq u$ is polynomial.

The following lemma will be useful in the proof of Theorem 2.
Lemma 7. Let $G$ be a bidirected graph, let $F \subseteq E_{0}$, and let $I \subseteq F \cup L$. If the system $A(G, F) x=c, x \geq 0$ has Chvátal rank at most 1 for every $c \in \mathbb{Z}^{V}$, then the system $A(G, F) x=c, x \geq 0, x_{f} \leq 1, \forall f \in I$ has Chvátal rank at most 1 for every $c \in \mathbb{Z}^{V}$.

Proof. Let $A:=A(G, F)$. Assume that the system $A x=c, x \geq 0$ has Chvátal rank at most 1 for every integral vector $c$. Suppose by contradiction that there exists a fractional vertex $\bar{x}$ of the first closure of $\left\{x: A x=c, x \geq 0, x_{f} \leq 1 f \in I\right\}$. Let $\tilde{x}_{e}:=\bar{x}_{e}$ for all $e \in E \backslash I, \tilde{x}_{f}:=\bar{x}_{f}-\left\lfloor\bar{x}_{f}\right\rfloor$ for all $e \in I$. Let $\tilde{c}:=A \tilde{x}$. Note that $\tilde{c}$ is integer. Since $I \subseteq F \cup L, \tilde{c}_{v}$ is congruent modulo 2 to $c_{v}$ for all $v \in V$, therefore, for every $U \subseteq V$, $\tilde{c}(U)$ is odd if and only if $c(U)$ is odd. Thus, by Lemma 6 , the odd-cut inequalities for $A x=\tilde{c}, x \geq 0$ and for $A x=c, x \geq 0, x_{f} \leq 1, f \in I$ are the same. Since $\tilde{x}_{e}=\bar{x}_{e}$ for every $e \in E \backslash(F \cup L), \tilde{x}$ is a fractional vertex of the first closure of $\{x: A x=\tilde{c}, x \geq 0\}$, a contradiction.

Given a set $X$ of vectors, let $\operatorname{span}\{X\}$ denote the linear space generated by the vectors in $X$. Given a set $E$ and $R \subseteq E$, we denote by $\chi(R) \in\{0,1\}^{E}$ the characteristic vector of $R$. Given a graph $G=(V, E)$, a family $\mathscr{L}$ of subsets of $V$ is called laminar, if and only if, for any $U, U^{\prime} \in \mathscr{L}$ such that $U \cap U^{\prime} \neq \emptyset$, it follows that $U \subseteq U^{\prime}$ or $U^{\prime} \subseteq U$.

The next lemma is used in the proof of Theorem 2. Its proof, which we do not report here, adopts standard uncrossing arguments (see for example $[8,13,15,16,17]$ ).

Lemma 8 (Uncrossing Lemma). Let $G=(V, E)$ be a graph, let $c \in \mathbb{Z}^{V}, \bar{x} \in \mathbb{R}^{E}$ with $\bar{x}>0$. Let $\mathscr{F}:=\{U \subseteq V: c(U)$ odd and $\bar{x}(\delta(U))=1\}$. Then there exists a laminar subfamily $\mathscr{L}$ of $\mathscr{F}$ such that $\operatorname{span}\{\chi(\delta(U)): U \in \mathscr{L}\}=\operatorname{span}\{\chi(\delta(U)): U \in \mathscr{F}\}$.

## 3. Structure of $(G, F)$

The purpose of this section is to derive structural properties of pairs $(G, F) \in \mathscr{C}$ that will be used in the proof of Theorem 2.

Finding $\mathscr{G}_{4}$ minors. In various proofs in this section, we will derive a contradiction to the assumption that $(G, F) \in \mathscr{C}$ by identifying a $\mathscr{G}_{4}$ minor. This will typically be identified as follows. We will find a cycle $C$ and a path $P$ between two nodes $u$ and $v$ (possibly $u=v$ ), such that $V(C) \cap V(P)=\{u\}$, the two edges $e_{1}, e_{2} \in E(C)$ incident to $u$ are not in $F$, and $E(C) \cap F \neq \emptyset$. Furthermore, we will find one of the following: a) a loop $\ell$ on $v$; b) an edge $f \in F$ incident to $v$ such that the endnode $w$ of $f$ distinct from $v$ is not in $V(C) \cup V(P)$; c) an odd cycle $C^{\prime}$ such that $V\left(C^{\prime}\right) \cap(V(C) \cup V(P))=\{v\}$. Note that w.l.o.g we can assume $E(P) \cap F=\emptyset$, otherwise $P$ contains an edge $f^{\prime} \in F$ such that the path $P^{\prime}$ in $P$ from $u$ to the closest endnode $v^{\prime}$ of $f^{\prime}$ contains no edge in $F$, and we are therefore in case b) if we consider $P^{\prime}$ instead of $P$ and note that the endnode of $f^{\prime}$ distinct from $v^{\prime}$ is not in $V(C) \cup V\left(P^{\prime}\right)$. The $\mathscr{G}_{4}$ minor will be obtained as follows.


Figure 4: Example of graph containing a $\mathscr{G}_{4}$ minor. Signs are not shown. Edges in $F$ are boldfaced. Dashed lines represent paths in $G \backslash F$. After deleting node $w$ and contracting all edges not in $F$ except for $e_{1}, e_{2}$, we get the figure in the middle. We then contract $f^{\prime}$ to obtain $\mathscr{G}_{4}$ at the right.

First, in case b) we delete node $w$ of $f$ to obtain a loop $\ell$ in $v$, whereas in case c) we contract all edges of the odd cycle $C^{\prime}$ to obtain a loop $\ell$ on $v$. Afterwards, we delete all edges in $E \backslash(E(C) \cup E(P) \cup\{\ell\})$ and all nodes in $V \backslash(V(C) \cup V(P))$. Subsequently, we contract all edges in $E(P)$ (which is allowed because $E(P) \cap F=\emptyset$ ) and all edges in $E(C) \backslash\left(F \cup\left\{e_{1}, e_{2}\right\}\right)$. At this stage, $C$ has become a cycle whose edges in $F$ form a path, say $Q$, and whose only edges not in $F$ are $e_{1}, e_{2}$. As long as $Q$ has length more than 1, we pick a node $r \in V(C)$ incident to two edges of $E(C) \cap F$ and contract one of the two edges in $E(C)$ incident to $r$ (this is operation (O4), which we can apply because at this stage all edges incident to $r$ are in $F$ ). When $Q$ finally consists of only one edge, we are left with $\mathscr{G}_{4}$. See Figure 4 for an example of case b). For brevity, normally we will not explicitly specify the configuration above, but rather we will just define a subgraph of $G$ that clearly contains such a configuration.

We recall that a cutset of $G$ is a set of nodes $N$ such that $G \backslash N$ is not connected. A cutnode of $G$ is a node $v$ such that $\{v\}$ is a cutset. A block of $G$ is maximal subgraph of $G$ that does not have a cutnode.

The following conditions will play an important role in our proof.
(C1): No block of $G \backslash F$ contains all four endnodes of two disjoint edges in $F$;
(C2): $F$ is acyclic.
Given a cycle $C$ and a family $\left\{f_{i}, i \in I\right\}$ of chords of $C$ - that is, edges in $E \backslash E(C)$ with both endnodes in $V(C)$ - we say that $\left\{f_{i}, i \in I\right\}$ is a family of non-crossing chords of $C$ if for every pair of chords $f_{i}, f_{j}, i, j \in I$, there exists a path in $C$ between the two endnodes of $f_{i}$ that contains both the endnodes of $f_{j}$.
Lemma 9. Let $(G, F) \in \mathscr{C}$ that does not satisfy (C1). Then $G$ is bipartite, $L(G)=\emptyset$, and $F$ is a family of non-crossing chords of a cycle in $G \backslash F$.

Proof. Let $f=v w$ and $f^{\prime}=v^{\prime} w^{\prime}$ be two edges in $F$ such that $v, w, v^{\prime}, w^{\prime}$ are distinct and in a same block $B$ of $G \backslash F$. Clearly, $B$ is 2-connected. Let $P_{1}$ be a shortest path in $G \backslash F$ from $f$ to $f^{\prime}$. W.l.o.g. the extremes of $P_{1}$ are $v$ and $v^{\prime}$. Now let $P_{2}$ be a path in $G \backslash F$ from $w^{\prime}$ to $w$ that does not pass through $v . P_{2}$ does not intersect $P_{1}$, otherwise we can obtain $\mathscr{G}_{4}$ as a minor by deleting all edges in $E \backslash\left(E\left(P_{1}\right) \cup E\left(P_{2}\right) \cup\left\{v w, v^{\prime} w^{\prime}\right\}\right)$ and by deleting node $w^{\prime}$, contradicting the assumption that $(G, F) \in \mathscr{C}$. Now let $P_{3}$
be a path in $G \backslash F$ from $w$ to $v$ that does not pass through $v^{\prime}$. We observe that $P_{3}$ does not intersect $P_{1}$ and $P_{2}$ except on $v$ and $w$. Indeed, if $P_{3}$ intersects $P_{1}$, then we obtain $\mathscr{G}_{4}$ as a minor by deleting all edges in $E \backslash\left(E\left(P_{1}\right) \cup E\left(P_{3}\right) \cup\left\{v w, v^{\prime} w^{\prime}\right\}\right)$ and by deleting node $w^{\prime}$; if $P_{3}$ intersects $P_{2}$, then we obtain $\mathscr{G}_{4}$ as a minor by deleting all edges in $E \backslash\left(E\left(P_{2}\right) \cup E\left(P_{3}\right) \cup\left\{v w, v^{\prime} w^{\prime}\right\}\right)$ and by deleting node $v^{\prime}$. Now let $P_{4}$ be a path in $G \backslash F$ from $v^{\prime}$ to $w^{\prime}$ that does not pass through $v$. Symmetrically, $P_{4}$ does not intersect $P_{1}$ or $P_{2}$ except on $v^{\prime}$ and $w^{\prime} . P_{4}$ does not intersect $P_{3}$ either, otherwise we obtain $\mathscr{G}_{4}$ as a minor by deleting all edges in $E \backslash\left(E\left(P_{1}\right) \cup E\left(P_{3}\right) \cup\left\{v w, v^{\prime} w^{\prime}\right\}\right)$, and by deleting node $v$. Hence $C:=v, P_{1}, v^{\prime}, P_{4}, w^{\prime}, P_{2}, w, P_{3}, v$ is a cycle in $G \backslash F$, and $f$ and $f^{\prime}$ are non-crossing chords of $C$.

We show that the edges in $F$ are chords of $C$. Let $f^{\prime \prime}=v^{\prime \prime} w^{\prime \prime} \in F \backslash\left\{f, f^{\prime}\right\}$. We show that $f^{\prime \prime}$ is a chord of $C$. If not, let $P$ be a shortest path from an endnode of $f^{\prime \prime}$ to a node in $C$. W.l.o.g. the extreme of $P$ in $f^{\prime \prime}$ is $v^{\prime \prime}$, and let $u$ be the extreme of $P$ in $C$. By symmetry, assume that $u \notin\{v, w\}$. The pair $\left(G^{\prime}, F^{\prime}\right)$ obtained by deleting all edges in $E \backslash\left(E(C) \cup E(P) \cup\left\{v w, v^{\prime \prime} w^{\prime \prime}\right\}\right)$ and by deleting $w^{\prime \prime}$ has $\mathscr{G}_{4}$ as a minor.

We show that the edges in $F$ form a family of non-crossing chords of $C$. Suppose there exist $f, g \in F$ such that no path in $C$ between the two endnodes of $f$ contains both the endnodes of $g$. Thus there exists a subpath $P$ of $C$ between the endnodes of $f$ that contains exactly one endnode $v$ of $g$, where $v$ is an internal node of $P$. Let $w$ be the other endnode of $g$. The pair $\left(G^{\prime}, F^{\prime}\right)$ obtained by deleting all edges in $E \backslash(E(P) \cup\{f, g\})$ and by deleting node $w$ has $\mathscr{G}_{4}$ as a minor.

We show that $L=\emptyset$. If not, let $\ell \in L$, let $P$ be a shortest path from the endnode of $\ell$ to $C$, and let $u$ be the extreme of $P$ in $C$. Let $f \in F$ such that $u \notin f$, and let $P_{f}$ be the subpath of $C$ between the endnodes of $f$ such that $u \in V\left(P_{f}\right)$. The pair ( $G^{\prime}, F^{\prime}$ ) obtained by deleting all edges in $E \backslash\left(E(P) \cup E\left(P_{f}\right) \cup\{f, \ell\}\right)$ and by contracting all the edges in $E(P)$ has $\mathscr{G}_{4}$ as a minor.

We show that $G$ is bipartite. If not, let $\bar{C}$ be an odd cycle. If there exist two different nodes $v, w \in V(\bar{C}) \cap V(C)$, it can be verified that there exists a path $P$ in $C$ from $v$ to $w$ containing edges in $F$. Hence the graph spanned by the edges in $E(\bar{C}) \cup E(P)$ contains an odd cycle with edges in $F$, contradicting $(G, F) \in \mathscr{C}$. Thus $|V(\bar{C}) \cap V(C)| \leq 1$. Let $P$ be a shortest path from $\bar{C}$ to $C$, and let $f \in F$ so that no endnode of $f$ is in $P$. The pair $\left(G^{\prime}, F^{\prime}\right)$ obtained by deleting all edges in $E \backslash(E(\bar{C}) \cup E(C) \cup E(P) \cup\{f\})$ and by contracting all edges in $E(P) \cup E(\bar{C})$ has $\mathscr{G}_{4}$ as a minor.

Given a set $S \subseteq E(G)$ and a node $v \in V$, we say that $S$ is a star centered at $v$ if $S$ does not contain parallel edges in $E_{0}(G)$ and all edges in $S$ are incident to $v$. A set $S \subseteq E(G)$ is a star if $S$ is a star centered at $v$ for some $v \in V$.

Given two edges $f=v w, f^{\prime}=v^{\prime} w^{\prime}$ in $F$, we say that $f^{\prime}$ is nested in $f$ if every path in $G \backslash F$ from $v$ to $w$ contains the nodes $v^{\prime}, w^{\prime}$. We say that $f$ and $f^{\prime}$ are nested if $f^{\prime}$ is nested in $f$ or $f$ is nested in $f^{\prime}$.

Lemma 10. Let $(G, F) \in \mathscr{C}$ that satisfies (C1) and (C2), and let $B$ be a block of $G$ such that $B \backslash F$ is connected and $E(B) \cap F \neq \emptyset$. One of the following holds.
(i) $B$ is bipartite and $E(B) \cap(F \cup L(G))$ is a star;
(ii) There exists an edge $f$ in $E(B) \cap F$ such that all other edges in $E(B) \cap F$ are nested in $f$.

Proof. We may assume $|E(B) \cap F| \geq 2$ otherwise (ii) is trivially satisfied.
10.1. Given two edges $f=v w, f^{\prime}=v^{\prime} w^{\prime}$ in $E(B) \cap F$, one of the following holds:
a) $f$ and $f^{\prime}$ are adjacent, and for any two distinct nodes $s, t \in\left\{v, v^{\prime}, w, w^{\prime}\right\}$ there exists a path in $B \backslash F$ between $s$ and that does not pass through $\left\{v, w, w^{\prime}\right\} \backslash\{s, t\}$;
b) $f$ and $f^{\prime}$ are nested;
$c)$ one among $v$ and $w$, say $v$, is a cutnode of $G \backslash F$ separating $w$ from $\left\{v^{\prime}, w^{\prime}\right\} \backslash\{v\}$.
Assume first that $f$ and $f^{\prime}$ are adjacent, w.l.o.g. $v=v^{\prime}$. By (C2), $w \neq w^{\prime}$. If $f, f^{\prime}$ do not satisfy a), by symmetry every path in $B \backslash F$ from $v$ to $w$ passes through $w^{\prime}$, or every path in $B \backslash F$ from $w$ to $w^{\prime}$ passes through $v$ : in the first case $f^{\prime}$ is nested in $f$, thus case b) applies; in the second case $v$ is a cutnode of $G \backslash F$ separating $w$ from $w^{\prime}$, which means that case c) applies.

Thus we assume that all the nodes $v, w, v^{\prime}, w^{\prime}$ are pairwise different. Suppose that $f, f^{\prime}$ do not satisfy b). As $B \backslash F$ is connected, there is a path $P$ from $v$ to $w$ in $B \backslash F$ that does not contain both $v^{\prime}$ and $w^{\prime}$. $P$ does not contain any node among $v^{\prime}$ and $w^{\prime}$, otherwise the pair $\left(G^{\prime}, F^{\prime}\right)$ obtained by deleting all edges in $E(G) \backslash\left(E(P) \cup\left\{f, f^{\prime}\right\}\right)$, and by deleting the endnode of $f^{\prime}$ that is not in $V(P)$ has $\mathscr{G}_{4}$ as a minor. Analogously, there exists a path $P^{\prime}$ from $v^{\prime}$ to $w^{\prime}$ in $B \backslash F$ that does not contain any node among $v$ and $w$.

Let $S$ be a shortest path in $B \backslash F$ with one extreme in $V(P)$ and the other extreme in $V\left(P^{\prime}\right)$. One extreme of $S$ is an endnode of $f$, and the other extreme of $S$ is an endnode of $f^{\prime}$. If not, by symmetry, we may assume that one extreme of $S$ is an internal node of $P$. The pair $\left(G^{\prime}, F^{\prime}\right)$ obtained by deleting all edges in $E(G) \backslash\left(E(P) \cup E(S) \cup E\left(P^{\prime}\right) \cup\left\{f, f^{\prime}\right\}\right)$, by contracting the edges in $E(S) \cup E\left(P^{\prime}\right)$, and by deleting one endnode of $f^{\prime}$ not in $V(S)$, has $\mathscr{G}_{4}$ as a minor. Thus w.l.o.g. the extremes of $S$ are $v, v^{\prime}$.

We show that $f, f^{\prime}$ satisfy c). If not, $v$ is not a cutnode of $G \backslash F$ separating $w$ from $\left\{v^{\prime}, w^{\prime}\right\}$. Hence let $S^{\prime}$ be a shortest path in $B \backslash F$ with one extreme in $V(P)$ and the other in $V\left(P^{\prime}\right)$ that does not contain $v$. As above, one extreme of $S^{\prime}$ is an endnode of $f$, in this case $w$, and the other extreme of $S^{\prime}$ is an endnode of $f^{\prime}$. We have that $V(S) \cap V\left(S^{\prime}\right)=\emptyset$, otherwise the pair $\left(G^{\prime}, F^{\prime}\right)$ obtained by deleting all edges in $E(G) \backslash\left(E(S) \cup E\left(S^{\prime}\right) \cup\left\{f, f^{\prime}\right\}\right)$ and by deleting $w^{\prime}$ has $\mathscr{G}_{4}$ as a minor. In particular the endnodes of $S^{\prime}$ are $w, w^{\prime}$. Thus $f$ and $f^{\prime}$ are chords of the cycle $v, P, w, S^{\prime}, w^{\prime}, P^{\prime}, v$ in $G \backslash F$, thus they are contained in the same block of $G \backslash F$, contradicting (C1). $\diamond$
10.2. If no two edges in $E(B) \cap F$ satisfy 10.1a), then statement (ii) holds.

Let $f=v w$ be an edge in $E(B) \cap F$ that is not nested in any other edge of $F$. We show that all other edges in $E(B) \cap F$ are nested in $f$. Assume by contradiction that there exists an edge $f^{\prime}=v^{\prime} w^{\prime}$ in $E(B) \cap F$ not nested in $f$. As $f, f^{\prime}$ do not satisfy 10.1a) or 10.1 b ), $f, f^{\prime}$ satisfy 10.1 c ). W.l.o.g. $v$ is a cutnode of $G \backslash F$ separating $w$ from $\left\{v^{\prime}, w^{\prime}\right\} \backslash\{v\}$. Since $B$ is 2-connected, there exists an edge $f^{\prime \prime}=v^{\prime \prime} w^{\prime \prime}$ in $E(B) \cap F$ such that $v^{\prime \prime}$ is in the component of $G \backslash F \backslash\{v\}$ containing $w$, and $w^{\prime \prime}$ is in the component of $G \backslash F \backslash\{v\}$ containing $\left\{v^{\prime}, w^{\prime}\right\} \backslash\{v\}$.

By assumption, $f, f^{\prime \prime}$ do not satisfy 10.1a). Node $v^{\prime \prime}$ is not a cutnode of $G \backslash F$ separating $w^{\prime \prime}$ from $\{v, w\} \backslash\left\{v^{\prime \prime}\right\}$, as there exists a path in $G \backslash F$ from $v$ to $w^{\prime \prime}$ that does not contain $v^{\prime \prime}$. Also $w^{\prime \prime}$ is not a cutnode of $G \backslash F$ separating $v^{\prime \prime}$ from $\{v, w\}$, as there
exists a path in $G \backslash F$ from $v$ to $v^{\prime \prime}$ that does not contain $w^{\prime \prime}$. Thus $f, f^{\prime \prime}$ do not satisfy 10.1c). $f^{\prime \prime}$ is not nested in $f$, since no path in $G \backslash F$ from $w$ to $v$ contains $w^{\prime \prime}$. Hence by 10.1, $f$ is nested in $f^{\prime \prime}$, contradicting the choice of $f$.

By 10.2 , we may assume that there exist two edges $f=v w$ and $f^{\prime}=v w^{\prime}$ in $E(B) \cap F$ satisfying 10.1a). It follows that there exists a cycle, say $H$, in $B \backslash F$ passing through $v$, $w$ and $w^{\prime}$; or there exist a node $z \neq v, w, w^{\prime}$ and three paths in $B \backslash F$ from $z$ to $v, w$ and $w^{\prime}$, respectively, such that their union is a tree, say $H$.

We show that (i) holds. Suppose by contradiction that there exists an edge or loop $f^{\prime \prime} \in E(B) \cap(F \cup L(G))$ such that $v \notin f^{\prime \prime}$. By (C2), we have that $f^{\prime \prime} \neq w w^{\prime}$.

Assume first that $f^{\prime \prime}$ has at most one endnode in $H$. Since $B$ has no cutnode, there exists a path $P$ from one endnode of $f^{\prime \prime}$ to $H$ that does not contain $v$. If we choose $f^{\prime \prime}$ and $P$ so that $P$ is shortest possible, it follows that $P$ does not contain any edge in $F$. Thus $P$ is a path in $B \backslash F, V(P) \cup V(H)$ contains exactly one endnode of $f^{\prime \prime}$, and $P$ does not contain both $w, w^{\prime}$, say $w^{\prime} \notin V(P)$. One can now easily find a $\mathscr{G}_{4}$ minor in the graph spanned by the edges in $E(P) \cup E(H) \cup\left\{f, f^{\prime \prime}\right\}$, a contradiction.

Suppose then that $f^{\prime \prime}$ has two endnodes in $H$. In particular $f^{\prime \prime} \in F$. If $H$ is a cycle, then this contradicts (C1), since at least one among $f$ and $f^{\prime}$ is disjoint from $f^{\prime \prime}$, and they are all contained in the same block of $G \backslash F$, since all their endnodes are in the cycle $H$. Thus $H$ is a tree. A straightforward case analysis shows that the graph spanned by the edges $E(H) \cup\left\{f, f^{\prime}, f^{\prime \prime}\right\}$ contains $\mathscr{G}_{4}$ as a minor. Thus $E(B) \cap(F \cup L(G))$ is a star centered at $v$.

