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Buyer-Optimal Learning and Monopoly Pricing†

By Anne-Katrin Roesler and Balázs Szentes*

This paper analyzes a bilateral trade model where the buyer’s 
valuation for the object is uncertain and she observes only a signal 
about her valuation. The seller gives a take-it-or-leave-it offer to 
the buyer. Our goal is to characterize those signal structures which 
maximize the buyer’s expected payoff. We identify a buyer-optimal 
signal structure which generates (i) efficient trade and (ii) a unit-
elastic demand. Furthermore, we show that every other buyer-optimal 
signal structure yields the same outcome as the one we identify: in 
particular, the same price. (JEL D11, D42, D82, D83, L12)

Rapid developments in information technology have given consumers access to 
new information sources that in many cases allow them to acquire product informa-
tion prior to trading. For an example, consider Yelp, a mobile phone app that aggre-
gates customer reviews and makes them available to new customers. Ceteris paribus, 
a single consumer is better off with such an app because she becomes more efficient 
at choosing the store selling her most preferred products. On the other hand, after 
the appearance of the app, stores will face customers with a different (and perhaps 
higher) distribution of willingness-to-pay. Therefore, stores are likely to respond by 
increasing their prices. As a consequence, a new information source—even when 
freely available—might worsen the buyer’s outcome if being better informed results 
in higher prices. The question then becomes: how does an information source affect 
prices and consumer welfare? Our paper contributes to this problem by identify-
ing information structures which are best for the buyers in a monopolistic market. 
Building on this result, we then characterize all the possible combinations of con-
sumer and producer surplus which can arise from some learning.

We consider a stylized model where the seller has full bargaining power and 
the buyer receives a costless signal about her true valuation. The seller sets a price 
knowing the joint distribution of the buyer’s valuation and the signal but not their 
realizations. We assume that the buyer’s valuation is always positive and the seller’s 
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outside option is zero, such that efficiency requires trade with probability 1. The 
paper’s main theorem identifies the least informative buyer-optimal signal distribu-
tion. This distribution generates a unit-elastic demand and the seller is indifferent 
between charging any price on its support. In equilibrium, the seller sets the lowest 
price, ​​p​​ ∗​​ , and, since this is the lowest possible value estimate of the buyer, trade 
always occurs. We show that all buyer-optimal signal structures yield the same out-
come, namely that the price is ​​p​​ ∗​​ and trade always takes place.

An important observation is that the buyer’s signal does not enhance the efficiency 
of her purchasing decision along the equilibrium path. The buyer always buys the 
good at the equilibrium price, irrespective of her value estimate and typically even if 
the price exceeds her true valuation. The buyer’s optimal learning is therefore driven 
exclusively by the goal of generating a demand function which induces the lowest 
possible price subject to efficient trade.

Finally, for any given value distribution of the buyer, we characterize the com-
binations of consumer and producer surpluses which can arise as an equilibrium 
outcome if the buyer has access to some information source.1 We show that any con-
sumer-producer surplus pair can be implemented if and only if (i) consumer surplus 
is nonnegative, (ii) producer surplus is weakly larger than ​​p​​ ∗​​ , and (iii) total surplus 
is weakly smaller than the first-best surplus.2

Our observation that, in a contracting environment, an imperfectly informed 
agent can be better off than a perfectly informed one is also noticed by Kessler 
(1998). The author considers a principal-agent model where, prior to contracting, 
an agent observes a payoff relevant state with a certain probability. Of course, the 
principal’s contract depends on this probability. The author shows that the agent’s 
payoff is not maximized when this probability is 1: that is, an agent might benefit 
from having less than perfect information. We not only confirm this result, but also 
characterize buyer-optimal learning without imposing any constraints on possible 
signal structures.

Several papers examine buyers’ incentives to acquire costly information about 
their valuations before participating in auctions. The buyers’ learning strategies 
depend on the selling mechanism announced by the seller. Persico (2000) shows that 
if the buyers’ signals are affiliated then they acquire more information in a first-price 
auction than in a second-price one. Compte and Jehiel (2007) show that dynamic 
auctions tend to generate higher revenue than simultaneous ones. Shi (2012) also 
analyses models where it is costly for the buyers to learn about their valuations and 
identifies the revenue-maximizing auction in private-value environments. In all of 
these setups, the seller is able to commit to a selling mechanism before the buyers 
decide how much information to acquire. In contrast, we characterize buyer-optimal 
learning in environments where the monopolist best-responds to the buyer’s signal 
structure.3