We only need to show that $B$ is bipartite. Suppose by contradiction that there is an odd cycle $C$ in $B$.
10.3. Either $v$ is a cutnode of $B \backslash F$ separating $w$ from $V(C) \backslash\{v\}$, or $w$ is a cutnode of $B \backslash F$ separating $v$ from $V(C) \backslash\{w\}$.

The cycle $C$ does not contain both $v$ and $w$, otherwise one can readily verify that the graph induced by $E(C) \cup\{f\}$ has an odd cycle containing $f$, contradicting that $(G, F) \in$ $\mathscr{C}$. Suppose by contradiction that 10.3 does not hold. Then there exists a path $P_{w}$ in $B \backslash F$ from $w$ to a node in $V(C) \backslash\{v\}$ that does not contain $v$ and a path $P_{v}$ in $B \backslash F$ from $v$ to a node in $V(C) \backslash\{w\}$ that does not contain $w$. If $C$ contains exactly one among $v$ and $w$, say $v$, then the graph induced by $E(C) \cup E\left(P_{w}\right) \cup\{f\}$ has an odd cycle containing $f$, a contradiction. Thus $V(C) \cap\{v, w\}=\emptyset$.

Let $\left(G^{\prime}, F^{\prime}\right)$ be obtained from $(G, F)$ by contracting all the edges of $C$. Let $\ell$ be the new loop obtained from contracting $C$. The subgraph of $G^{\prime}$ induced by the edges in $E\left(P_{v}\right) \cup E\left(P_{w}\right) \cup\{f, \ell\}$ contains $\mathscr{G}_{4}$ as a minor, a contradiction. $\diamond$

Suppose that $v$ is a cutnode of $B \backslash F$. Since $B$ does not have a cutnode, there must exist an edge in $F$ not containing $v$, a contradiction. Thus, by 10.3, $w$ is a cutnode of $B \backslash F$ separating $v$ from $V(C) \backslash\{w\}$. Consider the path $P_{1} \in B \backslash F$ between $w$ and $v$ that does not pass through $w^{\prime}$ and the path $P_{2} \in B \backslash F$ between $w$ and $w^{\prime}$ that does not pass through $v$, and let $P$ be a shortest path between $w$ and a node of $C$. Let $\left(G^{\prime}, F^{\prime}\right)$ be obtained from $(G, F)$ by contracting all the edges of $C$. Let $\ell$ be the new loop obtained from contracting $C$. The subgraph of $G^{\prime}$ induced by the edges in $E\left(P_{1}\right) \cup E\left(P_{2}\right) \cup\left\{f^{\prime}, \ell\right\}$ contains $\mathscr{G}_{4}$ as a minor, a contradiction.

In the proof of Theorem 2, we will be able to prove that the pair $(G, F)$ satisfies the following.
(C3): For every block $B$ of $G$, each connected component of $B \backslash F$ has at least two nodes.

Lemma 11. Let $(G, F) \in \mathscr{C}$ that satisfies (C3) and let $W$ be the set of edges in $F$ with endnodes in distinct connected components of $G \backslash F$. Let $B$ be a block of $G$ such that $B \backslash F$ is not connected, let $Q$ be a connected component of $B \backslash F$, and $\bar{Q}$ be the subgraph of $G$ induced by $V(Q)$. Denote by $\bar{V}$ the set of nodes in $Q$ incident to edges in $W \cap E(B)$. The following hold.
(i) the nodes in $\bar{V}=\left\{v_{1}, \ldots, v_{k}\right\}$ can be ordered in such a way that $v_{i}$ is a cutnode of $\bar{Q}$ separating the two sets $\left\{v_{1}, \ldots, v_{i-1}\right\}$ from $\left\{v_{i+1}, \ldots, v_{k}\right\}, i=2, \ldots, k-1$;
(ii) let $v_{i} w \in W \cap E(B)$ for some $i \in\{2, \ldots, k-1\}$. Then $\left\{v_{i}, w\right\}$ is a cutset of $B$ separating $\left\{v_{1}, \ldots, v_{i-1}\right\}$ from $\left\{v_{i+1}, \ldots, v_{k}\right\}$;
(iii) for any $i, j \in\{1, \ldots, k\}, i \neq j$, there exists a path of length at least 2 in $B$ from $v_{i}$ to $v_{j}$ that does not contain any node in $V(Q) \backslash\left\{v_{i}, v_{j}\right\}$.
(iv) for every node $v \in V(Q)$ there are paths in $Q$ from $v$ to $v_{1}$ in $Q \backslash v_{k}$ and from $v$ to $v_{k} Q \backslash v_{1} ;$
(v) each edge in $L(G) \cup(W \backslash E(B))$ with one endnode in $V(Q)$ is incident to $v_{1}$ or $v_{k}$;
(vi) $\bar{Q}$ is bipartite;
(vii) for any $f \in F \cap E(\bar{Q})$, every endnode of $f$ is either in $\left\{v_{1}, v_{k}\right\}$ or it is a cutnode of $G \backslash F$ separating $v_{1}$ and $v_{k}$.

An example representing Lemma 11 is given in Figure 5.
Proof. We first prove the following.
11.1. Given pairwise distinct nodes $v, v^{\prime}, v^{\prime \prime} \in \bar{V}$, one among $v, v^{\prime}, v^{\prime \prime}$ is a cutnode of $Q$ separating the other two.

Suppose by contradiction that there are three distinct nodes $v, v^{\prime}, v^{\prime \prime} \in \bar{V}$ and paths $P_{v, v^{\prime}}$ from $v$ to $v^{\prime}$ in $Q \backslash v^{\prime \prime} ; P_{v^{\prime}, v^{\prime \prime}}$ from $v^{\prime}$ to $v^{\prime \prime}$ in $Q \backslash v ; P_{v, v^{\prime \prime}}$ from $v$ to $v^{\prime \prime}$ in $Q \backslash v^{\prime}$. As $v, v^{\prime}, v^{\prime \prime} \in \bar{V}$, there exist edges $v w, v^{\prime} w^{\prime}, v^{\prime \prime} w^{\prime \prime} \in W \cap E(B)$.

We show that $w, w^{\prime}, w^{\prime \prime}$ are pairwise distinct, and that there exists a node distinct from $v, v^{\prime}, v^{\prime \prime}$ that is in at least two paths among $P_{v, v^{\prime}}, P_{v^{\prime}, v^{\prime \prime}}, P_{v, v^{\prime \prime}}$. Suppose not.

Assume first that $w=w^{\prime}=w^{\prime \prime}$. As $(G, F)$ satisfies the condition (C3), there exists a node $\bar{w} \neq w$ in the connected component of $B \backslash F$ containing $w$.

Let $P$ be a shortest path in $B \backslash w$ from $\bar{w}$ to $V\left(P_{v, v^{\prime}}\right) \cup V\left(P_{v^{\prime}, v^{\prime \prime}}\right) \cup V\left(P_{v, v^{\prime \prime}}\right)$ (one such path exists since $B$ is 2-connected), and let $u$ be the extreme of $P$ distinct from $\bar{w}$.
W.l.o.g. $u \notin\left\{v, v^{\prime}\right\}$, thus there exist paths $P_{u, v}$, from $u$ to $v$, and $P_{u, v^{\prime}}$, from $u$ to $v^{\prime}$, so that $E\left(P_{u, v}\right), E\left(P_{u, v^{\prime}}\right) \subseteq E\left(P_{v, v^{\prime}}\right) \cup E\left(P_{v^{\prime}, v^{\prime \prime}}\right) \cup E\left(P_{v, v^{\prime \prime}}\right), E\left(P_{u, v}\right) \cap E\left(P_{u, v^{\prime}}\right)=\emptyset$, and $\left|E\left(P_{u, v}\right)\right|,\left|E\left(P_{u, v^{\prime}}\right)\right| \geq 1$. Since $\bar{w}$ and $u$ are in different connected components of $B \backslash F$, the path $P$ contains at least one edge in $F$. Let $\tilde{v} \tilde{w}$ be the edge in $F \cap E(P)$ so that


Figure 5: Example representing Lemma 11. Edges in $F$ are boldface, and + signs on the edges are omitted. $(G, F)$ in the picture is in $\mathscr{C}$, it is 2 -connected (so it is a block), $G \backslash F$ is not connected, $\bar{V}=\left\{v_{1}, v_{2}, v_{3}\right\}, W=\left\{v_{1} w_{1}, v_{2} w_{2}, v_{3} w_{3}\right\} . \bar{Q}$ is the graph defined by nodes and edges within the dashed box, whereas $Q=\bar{Q} \backslash F$. As per (i), $v_{2}$ is a cutnode of $\bar{Q}$ separating $v_{1}$ from $v_{3}$. As in (ii), $\left\{v_{2}, w_{2}\right\}$ is a node-cutset of $G$ separating $v_{1}$ and $v_{3}$. As in (iii), $v_{1}$ and $v_{2}$ are joined by the path $v_{1}, w_{1}, w_{2}, v_{2}$ which has no intermediate node in $V(Q)$. By (iv), every node of $V(Q)$ is joined to $v_{1}$ by a path in $Q$ not containing $v_{3}$ and to $v_{3}$ by a path in $Q$ not containing $v_{1}$. As in $(v)$, the only loop with an endnode in $V(Q)$ is incident to $v_{3}$. As in (vi), $\bar{Q}$ is bipartite. As in (vii), edge $v_{1} v_{2}$ is incident to $v_{1}$ and to a cutnode of $G \backslash F$, and $v_{2} u$ is incident to two cutnodes of $G \backslash F$.
node $u$ and $\tilde{v}$ have minimum distance in $P$, and let $\tilde{P}$ be the subpath of $P$ from $u$ to $\tilde{v}$. The pair $\left(G^{\prime}, F^{\prime}\right)$ obtained by deleting all edges in $E(G) \backslash\left(E\left(P_{u, v}\right) \cup E\left(P_{u, v^{\prime}}\right) \cup E(\tilde{P}) \cup\right.$ $\left\{v w, v^{\prime} w, \tilde{v} \tilde{w}\right\}$ ), by deleting node $\tilde{w}$, and by contracting all edges of $\tilde{P}$, has $\mathscr{G}_{4}$ as a minor. If exactly two of the nodes $w, w^{\prime}$ and $w^{\prime \prime}$ are identical, say $w=w^{\prime \prime}, w \neq w^{\prime}$, then the pair $\left(G^{\prime}, F^{\prime}\right)$ obtained by deleting all edges in $E(G) \backslash\left(E\left(P_{v, v^{\prime}}\right) \cup E\left(P_{v^{\prime}, v^{\prime \prime}}\right) \cup\left\{v w, v^{\prime \prime} w, v^{\prime} w^{\prime}\right\}\right)$ and by deleting node $w^{\prime}$ has $\mathscr{G}_{4}$ as a minor.

It follows that $w, w^{\prime}$ and $w^{\prime \prime}$ are pairwise distinct. Assume that the paths $P_{v, v^{\prime}}, P_{v^{\prime}, v^{\prime \prime}}$, $P_{v, v^{\prime \prime}}$ pairwise intersect only in their extremes. Then $E\left(P_{v, v^{\prime}}\right) \cup E\left(P_{v^{\prime}, v^{\prime \prime}}\right) \cup E\left(P_{v, v^{\prime \prime}}\right)$ induce a cycle $C$. Let $P$ be a shortest path in $B \backslash v$ from $w$ to $V(C) \cup\left\{w^{\prime}, w^{\prime \prime}\right\}$. By symmetry, we may assume that the nodes $v^{\prime}$ and $w^{\prime}$ are not in $V(P)$. Let $C^{\prime}$ be the unique cycle in the graph spanned by the edges in $E(C) \cup E(P) \cup\left\{v w, v^{\prime \prime} w^{\prime \prime}\right\}$ that contains node $v^{\prime}$ and edge $v w$. The pair $\left(G^{\prime}, F^{\prime}\right)$ obtained by deleting all edges in $E(G) \backslash\left(E\left(C^{\prime}\right) \cup\left\{v^{\prime} w^{\prime}\right\}\right)$ and by deleting node $w^{\prime}$ has $\mathscr{G}_{4}$ as a minor. Hence there exists a node distinct from $v, v^{\prime}, v^{\prime \prime}$ that is in at least two paths among $P_{v, v^{\prime}}, P_{v^{\prime}, v^{\prime \prime}}, P_{v, v^{\prime \prime}}$.

Next we argue that there exists a node $s$ and three paths $P_{s, t}$ between $s$ and $t$, for $t=$ $v, v^{\prime}, v^{\prime \prime}$, contained in the graph spanned by the edges in $E\left(P_{v, v^{\prime}}\right) \cup E\left(P_{v^{\prime}, v^{\prime \prime}}\right) \cup E\left(P_{v, v^{\prime \prime}}\right)$ and pairwise intersecting only at node $s$. Indeed, assume that $P_{v v^{\prime}}$ and $P_{v^{\prime} v^{\prime \prime}}$ have a node in common other than $v^{\prime}$ (the other cases are symmetric). Let $s$ be the node closest to $v$ in $P_{v v^{\prime}}$, and let $P_{s v}$ the path in $P_{v v^{\prime}}$ between $v$ and $s$. By our choice of $s, P_{v^{\prime} v^{\prime \prime}}$ intersects $P_{s, v}$ only in $s$. If we let $P_{s v^{\prime}}$ and $P_{s v^{\prime \prime}}$ the two paths in $P_{v^{\prime} v^{\prime \prime}}$ between $s$ and $v^{\prime}$ and between $s$ and $v^{\prime \prime}$, respectively, then the three paths satisfy the statement.

For $t=v, v^{\prime}, v^{\prime \prime}$, we may assume that $V\left(P_{s, t}\right) \cap \bar{V} \subseteq\{s, t\}$, otherwise we may replace $t$ with the node $\bar{t} \in V\left(P_{s, t}\right) \cap \bar{V}, \bar{t} \neq s$, that is closest to $s$ in $P_{s, t}$. We consider two cases.

Case 1: $s \notin \bar{V}$. Since $B$ is two connected, there exists a path from $w^{\prime}$ to $V\left(P_{s, v}\right) \cup$ $V\left(P_{s, v^{\prime}}\right) \cup V\left(P_{s, v^{\prime \prime}}\right) \cup\left\{w, w^{\prime \prime}\right\}$ in $B \backslash v^{\prime}$. Let $P$ be such a path chosen so that $|E(P) \cap F|$ is smallest possible and, subject to that, chosen so that $|E(P)|$ is smallest possible (in other
words, choose $P$ such that the pair $(|E(P) \cap F|,|E(P)|)$ is lexicographically minimal). Let $u$ be the extreme of $P$ different from $w^{\prime}$, and let $u^{\prime}$ be the node adjacent to $u$ in $P$. W.l.o.g. $u \in V\left(P_{s, v^{\prime}}\right) \cup V\left(P_{s, v}\right) \cup\{w\}$. We show that $u \in V\left(P_{s, v^{\prime}}\right)$ and $u u^{\prime} \in F$. If not, let $C$ be the unique cycle in the graph spanned by the edges in $E\left(P_{s, v}\right) \cup E\left(P_{s, v^{\prime}}\right) \cup E\left(P_{s, v^{\prime \prime}}\right) \cup$ $E(P) \cup\left\{v w, v^{\prime} w^{\prime}\right\}$, and let $\bar{P}$ be the shortest path from $v^{\prime \prime}$ to $C$. Since $u \in V\left(P_{s, v}\right)$ or $u u^{\prime} \notin F$, the extreme of $\bar{P}$ in $C$ is incident in $C$ to two edges in $E_{0} \backslash F$. Thus the pair $\left(G^{\prime}, F^{\prime}\right)$ obtained by deleting all edges in $E(G) \backslash\left(E(C) \cup E(\bar{P}) \cup\left\{v^{\prime \prime} w^{\prime \prime}\right\}\right.$ ), by contracting all the edges in $E(\bar{P})$, and by deleting node $w^{\prime \prime}$, has $\mathscr{G}_{4}$ as a minor.

Thus $u \in V\left(P_{s, v^{\prime}}\right)$ and $u u^{\prime} \in F$. Since $u \in V\left(P_{s, v^{\prime}}\right) \backslash\left\{v^{\prime}\right\}, u \notin \bar{V}$, thus $u u^{\prime} \notin$ $W$, and so $u^{\prime} \in V(Q)$. As $Q$ is connected, let $R$ be a shortest path in $Q$ from $u^{\prime}$ to $V\left(P_{s, v}\right) \cup V\left(P_{s, v^{\prime}}\right) \cup V\left(P_{s, v^{\prime \prime}}\right)$. Since $R$ contains no edge in $F$, the extreme of $R$ distinct from $u^{\prime}$ must be $v^{\prime}$, otherwise $E(P) \backslash\left\{u u^{\prime}\right\} \cup E(R)$ induces a path $P^{\prime}$ from $w^{\prime}$ to $V\left(P_{s, v}\right) \cup V\left(P_{s, v^{\prime}}\right) \cup V\left(P_{s, v^{\prime \prime}}\right)$ in $B \backslash v^{\prime}$, and $E\left(P^{\prime}\right) \cap F=(E(P) \cap F) \backslash\left\{u u^{\prime}\right\}$, a contradiction to the minimality of $P$. Let $C$ be the unique cycle in the graph spanned by the edges in $E\left(P_{s, v^{\prime}}\right) \cup E(R) \cup\left\{u u^{\prime}\right\}$. Note that $C$ contains the edge $u u^{\prime} \in F$ and the node $v^{\prime}$, and that both edges incident to $v^{\prime}$ in $C$ are in $E_{0} \backslash F$. Thus the pair ( $G^{\prime}, F^{\prime}$ ) obtained by deleting all edges in $E(G) \backslash\left(E(C) \cup\left\{v^{\prime} w^{\prime}\right\}\right)$ and by deleting node $w^{\prime}$ has $\mathscr{G}_{4}$ as a minor.
Case 2: $s \in \bar{V}$. Since $B$ is 2-connected, let $P$ be the shortest path in $B \backslash\{s\}$ with extremes in two distinct sets among $V\left(P_{s, v}\right) \cup\{w\}, V\left(P_{s, v^{\prime}}\right) \cup\left\{w^{\prime}\right\}, V\left(P_{s, v^{\prime \prime}}\right) \cup\left\{w^{\prime \prime}\right\}$. W.l.o.g. $P$ has one extreme in $V\left(P_{s, v}\right) \cup\{w\}$, and the other in $V\left(P_{s, v^{\prime}}\right) \cup\left\{w^{\prime}\right\}$. By the minimality of $P, V(P) \cap\left(V\left(P_{s, v^{\prime \prime}}\right) \cup\left\{w^{\prime \prime}\right\}\right)=\emptyset$. Let $C$ be the unique cycle in the graph spanned by the edges in $E\left(P_{s, v}\right) \cup E\left(P_{s, v^{\prime}}\right) \cup E(P) \cup\left\{v w, v^{\prime} w^{\prime}\right\}$. If $E(C) \cap F \neq \emptyset$, then the pair $\left(G^{\prime}, F^{\prime}\right)$ obtained by deleting all edges in $E(G) \backslash\left(E(C) \cup E\left(P_{s, v^{\prime \prime}}\right) \cup\left\{v^{\prime \prime} w^{\prime \prime}\right\}\right.$ ), by contracting all the edges in $E\left(P_{s, v^{\prime \prime}}\right)$, and by deleting node $w^{\prime \prime}$, has $\mathscr{G}_{4}$ as a minor. It follows that $P$ has both extremes in $V\left(P_{s, v}\right) \cup V\left(P_{s, v^{\prime}}\right)$, and that $E(P) \cap F=\emptyset$. In particular, $P$ is a path in $Q$. If the extremes of $P$ are $v$ and $v^{\prime}$, then $E(P) \cup E\left(P_{s v}\right) \cup E\left(P_{s v^{\prime}}\right)$ induces a cycle in $Q$ containing $s, v, v^{\prime} \in \bar{V}$, which we already showed is not possible. Thus, by symmetry, we may assume that the extreme of $P$ in $P_{s v^{\prime}}$ is a node $s^{\prime} \neq v^{\prime}$. If we let $P_{s^{\prime} v^{\prime}}$ and $P_{s^{\prime} s}$ be the paths in $P_{s v^{\prime}}$ from $s^{\prime}$ to $s$ and $v^{\prime}$, respectively, then $\left(V\left(P_{s^{\prime} v}\right) \cup V\left(P_{s^{\prime} v^{\prime}}\right) \cup V\left(P_{s^{\prime} s}\right)\right) \cap \bar{V}=\left\{s, v, v^{\prime}\right\}$, which is precisely Case 1 . $\diamond$

Since $Q$ is connected, consider a inclusionwise minimal connected subgraph of $G$ that contains all nodes in $\bar{V}$. By statement 11.1 such a subgraph must be a path. This shows that there exists a path $P$ in $Q$ such that $\bar{V} \subseteq V(P)$. Furthermore, if we let $v_{1}, \ldots, v_{k}$ be the nodes in $\bar{V}$ in the order they appear in $P$, it follows that $v_{i}$ is a cutnode of $Q$ separating $\left\{v_{1}, \ldots, v_{i-1}\right\}$ from $\left\{v_{i+1}, \ldots, v_{k}\right\}, i=2, \ldots, k-1$.
(i)(ii) Let $v_{i} w \in W \cap E(B)$ for some $i \in\{2, \ldots, k-1\}$. It suffices to show that $\left\{v_{i}, w\right\}$ is a cutset of $B$ separating $\left\{v_{1}, \ldots, v_{i-1}\right\}$ from $\left\{v_{i+1}, \ldots, v_{k}\right\}$, since in this case $v_{i}$ must be a cutnode of $\bar{Q}$ separating $\left\{v_{1}, \ldots, v_{i-1}\right\}$ from $\left\{v_{i+1}, \ldots, v_{k}\right\}$ because $w \notin V(Q)$. Suppose by contradiction that there exists a path $R$ in $B \backslash\left\{v_{i}, w\right\}$ from a node in $\left\{v_{1}, \ldots, v_{i-1}\right\}$ to a node in $\left\{v_{i+1}, \ldots, v_{k}\right\}$. Note that $E(R)$ cannot be contained in $E(Q)$, therefore $E(R) \cap F \neq \emptyset$. Let $e_{1}, e_{2}$ be the two edges in $E(P)$ incident to $v_{i}$. Let $C$ be the unique cycle in the graph spanned by the edges in $E(R) \cup E(P)$ containing $v_{i}$. Then $C$ contains also $e_{1}, e_{2}$ and $E(C) \cap F \neq \emptyset$. Furthermore, node $v_{i}$ is incident to the edge $v_{i} w \in F$, and $w \notin C$. If follows that $(G, F)$ has $\mathscr{G}_{4}$ as a minor.
(iii) It is sufficient to prove that for $i=1, \ldots, k-1$, for every edge $v_{i} w \in W \cap E(B)$ there exists a path in $B$ from $w$ to $v_{i+1}$ that does not contain any node in $V(Q) \backslash\left\{v_{i+1}\right\}$. In fact, the last edge of such path is in $W \cap E(B)$, and the statement follows by induction. Let $\bar{P}$ be a shortest path from $w$ to $v_{i+1}$ in $B \backslash\left\{v_{i}\right\}$. We show that $\bar{P}$ contains no node in $V(Q) \backslash\left\{v_{i+1}\right\}$. Otherwise, let $v_{t} \in V(Q) \backslash\left\{v_{i+1}\right\}$ be the closest node in $\bar{P}$ to $w$. Let $P_{1}$ be the subpath of $\bar{P}$ from $w$ to $v_{t}$, and $P_{2}$ be the subpath of $\bar{P}$ from $v_{t}$ to $v_{i+1}$. Note that $t>i+1$ since, by (ii), $\left\{v_{i}, w\right\}$ is a cutset of $B$ separating $v_{i+1}$ from $v_{t}$, but $v_{i}, w \notin V\left(P_{2}\right)$. Given $v_{i+1} w^{\prime} \in W \cap E(B),\left\{v_{i+1}, w^{\prime}\right\}$ is a cutset of $B$ separating $v_{i}$ from $v_{t}$, thus $w^{\prime} \in V\left(P_{1}\right)$. The path from $w$ to $v_{i+1}$ spanned by $E\left(P_{1}\right) \cup\left\{v_{i+1} w^{\prime}\right\}$ is shorter than $\bar{P}$, a contradiction.
(iv) Suppose not. By symmetry, we may assume that there exists $v \in V(Q)$ such that every path from $v$ to $v_{k}$ in $Q$ contains $v_{1}$. Let $P_{1}$ be a shortest path from $v$ to $v_{1}$ in $Q$, and $P_{2}$ be the shortest path from $v_{1}$ to $v_{k}$ in $Q$. Note that $P_{1}$ and $P_{2}$ exist because $Q$ is connected, and they only intersect in $v_{1}$ otherwise $E\left(P_{1}\right) \cup E\left(P_{2}\right)$ would contain a path from $v$ to $v_{k}$ avoiding $v_{1}$. Furthermore, it follows from (i) that $\bar{V} \subseteq V\left(P_{2}\right)$. Since $B$ is 2-connected, there exists a shortest path $P^{\prime}$ in $B$ from $V\left(P_{1}\right) \backslash\left\{v_{1}\right\}$ to $V\left(P_{2}\right) \backslash\left\{v_{1}\right\}$ that does not pass through $v_{1}$. Since $\bar{V} \subseteq V\left(P_{2}\right), P^{\prime}$ cannot cross any edge of $W$, thus $P^{\prime}$ is entirely contained in $\bar{Q}$. Let $u_{i}, i=1,2$ be the endnode of $P^{\prime}$ in $P_{i}$, and let $P_{i}^{\prime}$ be the path contained in $P_{i}$ from $u_{i}$ to $v_{1}$. Note that $u_{1}, u_{2} \neq v_{1}$ because $P^{\prime}$ does not pass through $v_{1}$. Note also that $P^{\prime}$ contains an edge in $F$, otherwise there exists a path from $v$ to $v_{k}$ in $Q$ that does not pass through $v_{1}$. Thus $v_{1}, P_{1}^{\prime}, u_{1}, P^{\prime}, u_{2}, P_{2}^{\prime}, v_{1}$ form a cycle $C$ such that $E(C) \cap F \neq \emptyset$, and the two edges of $C$ incident to $v_{1}$ are not elements of $F$. By definition, $v_{1}$ is incident to an edge $v_{1} w \in W$. It follows that $(G, F)$ has a $\mathscr{G}_{4}$ minor. (v) Suppose $f=v w$ is an edge in $L(G) \cup(W \backslash E(B))$ such that $v$ is in $V(Q)$ but $v \neq v_{1}, v_{k}$. By (iii) there exists a path $P_{1, k}$ in $B$ from $v_{1}$ to $v_{k}$ that does not contain any node in $V(Q) \backslash\left\{v_{1}, v_{k}\right\}$. Note that $E\left(P_{1, k}\right) \cap F \neq \emptyset$. By (iv), there exist a path $P_{1}$ from $v$ to $v_{1}$ and a path $P_{k}$ from $v$ to $v_{k}$ in $G \backslash F$ that do not pass through $v_{k}$ and $v_{1}$, respectively. Observe that, if $v \neq w$, then $w \notin V(B)$, since $f \notin E(B)$. Thus pair $\left(G^{\prime}, F^{\prime}\right)$ obtained by deleting all edges in $E(G) \backslash\left(E\left(P_{1, k}\right) \cup E\left(P_{1}\right) \cup E\left(P_{k}\right) \cup\{v w\}\right)$ and by deleting node $w$ if $v \neq w$ has $\mathscr{G}_{4}$ as a minor.
(vi) Suppose that there exists an odd cycle $C$ in $\bar{Q}$. If $v_{1}, v_{k} \notin V(C)$, then contracting all the edges of $C$ results in a loop $\ell$ that is not incident to $v_{1}$ or $v_{k}$, and we obtain $\mathscr{G}_{4}$ as a minor as in the proof of (v). W.l.o.g. we assume $v_{1} \in V(C)$. By (iv), there exists a path (possibly of length 0 ) between $C$ and $v_{k}$ in $Q$ that does not pass through $v_{1}$. Let $P$ be one such path of minimum length. By (iii) there exists a path $P_{1, k}$ in $B$ from $v_{1}$ to $v_{k}$ that does not contain any node in $V(Q) \backslash\left\{v_{1}, v_{k}\right\}$. Note that $V(P) \cap V\left(P_{1, k}\right)=\left\{v_{k}\right\}$. As $C$ is odd, there exists a path $P_{C}$ in $C$ so that the graph spanned by the edges in $E\left(P_{C}\right) \cup E(P) \cup E\left(P_{1, k}\right)$ is an odd cycle $\bar{C}$. Note however that $E(\bar{C}) \cap F \neq \emptyset$, contradicting $(G, F) \in \mathscr{C}$.
(vii) Let $f=v w \in F \cap E(\bar{Q})$. By contradiction assume that $w \neq v_{1}, v_{k}$ and $w$ is not a cutnode of $G \backslash F$ separating $v_{1}$ and $v_{k}$. Suppose first that $v \neq v_{1}, v_{k}$. Given two paths in $G \backslash F$ from $v$, to $v_{1}$ and $v_{k}$, respectively, that do not contain $w$, we obtain $\mathscr{G}_{4}$ as a minor as in the proof of (v). Hence we assume, w.l.o.g., that $v=v_{1}$. Let $P_{v}$ (resp. $P_{w}$ ) be a path in $G \backslash F$ from $v_{k}$ to $v$ (resp. $w$ ) that does not pass through $w$ (resp. $v$ ). Let $v_{k} w^{\prime} \in W$. The pair $\left(G^{\prime}, F^{\prime}\right)$ obtained by deleting all edges in $E(G) \backslash\left(E\left(P_{v}\right) \cup E\left(P_{w}\right) \cup\left\{v w, v_{k} w_{k}\right\}\right)$ and by deleting node $w^{\prime}$ has $\mathscr{G}_{4}$ as a minor.

Let $W$ be defined as in the statement of Lemma 11. Given two adjacent edges $u w, v w \in W, u \neq v$, such that $\sigma_{w, u w} \neq \sigma_{w, v w}$, we say that $\left(G^{\prime}, F^{\prime}\right)$ is obtained from $(G, F)$ by shrinking $u w$ and $v w$ if $V\left(G^{\prime}\right)=V(G), E\left(G^{\prime}\right)=E(G) \backslash\{u w, v w\} \cup\{u v\}$, $F^{\prime}=F \backslash\{u w, v w\} \cup\{u v\}$, and the signing $\sigma^{\prime}$ on $E\left(G^{\prime}\right)$ is defined by $\sigma_{u, u v}^{\prime}=\sigma_{u, u w}$, $\sigma_{v, u v}^{\prime}=\sigma_{v, v w}, \sigma_{z, e}^{\prime}=\sigma_{z, e}$ for every $e \in E\left(G^{\prime}\right) \backslash\{u v\}, z \in e$.

Observe that ( $G^{\prime}, F^{\prime}$ ) satisfies the cycles condition. Indeed, given a cycle $C$ in $G^{\prime}$ that contains $u v$, the corresponding cycles (one if $w \notin V(C)$, two if $w \in V(C)$ ) in $G$ obtained from $C$ by replacing $u v$ with the two edges $w u, w v$, are even because they contain edges in $F$. Since $\sigma_{u, u w}+\sigma_{w, u w}+\sigma_{w, v w}+\sigma_{v, v w} \equiv_{4} \sigma_{u, u v}^{\prime}+\sigma_{v, u v}^{\prime}, C$ is even.
However, $\left(G^{\prime}, F^{\prime}\right)$ may contain the minor $\mathscr{G}_{4}$. We say that two edges $u w, v w$ in $W$ are shrinkable if the graph obtained from $(G, F)$ by shrinking $u w$ and $v w$ does not contain $\mathscr{G}_{4}$ as a minor.
Lemma 12. Let $(G, F) \in \mathscr{C}$ that satisfies (C3). Let $B$ be a block of $G$ such that $B \backslash F$ is not connected. If some node $w$ in $B$ is incident to at least two edges in $W \cap E(B)$, then there exist two shrinkable edges in $W \cap E(B)$ incident to $w$.
Proof. We say that two adjacent edges $w u, w v \in W \cap E(B), u \neq v$, are consecutive if there is no edge $r w \in W \cap E(B)$ such that $\{r, w\}$ is a cutset of $B$ separating $u$ and $v$. Given $w u \in W \cap E(B)$, if $w$ is incident to and edge in $W \cap E(B)$ whose other endnode is distinct from $u$, then there exists at least one edge $w v \in W \cap E(B)$ so that $w u, w v$ are consecutive. We start by proving the following claim.
12.1. Let $u w, v w$ be consecutive edges in $W \cap E(B)$ and let $\left(G^{\prime}, F^{\prime}\right)$ be obtained by shrinking uw,vw. Suppose that $\left(G^{\prime}, F^{\prime}\right)$ contains $\mathscr{G}_{4}$ as a minor. Then there exists a cycle $C$ in $B$ such that $w \in V(C), w$ is incident to at least one edge in $E(C) \cap F$, $|V(C) \cap\{u, v\}|=1$, the unique node $s$ in $V(C) \cap\{u, v\}$ is incident to two edges in $E(C) \backslash F$, and $\{s, w\}$ is a cutset of $B$.
Since $\left(G^{\prime}, F^{\prime}\right)$ contains $\mathscr{G}_{4}$ as a minor, in $G^{\prime}$ there is a cycle $C$ that contains at least one edge in $F^{\prime}$, a node $c \in V(C)$ incident to two edges in $E(C) \backslash F^{\prime}$, and a path $P$ from $c$ to a node $d$ such that $V(P) \cap V(C)=\{c\}, E(P) \cap F^{\prime}=\emptyset$, and $d$ is either incident to an edge $f=d t$ (possibly $t=d$ ) in $F^{\prime} \cup L\left(G^{\prime}\right)$ such that $t \notin V(C) \cup V(P)$, or it belongs to an odd cycle $H$ such that $(V(C) \cup V(P)) \cap V(H)=\{d\}$. Since $(G, F)$ does not contain $\mathscr{G}_{4}$ as a minor and $u v \in F^{\prime}$, then $u v \in E(C) \cup\{f\}$ and $w \in V(C) \cup V(P) \cup\{t\}$ (if $d$ is incident to $f=d t \in F^{\prime}$ ), or $u v \in E(C)$ and $w \in V(C) \cup V(P) \cup V(H)$ (if $d$ belongs to the odd cycle $H$ ).

If $u v \in E(C)$, then $u, v \in V(B)$ implies $V(C) \subseteq V(B)$. Otherwise, if $u v=d t$, w.l.o.g. $v=d$, and $w \in V(C) \backslash\{c\}$, otherwise the graph spanned by the edges in $E(C) \cup E(P) \cup\{v w\}$ contains $\mathscr{G}_{4}$ as a minor. Thus in this case $v, w \in V(B)$ implies $V(C) \cup V(P) \subseteq V(B)$. Note that in both cases $V(C) \subseteq V(B)$.

Let $Q$ be the connected component of $B \backslash F$ containing $c$, and let $\bar{Q}$ be the subgraph of $G$ induced by $V(Q)$. Let $\bar{V}$ be the set of nodes of $\bar{Q}$ incident to some edge in $W \cap E(B)$. As $c$ is incident to two edges in $E(C) \backslash F^{\prime}$, let $\bar{C}$ be the shortest subpath of $C$ containing $c$ as an internal node and with endnodes, say $c^{\prime}$ and $c^{\prime \prime}, c^{\prime} \neq c^{\prime \prime}$ that are incident in $G$ with edges in $W \cap E(B)$. Note that such path $\bar{C}$ must exist, otherwise $u v \notin E(C)$, thus $V(C) \cup V(P) \subseteq V(B)$, and so $V(C) \cup V(P) \subseteq V(Q)$, in which case $f=u v$ and $w \in V(C) \cup V(P)$, implying that $w$ and one among $u, v$ belong to $V(Q)$, contradicting the fact that $u w, v w \in W$. Furthermore, $c^{\prime}, c^{\prime \prime} \in \bar{V}$.

We show that $d$ is incident to the edge $f=d t$ and that $f=u v$. If not, then $u v \in E(C)$. If $w \in V(C) \backslash\{c\}$, then the edges in $E(C) \backslash\{u v\} \cup\{u w, v w\}$ form two cycles in $G$. Let $C^{\prime}$ be the one passing through $c$. Note that $E\left(C^{\prime}\right) \cap F \neq \emptyset, c$ is incident to two edges in $E\left(C^{\prime}\right) \backslash F$, and $V\left(C^{\prime}\right) \cap(V(P) \cup\{t\})=\{c\}$ (or $V\left(C^{\prime}\right) \cap(V(P) \cup V(H))=\{c\}$ ). Thus the graph spanned by the edges in $E\left(C^{\prime}\right) \cup E(P) \cup\{f\}$ (or $E\left(C^{\prime}\right) \cup E(P) \cup E(H)$ ) contains $\mathscr{G}_{4}$ as a minor, a contradiction. Thus $w \in V(P) \cup\{t\}$ (if $d$ is incident to $f=d t \in F^{\prime}$ ) or $w \in V(P) \cup V(H)$ (if $d$ belongs to the odd cycle $H$ ). By Lemma 11(iii), there exists a path $S$ in $B$ from $c^{\prime}$ to $c^{\prime \prime}$ that contains no node in $V(Q) \backslash\left\{c^{\prime}, c^{\prime \prime}\right\}$. The subgraph of $G$ spanned by the edges in $E(\bar{C}) \cup E(S) \cup E(P) \cup\{f\}$ (or by $E(\bar{C}) \cup E(S) \cup E(P) \cup E(H)$ ) contains $\mathscr{G}_{4}$ as a minor, unless $d$ is incident to $f=d t \in F$ and $t \in V(S) \backslash\left\{c^{\prime}, c^{\prime \prime}\right\}$. In particular, since $d \in V(Q)$ and $t \notin V(Q), d t \in W \cap E(B)$ and $c^{\prime}, c^{\prime \prime}, d \in \bar{V}$. By Lemma 11(i) one among $c^{\prime}, c^{\prime \prime}, d$ is a cutnode of $\bar{Q}$ separating the other two. The only possibility is that $d=c$ and $d$ is a cutnode of $\bar{Q}$ separating $c^{\prime}$ and $c^{\prime \prime}$. So $P$ has length zero. Since $w \in V(P) \cup\{t\}$, then $w \in\{d, t\}$. By Lemma 11(ii), $\{d, t\}$ is a cutset of $B$ separating $c^{\prime}$ and $c^{\prime \prime}$, thus $\{d, t\}$ separates $u$ and $v$, but this contradicts the choice of $w u, w v$ to be consecutive.

Thus $d$ is incident to the edge $f=d t$ and $f=u v$. W.l.o.g., $v=d$, and we saw that $w \in V(C) \backslash\{c\}$, and $V(C) \cup V(P) \cup\{u\} \subseteq V(B)$. Moreover $w$ is incident to at least one edge in $E(C) \cap F$, otherwise the graph spanned by $E(C) \cup\{u w\}$ contains $\mathscr{G}_{4}$ as a minor. By Lemma 11(i), one among $c^{\prime}, c^{\prime \prime}, v$ is a cutnode of $\bar{Q}$ separating the two others. The only possibility is that $v=c$, and $v$ is a cutnode of $\bar{Q}$ separating $c^{\prime}$ and $c^{\prime \prime}$. By Lemma 11(ii), this implies that $\{v, w\}$ is a cutset of $B$ separating $c^{\prime}$ and $c^{\prime \prime}$. $\diamond$
12.2. Let $u w, v w$ be two consecutive edges in $W \cap E(B)$. If $\{v, w\}$ is a cutset of $B$ separating two nodes $r^{\prime}$ and $r^{\prime \prime}$ such that $w r^{\prime}, w r^{\prime \prime} \in E(B) \backslash F$, then $u w, v w$ are shrinkable.

Since $B$ is 2-connected, there exist paths $P^{\prime}$ and $P^{\prime \prime}$ in $B \backslash w$ from $v$ to $r^{\prime}$ and $r^{\prime \prime}$, respectively. Let $Q$ be the connected component of $G \backslash F$ containing $w$ and $\bar{V}$ be the set of nodes in $Q$ incident to edges in $W \cap E(B)$. Since $v w \in W \cap E(B)$ and $r^{\prime}, r^{\prime \prime} \in V(Q)$, $P^{\prime}$ and $P^{\prime \prime}$ contain some nodes $c^{\prime}$ and $c^{\prime \prime}$, respectively, in $\bar{V}$, such that the subpaths of $P^{\prime}$ and $P^{\prime \prime}$ from $r^{\prime}$ to $c^{\prime}$ and from $r^{\prime \prime}$ to $c^{\prime \prime}$, respectively, are in $Q$. By Lemma 11(ii), $\{w, u\}$ is a cutset of $B$ separating $c^{\prime}$ and $c^{\prime \prime}$, and so $u \in V\left(P^{\prime}\right) \cup V\left(P^{\prime \prime}\right)$.

Let $V_{u}$ (resp. $V_{v}$ ) be the set of nodes in the connected component of $B \backslash\{v, w\}$ (resp. $B \backslash\{u, w\}$ ) containing $u$ (resp. $v$ ), and let $V_{u, v}:=V_{u} \cap V_{v}$. We show that $w$ is not adjacent to any node in $V_{u, v}$. Suppose by contradiction that there exists an edge ws with $s \in V_{u, v}$. Clearly $w s \notin W \cap E(B)$, otherwise by Lemma 11(ii), $\{w, s\}$ is a cutset of $B$ separating $u$ and $v$, contradicting the fact that the edges $u w$ and $v w$ are consecutive. Hence $s \in V(Q)$. Let $B_{u, v}$ be the subgraph of $B$ induced by the nodes in $V_{u, v} \cup\{u, v\}$. Note that $B_{u, v}$ is connected. Let $s^{\prime}$ be the first node incident with edges in $W \cap E(B)$ in a path from $s$ to $u$ in $B_{u, v}$. As $s \in V(Q)$ and $u \notin V(Q), s^{\prime} \in \bar{V}$. Moreover, $c^{\prime}, c^{\prime \prime} \notin V_{u, v}$, thus $s^{\prime} \notin\left\{c^{\prime}, c^{\prime \prime}\right\}$ Then $s^{\prime}, c^{\prime}$ and $c^{\prime \prime}$ are three distinct nodes in $\bar{V}$ but none is a cutnode of $Q$ separating the other two, contradicting Lemma 11(i).

Let $\left(G^{\prime}, F^{\prime}\right)$ be the pair obtained from $(G, F)$ by shrinking $u w, v w$. Suppose by contradiction that $\left(G^{\prime}, F^{\prime}\right)$ contains the minor $\mathscr{G}_{4}$. By 12.1 , there exists a cycle $C$ in $B$ such that, up to switching the roles of $u$ and $v$, we have $v, w \in V(C), u \notin V(C)$ and $v$ is incident to two edges in $E(C) \backslash F$. Since $w s \notin E(G)$ for all $s \in V_{u, v}$ and $u \notin V(C)$, each node in $V(C) \backslash\{v, w\}$ is contained in the connected component of $B \backslash\{v, w\}$ not
containing $u$. It follows that $V(C) \cap V\left(P^{\prime}\right)=\{v\}$. Since $P^{\prime}$ contains an edge in $F$, because $c^{\prime} \in V(Q)$ and $u \notin V(Q)$, the graph spanned by the edges in $E\left(P^{\prime}\right) \cup E(C)$ contains $\mathscr{G}_{4}$ as a minor, contradicting $(G, F) \in \mathscr{C}$. $\diamond$

Let $w \in V(B)$ be a node incident to at least two edges in $W \cap E(B)$. Suppose by contradiction that no two edges in $W \cap E(B)$ incident to $w$ are shrinkable. By 12.2, for all edges $e=v w \in W \cap E(B)$ such that $\{v, w\}$ is a cutset of $B$, there exists at least one connected component $H$ of $B \backslash\{v, w\}$ such that $w r \notin E_{0} \backslash F$ for all $r \in H$. Let $H_{e}$ be the smallest such component, and let $\bar{e}=\bar{v} w$ be in $W \cap E(B)$ such that $\{\bar{v}, w\}$ is a cutset of $B$ and $H_{\bar{e}}$ is smallest possible. Note that one such edge exists by 12.1. Denote by $\bar{G}$ the subgraph of $G$ induced by $H_{\bar{e}} \cup\{\bar{v}, w\}$. By construction, no node of $H_{\bar{e}}$ is in the connected component of $G \backslash F$ containing $w$. Since $B$ is 2-connected, $w$ has at least a neighbor in $H_{\bar{e}}$ distinct from $\bar{v}$, say $u \in V(\bar{G})$. It follows that $u w \in W \cap E(B)$.

We show that $u w$ and $\bar{v} w$ are the only edges in $E(\bar{G})$ adjacent to $w$. If not, then there exist $u^{\prime} \in H_{\bar{e}}$ such that $u^{\prime} w \in W, u^{\prime} \neq \bar{v}, u$, and $u w, u^{\prime} \bar{w}$ are consecutive. By 12.1 and by to symmetry, $\{u, w\}$ is a cutset of $B$, thus one of the connected components of $B \backslash\{u, w\}$ is contained in $H_{\bar{e}}$, contradicting the definition of $\bar{e}$.

Hence $u w$ and $\bar{v} w$ are the only edges in $\bar{G}$ incident to $w$. In $G \backslash\{u w\}$ every path from $u$ to $w$ passes through $\bar{v}$, thus by 12.1 there exists a cycle $C$ passing through $\bar{v}$ and $w$ and not through $u$ such that the two edges in $C$ incident to $\bar{v}$ are not in $F$ and $w$ is incident to at least one edge in $E(C) \cap F$. Hence $V(C) \subseteq V(B) \backslash H_{\bar{e}}$. since $\bar{G} \backslash\{w, \bar{v}\}$ is connected by definition of $\bar{G}$, and since $w$ is not a cutnode of $B$, the graph $\bar{G} \backslash\{w\}$ is connected, so there exists a path $P$ in $\bar{G} \backslash\{w\}$ from $u$ to $\bar{v}$. We observe that $E(P) \cap F=\emptyset$, otherwise the graph spanned by the edges in $E(C) \cup E(P)$ contains $\mathscr{G}_{4}$ as a minor, a contradiction.

Since $\bar{v} w \in W \cap E(B)$, each of the two disjoint paths in $C$ from $\bar{v}$ to $w$ contains an edge in $W \cap E(B)$. Let $\bar{C}$ be the shortest subpath of $C$ containing $\bar{v}$ as an internal node and with endnodes that are incident in $G$ to edges in $W \cap E(B)$. Let $Q$ be the connected component of $G \backslash F$ containing $\bar{v}$ and let $\bar{V}$ be the set of nodes of $V(Q)$ incident to an edge in $W \cap E(B)$. It follows that $\bar{v}, u, c^{\prime}, c^{\prime \prime} \in \bar{V}$. Note however that $E(\bar{C}) \cup E(P)$ contain three disjoint paths in $Q$, all of length at least one, from $\bar{v}$ to $u, c^{\prime}, c^{\prime \prime}$ respectively, contradicting Lemma 11(i).