1 We are grateful to Ben Brooks for drawing our attention to this problem. 
2 In contrast, Bergemann, Brooks, and Morris (2015) characterize the possible outcomes in a model where the 

buyer is fully informed and the seller observes a signal about the buyer’s valuation. 
3 Another strand of the literature analyzes the seller’s incentives to reveal information about the buyers’ val-

uations prior to participating in an auction: see for example, Ganuza (2004), Ganuza and Penalva (2010), and 
Bergemann and Pesendorfer (2007). 
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Condorelli and Szentes (2016) also consider a bilateral trade model. In contrast 
to our setup, the distribution of the buyer’s valuation is not given exogenously. 
Instead, the buyer chooses her value-distribution supported on a compact interval 
and perfectly observes its realization. The seller observes the buyer’s distribution 
but not her valuation and sets a price. The authors show that, as in our model, 
the equilibrium distribution generates a unit-elastic demand and trade always  
occurs.

I.  Model

There is a seller who has an object to sell to a single buyer. The buyer’s valuation, ​
v​ , is distributed according to the continuous cumulative distribution function (CDF) ​
F​ supported on ​​[0, 1]​​. Let ​μ​ denote the expected valuation: that is, ​​∫ 0​ 1​​ v dF​(v)​ = μ.​ 
The buyer observes a signal ​s​ about ​v​. The joint distribution of ​v​ and ​s​ is common 
knowledge. The seller then gives a take-it-or-leave-it price offer to the buyer, ​p​.4 
Finally, the buyer trades if and only if her expected valuation conditional on her 
signal weakly exceeds ​p​.5 If trade occurs, the payoff of the seller is ​p​ and the payoff 
of the buyer is ​v − p​; otherwise, both have a payoff of zero. Both the seller and the 
buyer are von Neumann-Morgenstern expected payoff maximizers. In what follows, 
we fix the CDF ​F​ and analyze those signal structures which maximize the buyer’s 
expected payoff.

Since the buyer’s trading decision only depends on ​E​(v | s)​​ , we may assume with-
out loss of generality that each signal ​s​ provides the buyer with an unbiased estimate 
about her valuation, that is, ​E​(v | s)​ = s​. In what follows, we restrict attention to such 
signals and refer to them as unbiased signals.

II.  Results

First, we argue that the payoffs of both the buyer and the seller are determined by 
the marginal distribution of the signal. To this end, let ​D​(G, p)​​ denote the demand at 
price ​p​ if the signal’s distribution is ​G​ , that is, ​D​(G, p)​​ is the probability of trade at ​
p​. Note that ​D​(G, p)​ = 1 − G​(p)​ + Δ​(G, p)​​ where ​Δ​(G, s)​​ denotes the probability 
of ​s​ according to the CDF ​G​.6 The seller’s optimal price, ​p​ , solves ​​max​ s​ ​ ​ sD​(G, s)​​ 
and the buyer’s payoff is ​​∫ p​ 1​​​(s − p)​ dG​(s)​​. Therefore, the problem of designing a 
buyer-optimal signal structure can be reduced to identifying the marginal signal dis-
tribution which maximizes the buyer’s expected payoff subject to monopoly pricing. 
Of course, not every CDF corresponds to a signal distribution. In what follows, we 
characterize the set of distributions that do.

For each unbiased signal structure, ​v​ can be expressed as ​s + ε​ for a random 
variable ​ε​ with ​E​(ε | s)​ = 0​. This means that ​G​ is the distribution of some unbiased 
signal about ​v​ if and only if ​F​ is a mean-preserving spread of ​G​ (see Definition 6.D.2 
of Mas-Colell, Whinston, and Green 1995). Let ​​​F​​​ denote the set of CDFs of which ​

4 It is well known that any profit-maximizing mechanism can be implemented by a take-it-or-leave-it offer. 
5 Assuming that the buyer is nonstrategic in the final stage of the game, and buys the object whenever her value 

estimate weakly exceeds the price, has no effect on our results but makes the analysis simpler. 
6 Formally, ​Δ​(G, s)​  =  G​(s)​ − ​sup​ x<s​ ​ ​  G​(x)​​. If ​G​ has no atom at ​s​ then ​Δ​(G, s)​  =  0​. 
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F​ is a mean-preserving spread. By Proposition 6.D.2 of Mas-Colell, Whinston, and 
Green (1995), this set can be defined as follows:

(1)  ​​​F​​ = ​{G ∈  : ​∫ 
0
​ 
x
​​ F​(v)​ dv ≥ ​∫ 

0
​ 
x
​​ G​(s)​ ds ∀ x ∈ ​ [0, 1]​ ,  ​∫ 

0
​ 
1
​​ s dG​(s)​ = μ}​.​

The problem of designing a buyer-optimal signal structure can be stated as follows:

	​ ​ max​ 
G∈​​F​​

​ ​ ​  ​ ∫ p​ 
1
​​​(s − p)​ dG​(s)​,

	 subject to p  ∈ ​ arg max​ 
s
​ ​  sD​(G, s)​.​

In what follows, we call a pair ​​(G, p)​​ an outcome if ​G ∈ ​​F​​​ and 
​p ∈ arg ​max​ s​ ​ ​ sD​(G, s)​​. In other words, the pair ​​(G, p)​​ is an outcome if there exists an 
unbiased signal about ​v​ which is distributed according to the CDF ​G​ and it induces 
the seller to set price ​p​.

Next, we define a set of distributions and prove that a buyer-optimal signal distri-
bution lies in this set. For each ​q ∈ (0, 1]​ and ​B ∈ [q, 1]​ let the CDF ​​G​ q​ B​​ be defined 
as follows:

	​ ​G​ q​ B​​(s)​  = ​

⎧
 

⎪
 ⎨ 

⎪
 

⎩
​
0

​ 
if s ∈ [0, q )

​  1 − ​ q _ s ​​  if s ∈ [q, B )​  
1

​ 
if s ∈ ​[B, 1]​

 ​​​ .

Observe that the support of ​​G​ q​ B​​ is ​​[q, B]​​ and it specifies an atom of size ​q / B​ at ​B​. An 
important attribute of each CDF in this class is that the seller is indifferent between 
charging any price on its support. To see this, note that ​​G​ q​ B​​ generates a unit-elastic 
demand on its support, ​D​(​G​ q​ B​, p)​  =  q / p​ , so that the seller’s profit is ​q​ irrespective 
of the price on ​​[q, B]​​. Of course, the seller is strictly worse off by setting a price 
outside of the support. Notice that ​​G​ q​ q​​ is a degenerate distribution which specifies an 
atom of size 1 at ​q​.

The next lemma states that for each outcome, ​​(G, p)​​ , there is another outcome ​​
(​G​ q​ B​ , q)​​ which makes the buyer weakly better off while generating the same profit 
to the seller as ​G​.

Lemma 1: Suppose that ​​(G, p)​​ is an outcome and let ​π​ denote ​pD​(G, p)​​. Then there 
exists a unique ​B  ∈ ​ [π, 1]​​ such that

	 (i)	​ G​ is a mean-preserving spread of ​​G​ π​ B​ ,​

	 (ii)	​ ​(​G​ π​ B​ , π)​​ is an outcome, and

	 (iii)	​​ ∫ π​ 1​​​(s − π)​ d ​G​ π​ B​​(s)​ ≥ ​∫ p​ 1​​​(s − p)​ dG​(s)​​ and the inequality is strict if 
​D​(G, p)​ < 1.​
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Part (i) states that the signal distributed according to ​​G​ π​ B​​ is weakly less informa-
tive than the one distributed according to ​G​. Parts (ii) and (iii) imply that this less 
informative signal generates the same payoff to the seller and a higher payoff to the 
buyer.

Proof: 
We first argue that there exists a unique ​B  ∈ ​ [π, 1]​​ such that ​​G​ π​ B​​ generates an 

expected value of ​μ​. Since ​p  ∈  arg ​max​ s​ ​ ​ sD​(G, s)​​ , ​sD​(G, s)​  ≤  pD​(G, p)​​ for all 
​s  ∈ ​ [0, 1]​​. Using the definitions of ​D​(G, p)​​ and ​π​ , this inequality can be rewritten as