## 4. Balanced bicolorings

The following concept will be crucial in the proof of Theorem 2. Given $(G, F)$, where $F \subseteq E_{0}$, we say that a partition $(R, B)$ of $E(G)$ in two (possibly empty) sets, referred to as colors, is a balanced bicoloring of $(G, F)$, if for every $v \in V(G)$, we have

$$
\begin{equation*}
\sum_{v w \in R \backslash(F \cup L)} \frac{\sigma_{v, v w}}{2}+\sum_{v w \in R \cap(F \cup L)} \sigma_{v, v w}=\sum_{v w \in B \backslash(F \cup L)} \frac{\sigma_{v, v w}}{2}+\sum_{v w \in B \cap(F \cup L)} \sigma_{v, v w} \tag{7}
\end{equation*}
$$

Note that the above condition is equivalent to stating that $(R, B)$ satisfies the equation $A(G, F)(\chi(R)-\chi(B))=0$.

Role of balanced bicolorings in the proof of Theorem 2. Before we proceed, we briefly explain how balanced bicolorings will be used to prove Theorem 2 in Section 5. The hard part of the theorem is to show that $A(G, F)$ has the Edmonds-Johnson property for
every $(G, F) \in \mathscr{C}$. By contradiction, we will consider a carefully chosen counterexample to the statement, that is, a pair $(G, F) \in \mathscr{C}$, a vector $c \in \mathbb{Z}^{|V(G)|}$, and a fractional vertex $\bar{x}$ of the Chvátal closure of $P=\left\{x \in \mathbb{R}_{+}^{E(G)}: A(G, F) x=c\right\}$. The goal of the proof will then be to show that $\bar{x}_{e}=\frac{1}{2}$ for all $e \in E$ and that $(G, F)$ has a balanced bicoloring $(R, B)$. This will conclude the proof of Theorem 2 , since the points $y$ and $z$ defined by $y:=\bar{x}+\frac{1}{2} \chi(R)-\frac{1}{2} \chi(B), z:=\bar{x}-\frac{1}{2} \chi(R)+\frac{1}{2} \chi(B)$, will be integral points in $P$ such that $\bar{x}=\frac{1}{2}(y+z)$, contradicting the fact that $\bar{x}$ is a vertex of the Chvátal closure.

The next lemma describes certain necessary conditions that $(G, F)$ must satisfy in order for a balanced bicoloring to exist.

Lemma 13. Let $G$ be a bidirected graph and $F \subseteq E_{0}(G)$. If $(G, F)$ has a balanced bicoloring, then it satisfies the following parity conditions.
a) $\left|\delta_{G}(v) \backslash(F \cup L(G))\right|$ is even for every $v \in V(G)$;
b) For every component $Q$ of $G \backslash F$ such that $H(Q)=\emptyset,\left|\delta_{G}(V(Q))\right|$ is congruent modulo 2 to the number of odd edges in $E_{0}(Q) \backslash F$.

Proof. Assume that $(G, F)$ has a balanced bicoloring $(R, B)$.
a) Consider $v \in V(G)$. Clearly $\sum_{v w \in R \cap(F \cup L)} \sigma_{v, v w}-\sum_{v w \in B \cap(F \cup L)} \sigma_{v, v w}$ has integer value, thus (7) implies that also $\frac{1}{2}\left(\sum_{v w \in R \backslash(F \cup L)} \sigma_{v, v w}-\sum_{v w \in B \backslash(F \cup L)} \sigma_{v, v w}\right)$ has integer value. Hence $\left|\delta_{G}(v) \backslash(F \cup L)\right|$ is even.
b) Let $Q$ be a component of $G \backslash F$ such that $H(Q)=\emptyset$. By (7),

$$
\begin{equation*}
\sum_{v \in V(Q)}\left(\sum_{v w \in R \backslash(F \cup L)} \frac{\sigma_{v, v w}}{2}+\sum_{v w \in R \cap(F \cup L)} \sigma_{v, v w}-\sum_{v w \in B \backslash(F \cup L)} \frac{\sigma_{v, v w}}{2}-\sum_{v w \in B \cap(F \cup L)} \sigma_{v, v w}\right)=0 . \tag{8}
\end{equation*}
$$

The edges that contribute to the sum in (8) can be partitioned into $\delta(V(Q)), E_{0}(Q) \cap$ $F$, and $E_{0}(Q) \backslash F$. Since $H(Q)=\emptyset, \delta(V(Q)) \subseteq F \cup L$. Thus edges in $\delta(V(Q))$ and odd edges in $E_{0}(Q) \backslash F$ contribute $\pm 1$ to the sum, while edges in $E_{0}(Q) \cap F$ and even edges in $E_{0}(Q) \backslash F$ contribute $0, \pm 2$. As the sum in (8) equals zero, the total number of edges contributing $\pm 1$ to the sum must be even, thus $\left|\delta_{G}(V(Q))\right|$ is congruent modulo 2 to the number of odd edges in $E_{0}(Q) \backslash F$.

The main goal of this section is to prove the following lemma.
Lemma 14. Let $(G, F) \in \mathscr{C}$ satisfying ( $C 3$ ). If $(G, F)$ satisfies the parity conditions a) and b) of Lemma 13, then $(G, F)$ has a balanced bicoloring.

The next lemma gives a useful way to construct balanced bicolorings.
A trail in a bidirected graph $(G, F)$ is an alternating sequence $T$ of nodes and edges $T=\left(e_{0}\right), v_{1}, e_{1}, \ldots, v_{k-1}, e_{k-1}, v_{k},\left(e_{k}\right)$-starting either with the node $v_{1}$ or with the half-edge $e_{0}$ on $v_{1}$, and ending either with the node $v_{k}$ or with the half-edge $e_{k}$ on $v_{k}-$ satisfying the following properties

- For $i=1, \ldots, k-1, e_{i}=v_{i} v_{i+1}$, and $e_{i}$ is either an ordinary edge or a loop;
- All edges $e_{0}, \ldots, e_{k}$ are pairwise distinct

Note that nodes can be repeated and, if $e_{h}$ is a loop in the trail, then $v_{h}=v_{h+1}$. Trail $T$ is closed if its first and last element are nodes $v_{1}, v_{k}$, respectively, and $v_{1}=v_{k}$. A sub-trail of $T$ is a subsequence of $T$ of the form $T^{\prime}=v_{i}, e_{i}, v_{i+1}, \ldots, v_{j-1}, e_{j-1}, v_{j}$, where $1 \leq i \leq j \leq k$.

We denote by $V(T)$ and $E(T)$ the sets of nodes and edges in $T$, and define $E_{0}(T)$, $L(T)$, and $H(T)$ accordingly. We remark that the set $E_{0}(T)$ can be partitioned into a path $P$ between $v_{1}$ and $v_{k}$ and cycles.

We say that the trail $T$ is balanced if either both extremes of $T$ are half-edges, or $T$ is a closed trail such that $|L(T)|$ is congruent modulo 2 to the number of odd edges in $E(T)$.

Lemma 15. Let $(G, F)$ be a pair in $\mathscr{C}$ such that $G \backslash F$ is connected. Suppose that there exists a family $\mathscr{T}$ of balanced trails in $G \backslash F$ such that $\{E(T), T \in \mathscr{T}\}$ defines a partition of $E(G) \backslash F$, and such that, for every $f \in F$, there exists $T \in \mathscr{T}$ such that $V(T)$ contains both endnodes of $f$.

Then there exists a balanced bicoloring $(R, B)$ of $(G, F)$ with the following property: for any $T \in \mathscr{T}$ and any sub-trail $T^{\prime}=v_{i}, e_{i}, \ldots, e_{j-1}, v_{j}$ of $T$ such that $e_{i}$ and $e_{j-1}$ are loops, $e_{i}$ and $e_{j-1}$ have the same color if and only if $\sum_{h=i+1}^{j-1}\left(\sigma_{v_{h}, e_{h-1}}+\sigma_{v_{h}, e_{h}}\right)$ is a multiple of four.

Proof. Let $T_{1}, \ldots, T_{h}$ be the elements in $\mathscr{T}$. Since for every $f \in F$ there exists $T \in \mathscr{T}$ such that $V(T)$ contains both endnodes of $f$, we may partition $F$ into sets $F_{1}, \ldots, F_{h}$ so that every edge in $F_{i}$ has both endnodes in $V\left(T_{i}\right), i=1, \ldots, h$. If there exists a balanced bicoloring $\left(R_{i}, B_{i}\right)$ of the edges of $E\left(T_{i}\right) \cup F_{i}$ for $i=1, \ldots, h$ as in the statement, then $R:=\cup_{i=1}^{h} R_{i}, B:=\cup_{i=1}^{h} B_{i}$ define a balanced bicoloring of $(G, F)$ as in the statement. In particular, we may assume that $\mathscr{T}$ consists of only one element $T=\left(e_{0}\right), v_{1}, e_{1}, \ldots, e_{k-1}, v_{k},\left(e_{k}\right)$ (where the extremes of $T$ may be the half-edges $e_{0}, e_{k}$ on $v_{1}$ and $v_{k}$, or the nodes $v_{1}$ and $v_{k}$ ).

We show next that $(G, F)$ has a balanced bicoloring $(R, B)$ as in the statement, and with the additional property that given any sub-trail $T^{\prime}=v_{i}, e_{i}, \ldots, e_{j-1}, v_{j}$ of $T$ such that $v_{i+1}, \ldots, v_{j-1}$ are not incident to edges in $F, e_{i}$ and $e_{j-1}$ have the same color if and only if $\sum_{h=i+1}^{j-1}\left(\sigma_{v_{h}, e_{h-1}}+\sigma_{v_{h}, e_{h}}\right)$ is a multiple of four.

We proceed by induction on $|F|$. If $F=\emptyset$, define a bicoloring $(R, B)$ of $E(G)$ as follows; two successive edges $e_{j}$ and $e_{j+1}$ in $T$ have the same color if and only if $\sigma_{v_{j}, e_{j}} \neq$ $\sigma_{v_{j}, e_{j+1}}$. Since $T$ is balanced, it follows that $(R, B)$ is a balanced bicoloring of $E(G)$. Furthermore, given any sub-trail $T^{\prime}=v_{i}, e_{i}, \ldots, e_{j-1}, v_{j}$ of $T$, a simple counting argument shows that $e_{i}$ and $e_{j-1}$ have the same color if and only if $\sum_{h=i+1}^{j-1}\left(\sigma_{v_{h}, e_{h-1}}+\sigma_{v_{h}, e_{h}}\right)$ is a multiple of four. Thus $(R, B)$ satisfies the inductive hypothesis.

We now assume $F \neq \emptyset$. For every $f \in F$, let $j(f)$ be the minimum index in $\{1, \ldots, k\}$ such that the sub-trail of $T$ from $v_{1}$ to $v_{j(f)}$ contains both endnodes of $f$. In particular $v_{j(f)}$ is an endnode of $f$. Let $i(f)$ be the largest index such that $i(f)<j(f)$ and $v_{i(f)}$ is the endnode of $f$ distinct from $v_{j(f)}$. Note that the sub-trail $T(f)$ of $T$ from $i(f)$ to $j(f)$ does not contain any endnode of $f$ except the two extremes. By the choice of $i(f)$ and $j(f)$ the first edge $e_{i(f)}$ and the last edge $e_{j(f)-1}$ in $T(f)$ are ordinary edges.

Let $f, g \in F$ with $i(f) \neq i(g)$, and assume by symmetry that $i(f)<i(g)$. We show that either $j(f) \leq i(g)$ or $j(g) \leq j(f)$. If not, then $i(f)<i(g)<j(f)<j(g)$. By the choice of $j(g)$, the node $v_{j(g)}$ does not appear in $T(f)$. Therefore, the pair $\left(G^{\prime}, F^{\prime}\right)$
obtained by deleting all edges in $E(G) \backslash(E(T(f)) \cup\{f, g\})$, deleting node $v_{j(g)}$, and contracting all edges in $E(T(f)) \backslash\left\{e_{i(f)}, e_{j(f)-1}\right\}$, has $\mathscr{G}_{4}$ as a minor .

Choose $f \in F$ such that $j(f)-i(f)$ is smallest possible. By induction, there exists a balanced bicoloring $\left(R^{\prime}, B^{\prime}\right)$ of $E(G) \backslash\{f\}$. Possibly by switching sign on the endnodes of $f$, we may assume that the sign of $f$ on both endnodes is +1 . Let $i:=i(f), j:=j(f)$, $T^{\prime}=T(f)$. By the previous argument, no node $v_{h}, i<h<j$, is an endnode of an edge in $F$. We next note that $T^{\prime}$ does not contain any loop and there is no odd cycle contained in $E\left(T^{\prime}\right)$. Indeed, if $T^{\prime}$ contains a loop, then such loop must be on a node in $V\left(T^{\prime}\right)$ distinct from $v_{i}, v_{j}$, while any cycle in $E\left(T^{\prime}\right)$ does not contain any of $v_{i}, v_{j}$. Therefore, we obtain $\mathscr{G}_{4}$ as a minor by deleting all edges in $E(G) \backslash\left(E\left(T^{\prime}\right) \cup\{f\}\right)$ and contracting all edges in $E\left(T^{\prime}\right)$ except for $e_{i}, e_{j-1}$ (note that, if $E\left(T^{\prime}\right)$ contains an odd cycle, after contracting this becomes a loop). The edges in $E\left(T^{\prime}\right)$ can therefore be partitioned into a path $P$ from $i$ to $j$ and even cycles. Furthermore, since $(G, F)$ satisfies the cycles condition, the cycle defined by $P$ and $f$ is even. This shows that $\left(\sigma_{v_{i}, e_{i}}+\sigma_{v_{i}, f}\right)+\left(\sigma_{v_{j}, e_{j-1}}+\sigma_{v_{j}, f}\right)+\sum_{h=i+1}^{j-1}\left(\sigma_{v_{h}, e_{h-1}}+\sigma_{v_{h}, e_{h}}\right)$ is a multiple of four. We assume that $\sigma_{v_{i}, e_{i}}=\sigma_{v_{j}, e_{j-1}}=1$, the other cases being similar. In this case, it follows that $\sum_{h=i+1}^{j-1}\left(\sigma_{v_{h}, e_{h-1}}+\sigma_{v_{h}, e_{h}}\right)$ is a multiple of four, thus by inductive hypothesis $e_{i}$ and $e_{j-1}$ have the same color in $\left(R^{\prime}, B^{\prime}\right)$, say color $R^{\prime}$. We claim that the bicoloring $(R, B)$ defined by $R=\left(R^{\prime} \triangle E\left(T^{\prime}\right)\right) \cup\{f\}$ and $B=B^{\prime} \triangle E\left(T^{\prime}\right)$ is balanced. We need to show that (7) holds for every $v \in V(G)$. If $v \neq v_{i}, v_{j}$, then the condition holds because it was verified also by $\left(R^{\prime}, B^{\prime}\right)$. Thus we only need to verify (7) for $v=v_{i}$ and $v=v_{j}$. We consider the case $v=v_{i}$, the remaining case being identical. Observe that the only edge in $E\left(T^{\prime}\right)$ incident to $v_{i}$ is $e_{i}$. Thus the only edge incident to $v_{i}$ that has changed color is $e_{i}$, which had color $R^{\prime}$ and now has color $B$. Therefore, the left-hand-side of (7) decreases by $1 / 2$ because of $e_{i}$, and it increase by 1 because of $f$ which has color $R$, while the right-hand-side increases by $1 / 2$ because of $e_{i}$. This shows that $(R, B)$ is balanced. Finally, $(R, B)$ satisfies the inductive hypothesis because of the inductive hypothesis on ( $R^{\prime}, B^{\prime}$ ), and because no loop changed color.

Proof of Lemma 14. We prove the statement by double induction, first on $|V(G)|$, and then on $|E(G)|$. By property (C3), $|V(G)| \geq 2$. We can assume that $G$ is connected, otherwise by induction we can bicolor each of the connected components.

### 14.1. If $(G, F)$ does not satisfy (C1), then it has a balanced bicoloring.

By Lemma $9, G$ is bipartite, $L(G)=\emptyset$, and $F$ is a family of non-crossing chords of a cycle $C$ in $G \backslash F$. Note that the trail $T_{0}:=C$ is balanced because it contains no loops and because $C$ is even since $G$ is bipartite. Note that every edge in $F$ has both endnodes in $C$. By parity property a) and because $L(G)=\emptyset$, every node of $V(G)$ is incident to an even number of edges in $E(G) \backslash(E(C) \cup F)$, thus $E(G) \backslash(E(C) \cup F)$ can be partitioned into cycles and trails whose extremes are both half-edges. Let $T_{1}, \ldots, T_{k}$ be such a partition in cycle and trails. Since $G$ is bipartite, all cycles are even, thus all trails $T_{1}, \ldots, T_{k}$ are balanced. By Lemma 15 applied to the family $\mathcal{T}=\left\{T_{0}, \ldots, T_{k}\right\},(G, F)$ has a balanced bicoloring. $\diamond$
14.2. If $G$ contains a cycle $C$ such that $E(C) \subseteq F$, then $(G, F)$ has a balanced bicoloring.

Let $G^{\prime}=G \backslash E(C)$ and $F^{\prime}=F \backslash E(C)$. Clearly $\left(G^{\prime}, F^{\prime}\right) \in \mathscr{C}$ and it satisfies (C3) and the parity conditions, so by induction it has a balanced bicoloring ( $R^{\prime}, B^{\prime}$ ). Since no odd cycle in $(G, F)$ has an edge in $F, C$ is an even cycle, thus $E(C)$ can be partitioned into two sets $\left(R^{\prime \prime}, B^{\prime \prime}\right)$ such that for every node $v \in V(C)$, the two edges $e, e^{\prime}$ incident to $v$ in $C$ have the same color if and only if $\sigma_{v, e} \neq \sigma_{v, e^{\prime}}$. Thus $R:=R^{\prime} \cup R^{\prime \prime}, B:=B^{\prime} \cup B^{\prime \prime}$, define a balanced bicoloring of $(G, F)$. $\diamond$

By the above two claims, we may assume that ( $G, F$ ) satisfies (C1) and (C2).

### 14.3. If $G$ has a cutnode, then $(G, F)$ has a balanced bicoloring.

Let $u$ be a cutnode of $(G, F)$. Then there exist two connected subgraphs $G_{1}, G_{2}$ of $G$, both with at least two nodes, such that $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{u\}, V\left(G_{1}\right) \cup V\left(G_{2}\right)=V(G)$, $E\left(G_{1}\right) \cap E\left(G_{2}\right)=\emptyset, E\left(G_{1}\right) \cup E\left(G_{2}\right)=E(G)$. Let $F_{1}:=E\left(G_{1}\right) \cap F$ and $F_{2}:=E\left(G_{2}\right) \cap F$. Then $\left(G_{1}, F_{1}\right)$ and $\left(G_{2}, F_{2}\right)$ are in $\mathscr{C}$ and they both satisfy condition (C3). For $i=1,2$, let $Q_{i}$ be the connected component of $G_{i} \backslash F_{i}$ containing $u$. Note that all components of $G_{i} \backslash F_{i}$ satisfy condition b) except, possibly, $Q_{i}$, and all nodes of $G_{i}$ satisfy a) except, possibly, $u$.

If ( $G_{1}, F_{1}$ ) and ( $G_{2}, F_{2}$ ) satisfy conditions a) and b), then by induction there exist balanced bicolorings of $\left(R_{1}, B_{1}\right),\left(R_{2}, B_{2}\right)$ of $\left(G_{1}, F_{1}\right)$ and $\left(G_{2}, F_{2}\right)$, thus $R:=R_{1} \cup R_{2}$, $B:=B_{1} \cup B_{2}$ defines a balanced bicoloring of $(G, F)$.

If one of $\left(G_{1}, F_{1}\right)$ and $\left(G_{2}, F_{2}\right)$ does not satisfy condition a), then $\mid \delta_{G_{1}}(u) \backslash\left(F_{1} \cup L\left(G_{1}\right) \mid\right.$ and $\mid \delta_{G_{2}}(u) \backslash\left(F_{2} \cup L\left(G_{2}\right) \mid\right.$ are both odd. For $i=1,2$, let $\left(\bar{G}_{i}, F_{i}\right)$ be obtained from $\left(G_{i}, F_{i}\right)$ by appending a half-edge $h_{i}$ on node $u$, with sign +1 . Observe that $\left(\bar{G}_{i}, F_{i}\right)$ satisfies condition a), and it trivially satisfies condition b). By induction, there exist a balanced bicoloring $\left(R_{i}, B_{i}\right)$ of $\left(\bar{G}_{i}, F_{i}\right), i=1,2$. Assuming that $h_{1} \in R_{1}$ and $h_{2} \in B_{2}$, then $R=R_{1} \backslash\left\{h_{1}\right\} \cup R_{2}, B=B_{1} \cup B_{2} \backslash\left\{h_{2}\right\}$ defines a balanced bicoloring of $(G, F)$.

Lastly, assume that $\left(G_{1}, F_{1}\right)$ and $\left(G_{2}, F_{2}\right)$ satisfy condition a), but one of the two, say $\left(G_{1}, F_{1}\right)$, does not satisfy condition $b$ ). In particular, $H\left(Q_{1}\right)=\emptyset$. Let $\left(\bar{G}_{1}, F_{1}\right)$ be obtained from $\left(G_{1}, F_{1}\right)$ by appending two half-edges $h, h^{\prime}$ on node $u$, both with sign +1 . Clearly $\left(\bar{G}_{1}, F_{1}\right)$ is in $\mathscr{C}$, and it satisfies (C3) and the parity conditions. Thus $\left(\bar{G}_{1}, F_{1}\right)$ has a balanced bicoloring $(R, B)$. Note that $h, h^{\prime}$ have the same color, say $R$, otherwise $\left(R \backslash\left\{h, h^{\prime}\right\}, B \backslash\left\{h, h^{\prime}\right\}\right)$ is a balanced bicoloring of $\left(G_{1}, F_{1}\right)$, which by Lemma 13 contradicts the fact that $\left(G_{1}, F_{1}\right)$ violates b). Let $\left(\bar{G}_{2}, F_{2}\right)$ be obtained from $\left(G_{2}, F_{2}\right)$ by appending a loop $\ell$ on node $u$, with sign +1 . Clearly $\left(\bar{G}_{2}, F_{2}\right)$ satisfies condition (C3) and the parity condition a). We will argue that $\left(\bar{G}_{2}, F_{2}\right)$ is in $\mathscr{C}$ and satisfies condition b); this will imply that $\left(\bar{G}_{2}, F_{2}\right)$ has a balanced bicoloring $\left(R_{2}, B_{2}\right)$, say with $\ell \in B$, and thus $R=R_{1} \backslash\left\{h, h^{\prime}\right\} \cup R_{2}, B=B_{1} \cup B_{2} \backslash\{\ell\}$ defines a balanced bicoloring of $(G, F)$.