	​ 1 − ​ π __ s ​ + Δ​(G, s)​  ≤  G​(s)​ .​

Since ​Δ​(G, s)​  ∈ ​ [0, 1]​​ , the previous inequality implies

(2)	​ ​G​ π​ 1​​(s)​  ≤  G​(s)​ ,​

that is, ​​G​ π​ 1​​ first-order stochastically dominates ​G​. This implies that

	​ ​∫ 
0
​ 
1
​​ s d ​G​ π​ 1​​(s)​  ≥ ​ ∫ 

0
​ 
1
​​ s dG​(s)​  =  μ  ≥  pD​(G, p)​  =  π  = ​ ∫ 

0
​ 
1
​​ s d ​G​ π​ π​​(s)​,​

where the first inequality follows from first-order stochastic dominance, the first 
equality from ​G  ∈ ​ ​F​​​ and the last equality from ​​G​ π​ π​​ specifying an atom of size 1 at ​
s  =  π​. Since ​​∫ 0​ 1​​ s d ​G​ π​ B​​(s)​​ is continuous and strictly increasing in ​B​ , the Intermediate 
Value Theorem implies that there exists a unique ​B  ∈ ​ [π, 1]​​ such that

(3)	​ ​∫ 
0
​ 
1
​​ s d ​G​ π​ B​​(s)​  =  μ.​

We are ready to prove part (i). If ​x  ≤  B​ , then (2) and ​​G​ π​ B​​(s)​  = ​ G​ π​ 1​​(s)​​ on ​[0, B)​ 
imply that

(4)	​ ​∫ 
0
​ 
x
​​ G​(s)​ ds  ≥ ​ ∫ 

0
​ 
x
​​ ​G​ π​ B​​(s)​ ds.​

If ​x  ≥  B​ then

(5)	​​ ∫ 
0
​ 
x
​​ G​(s)​ ds  =  1 − μ − ​∫ 

x
​ 
1
​​ G​(s)​ ds  ≥  1 − μ − ​(1 − x)​

 	  =  1 − μ − ​∫ 
x
​ 
1
​​ ​G​ π​ B​​(s)​ ds  = ​ ∫ 

0
​ 
x
​​ ​G​ π​ B​​(s)​ ds, ​

where the inequality follows from ​G​(s)​  ≤  1​ and the second equality from 
​​G​ π​ B​​(s)​  =  1​ if ​s  ≥  B​. Equations (3)–(5) imply that ​G​ is a mean-preserving spread 

of ​​G​ π​ B​​.
To show part (ii), note that since ​F​ is a mean-preserving spread of ​G​ and ​G​ 

is a mean-preserving spread of ​​G​ π​ B​​ , ​F​ is also a mean-preserving spread of ​​G​ π​ B​​. 
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Therefore, ​​G​ π​ B​  ∈ ​ ​F​​​. We have already argued that ​​[π, B]​  =  arg ​max​ s​ ​ ​ sD​(​G​ π​ B​ , s)​​ , so ​​
(​G​ π​ B​ , π)​​ is indeed an outcome.

To prove part (iii), observe that

	​ ​∫ 
π
​ 
1
​​​(s − π)​ d ​G​ π​ B​​(s)​  =  μ − π  ≥ ​ ∫ p​ 

1
​​​(s − p)​ dG​(s)​,​

where the equality follows from (3) and the observation that the lower bound of the 
support of ​​G​ π​ B​​ is ​π​. The inequality follows from the fact that the buyer’s payoff can-
not exceed the first-best total surplus (​μ​) minus the seller’s profit (​π​). This inequal-
ity is strict whenever the total surplus in the outcome ​​(G, p)​​ is strictly less than ​μ​: 
that is, ​D​(G, p)​  <  1​. ∎

Applying Lemma 1 to a buyer-optimal outcome ​​(G, p)​​ yields the result that there 

is also a buyer-optimal signal distribution in the set ​​​{​G​ π​ B​}​​π, B​​​. If the distribution of 
the buyer’s signal is ​​G​ π​ B​​ , it is optimal for the seller to set price ​π​ which, in turn, 
provides the buyer with a payoff of ​μ − π​. A buyer-optimal signal distribution is 
therefore defined by the lowest ​π​ for which ​​G​ π​ B​  ∈ ​ ​F​​​. Let us define ​​p​​ ∗​​ as this lowest 
value: that is,

(6)	​ ​p​​ ∗​  = ​ min​ 
​
​
​
 ​​ {π :  ∃  B  ∈ ​ [π, 1]​  such that  ​G​ π​ B​  ∈ ​ ​F​​}​, ​

and let ​​B​​ ∗​​ denote the unique value for which ​​G​ ​p​​ ∗​​ ​B​​ ∗​​  ∈ ​ ​F​​​.
We are ready to state our main result.

Theorem 1: The outcome ​​(​G​ ​p​​ ∗​​ ​B​​ ∗​​ , ​p​​ ∗​)​​ maximizes the buyer’s payoff across all out-
comes. If the outcome ​​(G, p)​​ also maximizes the buyer’s payoff then

	 (i)	​ p  = ​ p​​ ∗​ ,​

	 (ii)	​ D​(G, p)​  =  1​, and

	 (iii)	​ G​ is a mean-preserving spread of ​​G​ ​p​​ ∗​​ ​B​​ ∗​​​.

Parts (i) and (ii) of this theorem imply that trade occurs at price ​​p​​ ∗​​ with certainty 
in any buyer-optimal outcome. A consequence of this is that the buyer’s payoff is ​
μ − ​p​​ ∗​​ whenever the signal is buyer-optimal. In general, the buyer’s optimal CDF 
is not determined uniquely because there might be many CDFs which second-order 
stochastically dominate ​F​ and induce the seller to set price ​​p​​ ∗​​. However, according 
to part (iii), the CDF ​​G​ ​p​​ ∗​​ ​B​​ ∗​​​ second-order stochastically dominates any other buyer-op-
timal CDF. This means that ​​G​ ​p​​ ∗​​ ​B​​ ∗​​​ provides the buyer with less information than any 
other buyer-optimal CDF. If ​F  = ​ G​ ​p​​ ∗​​ ​B​​ ∗​​​ , the optimal information structure is unique 
and it specifies perfect learning: that is, ​s  =  v​.
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Proof: 
Let ​​(G, p)​​ be a buyer-optimal outcome and let ​π​ denote ​pD​(G, p)​​. By Lemma 1, 

there exists a ​B  ∈ ​ [π, 1]​​ such that ​​(​G​ π​ B​ , π)​​ is an outcome. Then,

	​ ​∫ p​ 
1
​​​(s − p)​ dG​(s)​  ≤ ​ ∫ 

π
​ 
1
​​​(s − π)​ d ​G​ π​ B​​(s)​  =  μ − π  ≤  μ − ​p​​ ∗​ 

	 = ​ ∫ ​p​​ ∗​​ 
1
 ​​​(s − ​p​​ ∗​)​ d ​G​ ​p​​ ∗​​ ​B​​ ∗​​​(s)​,​

where the first inequality follows from part (iii) of Lemma 1 and the second inequal-
ity follows from (6). Since ​​(G, p)​​ is buyer-optimal, the outcome ​​(​G​ ​p​​ ∗​​ ​B​​ ∗​​ , ​p​​ ∗​)​​ is also 
buyer-optimal and both inequalities are equalities. Part (iii) of Lemma 1 implies 
that the first inequality is strict unless ​D​(G, p)​  =  1​ , which proves part (ii). The 
second inequality is strict unless ​π  = ​ p​​ ∗​​ , which proves part (i). Finally, given that ​
π  = ​ p​​ ∗​​ , part (i) of Lemma 1 implies part (iii). ∎

Next, we solve for an optimal information structure in the case where the buyer’s 
valuation is uniformly distributed, and compare the outcome to that realized in the 
full-information environment.

Example: Suppose that the buyer’s valuation is distributed uniformly on ​​[0, 1]​​ : 
that is, ​F​(v)​ = v​ and ​μ =  1 / 2​. The expectation of ​​G​ p​ B​​ is

	​ ​∫ 
0
​ 
1
​​ s d ​G​ p​ B​​(s)​  = ​ ∫ p​ 

B
​​ ​ p __ s ​  ds + p  =  p ​​log s|​​ p​ B​ + p  =  p log B − p log p + p.​

Therefore, in order to guarantee that the expected value generated by ​​G​ p​ B​​ is one-half, 
it must be that

(7)	​ log B  = ​ 
​ 1 _ 2 ​ + p log p − p

  __________ p ​  .​

The CDF ​F​ is a mean-preserving spread of ​​G​ p​ B​​ if and only if, for all ​x  ∈ ​ [p, B]​​,

(8) ​​∫ p​ 
x
​​​(1 − ​ p __ s ​)​ ds = x − p − ​∫ p​ 

x
​​ ​ p __ s ​  ds = x − p − p log x + p log p ≤ ​∫ 

0
​ 
x
​​ s ds = ​ ​x​​ 

2​ __ 
2
 ​ .​

The smallest ​p​ which satisfies these inequalities is approximately ​0.2037​. That 
is, ​​p​​ ∗​  ≈  0.2​ and, by (7), ​​B​​ ∗​  ≈  0.87​. In other words, by designing the signal struc-
ture optimally, the buyer is able to trade at a price just above ​0.2​. The buyer’s payoff 
is ​μ − ​p​​ ∗​  ≈  0.3​ and the seller’s payoff is ​​p​​ ∗​  ≈  0.2​.