To show that $\left(\bar{G}_{2}, F_{2}\right) \in \mathscr{C}$, it suffices to show that $\left(\bar{G}_{2}, F_{2}\right)$ is a minor of $(G, F)$. First we prove that $F_{1} \cup L\left(G_{1}\right) \neq \emptyset$ or $\left(G_{1}, F_{1}\right)$ contains an odd cycle $C$. Indeed, if $F_{1} \cup L\left(G_{1}\right)=\emptyset$, then $G_{1}=Q_{1}$, and so $G_{1}$ has an odd number of odd edges. Since $E\left(G_{1}\right)=E_{0}\left(G_{1}\right)$ and all nodes in $G_{1}$ have even degree, $E\left(G_{1}\right)$ is the disjoint union of cycles, at leats one of which must be odd because $G_{1}$ has an odd number of odd edges. Consider a shortest possible path $P$ in $G_{1} \backslash F_{1}$ from $u$ to either an edge $f \in F \cup L\left(G_{1}\right)$ or to an odd cycle $C$. Then $\left(\bar{G}_{2}, F_{2}\right)$ can be obtained from $(G, F)$ as a minor by contracting the edges in $P$, and possibly deleting the endnode of $f$ not in $P$, if $f$ is not a loop, or contracting all the edges in the odd cycle $C$.

We finally show that $\left(\bar{G}_{2}, F_{2}\right)$ satisfies property b). Let $\bar{Q}_{2}$ be the component of $\bar{G}_{2} \backslash F$ induced by $V\left(Q_{2}\right)$. Note that $E\left(\bar{Q}_{2}\right)=E\left(Q_{2}\right) \cup\{\ell\}$. If $H\left(Q_{2}\right) \neq \emptyset$, then $\bar{Q}_{2}$ satisfies b). If $H\left(Q_{2}\right)=\emptyset$, then the connected component $Q$ of $G$ induced by $V\left(Q_{1}\right) \cup V\left(Q_{2}\right)$ has no half-edges, therefore $|\delta(V(Q)) \cap(F \cup L(G))|$ plus the number of odd edges in $E_{0}(Q) \backslash F$ is even. Since $\left|\delta_{G_{1}}\left(V\left(Q_{1}\right)\right) \cap\left(F_{1} \cup L\left(G_{1}\right)\right)\right|$ plus the number of odd edges in $E\left(Q_{1}\right) \backslash F_{1}$ is odd, it follows that $\left|\delta_{\bar{G}_{2}}\left(V\left(\bar{Q}_{2}\right)\right) \cap\left(F_{2} \cup L\left(\bar{Q}_{2}\right)\right)\right|$ plus the number of odd edges in $E\left(\bar{Q}_{2}\right) \backslash F_{2}$ is even. Thus $\bar{G}_{2}$, satisfies b). $\diamond$

By the above claim, we may assume that $G$ has no cutnodes, so $G$ is 2-connected. Since $(G, F)$ satisfies a), $|H(G)|$ is even, say $|H(G)|=2 k$.

Case 1: $G \backslash F$ is connected. If $k=0$, then, by property a), there exists a closed trail $T$ in $G \backslash F$ such that $E(T)=E(G) \backslash F$. As $(G, F)$ satisfies b), $T$ satisfies the hypotheses of Lemma 15. Thus $(G, F)$ has a balanced bicoloring. We assume $k \geq 1$. Furthermore, we may assume that $F \neq \emptyset$, otherwise by property a) the edges of $G$ can be partitioned into $k$ trails whose extremities are half-edges of $G$, and by Lemma $15(G, F)$ has a balanced bicoloring. By Lemma 10, we need to consider two cases.
i) $(G, F)$ satisfies Lemma $10(\mathrm{i})$. Let $h_{1}, \ldots, h_{2(k-1)}$ be $2(k-1)$ half-edges of $G$, and let $v_{1}, \ldots, v_{2(k-1)}$ be the corresponding endnodes. Since in this case $G$ is bipartite, there exists a partition $V_{1}, V_{2}$ of $V(G)$ such that every odd edge has one endnode in $V_{1}$ and one in $V_{2}$ and every even edge has both endnodes in either $V_{1}$ or $V_{2}$. Consider the bidirected graph $\bar{G}$ obtained from $G$ by introducing a dummy node $u$ and replacing the half-edges $h_{1}, \ldots, h_{2(k-1)}$ with the edges $u v_{1}, \ldots, u v_{2(k-1)}$. We let $\sigma_{v_{i}, u v_{i}}=\sigma_{v_{i}, h_{i}}, \sigma_{u, u v_{i}}=\sigma_{v_{i}, h_{i}}$ if $v_{i} \in V_{1}, \sigma_{u, u v_{i}}=-\sigma_{v_{i}, h_{i}}$ if $v_{i} \in V_{2}, i=1, \ldots, 2(k-1)$. Observe that, by construction, $\bar{G}$ is bipartite. Note also that $(G, F)$ does not contain $\mathscr{G}_{4}$ as a minor because $F$ is a star centered at a node $v$, all loops of $\bar{G}$ are incident to $v$, and $\bar{G}$ does not contain any odd cycle. It follows that $(G, F) \in \mathscr{C}$. Since $\bar{G}$ has only two half-edges, there exits a trail $T$ in $G \backslash F$ whose extremes are the two half-edges and such that $E(T)=E(G) \backslash F$. It follows from Lemma 15 that $(G, F)$ has a balanced bicoloring.
ii) $(G, F)$ satisfies Lemma 10 (ii). Let $f=v w \in F$ such that any other edge in $F$ is nested in $f$. Let $P$ be a path in $G \backslash F$ between $v$ and $w$. Then $P$ contains all endnodes of edges in $F$. One can verify that the edges of $E(G) \backslash F$ can be partitioned in trails $T_{1}, \ldots, T_{k}$ such that all extremities are half-edges and such that $E(P) \subseteq E\left(T_{1}\right)$. It follows from Lemma 15 that $(G, F)$ has a balanced bicoloring.

Case 2: $G \backslash F$ is not connected. Let $W$ be the set of edges in $F$ with endnodes in distinct connected components of $G \backslash F$.

If there is $w \in V(G)$ incident to at least two edges in $W$, then by Lemma 12 there exist two shrinkable edges $e^{\prime}, e^{\prime \prime} \in W$ incident to $w$, say $e^{\prime}=u w, e^{\prime \prime}=v w$. Up to switching sign on $w u$, we may assume that $\sigma_{w, u w} \neq \sigma_{w, v w}$. Let $\left(G^{\prime}, F^{\prime}, \sigma^{\prime}\right)$ be obtained from $(G, F)$ by shrinking $e^{\prime}, e^{\prime \prime}$, and let $\bar{e}=u v$ be the new edge. It follows immediately that ( $G^{\prime}, F^{\prime}$ ) satisfies (C3), a), and b), thus by induction $\left(G^{\prime}, F^{\prime}\right)$ has a balanced bicoloring ( $R^{\prime}, B^{\prime}$ ). Assuming $\bar{e} \in R^{\prime}$, it follows that $R:=R^{\prime} \cup\left\{e, e^{\prime}\right\} \backslash\{\bar{e}\}$ and $B:=B^{\prime}$ define a balanced bicoloring of $(G, F)$.

Thus we may assume that $W$ is a matching in $G$. By switching signs on the endnodes of the edges in $W$, we may assume that, for all $v w \in W, \sigma_{v, v w}=\sigma_{w, v w}=+1$.

Let $Q_{1}, \ldots, Q_{t}$ be the connected components of $G \backslash F$. For $i=1, \ldots, t$, let $F_{i}$ be the set of edges of $F$ with both endnodes in $V\left(Q_{i}\right)$, and let $\bar{V}_{i}=\left\{v_{1}^{i}, \ldots, v_{k_{i}}^{i}\right\}$ be the set of nodes in $V\left(Q_{i}\right)$ that are incident to some edge in $W$. Let $\bar{G}$ be the graph obtained from $G$ by replacing each edge $v w$ in $W$ with two loops $\ell_{v}$ and $\ell_{w}$ on $v$ and $w$, both with sign +1 . For $v w \in W$, we refer to $\ell_{v}, \ell_{w}$, as the "new loops" of $\bar{G}$, and denote by $\bar{L}$ such set. For $i=1, \ldots, t$, let $W_{i}$ be the set of new loops with one endnode in $V\left(Q_{i}\right)$, that is, $W_{i}=\left\{\ell_{v}: v \in \bar{V}_{i}\right\}$. Note that $\bar{G}$ is not connected, and its connected components are the graphs $\bar{Q}_{i}:=\left(V\left(Q_{i}\right), E\left(Q_{i}\right) \cup F_{i} \cup W_{i}\right), i=1, \ldots, t$. Also, for every $v \in \bar{V}_{i}$, there is exactly one new loop on $v$. Note that $\left(\bar{Q}_{i}, F_{i}\right)$ is in $\mathscr{C}$, since it is the pair obtained from $(G, F)$ by deleting all nodes in $V(G) \backslash V\left(Q_{i}\right)$.

By Lemma 11(i), the nodes in $\bar{V}_{i}$ can be ordered so that $v_{j}^{i}$ is a cutnode in $\bar{Q}_{i}$ separating $v_{j-1}^{i}$ and $v_{j+1}^{i}, i=1, \ldots, t, j=2, \ldots, k_{i}-1$. Let $P^{i}$ be a path from $v_{1}^{i}$ to $v_{k_{i}}^{i}$ in $Q_{i}$. Note that $P^{i}$ passes through $v_{2}^{i}, \ldots, v_{k_{i}-1}^{i}$.

By Lemma 11(iv)(v)(vi)(vii), it follows that $\bar{Q}_{i}$ is bipartite, every loop of $\bar{Q}_{i}$ that is not an element of $W_{i}$ is incident to either $v_{1}^{i}$ or $v_{k_{i}}^{i}$, and every edge in $F_{i}$ has both endnodes in $P^{i}$.

We observe that, if $\bar{Q}_{i}$ has no half-edges, then $\left|L\left(\bar{Q}_{i}\right)\right|$ must be even. Indeed, by condition b), if there are no half-edges in $E\left(\bar{Q}_{i}\right)$ then $\left|L\left(\bar{Q}_{i}\right)\right|$ is congruent modulo 2 to the number of odd edges in $E_{0}\left(\bar{Q}_{i}\right) \backslash F$. By condition a) every node of $V\left(Q_{i}\right)$ is incident to an even number of edges in $E_{0}\left(\bar{Q}_{i}\right) \backslash F$, therefore $E_{0}\left(\bar{Q}_{i}\right) \backslash F$ can be partitioned into cycles. Since $\bar{Q}_{i}$ is bipartite, each of these cycles is even, therefore the number of odd edges in $E_{0}\left(\bar{Q}_{i}\right) \backslash F$ is even.

For $j=1, \ldots, k_{i}-1$, denote by $P_{j}^{i}$ the path contained in $P^{i}$ from $v_{j}^{i}$ to $v_{j+1}^{i}$. Note that, since $W$ is a matching, $v_{j}^{i} \neq v_{j+1}^{i}$, thus $P_{j}^{i}$ has length at least one.
14.4. For $i=1, \ldots, t$, there exists a balanced bicoloring $\left(R_{i}, B_{i}\right)$ of $\left(\bar{Q}_{i}, F_{i}\right)$ such that, for $j=1, \ldots, k_{i}-1$, the loops $\ell_{v_{j}^{i}}$ and $\ell_{v_{j+1}^{i}}$ have the same color if and only if path $P_{j}^{i}$ has an odd number of odd edges.

Note that $\bar{T}^{i}:=v_{1}^{i}, \ell_{v_{1}^{i}}, v_{1}^{i}, P_{1}^{i}, v_{2}^{i}, \ell_{v_{2}^{i}}, v_{2}^{i}, P_{2}^{i}, v_{3}^{i}, \ldots, v_{k_{i}-1}^{i}, P_{k_{i}-1}^{i}, v_{k_{i}}^{i}, \ell_{v_{k_{i}}}, v_{k_{i}}^{i}$ is a trail that contains all loops in $W_{i}$. Since all the elements of $L\left(Q_{i}\right) \backslash W_{i}$ are incident to $v_{1}^{i}$ or $v_{k_{i}}^{i}$, there exists some trail $T^{i}$ in $\bar{Q}_{i} \backslash F$ such that $\bar{T}^{i}$ is a sub-trail of $T^{i}$, every loop of $\bar{Q}_{i}$ is in $T^{i}$, and $T^{i}$ is either closed or its extremes are half-edges. Furthermore, we can choose $T^{i}$ so that, if $\bar{Q}_{i}$ has some half-edge, then both extremes of $T^{i}$ are half-edges. We argue that $T^{i}$ is a balanced trail. Indeed, if $T^{i}$ is closed, then $E\left(T^{i}\right)$ is the disjoint union of loops and cycles, and each of these cycles is even because $\bar{Q}_{i}$ is bipartite. It follows that, if $T^{i}$ is closed, then $E\left(T^{i}\right)$ has an even number of odd edges. Since $\left|L\left(\bar{Q}_{i}\right)\right|$ is even and $L\left(\bar{Q}_{i}\right) \subseteq E\left(T^{i}\right)$, it follows that $T^{i}$ is balanced.

Observe that, since $(G, F)$ satisfies condition a), every node in $\bar{Q}_{i}$ is incident to an even number of edges in $E\left(\bar{Q}_{i}\right) \backslash\left(E\left(T^{i}\right) \cup F\right)$, therefore $E\left(\bar{Q}_{i}\right) \backslash\left(E\left(T^{i}\right) \cup F_{i}\right)$ can be partitioned into trails whose extremes are half-edges and cycles, and all cycles must be even because $\bar{Q}_{i}$ is bipartite. It follows that there exists a family $\mathcal{F}_{i}$ of trails such that $T_{i} \in \mathcal{F}_{i}$ and such that $\{E(T): T \in \mathcal{F}\}$ is a partition of $E\left(\bar{Q}_{i}\right) \backslash F_{i}$. Since all edges in $F_{i}$ have both endnodes in $V\left(T^{i}\right)$, it follows from Lemma 15 that $\left(\bar{Q}_{i}, F_{i}\right)$ has a balanced bicoloring $\left(R_{i}, B_{i}\right)$. Furthermore, since $\bar{T}^{i}$ is a sub-trail of $T^{i}$, Lemma 15 ensures that we can choose $\left(R_{i}, B_{i}\right)$ so that, for $j=1, \ldots, k_{i}-1$, the loops $\ell_{v_{j}^{i}}$ and $\ell_{v_{j+1}^{i}}$ have the
same color if and only if $\sigma_{v_{j}^{i}, \nu_{v_{j}^{i}}}+\sigma_{v_{j+1}^{i}, \ell_{v_{j}^{i}+1}}+\sum_{v w \in E\left(P_{j}^{i}\right)}\left(\sigma_{v, v w}+\sigma_{w, v w}\right)$ is congruent to four. Since $\sigma_{v_{j}^{i}, \ell_{v_{j}^{i}}}+\sigma_{v_{j+1}^{i}, \ell_{v_{j+1}^{i}}}=2$, because all new loops of $\bar{G}$ have sign +1 , this is equivalent to the statement 14.4. $\diamond$

We finally show how to recombine the bicolorings $\left(R_{i}, B_{i}\right)$ into a balanced bicoloring of $(G, F)$. Note that $\bar{R}:=R_{1} \cup \ldots \cup R_{t}, \bar{B}=B_{1} \cup \ldots \cup B_{t}$ define a balanced bicoloring of ( $\bar{G}, F \backslash W$ ).

Since $G$ is connected and $G \backslash W$ has $t$ components, there exist $\tilde{W} \subseteq W$ such that $|\tilde{W}|=t-1$ and $(G \backslash W) \cup \tilde{W}$ is connected. We may assume that, for every edge $v w \in \tilde{W}$, both new loops $\ell_{v}$ and $\ell_{w}$ in $\bar{G}$ have the same color in $(\bar{R}, \bar{B})$. We will show that, for every $v w \in W \backslash \tilde{W}$, both new loops $\ell_{v}$ and $\ell_{w}$ in $\bar{G}$ have the same color in $(\bar{R}, \bar{B})$. This concludes the proof because the bicoloring $(R, B)$ defined by $(\bar{R}, \bar{B})$ by assigning to every $v w \in W$ the common color of $\ell_{v}$ and $\ell_{w}$ is balanced.

Let $W^{+}$be the set of edges $v w \in W$ such that $\ell_{v}$ and $\ell_{w}$ have the same color in $(\bar{R}, \bar{B})$, and let $W^{-}=W \backslash W^{+}$. We need to show $W^{-}=\emptyset$. Suppose not. Note that $G \backslash W^{-}$is connected, because $\tilde{W} \subseteq W^{+}$and by the choice of $\tilde{W}$. Thus, for every $v w \in W^{-}$, there exists a path $P(v, w)$ between $v$ and $w$ in $E\left(P^{1}\right) \cup \ldots \cup E\left(P^{t}\right) \cup W^{+}$. Among all elements of $W^{-}$, choose $v w \in W^{-}$and $P(v, w)$ so that $P(v, w)$ is shortest possible, and let $P:=P(v, w)$. Let $C$ be the cycle in $(G, F)$ defined by $P$ and by $v w$. Up to changing the indices, we may assume that $v \in V\left(Q_{1}\right), w \in V\left(Q_{h}\right)$, and $P=v, \bar{P}^{1}, w_{1}, w_{1} v_{2}, \bar{P}^{2}, \ldots, w_{h-1}, w_{h-1} v_{h}, \bar{P}^{h}, w$, where $w_{i} v_{i+1} \in \tilde{W}, i=1, \ldots, h-1$, and $\bar{P}^{i}$ is the path between $v_{i}$ and $w_{i}$ in $P^{i}$ for $i=1, \ldots, h\left(\right.$ where $v_{1}=v, w_{h}=w$ ). We notice that, for $i=1, \ldots, h-1, V(P) \cap \bar{V}_{i}=\left\{v_{i}, w_{i}\right\}$. Indeed, suppose for some $i$ there exists a node $u \in \bar{V}_{i}$ distinct from $v_{i}$ and $w_{i}$. In particular, $u$ is an intermediate node in $\bar{P}^{i}$, thus both edges incident to $u$ in $P$ are in $E(G) \backslash F$. Since $u \in \bar{V}_{i}$, there exists $u^{\prime} \in V(G)$ such that $u u^{\prime} \in W$. If $u^{\prime} \notin V(P)$, then $\mathscr{G}_{4}$ is a minor of the graph defined by the cycle $C$ and the loop obtained by deleting $u^{\prime}$. If $u^{\prime} \in V(P)$, then either $u u^{\prime} \in W^{-}$, in which case the unique path in $P$ from $u$ to $u^{\prime}$ is shorter than $P$, contradicting our choice of $v w \in W^{-}$, or $u u^{\prime} \in W^{+}$, in which case the path in $E(P) \cup\left\{u u^{\prime}\right\}$ between $v$ and $w$ is shorter than $P$, contradicting the choice of $P$. By 14.4, for $i=2, \ldots, h-1$, edges $w_{i-1} v_{i}$ and $w_{i} v_{i+1}$ have the same color if and only if $\bar{P}_{i}$ has an odd number of odd edges, $\ell_{v}$ and $w_{1} v_{2}$ have the same color if and only if $\bar{P}^{1}$ has an odd number of odd edges, and $\ell_{w}$ and $w_{h-1} v_{h}$ have the same color if and only if $\bar{P}^{h}$ has an odd number of odd edges. Since $\ell_{v}$ and $\ell_{w}$ have distinct colors, and since we are assuming that all edges in $W$ are odd, a simple parity argument shows that $P$ has an even number of even edges. Since $v w$ is an odd edge, it follows that the cycle $C$ is odd, a contradiction since no odd cycle of $G$ contains edges in $F$.

## 5. Proof of Theorem 2

For the "if" direction of the statement, assume ( $G, F$ ) contains $\mathscr{G}_{4}$ as a minor. As observed in the introduction, $A_{3}$ is a minor of $A\left(\mathscr{G}_{4}\right)$, thus $A_{3}$ is a minor of $A(G, F)$ as well. Since $A_{3}$ does not have the EJ property, and since such property is closed under taking minors, it follows that $A(G, F)$ does not have the EJ property.

The remainder of the section is devoted to proving the "only if" direction. For any bidirected graph $G, F \subseteq E(G)$, and any $c \in \mathbb{Z}^{|V(G)|}$, let

$$
P(G, F, c):=\left\{x \in \mathbb{R}_{+}^{E(G)}: A(G, F) x=c\right\}
$$

and let $P^{\prime}(G, F, c)$ be its first closure. We will prove that, for every $(G, F) \in \mathscr{C}$ and every $c \in \mathbb{Z}^{|V(G)|}, P^{\prime}(G, F, c)$ is an integral polyhedron. By Lemma 3, this will imply Theorem 2.

By contradiction, suppose that there exists a pair $(G, F)$ in $\mathscr{C}$ and an integral vector $c$ such that $P^{\prime}(G, F, c)$ has a fractional vertex $\bar{x}$. Among all such counterexamples, choose $(G, F), c, \bar{x}$ such that the quadruple $\left(|V(G)|,\left|E_{0}(G)\right|,|E(G)|,\lfloor\bar{x}(E(G))\rfloor\right)$ is lexicographically minimal. In several places in the proof we will derive a contradiction by finding a counterexample $\left(G^{\prime}, F^{\prime}\right), c^{\prime}, \bar{x}^{\prime}$ such that $\left(\left|V\left(G^{\prime}\right)\right|,\left|E_{0}\left(G^{\prime}\right)\right|,\left|E\left(G^{\prime}\right)\right|,\left\lfloor\bar{x}^{\prime}\left(E\left(G^{\prime}\right)\right)\right\rfloor\right)$ is lexicographically smaller than $\left(|V(G)|,\left|E_{0}(G)\right|,|E(G)|,\lfloor\bar{x}(E(G))\rfloor\right)$, since this will contradict our choice of $(G, F), c, \bar{x}$.

It is straightforward to verify that $G$ must have at least two nodes and at least two edges. Throughout the proof, let $A:=A(G, F), E:=E(G), E_{0}:=E_{0}(G), L:=L(G)$, $H:=H(G), \delta(\cdot):=\delta_{G}(\cdot)$.

Most of the proof is devoted to showing that $\bar{x}_{e}=\frac{1}{2}$ for all $e \in E$. Afterwards, we will argue that $(G, F)$ has a balanced bicoloring $(R, B)$. This will conclude the proof of Theorem 2, since the points $y$ and $z$ defined by $y:=\bar{x}+\frac{1}{2} \chi(R)-\frac{1}{2} \chi(B)$, $z:=\bar{x}-\frac{1}{2} \chi(R)+\frac{1}{2} \chi(B)$, are integral points in $P(G, F, c)$ such that $\bar{x}=\frac{1}{2}(y+z)$, contradicting the fact that $\bar{x}$ is a vertex of $P^{\prime}(G, F, c)$.

Given a node $v$, if $G^{\prime}$ is obtained from $G$ by switching sign on node $v$ and $c^{\prime} \in \mathbb{R}^{V(G)}$ is defined by $c_{u}^{\prime}=c_{u}, u \in V(G) \backslash\{v\}, c_{v}^{\prime}=-c_{v}$, then $\bar{x}$ is a vertex of $P^{\prime}\left(G^{\prime}, F, c^{\prime}\right)$ because, for every $U \subseteq V(G), c(U)$ is odd if and only if $c^{\prime}(U)$ is odd. So, if $(G, F), c, \bar{x}$ is a minimal counterexample, then also $\left(G^{\prime}, F\right), c^{\prime}, \bar{x}$ is a minimal counterexample. Hence, throughout the proof we will perform such switching whenever convenient.

Claim 1. $F \neq \emptyset, G$ is connected, and $\bar{x}_{e}>0$ for every $e \in E$.
If $F \neq \emptyset$, then $P^{\prime}(G, \emptyset, c)$ is integral by the theorem of Edmonds and Johnson [10]. Suppose that $G$ is not connected, and let $G^{\prime}$ be a component of $G$ such that $\bar{x}_{e} \notin \mathbb{Z}$ for some $e \in E\left(G^{\prime}\right)$. Let $F^{\prime}:=F \cap E\left(G^{\prime}\right)$, and let $\bar{x}^{\prime}$ and $c^{\prime}$ be the restrictions of $\bar{x}$ and $c$, respectively, to $E\left(G^{\prime}\right)$ and $V\left(G^{\prime}\right)$. Note that $\bar{x}^{\prime}$ is a vertex of $P^{\prime}\left(G^{\prime}, F^{\prime}, c^{\prime}\right)$, that $\left(G^{\prime}, F^{\prime}\right)$ is in $\mathscr{C}$, and that $\left|V\left(G^{\prime}\right)\right|<|V(G)|$. This contradicts the minimality of the counterexample. Finally, if $\bar{x}_{e}=0$ for some $e$ in $E(G)$, let $\left(G^{\prime}, F^{\prime}\right)$ be obtained from $(G, F)$ by deleting $e$, and $\bar{x}^{\prime} \in \mathbb{R}^{E\left(G^{\prime}\right)}$ be obtained from $\bar{x}$ by removing the component corresponding to $e$. The point $\bar{x}^{\prime}$ is a fractional vertex of $P^{\prime}\left(G^{\prime}, F^{\prime}, c\right)$, which contradicts our choice of $(G, F)$ since $\left(G^{\prime}, F^{\prime}\right) \in \mathscr{C},\left|V\left(G^{\prime}\right)\right|=|V|,\left|E_{0}\left(G^{\prime}\right)\right| \leq\left|E_{0}\right|$, and $\left|E\left(G^{\prime}\right)\right|<|E(G)|$.

Note that $A$ has full rank, otherwise deleting a redundant constraint from $A x=c$, which corresponds to deleting a node from $(G, F)$, gives a smaller counterexample. Since $\bar{x}$ is a vertex of $P^{\prime}(G, F, c)$, it must satisfy at equality $|E|$ linearly independent inequalities valid for $P^{\prime}(G, F, c)$. By Claim 1 and Lemma 8 , there exists a laminar family $\mathscr{L}$ of sets in $\{U \subseteq V: c(U)$ odd $\}$ such that $|\mathscr{L}|=|E|-|V|$ and $\bar{x}$ is the unique solution of the system defined by the $|E|$ linearly independent equations

$$
\begin{array}{rl}
A x & =  \tag{9}\\
c & c \\
x(\delta(U) \backslash(F \cup L)) & = \\
29 & 1
\end{array} \quad U \in \mathscr{L} .
$$

By Lemma 6, we can also assume the following.
For every $U \in \mathscr{L}$ and every $S \subset U, S \neq \emptyset, \exists v w \in E_{0} \backslash F$ such that $v \in S$ and $w \in U \backslash S$.

Claim 2. For every $e \in E \backslash(F \cup L)$, there exists $U \in \mathscr{L}$ such that $e \in \delta(U)$.
Suppose that there exists $e \in E \backslash(F \cup L)$ such that $e \notin \delta(U)$ for all $U \in \mathscr{L}$. We first consider the case where $e=v w \in E_{0}$. Possibly by switching signs on $v$ we may assume that $\sigma_{v, e} \neq \sigma_{w, e}$ (that is, $e$ is even). Note the column relative to $e$ in the constraint matrix $M$ of the system (9) is the vector of all zeros except in rows $A_{v}$ and $A_{w}$ of $A(G, F)$. Thus, since the columns of $M$ are linearly independent, there cannot be any other even edge $e^{\prime}$ with endnodes $v, w$, because the column of $M$ relative to $e^{\prime}$ would be a multiple of the column relative to $e$. Let $\left(G^{\prime}, F^{\prime}\right)$ be obtained from $(G, F)$ by contracting $e$, let $r$ be the node obtained from the contraction of $v w$, and let $A^{\prime}=A\left(G^{\prime}, F^{\prime}\right)$. Note that $\left|E\left(G^{\prime}\right)\right|=|E|-1$ because there is no even edge parallel to $e$. Let $\bar{x}^{\prime}$ be the restriction of $\bar{x}$ to the components relative to edges in $E\left(G^{\prime}\right)$, and let $c^{\prime}$ be obtained from $c$ by removing the components corresponding to $v$ and $w$ and introducing a component relative to $r$ with value $c_{r}^{\prime}=c_{v}+c_{w}$. Clearly $\bar{x}^{\prime} \in P\left(G^{\prime}, F^{\prime}, c^{\prime}\right)$ Since $\left(G^{\prime}, F^{\prime}\right)$ is in $\mathscr{C}$ and $\left|V\left(G^{\prime}\right)\right|<|V|$, the polyhedron $P^{\prime}\left(G^{\prime}, F^{\prime}, c^{\prime}\right)$ is integral. Furthermore, the odd-cut inequalities for $A^{\prime} x^{\prime}=c^{\prime}, x^{\prime} \geq 0$ are precisely the odd-cut inequalities for $A x=c, x \geq 0$ relative to sets $U \subseteq V$ that either contain both $v$ and $w$ or none of them. This shows that $\bar{x}^{\prime} \in P^{\prime}\left(G^{\prime}, F^{\prime}, c^{\prime}\right)$. Since the equation $\left(A^{\prime} x^{\prime}\right)_{r}=c_{r}^{\prime}$ is the sum of $(A x)_{v}=c_{v}$ and $(A x)_{w}=c_{w}$, the equations in $A^{\prime} x=c^{\prime}$ are linearly independent. For every $U \in \mathscr{L}$, either $v, w \in U$ or $v, w \notin U$, since $e \notin \delta(U)$. Thus $\bar{x}^{\prime}$ satisfies at equality the $|E|-1$ linearly independent inequalities defined by $A^{\prime} x^{\prime}=c^{\prime}$ and by the odd-cut inequalities corresponding to sets in $\mathscr{L}$. Therefore, since $\left|E\left(G^{\prime}\right)\right|=|E|-1, \bar{x}^{\prime}$ is a vertex of $P^{\prime}\left(G^{\prime}, F^{\prime}, c^{\prime}\right)$, so it is an integral point. It follows that $\bar{x}_{e}$ must be the only fractional entry in $\bar{x}$, which is impossible since $(A \bar{x})_{v}=c_{v}$ and $c_{v}$ is integer.

If $e$ is a half-edge on node $v \in V$, the column relative to $e$ in the constraint matrix $M$ of the system (9) is the vector of all zeros except in row $A_{v}$. Since the columns of $M$ are linearly independent, $e$ is the only half-edge of $G$ on $v$. Analogously, there are no loops on $v$. Let $\left(G^{\prime}, F^{\prime}\right)$ be obtained from $(G, F)$ by deleting node $v$ and let $A^{\prime}:=A\left(G^{\prime}, F^{\prime}\right)$. Let $\bar{x}^{\prime} \in \mathbb{Z}^{E\left(G^{\prime}\right)}$ be the vector obtained from $\bar{x}$ by removing the component relative to $e$, and let $c^{\prime} \in \mathbb{Z}^{V\left(G^{\prime}\right)}$ be obtained from $c$ by removing the component corresponding to $v$. Since $\left(G^{\prime}, F^{\prime}\right)$ is in $\mathscr{C}$ and $\left|V\left(G^{\prime}\right)\right|<|V|$, the polyhedron $P^{\prime}\left(G^{\prime}, F^{\prime}, c^{\prime}\right)$ is integral. Note that $A^{\prime}$ is obtained from $A$ by removing the row corresponding to $v$ and the column relative to $e$, and that the odd-cut inequalities for $P\left(G^{\prime}, F^{\prime}, c^{\prime}\right)$ are the odd-cut inequalities for $P(G, F, c)$ relative to sets $U \subseteq V \backslash\{v\}$. Thus $\bar{x}^{\prime} \in P^{\prime}\left(G^{\prime}, F^{\prime}, c^{\prime}\right)$. For every $U \in \mathscr{L}$, $U \subseteq V \backslash\{v\}$ since $e \notin \delta(U)$, thus all odd-cut inequalities in (9) are valid for $P^{\prime}\left(G^{\prime}, F^{\prime}, c^{\prime}\right)$. It follows that $\bar{x}^{\prime}$ satisfies at equality the $|E|-1=\left|E\left(G^{\prime}\right)\right|$ linearly independent inequalities defined by $A^{\prime} x^{\prime}=c^{\prime}$ and by the odd-cut inequalities in (9), thus it is a vertex of $P^{\prime}\left(G^{\prime}, F^{\prime}, c^{\prime}\right)$. This implies that, $\bar{x}^{\prime}$ is integral and $\bar{x}_{e}$ is the only fractional entry of $\bar{x}$, which is impossible since $(A \bar{x})_{v}=c_{v}$ and $c_{v}$ is integer. $\diamond$

Claim 3. For every $e \in E, 0<\bar{x}_{e}<1$.

By Claim 1, $\bar{x}_{e}>0$ for every $e$ in $E$. First we show that $\bar{x}_{f}<1$ for any $f$ in $F \cup L$. Let $f \in F \cup L$, and suppose $\bar{x}_{f} \geq 1$. Possibly by switching the signs on the endnodes of $f$, we can assume that $f$ has a sign +1 on its endnodes. Let $\bar{x}^{\prime}$ be obtained from $\bar{x}$ by decreasing by 1 the component corresponding to $f$ and let $c^{\prime}$ be obtained from $c$ by decreasing by 2 the component/s corresponding to the endnodes of $f$. Note that, for every $U \subseteq V, c^{\prime}(U)$ is odd if and only if $c(U)$ is odd, thus the odd-cut inequalities for $A x=c^{\prime}, x \geq 0$ are exactly the odd-cut inequalities $A x=c, x \geq 0$. Since variables indexed by elements in $F \cup L$ do not appear in the odd-cut inequalities, $\bar{x}^{\prime}$ is a fractional vertex of $P\left(G, F, c^{\prime}\right)$. Since $\left\lfloor\bar{x}^{\prime}(E)\right\rfloor<\lfloor\bar{x}(E)\rfloor$, it follows that $(G, F), c^{\prime}, \bar{x}^{\prime}$ is a counterexample with $\left(\left|V\left(G^{\prime}\right)\right|,\left|E_{0}\left(G^{\prime}\right)\right|,\left|E\left(G^{\prime}\right)\right|,\left\lfloor\bar{x}^{\prime}\left(E\left(G^{\prime}\right)\right)\right\rfloor\right)$ lexicographically smaller than $\left(|V(G)|,\left|E_{0}(G)\right|,|E(G)|,\lfloor\bar{x}(E(G))\rfloor\right)$, a contradiction.

We now prove that, given $e$ in $E \backslash(F \cup L), \bar{x}_{e}<1$. By Claim 2, there exists $\bar{U} \in \mathscr{L}$ such that $e \in \delta(\bar{U})$. Note that $\bar{x}_{e} \leq 1$ since $\bar{x}(\delta(\bar{U}) \backslash(F \cup L))=1$. Suppose, by contradiction, that $\bar{x}_{e}=1$. It follows that $e$ is the only edge in $\delta(\bar{U}) \backslash(F \cup L)$, and that the odd-cut inequality relative to $\bar{U}$ is $x_{e} \geq 1$. Possibly by switching signs on the endnode/s of $e$, we may assume that $e$ has sign +1 on its endnode/s. Let $\left(G^{\prime}, F\right)$ be obtained from $(G, F)$ by deleting $e$, and let $A^{\prime}:=A\left(G^{\prime}, F\right)$. Let $c^{\prime}$ be obtained from $c$ by subtracting 1 to the entries relative to the endnode/s of $e$, and let $\bar{x}^{\prime}$ be the vector obtained from $\bar{x}$ by removing the component corresponding to $e$. Since $\left(G^{\prime}, F\right)$ is in $\mathscr{C},\left|V\left(G^{\prime}\right)\right|=|V|,\left|E_{0}\left(G^{\prime}\right)\right| \leq\left|E_{0}\right|$, and $\left|E\left(G^{\prime}\right)\right|<|E|$, the polyhedron $P^{\prime}\left(G^{\prime}, F, c^{\prime}\right)$ is integral, because $\left(\left|V\left(G^{\prime}\right)\right|,\left|E_{0}\left(G^{\prime}\right)\right|,\left|E\left(G^{\prime}\right)\right|,\left\lfloor\bar{x}^{\prime}\left(E\left(G^{\prime}\right)\right)\right\rfloor\right)$ is lexicographically smaller than $\left(|V(G)|,\left|E_{0}(G)\right|,|E(G)|,\lfloor\bar{x}(E(G))\rfloor\right)$.

We show that $\bar{x}^{\prime} \in P^{\prime}\left(G^{\prime}, F, c^{\prime}\right)$. Clearly $\bar{x}^{\prime} \in P\left(G^{\prime}, F, c^{\prime}\right)$, so we need to show that it satisfies the odd-cut inequalities. Let $U \subseteq V\left(G^{\prime}\right)$ such that $c^{\prime}(U)$ is odd and such that the odd-cut inequality $x\left(\delta_{G^{\prime}}(U) \backslash(F \cup L)\right) \geq 1$ is not redundant for $P^{\prime}\left(G^{\prime}, F, c^{\prime}\right)$. Since $\delta_{G^{\prime}}(\bar{U}) \subseteq F \cup L\left(G^{\prime}\right)$, it follows from Lemma 6 that either $U \subseteq \bar{U}$ or $U \subseteq V \backslash \bar{U}$. If $e \notin \delta(U)$, then $\bar{x}^{\prime}\left(\delta_{G^{\prime}}(U) \backslash\left(F \cup L\left(G^{\prime}\right)\right)\right)=\bar{x}(\delta(U) \backslash(F \cup L)) \geq 1$. Assume $e \in$ $\delta(U)$. Then $c(U)=c^{\prime}(U)+1$, which is even. If $U \subseteq \bar{U}$, then $c(\bar{U} \backslash U)$ is odd, hence $\bar{x}^{\prime}\left(\delta_{G^{\prime}}(U) \backslash(F \cup L)\right)=\bar{x}(\delta(\bar{U} \backslash U) \backslash(F \cup L)) \geq 1$. If $U \subseteq V \backslash \bar{U}$, then $c(\bar{U} \cup U)$ is odd, hence $\bar{x}^{\prime}\left(\delta_{G^{\prime}}(U) \backslash(F \cup L)\right)=\bar{x}(\delta(\bar{U} \cup U) \backslash(F \cup L)) \geq 1$. Thus $\bar{x}^{\prime} \in P^{\prime}\left(G^{\prime}, F, c^{\prime}\right)$.

Finally, since $\bar{x}^{\prime} \in P\left(G^{\prime}, F, c^{\prime}\right)$ and $P\left(G^{\prime}, F, c^{\prime}\right)$ is integral, $\bar{x}^{\prime}$ is a convex combination of integral vectors $y^{1}, \ldots, y^{k} \in P\left(G^{\prime}, F, c^{\prime}\right)$. Thus $\bar{x}=\binom{1}{\bar{x}^{\prime}}$ is a convex combination of $\binom{1}{y^{1}}, \ldots,\binom{1}{y^{k}}$, which are integral points in $P(G, F, c)$, contradicting the fact that $\bar{x}$ is a fractional vertex of $P^{\prime}(G, F, c)$.

Claim 4. $(G, F)$ satisfies condition (C2).
Suppose $C$ is a cycle in $F$. Since $(G, F) \in \mathscr{C}$, the cycle $C$ is even, hence the edges of $C$ can be partitioned in two subsets $R$ and $B$ so that any two adjacent edges $u v$, $u w$ in $C$ are contained in the same side of the partition if and only $\sigma_{u, u v} \neq \sigma_{u, u w}$. Let $y:=\bar{x}+\epsilon \chi(R)-\epsilon \chi(B)$ and $z:=\bar{x}-\epsilon \chi(R)+\epsilon \chi(B)$, where $\epsilon=\min _{e \in E(C)} \bar{x}_{e}$. By Claim 3, $\epsilon>0$. By the choice of $R$ and $B$, it follows that $y, z \in P(G, F, c)$. Moreover, both $y$ and $z$ satisfy all the odd-cut inequalities for $A x=c, x \geq 0$, since these only involve variables relative to edges in $E \backslash(F \cup L)$. Thus $y, z \in P^{\prime}(G, F, c)$ and $\bar{x}=\frac{1}{2}(y+z)$, contradicting the fact that $\bar{x}$ is a vertex of $P^{\prime}(G, F, c)$.

Claim 5. Each node in $V$ is incident to at least one edge in $E \backslash(F \cup L)$.

By contradiction, let $v$ be a node in $V$ incident only with edges in $F \cup L$. Since $|V| \geq 2$ and $G$ is connected, there exists an edge $f=v w$ in $F$ incident to $v$. Possibly by switching $\operatorname{sign}$ on $v$, we may assume that $\sigma_{v, f} \neq \sigma_{w, f}$. Notice that $c_{v}$ is even, otherwise the odd-cut inequality corresponding to the set $\{v\}$ is not satisfied.

Let $\left(G^{\prime}, F^{\prime}\right)$ be obtained from $(G, F)$ by contracting $f$ (operation (O4)), let $r$ be the node obtained from the contraction of $v w$, and let $A^{\prime}:=A\left(G^{\prime}, F^{\prime}\right)$. Let $\bar{x}^{\prime}$ be the restriction of $\bar{x}$ to the component relative to edges in $E\left(G^{\prime}\right)$, and let $c^{\prime}$ be obtained from $c$ by removing the components corresponding to $v$ and $w$ and introducing a new component relative to $r$ with value $c_{r}^{\prime}:=c_{v}+c_{w}$.

Since $\left(G^{\prime}, F^{\prime}\right)$ is in $\mathscr{C}$ and $\left|V\left(G^{\prime}\right)\right|<|V|$, the polyhedron $P^{\prime}\left(G^{\prime}, F^{\prime}, c^{\prime}\right)$ is integral. We show that $\bar{x}^{\prime} \in P^{\prime}\left(G^{\prime}, F^{\prime}, c^{\prime}\right)$. Clearly $\bar{x}^{\prime} \in P\left(G^{\prime}, F^{\prime}, c^{\prime}\right)$, so we need to show that it satisfies the odd-cut inequalities. Since $c_{v}$ is even, $c_{r}^{\prime}$ has the same parity as $c_{w}$.

Let $U^{\prime}$ be a subset of $V\left(G^{\prime}\right)=V \backslash\{v, w\} \cup\{r\}$ such that $c^{\prime}\left(U^{\prime}\right)$ is odd. If $r \notin U^{\prime}$ then $c\left(U^{\prime}\right)=c^{\prime}\left(U^{\prime}\right)$ and $\delta_{G^{\prime}}\left(U^{\prime}\right) \backslash\left(F^{\prime} \cup L\left(G^{\prime}\right)\right)=\delta\left(U^{\prime}\right) \backslash(F \cup L)$. If $r \in U^{\prime}$, then, if we let $U:=U^{\prime} \backslash\{r\} \cup\{w\}, c(U)$ is odd and $\delta_{G^{\prime}}\left(U^{\prime}\right) \backslash\left(F^{\prime} \cup L\left(G^{\prime}\right)\right)=\delta(U) \backslash(F \cup L)$. It follows that every odd cut inequality for $P\left(G^{\prime}, F^{\prime}, c^{\prime}\right)$ is an odd cut inequality for $P(G, F, c)$, so $\bar{x}^{\prime} \in P^{\prime}\left(G^{\prime}, F^{\prime}, c^{\prime}\right)$.

By (10), $U \subseteq V \backslash\{v\}$ for every $U \in \mathscr{L}$, therefore all odd cut inequalities in (9) are valid for $P^{\prime}\left(G^{\prime}, F^{\prime}, c^{\prime}\right)$ and they are satisfied at equality by $\bar{x}^{\prime}$. Since the inequality $\left(A^{\prime} x^{\prime}\right)_{r}=c_{r}^{\prime}$ is the sum of $(A x)_{w}=c_{w}$ and $(A x)_{v}=c_{v}, \bar{x}^{\prime}$ satisfies at equality the $|E|-1=\left|E\left(G^{\prime}\right)\right|$ linearly independent inequalities defined by $A^{\prime} x=c^{\prime}$ and by the oddcut inequalities in (9). Hence $\bar{x}^{\prime}$ is a vertex of $P\left(G^{\prime}, F^{\prime}, c^{\prime}\right)$, and it is therefore integral, contradicting Claim 3 .

Claim 6. If $G \backslash F$ is connected and $V \notin \mathscr{L}$, then $\bar{x}_{e}=\frac{1}{2}$ for all $e \in G$.
Let $U$ be a maximal set in the laminar family $\mathscr{L}$. Since $\mathscr{L}$ is laminar, for every $S \in \mathscr{L}$ either $S \subseteq U$ or $S \subseteq V \backslash U$. Since $V \notin \mathscr{L}, U \subset V$. As $G \backslash F$ is connected, there exists $e \in \delta(U) \cap\left(E_{0} \backslash F\right)$. Let $e=v w$, where $v \in U$, and let $\left(G^{\prime}, F\right)$ be obtained from $(G, F)$ by deleting $e$ and introducing half-edges $h_{v}$ and $h_{w}$ on $v$ and $w$ with signs $\sigma_{v, e}$ and $\sigma_{w, e}$, respectively. Let $A^{\prime}:=A\left(G^{\prime}, F\right)$. One can readily verify that $\left(G^{\prime}, F\right)$ is in the class $\mathscr{C},\left|V\left(G^{\prime}\right)\right|=|V|$, and $\left|E_{0}\left(G^{\prime}\right)\right|<\left|E_{0}\right|$, thus the polyhedron $P^{\prime}\left(G^{\prime}, F, c\right)$ is integral. Now let $\bar{x}^{\prime}$ be obtained from $\bar{x}$ by removing the component corresponding to $e$ and introducing two components relative to $h_{v}$ and $h_{w}$ with $\bar{x}_{h_{v}}^{\prime}=\bar{x}_{h_{w}}^{\prime}=\bar{x}_{e}$. Clearly $\bar{x}^{\prime} \in P\left(G^{\prime}, F, c\right)$. Each odd-cut inequality of the latter system is satisfied by $\bar{x}^{\prime}$ since, for every $S \subseteq V, \bar{x}^{\prime}\left(\delta_{G^{\prime}}(S) \backslash\left(F \cup L\left(G^{\prime}\right)\right)\right) \geq \bar{x}(\delta(S) \backslash(F \cup L)$ ), where equality holds if and only if $|S \cap\{v, w\}| \leq 1$. Thus $\bar{x}^{\prime} \in P^{\prime}\left(G^{\prime}, F, c\right)$. Furthermore, for every $S \in \mathscr{L}$, $|S \cap\{v, w\}| \leq 1$, since either $S \subseteq U$ or $S \subseteq V \backslash U$. Thus $\bar{x}^{\prime}$ satisfies at equality the odd-cut inequalities

$$
\begin{equation*}
x^{\prime}\left(\delta_{G^{\prime}}(S) \backslash\left(F \cup L\left(G^{\prime}\right)\right)\right) \geq 1 \quad \text { for every } S \in \mathscr{L} \tag{11}
\end{equation*}
$$

Since $\bar{x}^{\prime}$ satisfies at equality $|E|=\left|E\left(G^{\prime}\right)\right|-1$ linearly independent inequalities, $\bar{x}^{\prime}$ lies on a face $Q$ of dimension 1 of $P^{\prime}\left(G^{\prime}, F, c\right)$, thus there exist two vertices $y, z$ of $P^{\prime}\left(G^{\prime}, F, c\right)$ in $Q$ such that $\bar{x}^{\prime}=\lambda y+(1-\lambda) z$, where $0 \leq \lambda \leq 1$. Since $P^{\prime}\left(G^{\prime}, F, c\right)$ is integral, the points $y$ and $z$ are integral and $0<\lambda<1$. Since $y, z \in Q, y, z$ satisfy (11) at equality. By Claim 2, each edge $h \in E \backslash(F \cup L)$ is in $\delta(S)$ for some set $S \in \mathscr{L}$, thus each edge
$h \in E\left(G^{\prime}\right) \backslash\left(F \cup L\left(G^{\prime}\right) \cup\left\{h_{w}\right\}\right)$ is in $\delta(S)$ for some set $S \in \mathscr{L}$. Therefore $y_{h}, z_{h} \in\{0,1\}$ for every $h \in E\left(G^{\prime}\right) \backslash\left(F \cup L\left(G^{\prime}\right) \cup\left\{h_{w}\right\}\right)$.