It is insightful to compare the outcome resulting from a buyer-optimal signal 
structure to that realized in the full information case, i.e., ​s  =  v​. If the buyer 
observes her valuation prior to trade then she is willing to trade at price ​p​ with 
probability ​1 − p​. Hence, the seller’s optimal price solves ​​max​ p​ ​ ​ p​(1 − p)​​ , so the 
equilibrium price is ​0.5​. In turn, the seller’s payoff is ​0.25​ since the buyer trades 
with probability one-half at price ​0.5​. The seller is therefore better off if the buyer 
receives a perfectly informative signal than if she receives a buyer-optimal one. The 
buyer’s payoff is ​​∫ 0.5​ 1 ​​ v − 0.5 dv = 0.125​ which is less than one-half of her payoff 
under the optimal signal structure. The deadweight loss due to the buyer’s perfectly 
informative signal is also ​0.125​.
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In the previous example, the seller’s profit induced by the buyer-optimal sig-
nal structure is smaller than his profit in the full-information environment. We now 
generalize this observation and show that a buyer-optimal signal structure is in fact 
a signal structure that minimizes the seller’s profit.

Corollary 1: For each outcome ​​(G, p)​​ , ​pD​(G, p)​  ≥ ​ p​​ ∗​​.

This corollary states that the seller’s profit from an outcome is at least ​​p​​ ∗​​. 
Moreover, by Theorem 1, the seller’s profit induced by any buyer-optimal signal 
structure is ​​p​​ ∗​​. The seller’s minimum profit is therefore ​​p​​ ∗​​.

Proof: 
Let ​π​ denote ​pD​(G, p)​​. By Lemma 1, there exists a ​B ∈ ​[π, 1]​​ such that ​​(​G​ π​ B​ , π)​​ is 

an outcome and, in particular, ​​G​ π​ B​ ∈ ​​F​​​. Hence, by (6), ​π  ≥ ​ p​​ ∗​​. ∎

This corollary can be used to characterize the combinations of those consumer 
and producer surplus which can arise as an equilibrium outcome for some signal ​s​.  
We argue that the set of these payoff profiles is the convex hull of the following 
three points: ​​(0, ​p​​ ∗​)​​ , ​​(0, μ)​​ and ​​(μ − ​p​​ ∗​ , ​p​​ ∗​)​​ which is represented by the shaded 
triangle in Figure 1. It is not hard to show that for each ​π  ∈ ​ [​p​​ ∗​ , μ]​​ , there exists a 
​B  ∈ ​ [π, 1]​​ , such that ​​G​ π​ B​  ∈ ​ ​F​​​. If the buyer’s demand is generated by ​​G​ π​ B​​ , the 
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Figure 1. Outcome Triangle
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seller’s profit is ​π​ and he is indifferent between any price on ​​[π, B]​​. Depending 
on which of these prices the seller sets, the buyer’s surplus can be anything on ​​
[0, μ − π]​​ , see the horizontal dashed line-segment in Figure 1.7 Hence, any point in 
the triangle can be implemented. A payoff profile outside of the triangle cannot be 
an equilibrium outcome because the seller’s profit must be at least ​​p​​ ∗​​ (see Corollary 
1) and the total surplus cannot exceed ​μ​.

III.  Conclusion

The goal of this paper was to analyze a buyer’s optimal learning when facing a 
monopolist. We characterized the buyer-optimal signal distribution which involves 
minimal learning. The demand induced by this signal is unit-elastic and makes the 
seller indifferent between setting any price on its support. We also proved that all 
buyer-optimal signal structures generate the same price and efficient trade.

It is not hard to extend our characterization of the least informative buyer-optimal 
signal structure to environments where the buyer’s valuation can be negative and the 
seller has a positive valuation for the object.8 There, the optimal signal structure may 
provide the buyer with a single value estimate which is smaller than the equilibrium 
price. Conditional on not getting this signal, the optimal signal structure generates 
a demand which makes the seller indifferent between any price on its support, just 
like in our model. The buyer sometimes purchases the object even if her valuation is 
smaller than that of the seller, so trade is typically inefficient.
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