Since $\bar{x}_{h_{v}}^{\prime}=\bar{x}_{h_{w}}^{\prime}=\bar{x}_{e}<1$, we can assume that $y_{h_{v}}=1$ and $z_{h_{v}}=0$ and that precisely one among $y_{h_{w}}$ and $z_{h_{w}}$ is 0 . Hence $\bar{x}_{e}=\lambda$. If $z_{h_{w}}=0$, then $y_{h_{w}}=1$ because $\bar{x}_{h_{w}}^{\prime}=\lambda y_{h_{w}}$, thus if we define two points $\bar{y}, \bar{z} \in \mathbb{R}^{E}$ by $\bar{y}_{h}=y_{h}, h \in E \backslash\{e\}, \bar{y}_{e}=1$, and $\bar{z}_{h}=z_{h}$, $h \in E \backslash\{e\}, \bar{z}_{e}=0$, then $\bar{y}$ and $\bar{z}$ are integral points in $P(G, F, c)$ and $\bar{x}=\lambda \bar{y}+(1-\lambda) \bar{z}$, contradicting the fact that $\bar{x}$ is a vertex of $P^{\prime}(G, F, c)$. Therefore $y_{h_{w}}=0$ and $z_{h_{w}}=k$ for some positive integer $k$. Since $\lambda=\bar{x}_{e}=\lambda y_{h_{w}}+(1-\lambda) z_{h_{w}}=(1-\lambda) k$, it follows that $\lambda=k /(k+1)$. If $k=1$, then all components of $\bar{x}$ are equal to $1 / 2$ and we are done. Thus we may assume that $k \geq 2$.

Note also that, since $z\left(\delta_{G^{\prime}}(U) \backslash\left(F \cup L\left(G^{\prime}\right)\right)\right)=1$ and $z_{h_{v}}=0$, there exists $g \neq e$ in $\delta_{G^{\prime}}(U) \backslash\left(F \cup L\left(G^{\prime}\right)\right)$ such that $z_{g}=1$. Thus $\delta(U) \backslash(F \cup L)=\{e, g\}$ and $\bar{x}_{g}=$ $1-\lambda=1 /(k+1)<1 / 2$. If $g \in E_{0}$, then by applying to $g$ the same argument we used for $e$, we will obtain that $\bar{x}_{g}>1 / 2$, a contradiction. Therefore $g \in H$. In particular, $\delta_{G^{\prime}}(U) \cap E_{0}\left(G^{\prime}\right) \subseteq F$.

Let $G^{\prime \prime}$ be the bidirected graph obtained from $G^{\prime}$ by switching the sign of $h_{w}$. Let $A^{\prime \prime}=A\left(G^{\prime \prime}, F\right), c^{\prime \prime} \in \mathbb{R}^{V}$ be defined by $c_{u}^{\prime \prime}=c_{u}$ for all $u \in V \backslash\{w\}$, and $c_{w}^{\prime \prime}=c_{w}-1$. Clearly, $\left(G^{\prime \prime}, F\right)$ is in the class $\mathscr{C}$ and $P^{\prime}\left(G^{\prime \prime}, F, c^{\prime \prime}\right)$ is integral.

Let $y^{\prime \prime}, z^{\prime \prime}$ and $\bar{x}^{\prime \prime}$ be defined by $y_{h}^{\prime \prime}=y_{h}, z_{h}^{\prime \prime}=z_{h}$ and $\bar{x}_{h}^{\prime \prime}=\bar{x}_{h}$ for all $h \in E\left(G^{\prime}\right) \backslash\left\{e_{w}\right\}$, $y_{h_{w}}^{\prime \prime}=1, z_{h_{w}}^{\prime \prime}=1-k$ and $\bar{x}_{h_{w}}^{\prime \prime}=1-\bar{x}_{e}$. Observe that $y^{\prime \prime}$ and $z^{\prime \prime}$ are integral, they satisfy the system $A^{\prime \prime} x^{\prime \prime}=c^{\prime \prime}$, and $\bar{x}^{\prime \prime}=\lambda y^{\prime \prime}+(1-\lambda) z^{\prime \prime}$. Since $y^{\prime \prime} \geq 0$, it follows that $y^{\prime \prime} \in P\left(G^{\prime \prime}, F, c^{\prime \prime}\right)$, and therefore $y^{\prime \prime} \in P^{\prime}\left(G^{\prime \prime}, F, c^{\prime \prime}\right)$. Since $z_{h_{w}}^{\prime \prime}<0, z^{\prime \prime} \notin P^{\prime}\left(G^{\prime \prime}, F, c^{\prime \prime}\right)$.

We prove next that $\bar{x}^{\prime \prime} \in P^{\prime}\left(G^{\prime \prime}, F, c^{\prime \prime}\right)$. It suffices to show that $\bar{x}^{\prime \prime}$ satisfies all oddcut inequalities for $P\left(G^{\prime \prime}, F, c^{\prime \prime}\right)$. Let $S \subseteq V$ such that $c^{\prime \prime}(S)$ is odd. If $w \notin S$, then $c^{\prime \prime}(S)=c(S)$ and $\bar{x}^{\prime \prime}\left(\delta_{G^{\prime}}(S) \backslash\left(F \cup L\left(G^{\prime}\right)\right)\right)=\bar{x}(\delta(S) \backslash(F \cup L)) \geq 1$. Otherwise, since $\delta_{G^{\prime}}(U) \cap E_{0}\left(G^{\prime}\right) \subseteq F$, it follows by (10) that $S \subseteq V\left(G^{\prime}\right) \backslash U$. Note that $c(U \cup S)=$ $c(U)+c(S)=c(U)+c^{\prime \prime}(S)+1$, hence $c(U \cup S)$ is odd. Since $\bar{x}_{h_{w}}^{\prime \prime}=1-\bar{x}_{e}=\bar{x}_{g}$, it follows that $\bar{x}^{\prime \prime}\left(\delta_{G^{\prime}}(S) \backslash\left(F \cup L\left(G^{\prime}\right)\right)\right)=\bar{x}(\delta(U \cup S) \backslash(F \cup L)) \geq 1$.

Observe next that, for every $S \in \mathscr{L}, w \notin S$, otherwise $h_{w} \in \delta_{G^{\prime}}(S)$ and $z\left(\delta_{G^{\prime}}(S) \backslash\right.$ $\left.\left(F \cup L\left(G^{\prime}\right)\right)\right)=1$ would imply $z_{h_{w}}=1<k$. It follows that $\bar{x}^{\prime \prime}$ and $y^{\prime \prime}$ satisfy at equality the $|E|=\left|E\left(G^{\prime \prime}\right)\right|-1$ constraints $A^{\prime \prime} x^{\prime \prime}=c^{\prime \prime}, x^{\prime \prime}\left(\delta_{G^{\prime \prime}}(S)\right) \backslash\left(F \cup L\left(G^{\prime \prime}\right)\right) \geq 1$. It follows that $\bar{x}^{\prime \prime}$ and $y^{\prime \prime}$ both belong to a face $Q^{\prime}$ of $P^{\prime}\left(G^{\prime \prime}, F, c^{\prime \prime}\right)$ of dimension 1. Recall that $\bar{x}^{\prime \prime}=\lambda y^{\prime \prime}+(1-\lambda) z^{\prime \prime}$, thus $\bar{x}^{\prime \prime}$ belongs to the line segment joining $y^{\prime \prime}$ and $z^{\prime \prime}$. Since $z^{\prime \prime} \notin P^{\prime}\left(G^{\prime \prime}, F, c^{\prime \prime}\right)$, it follows that there exists a vertex $\bar{z}$ of $Q^{\prime}$ in the line segment joining $y^{\prime \prime}$ and $z^{\prime \prime}$. Thus there exists $\bar{\lambda}, 0<\bar{\lambda}<1$ such that $\bar{z}=\bar{\lambda} y^{\prime \prime}+(1-\bar{\lambda}) z^{\prime \prime}$, and so $\bar{z}_{g}=1-\bar{\lambda}$ since $y_{g}^{\prime \prime}=0$ and $z_{g}^{\prime \prime}=1$. Note however that the point $\bar{z}$ should be integral, because it is a vertex of $Q^{\prime}$, and thus also a vertex of $P^{\prime}\left(G^{\prime \prime}, F, c^{\prime \prime}\right)$, a contradiction. $\diamond$

Claim 7. If $G$ is bipartite, $G \backslash F$ is connected and $L=\emptyset$, then $\bar{x}_{e}=\frac{1}{2}$ for every $e \in E$.
Since $G$ is bipartite, it follows by a theorem of Heller and Tompkins [14] that the nodes in $G$ can be partitioned into two subsets $V_{1}, V_{2}$ such that, for every $e=v w \in E_{0}, v$ and $w$ are in the same side of the bipartition if and only if $\sigma_{v, e} \neq \sigma_{w, e}$. By symmetry, we may assume $c\left(V_{1}\right) \geq c\left(V_{2}\right)$. For $i=1,2$, let $H_{i}^{+}$and $H_{i}^{-}$be the sets of half-edges of $G$ with endnode in $V_{i}$ having, respectively, +1 and -1 sign.

Since $G \backslash F$ is connected, by Claim 6 we can assume that $V \in \mathscr{L}$, otherwise $\bar{x}_{e}=\frac{1}{2}$ for every $e \in E$. The odd-cut inequality relative to $V$ is $x(H) \geq 1$, and it is satisfied at
equality by $\bar{x}$. Since $L=\emptyset$, it is immediate to verify that by summing the equations in $A x=c$ corresponding to nodes in $V_{1}$ and subtracting the equations relative to nodes in $V_{2}$, we obtain the equation $x\left(H_{1}^{+} \cup H_{2}^{-}\right)-x\left(H_{1}^{-} \cup H_{2}^{+}\right)=c\left(V_{1}\right)-c\left(V_{2}\right)$.

Since $c(V)$ is odd and $c\left(V_{1}\right) \geq c\left(V_{2}\right)$, we have that $c\left(V_{1}\right)-c\left(V_{2}\right) \geq 1$, thus $1=\bar{x}(H) \geq$ $\bar{x}\left(H_{1}^{+} \cup H_{2}^{-}\right)-\bar{x}\left(H_{1}^{-} \cup H_{2}^{+}\right) \geq 1$, because $\bar{x} \geq 0$. It follows that $\bar{x}\left(H_{1}^{-} \cup H_{2}^{+}\right)=0$, so $H_{1}^{-} \cup H_{2}^{+}=\emptyset$ because $\bar{x}>0$. So the equation $x(H)=1$ can be obtained as a linear combination of the equations in $A x=c$, contradicting the fact that the inequalities in (9) are linearly independent. ॰

Given a star $\Delta \subseteq F \cup L$ centered at some node $v_{0}$, let $G^{\Delta}$ be obtained from $G \backslash \Delta$ by introducing, for every node $v \in V$ incident to at least one edge of $\Delta$, a loop $\ell_{v}$ on $v$. If $v \neq v_{0}$ is incident to $f \in \Delta$ (we recall that by definition $\Delta \cap E_{0}$ does not contain parallel edges), then the sign on $\ell_{v}$ is $\sigma_{v, f}$, whereas the sign of $\ell_{v_{0}}$ is +1 if $\sum_{f \in \Delta} \sigma_{v_{0}, f} \bar{x}_{f} \geq 0$ and sign -1 otherwise. Let $L^{\Delta}$ be the set of these new loops in $G^{\Delta}$. Let $F^{\Delta}:=F \backslash \Delta$ and $A^{\Delta}:=A\left(G^{\Delta}, F^{\Delta}\right)$. Let $\bar{x}^{\Delta} \in \mathbb{R}^{E\left(G^{\Delta}\right)}$ be obtained from $\bar{x}$ by removing the components corresponding to the edges in $\Delta$, and by setting, for every loop $\ell_{v}$ in $L^{\Delta}, \bar{x}_{\ell_{v}}^{\Delta}=\bar{x}_{f}$ if $v \neq v_{0}$ and $f$ is the edge in $\Delta$ incident to $v$, and $\bar{x}_{\ell_{v_{0}}}^{\Delta}=\left|\sum_{f \in \Delta} \sigma_{v_{0}, f} \bar{x}_{f}\right|$. (See Figure 6.)


Figure 6: Representation of $G^{\Delta}, \bar{x}^{\Delta}$. Boldfaced edges are in $F . \Delta$ is the star comprising all edges centered at $v_{0}$. Numbers next to the edges represent the values of $\bar{x}$ and $\bar{x}{ }^{\Delta}$.

Claim 8. Let $\Delta \subseteq F \cup L$ be a star centered at node $v_{0} \in V$ with $\Delta \cap F \neq \emptyset$. If $\left(G^{\Delta}, F^{\Delta}\right)$ does not contain $\mathscr{G}_{4}$ as a minor, then the following hold.
(i) $\Delta \cap L=\emptyset$;
(ii) $G \backslash \Delta$ is connected;
(iii) $\bar{x}^{\Delta}=\lambda y+(1-\lambda) z$ for some $0<\lambda<1$, where $y, z$ are integral points in $P\left(G^{\Delta}, F^{\Delta}, c\right)$ satisfying $y_{e}, z_{e} \leq 1 \forall e \in E\left(G^{\Delta}\right) \backslash\left\{\ell_{v_{0}}\right\}$. Moreover, for every $U \in \mathscr{L}$, $|\delta(U) \backslash(F \cup L)|=2 ;$
(iv) If $|\Delta|=1$, then $\bar{x}$ is half-integral.

By assumption we have that $\left(G^{\Delta}, F^{\Delta}\right)$ is in $\mathscr{C}$. Since $\left|V\left(G^{\Delta}\right)\right|=|V|$ and $\left|E_{0}\left(G^{\Delta}\right)\right|<\left|E_{0}\right|$, it follows that $P^{\prime}\left(G^{\Delta}, F^{\Delta}, c\right)$ is integral.

The matrix $A^{\Delta}$ is obtained from $A$ by deleting the columns relative to the edges in $\Delta$, and by introducing columns relative to the loops in $L^{\Delta}$. These columns are zero everywhere except for the entry relative to $v$, with value $2 \sigma_{v, \ell_{v}}$. Observe that the space spanned by the columns of $A^{\Delta}$ contains the space spanned by the columns of $A$. Since $A$ has full row-rank, it follows that $A^{\Delta}$ and $A$ have rank $|V|$. The odd cut inequalities for $P(G, F, c)$ and for $P^{\prime}\left(G^{\Delta}, F^{\Delta}, c\right)$ are the same, since they do not involve elements in $F \cup L$ and $F^{\Delta} \cup L\left(G^{\Delta}\right)$, therefore $\bar{x}^{\Delta} \in P^{\prime}\left(G^{\Delta}, F^{\Delta}, c\right)$ and it satisfies the odd cut inequalities in (9) at equality. In particular, $\bar{x}^{\Delta}$ satisfies at equality $|E|$ linearly independent inequalities valid for $P^{\prime}\left(G^{\Delta}, F^{\Delta}, c\right)$. This implies that $E\left(G^{\Delta}\right) \geq|E|$. Furthermore, $E\left(G^{\Delta}\right)>|E|$, otherwise $\bar{x}^{\Delta}$ is a vertex of $P^{\prime}\left(G^{\Delta}, F^{\Delta}, c\right)$ and it is therefore integral, a contradiction, because by construction $\bar{x}_{e}=\bar{x}_{e}^{\Delta}$ for every $e \in E \backslash(F \cup L)$ and, by Claim 3, $0<\bar{x}_{e}<1$ for all $e \in E($ note $E \backslash(F \cup L) \neq \emptyset$ by Claim 5$)$.
(i) Since the number of nodes incident to some element of $\Delta$ is $|\Delta \cap F|+1$, it follows that $E\left(G^{\Delta}\right)=|E|-|\Delta|+\left|L^{\Delta}\right|=|E|-|\Delta \cap L|+1$. Since $E\left(G^{\Delta}\right)>|E|$, it follows that $|\Delta \cap L|=0$.
(ii) From the above, $\left|E\left(G^{\Delta}\right)\right|=|E|+1$, therefore $\bar{x}^{\Delta}$ belongs to a face $Q$ of dimension 1 of $P^{\prime}\left(G^{\Delta}, F^{\Delta}, c\right)$. Suppose $G \backslash \Delta$ is not connected. Then clearly also $G^{\Delta}$ is not connected. Let $G^{\prime}$ be a connected component of $G^{\Delta}$ and let $G^{\prime \prime}$ be the union of all the other connected components of $G^{\Delta}$. Let $F^{\prime}=F^{\Delta} \cap E\left(G^{\prime}\right), F^{\prime \prime}=F^{\Delta} \cap E\left(G^{\prime \prime}\right)$, let $\bar{x}^{\prime}$ and $\bar{x}^{\prime \prime}$ be the restriction of $\bar{x}^{\Delta}$ to the edges of $G^{\prime}$ and $G^{\prime \prime}$, respectively, and let $c^{\prime}$ and $c^{\prime \prime}$ be the restriction of $c$ to $V\left(G^{\prime}\right)$ and $V\left(G^{\prime \prime}\right)$ respectively. Then $P^{\prime}\left(G^{\Delta}, F^{\Delta}, c\right)=$ $P^{\prime}\left(G^{\prime}, F^{\prime}, c^{\prime}\right) \times P^{\prime}\left(G^{\prime \prime}, F^{\prime \prime}, c^{\prime \prime}\right)$ (where " $\times$ " indicates the cartesian product of two sets). In particular, $Q=Q^{\prime} \times Q^{\prime \prime}$ where $Q^{\prime}$ and $Q^{\prime \prime}$ are faces of $P^{\prime}\left(G^{\prime}, F^{\prime}, c^{\prime}\right)$ and $P^{\prime \prime}\left(G^{\prime \prime}, F^{\prime \prime}, c^{\prime \prime}\right)$, respectively. Since $\operatorname{dim}(Q)=\operatorname{dim}\left(Q^{\prime}\right)+\operatorname{dim}\left(Q^{\prime \prime}\right)$, either $Q^{\prime}$ or $Q^{\prime \prime}$ has dimension 0 . Since $\bar{x}^{\prime} \in Q^{\prime}$ and $\bar{x}^{\prime \prime} \in Q^{\prime \prime}, \bar{x}^{\prime}$ is a vertex of $Q^{\prime}$ or $\bar{x}^{\prime \prime}$ is a vertex of $Q^{\prime \prime}$. Thus at least one among $\bar{x}^{\prime}$ and $\bar{x}^{\prime \prime}$ are integral points. By Claim 5, $E\left(G^{\prime}\right) \backslash L^{\Delta} \neq \emptyset$ and $E\left(G^{\prime \prime}\right) \backslash L^{\Delta} \neq \emptyset$, thus there exists some edge $e \in E \backslash \Delta$ such that $\bar{x}_{e}$ is integer, contradicting Claim 3.
(iii) The point $\bar{x}^{\Delta}$ belongs to the polyhedron $\tilde{P}:=P^{\prime}\left(G^{\Delta}, F^{\Delta}, c\right) \cap\left\{x^{\Delta} \in \mathbb{R}^{E\left(G^{\Delta}\right)}: x_{e}^{\Delta} \leq\right.$ $\left.\left\lceil\bar{x}_{e}^{\Delta}\right\rceil, e \in F^{\Delta} \cup L\left(G^{\Delta}\right)\right\}$. By Lemma 6, $\tilde{P}$ is the first Chvátal closure of the polyhedron $\left\{x \in \mathbb{R}_{+}^{E\left(G^{\Delta}\right)}: A^{\Delta} x^{\Delta}=c, x_{e}^{\Delta} \leq\left\lceil\bar{x}_{e}^{\Delta}\right\rceil \forall e \in F^{\Delta} \cup L\left(G^{\Delta}\right)\right\}$. By Lemma 7, $\tilde{P}$ is an integral polyhedron. Since $\bar{x}^{\Delta}$ belongs to a face of dimension 1 of $P^{\prime}\left(G^{\Delta}, F^{\Delta}, c\right), \bar{x}^{\Delta}$ belongs to a face $\tilde{Q}$ of dimension 1 of $\tilde{P}$. It follows that $\bar{x}^{\Delta}$ is a convex combination of two integral vertices $y$ and $z$ of $\tilde{Q}$, i.e. $\bar{x}^{\Delta}=\lambda y+(1-\lambda) z$ for some $0<\lambda<1$.

By Claim 3 and the fact that $\Delta \cap L=\emptyset$, it follows that $\left\lceil\bar{x}^{\Delta}\right\rceil=1$ for all $e \in$ $F^{\Delta} \cup L\left(G^{\Delta}\right) \backslash\left\{\ell_{v_{0}}\right\}$, therefore $y_{e}, z_{e} \in\{0,1\}$ for every $e$ in $E\left(G^{\Delta}\right) \backslash\left\{\ell_{v}\right\}$. Furthermore, by Claim 2 each edge in $E\left(G^{\Delta}\right) \backslash\left(F^{\Delta} \cup L\left(G^{\Delta}\right)\right)$ belongs to $\delta(U)$ for some $U \in \mathscr{L}$. Since $y$ and $z$ satisfy at equality the odd-cut inequalities relative to all $U \in \mathscr{L}$, it follows that $|\delta(U) \backslash(F \cup L)|=2$ for every $U \in \mathscr{L}$.
(iv) Assume $|\Delta|=1$. Then $\Delta=\{f\}$ for some $f=v w \in F$ and $E\left(G^{\Delta}\right)=E \backslash\{f\} \cup$ $\left\{\ell_{v}, \ell_{w}\right\}$. Since $\bar{x}_{\ell_{v}}^{\Delta}=\bar{x}_{\ell_{w}}^{\Delta}=\bar{x}_{f}$, it follows that $\left\lceil\bar{x}_{\ell_{v}}^{\Delta}\right\rceil=\left\lceil\bar{x}_{\ell_{w}}^{\Delta}\right\rceil=1$, therefore the points $y, z$ defined in (iii) have all 0,1 components. Assume, by symmetry, that $y_{\ell_{v}}=0$, and $z_{\ell_{v}}=1$. Then $y_{\ell_{w}}=1$ and $z_{\ell_{w}}=0$, otherwise the points $\bar{y}, \bar{z} \in \mathbb{Z}^{E}$, obtained from $y$ and $z$ by replacing the two components relative to $\ell_{v}$ and $\ell_{w}$ with one component relative to $f$ of value $\bar{y}_{f}=y_{\ell_{v}}=y_{\ell_{w}}, \bar{z}_{f}=z_{\ell_{v}}=z_{\ell_{w}}$, are in $P^{\prime}(G, F, c)$ and $\bar{x}=\lambda \bar{y}+(1-\lambda) \bar{z}$, a
contradiction. It follows that $\bar{x}_{\ell_{v}}^{\Delta}=1-\lambda$ and $\bar{x}_{\ell_{w}}^{\Delta}=\lambda$. Since $\bar{x}_{\ell_{v}}^{\Delta}=\bar{x}_{f}=\bar{x}_{\ell_{w}}^{\Delta}, \lambda=1 / 2$, thus $\bar{x}$ is half-integral. $\diamond$

Claim 9. If $G \backslash F$ is connected, then $\bar{x}_{e}=1 / 2$ for every $e$ in $E$.
By Claim 4, we know that $(G, F)$ satisfies condition (C2). Suppose that this pair does not satisfy condition (C1). By Lemma 9, we have that $L=\emptyset$ and $(G, F)$ is bipartite. Then, by Claim $7, \bar{x}_{e}=1 / 2$ for every $e$ in $E$.

Thus we may assume that $(G, F)$ satisfies condition (C1). Since $F \neq \emptyset$, let $B$ be a block of $G$ such that $B \cap F \neq \emptyset$. Block $B$ must satisfy i) or ii) of Lemma 10. If it satisfies ii), then there exists an edge $f \in F$ such that every other edge in $E(B) \cap F$ is nested in $f$. If we let $\Delta:=\{f\}$, it is easy to check that $\left(G^{\Delta}, F^{\Delta}\right)$ does not contain $\mathscr{G}_{4}$ as a minor. Hence, by Claim 8(iv), $\bar{x}_{e}=1 / 2$ for every $e$ in $E$.

Thus we may assume that $B$ satisfies Lemma 10(i). That is, $E(B) \cap(F \cup L)$ is the edge set of a star in $B$, centered at some node $v_{0} \in V(B)$. Let $\Delta=E(B) \cap(F \cup L)$. It is easy to check that $\left(G^{\Delta}, F^{\Delta}\right)$ is in $\mathscr{C}$. Hence by Claim $8($ iii $), \bar{x}^{\Delta}=\lambda y+(1-\lambda) z$ for some $0<\lambda<1$, where $y$ and $z$ are integral points in $P\left(G^{\Delta}, F^{\Delta}, c\right)$ such that $y_{e}, z_{e} \in\{0,1\}$ for all $e \in E\left(G^{\Delta}\right) \backslash\left\{\ell_{v_{0}}\right\}$. It follows that $\bar{x}_{e}^{\Delta} \in\{\lambda, 1-\lambda\}$ for all $e \in E\left(G^{\Delta}\right) \backslash\left\{\ell_{v_{0}}\right\}$, hence $\bar{x}_{e} \in\{\lambda, 1-\lambda\}$ for every $e$ in $E$, since for every edge in $E$ there exists an edge in $E\left(G^{\Delta}\right) \backslash\left\{\ell_{v_{0}}\right\}$ with the same value, because $\Delta \cap L=\emptyset$ by Claim 8(i). It suffices to show that $\lambda=1 / 2$. Suppose by contradiction that $\lambda \neq 1 / 2$.

Define $\bar{y}, \bar{z} \in\{0,1\}^{E}$ by $\bar{y}_{e}=\left\{\begin{array}{ll}1 & \text { if } \bar{x}_{e}=\lambda \\ 0 & \text { otherwise }\end{array}\right.$ and $\bar{z}_{e}=1-\bar{y}_{e}$ for all $e \in E$. By definition of $\bar{y}$ and $\bar{z}, \bar{x}=\lambda \bar{y}+(1-\lambda) \bar{z}$. Furthermore, $(A y)_{u}=(A z)_{u}=c_{u}$ for every $u \neq v_{0}$. We will show that $(A \bar{y})_{v_{0}}=(A \bar{z})_{v_{0}}=c_{v_{0}}$, thus showing that $\bar{y}, \bar{z} \in P(G, F, c)$, which contradicts the fact that $\bar{x}$ is a vertex.

We recall that, by Claim 8 ,

$$
\begin{equation*}
|\delta(U) \backslash(F \cup L)|=2, \text { for every set } U \in \mathscr{L} . \tag{12}
\end{equation*}
$$

Since $G \backslash F$ is connected, by Claim 6 we can assume that $V \in \mathscr{L}$, otherwise $\bar{x}_{e}=\frac{1}{2}$ for every $e \in E$. Since $\delta(V) \backslash L=H$, by (12) it follows that $|H|=2$, say $H=\left\{h_{1}, h_{2}\right\}$, and that $\bar{x}_{h_{1}}+\bar{x}_{h_{2}}=1$.

By (12), the constraint matrix $M$ of the odd-cut inequalities $x(\delta(U) \backslash(F \cup L)) \geq 1$, $U \in \mathscr{L}$, has exactly two ones in every row. Therefore $M$ is the edge-node incidence matrix of an undirected graph $\Gamma$, whose node set is $E \backslash(F \cup L)$ and where two elements $e_{1}, e_{2} \in V(\Gamma)$ are adjacent if and only if there exists $U \in \mathscr{L}$ with $e_{1}, e_{2} \in \delta(U)$. Note that $\Gamma$ has no parallel edges since the inequalities in (9) are linearly independent. We show that there exists an edge $\bar{e}=v w$ in $E_{0} \backslash F$ such that there is only one set $\bar{U}$ in $\mathscr{L}$ with $\bar{e} \in \delta(\bar{U})$. Suppose not. Then, by Claim 2, every element $e \in E_{0} \backslash F$ has degree at least 2 in $\Gamma$. Assume first that $\Gamma$ is acyclic. Since every node of $\Gamma$ has degree at least two except for $h_{1}, h_{2}$, it follows that $h_{1}, h_{2}$ have degree one and that $\Gamma$ is a path from $h_{1}$ to $h_{2}$. Since $V \in \mathscr{L}, h_{1}$ and $h_{2}$ are adjacent in $\Gamma$, thus $\Gamma$ contains only one edge. This implies that $\mathscr{L}=\{V\}$. By Claim 2, for every $e \in E \backslash(F \cup L)$ there exists $U \in \mathscr{L}$ such that $e \in \delta(U)$, thus $E \backslash(F \cup L)=\left\{h_{1}, h_{2}\right\}$. Since $G \backslash F$ is connected, $G$ contains only one node, a contradiction since $F \neq \emptyset$.
It follows that $\Gamma$ contains a cycle $C$. Let $e_{1}, \ldots, e_{k} \in V(\Gamma)$ be the nodes of $\Gamma$ in $C$, and let $U_{1}, \ldots, U_{k}$ be the sets in $\mathscr{L}$ corresponding to the edges in $C$, say $\left\{e_{i}, e_{i+1}\right\}=$
$\delta\left(U_{i}\right) \backslash(F \cup L), i=1, \ldots, k-1,\left\{e_{1}, e_{k}\right\}=\delta\left(U_{k}\right) \backslash(F \cup L)$. Thus $\bar{x}$ satisfy the equations $x_{e_{i}}+x_{e_{i+1}}=1, i=1, \ldots, k-1, x_{e_{1}}+x_{e_{k}}=1$. Since these $k$ equations are linearly independent, it follows that the unique solution is $x_{e_{1}}=\cdots=x_{e_{k}}=1 / 2$. It follows that $\lambda=1 / 2$ and $\bar{x}_{e}=1 / 2$ for every $e \in E$, a contradiction.

We can therefore consider an edge $\bar{e}=v w \in E_{0} \backslash F$ and an odd set $\bar{U} \in \mathscr{L}$ such that $\bar{e} \in \delta(\bar{U})$ and $\bar{e} \notin \delta(U)$ for every $U \in \mathscr{L} \backslash\{\bar{U}\}$. By switching signs on the endnodes of $\bar{e}$, we can assume that $\sigma_{v, \bar{e}} \neq \sigma_{w, \bar{e}}$. Now let $\left(G^{\prime}, F^{\prime}\right)$ be obtained from $(G, F)$ by contracting $\bar{e}$, and let $r$ be the node obtained from the contraction of $\bar{e}$. Let $A^{\prime}=A\left(G^{\prime}, F^{\prime}\right)$.

Let $\bar{x}^{\prime}$ be the restriction of $\bar{x}$ to the components relative to $E\left(G^{\prime}\right)$, and let $c^{\prime}$ be obtained from $c$ by removing the components corresponding to $v$ and $w$ and introducing a component relative to $r$ with value $c_{r}^{\prime}:=c_{v}+c_{w}$. Since $\left(G^{\prime}, F^{\prime}\right)$ is in $\mathscr{C}$ and $\left|V\left(G^{\prime}\right)\right|<|V|$, the polyhedron $P^{\prime}\left(G^{\prime}, F^{\prime}, c^{\prime}\right)$ is integral. Clearly $\bar{x}^{\prime} \in P\left(G^{\prime}, F^{\prime}, c^{\prime}\right)$. Furthermore, the odd-cut inequalities for $P\left(G^{\prime}, F^{\prime}, c^{\prime}\right)$ are exactly the odd-cut inequalities for $P(G, F, c)$ relative to sets $U \subseteq V$ such that either $v, w \in U$ or $v, w \notin U$, thus they are satisfied by $\bar{x}^{\prime}$. It follows that $\bar{x}^{\prime} \in P^{\prime}\left(G^{\prime}, F^{\prime}, c^{\prime}\right)$. Furthermore, the equation $\left(A^{\prime} x^{\prime}\right)_{r}=c_{r}^{\prime}$ is the sum of $(A x)_{v}=c_{v}$ and $(A x)_{w}=c_{w}$, and, for every $U \in \mathscr{L} \backslash\{\bar{U}\}$, either $v, w \in U$ or $v, w \notin U$. It follows that $\bar{x}^{\prime}$ satisfies at equality $|E|-2=\left|E\left(G^{\prime}\right)\right|-1$ linearly independent inequalities valid for $P^{\prime}\left(G^{\prime}, F^{\prime}, c^{\prime}\right)$.

It follows that $\bar{x}^{\prime}$ is in a face of dimension 1 of $P^{\prime}\left(G^{\prime}, F^{\prime}, c^{\prime}\right)$, thus there exist two vertices $y^{\prime}$ and $z^{\prime}$ of $P^{\prime}\left(G^{\prime}, F^{\prime}, c^{\prime}\right)$ such that $\bar{x}^{\prime}=\lambda^{\prime} y^{\prime}+\left(1-\lambda^{\prime}\right) z^{\prime}$, for some $0<\lambda^{\prime}<1$. Since $P^{\prime}\left(G^{\prime}, F^{\prime}, c^{\prime}\right)$ is integral, $y^{\prime}, z^{\prime}$ are integral. By Claim 3, $y_{e}^{\prime}, z_{e}^{\prime} \in\{0,1\}$ for every $e$ in $E$. Since $\bar{x}_{h_{1}}^{\Delta}=\bar{x}_{h_{1}}^{\prime}$ (possibly by switching the roles of $y^{\prime}$ and $z^{\prime}$ ), it follows that $\lambda^{\prime}=\lambda$. This implies that, for every $e \in E\left(G^{\prime}\right)$, $y_{e}^{\prime}=\bar{y}_{e}, z_{e}^{\prime}=\bar{z}_{e}$. Hence, $(A \bar{y})_{u}=(A \bar{z})_{u}=c_{u}$ for all $u \in V \backslash\{v, w\}$, and $(A \bar{y})_{v}+(A \bar{y})_{w}=\left(A^{\prime} y^{\prime}\right)_{r}=c_{v}+c_{w},(A \bar{z})_{v}+(A \bar{z})_{w}=\left(A^{\prime} z^{\prime}\right)_{r}=$ $c_{v}+c_{w}$. Without loss of generality we can assume that $v \neq v_{0}$. Since $(A \bar{y})_{u}=(A \bar{z})_{u}=c_{u}$ for every $u \neq v_{0}$, we deduce that $(A \bar{y})_{w}=c_{v}+c_{w}-(A \bar{y})_{v}=c_{w}$. Similarly, $(A \bar{z})_{w}=c_{w}$. Hence $\bar{y}, \bar{z} \in P(G, F, c)$, a contradiction. $\diamond$

Claim 10. For every block $B$ of $G$, every connected component of $B \backslash F$ has at least two nodes.

Let $B$ be a block of $G$ such that a component of $B \backslash F$ consists of only one node, say $v \in V(B)$. Let $\Delta:=\delta(v) \cap E(B) \cap F$. Since $\{v\}$ is a component of $B \backslash F$, one can easily show that $\left(G^{\Delta}, F^{\Delta}\right) \in \mathscr{C}$. This contradicts Claim 8(ii). ॰

Claim 11. If $G \backslash F$ is not connected, then $\bar{x}_{e}=1 / 2$ for every $e$ in $E$.
Let $B$ be a block of $G$ such that $B \backslash F$ is not connected. We denote by $Q_{1}, \ldots, Q_{t}$ the connected components of $B \backslash F$. Let $W$ be the set of edges in $F$ with endnodes in distinct components of $G \backslash F$, and let $\bar{V}_{j}$ be the set of nodes in $Q_{j}$ that are incident to some edge in $W \cap E(B), j=1, \ldots, t$. By Claim 10, condition (C3) is satisfied, thus nodes in $\bar{V}_{j}=\left\{v_{1}^{j}, \ldots, v_{k_{j}}^{j}\right\}$ can be ordered in such a way that they satisfy the properties i) and ii) of Lemma 11.

For $j=1, \ldots, t$, let $Z_{j}=\left\{v_{1}^{j}, v_{k_{j}}^{j}\right\}$. We show next that there exists an edge $v w \in$ $W \cap E(B)$ such that $v w \in \cup_{j=1}^{t} Z_{j}, 1 \leq j \leq t$. Suppose not. Then by property ii) of Lemma 11, for every $f=v w \in W \cap E(B),\{v, w\}$ is a node-cutset of $B$. Denote by $C_{f}$
a connected components of $B \backslash\{v, w\}$ that has the smallest number of nodes. Choose $f=v w \in W \cap E(B)$ so that $\left|V\left(C_{f}\right)\right|$ is smallest possible. Since at least one endnode of $f$ is not in $\cup_{j=1}^{t} Z_{j}$, up to changing the indices, we may assume $v=v_{i}^{1}$ where $2 \leq i \leq k_{1}-1$. By symmetry, we may assume that $v_{1}^{1} \in V\left(C_{f}\right)$. Since $v_{1}^{1} \in \bar{V}_{1}$, there exists an edge $f^{\prime} \in W \cap E(B)$ incident to $v_{1}^{1}$, say $f^{\prime}=v_{1}^{1} w^{\prime}$. It follows that $w^{\prime} \in V\left(C_{f}\right)$. Since $\left\{v_{1}^{1}, w^{\prime}\right\}$ is a node-cutset of $B$, it follows that there exists a connected component of $B \backslash\left\{v_{1}^{1}, w^{\prime}\right\}$ whose nodeset is contained in $V\left(C_{f}\right) \backslash\left\{v_{1}^{1}, w^{\prime}\right\}$. This implies that $\left|V\left(C_{f^{\prime}}\right)\right|<\left|V\left(C_{f}\right)\right|$, contradicting the choice of $f$.

Thus there exists $f \in W \cap E(B)$ with both endnodes in $\cup_{j=1}^{t} Z_{j}$. Up to changing indices, $f=v_{1}^{1} v_{1}^{2}$. Let $\Delta:=\{f\}$. We claim that $\left(G^{\Delta}, F^{\Delta}\right)$ does not contain $\mathscr{G}_{4}$ as a minor, which by Claim 8 implies that $\bar{x}_{2}=\frac{1}{2}$ for all $e \in E$.

Let $\ell_{1}$ and $\ell_{2}$ be the new loops in $G^{\Delta}$ incident to $v_{1}^{1}$ and $v_{1}^{2}$ respectively. Suppose by contradiction that $\left(G^{\Delta}, F^{\Delta}\right)$ contains $\mathscr{G}_{4}$ as a minor. Since $(G, F)$ does not contain $\mathscr{G}_{4}$ as a minor, by symmetry we can assume that the loop of $\mathscr{G}_{4}$ is $\ell_{1}$, and that $v_{1}^{2}$ is contained in the minor. Thus in $G^{\Delta}$ there exists a cycle $C$ that passes through $v_{1}^{2}$ and that contains an edge in $F$, and a path $P$ in $G \backslash F$ from $v_{1}^{1}$ to a node $u$ of $C$ such that $V(P) \cap V(C)=\{u\}$, where both edges in $C$ incident to $u$ are in $E_{0} \backslash F$. It follows that $u \in V\left(Q_{i}\right)$.

Since $v_{1}^{2} \notin V\left(Q_{1}\right)$ and $u \in V\left(Q_{1}\right)$, there exist $i, i^{\prime}, 1 \leq i<i^{\prime} \leq k_{1}$, such that $v_{i}^{1}, v_{i^{\prime}}^{1} \in \bar{V}(C)$ and such that $C$ contains paths $P_{1}, P_{2}$ from $u$ to $v_{i}^{1}$ and from $u$ to $v_{i^{\prime}}^{1}$, respectively, such that $V\left(P_{1}\right) \cap V\left(P_{2}\right)=\{u\}$ and such that $P_{1}$ and $P_{2}$ are contained in the subgraph $\bar{Q}_{1}$ of $G$ induced by $V\left(Q_{1}\right)$. It follows that $v_{1}^{1}$ and $v_{i^{\prime}}^{1}$ are in the same connected component of $\bar{Q}_{1} \backslash\left\{v_{i}^{1}\right\}$, contradicting property i) of Lemma 11. $\diamond$

Claim 12. The pair $(G, F)$ satisfies the parity conditions of Lemma 13.
By Claims 9 and 11, we have that $\bar{x}_{e}=\frac{1}{2}$ for every $e \in E$. Since $A \bar{x}=c$, it follows that $\bar{x}(\delta(v) \backslash(F \cup L))$ is an integer for every $v \in V$. Hence $|\delta(v) \backslash(F \cup L)|$ is even and parity condition a) is satisfied.

Given a connected component $Q$ of $G \backslash F$ such that $H(Q)=\emptyset, c(V(Q))$ is even since $\delta(V(Q)) \backslash(F \cup L(Q))=\emptyset$, otherwise $V(Q)$ defines an odd-cut inequality violated by $\bar{x}$. Since $A \bar{x}=c$, it follows that
$c(V(Q))=\frac{1}{2} \sum_{v w \in E_{0}(Q) \backslash F}\left(\sigma_{v, v w}+\sigma_{w, v w}\right)+\sum_{v w \in F \cap E(Q)}\left(\sigma_{v, v w}+\sigma_{w, v w}\right)+\sum_{\substack{v w \in \delta(V(Q)) \\ v \in V(Q)}} \sigma_{v, v w}$.
Even edges of $E(Q)$ contribute 0 to the right-hand-side of the latter expression, each odd edge of $E(Q) \backslash F$ contributes $\pm 1$, edges in $F$ with both endnodes in $V(Q)$ contribute 0 or $\pm 2$, while edges in $\delta(V(Q))$ contribute $\pm 1$. Hence the number of odd edges in $E(Q)$ is congruent modulo 2 to $|\delta(V(Q))|$.

Claim 13. $(G, F)$ has a balanced bicoloring.
It follows by Claims 10 and 12 and by Lemma 14. $\diamond$
As we previously mentioned, this concludes the proof of Theorem 2. Indeed, let $(R, B)$ be a balanced bicoloring of $(G, F)$. By Claims 9 and $11, \bar{x}_{e}=1 / 2$ for all $e \in E$,
therefore the points $y$ and $z$ defined by $y:=\bar{x}+\frac{1}{2} \chi(R)-\frac{1}{2} \chi(B), z:=\bar{x}-\frac{1}{2} \chi(R)+\frac{1}{2} \chi(B)$, are integral points in $P(G, F, c)$ such that $\bar{x}=\frac{1}{2}(y+z)$, contradicting the fact that $\bar{x}$ is a vertex of $P^{\prime}(G, F, c)$.

## References

1] G. Appa. $k$-integrality, an extension of total unimodularity. Operations Research Letters, 13:159163, 1993.
[2] G. Appa and B. Kotnyek. Rational and integral $k$-regular matrices. Discrete Mathematics, 275:1-15, 2004.
[3] G. Appa, B. Kotnyek, K. Papalamprou, L. Pitsoulis. Optimization with binet matrices, Operations Research Letters, 35:345-352, 2007.
[4] V. Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Mathematics, 4:305-337, 1973.
[5] M. Conforti, M. Di Summa, F. Eisenbrand, and L.A. Wolsey. Network formulations of mixed-integer programs. Mathematics of Operations Research, 34:194-209, 2009.
[6] M. Conforti, A.M.H. Gerards, and G. Zambelli. Mixed-integer vertex covers on bipartite graphs. In Proceedings of IPCO 2007, Lecture notes in computer science 4513, pages 324-336, 2007.
[7] W. Cook, A.M.H. Gerards, A. Schrijver, É. Tardos. Sensitivity theorems in integer linear programming. Mathematical Programming, 34:251-264, 1986.
[8] G. Cornuéjols, J. Fonlupt, and D. Naddef. The traveling salesman problem on a graph and some related integer polyhdra. Mathematical Programming, 33:1-27, 1985.
[9] A. Del Pia and G. Zambelli. Half-integral vertex covers on bipartite bidirected graphs: total dual integrality and cut-rank. SIAM Journal on Discrete Mathematics, 23(3):1281-1296, 2009.
[10] J. Edmonds and E.L. Johnson. Matching, Euler tours and the chinese postman. Mathematical Programming, 5:88-124, 1973.
[11] A.M.H. Gerards. personal communication, 2007.
[12] A.M.H. Gerards and A. Schrijver. Matrices with the Edmonds-Johnson property. Combinatorica, 6:365-379, 1986.
[13] M.X. Goemans. Minimum bounded degree spanning trees. In Proceedings of the 47 th Annual IEEE Symposium on Foundations of Computer Science, pages 273-282, 2006.
[14] I. Heller and C.B. Tompkins. An extension of a theorem of Danzig's. In H.W. Kuhn and A.W. Tucker, editors, Linear Inequalities and Related Systems, pages 247-254. Princeton University Press, Princeton, N.J., 1956.
[15] C.A.J. Hurkens, L. Lovász, A. Schrijver, and É. Tardos. How to tidy up your set system? In Combinatorics, Colloquia Mathematica Societatis János Bolyai 52, pages 309-314. North-Holland, 1998.
[16] K. Jain. A factor 2 approximation algorithm for the generalized Steiner network problem. Combinatorica, 21:39-60, 2001.
[17] V. Melkonian and É. Tardos. Approximation algorithms for a directed network design problem. In Proceedings of IPCO 1999, Graz, 1999.
[18] A. Schrijver. On cutting planes. Annals of Discrete Mathematics, 9:291-296, 1980.
[19] A. Schrijver. Theory of Linear and Integer Programming. Wiley, Chichester, 1986.
[20] A. Schrijver. Combinatorial Optimization. Polyhedra and Efficiency. Springer-Verlag, BerlinHeidelberg, 2003.
[21] W.T. Tutte. A homotopy theorem for matroids I, II. Transactions of the American Mathematical Society, 88:144-174, 1958.


[^0]:    Email addresses: delpia@wisc.edu. (Alberto Del Pia), g.zambelli@lse.ac.uk (Giacomo Zambelli)

