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Abstract 

Aim: The parvalbumin (PV)-containing subgroup of GABAergic neurons is particularly affected in 

schizophrenia and animal models of psychosis, including after METH administration.  We 

investigated whether METH dependence and METH-induced psychosis may involve an effect on 

DNA methylation of the PVALB promoter. 

Materials & methods: The methylation of a PVALB promoter sequence was determined in 100 

METH-dependent and 102 control subjects using pyrosequencing. 

Results: A significant increase in PVALB methylation was observed in METH dependence and 

METH-induced psychosis.  No significant effect on long interspersed nucleotide element-1 (LINE-1) 

methylation, a measure of global DNA methylation, was observed. 

Conclusions: These results demonstrate a specific association between elevated PVALB methylation 

and METH-induced psychosis.  This finding may contribute to the GABAergic deficits associated 

with METH dependence. 
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Introduction 

Methamphetamine (METH), an amphetamine derivative, is a potent psychostimulant and highly 

addictive drug of abuse.  Long term use of METH can result in the emergence of psychosis in a 

substantial proportion of users, the symptoms of which may be indistinguishable from schizophrenia 

[1,2].  Acutely, METH causes an increase in dopamine release, which is likely to underlie several of 

its behavioural effects including the development of drug dependence [3]. In the longer term the drug 

can have neurotoxic effects on several neurotransmitter systems, including that of GABA [4,5]. This 

has recent support both from pharmacogenetic studies of association between METH psychosis and 

polymorphisms in the GABA synthetic enzyme glutamate decarboxylase (GAD) genes [6] and from 

findings, in an animal model of METH abuse, of deficits in, most strongly, the parvalbumin (PV)-

containing subtype of GABergic neurons in frontal cortex and hippocampus [7].  

Previous studies have provided substantial evidence for a dysfunction of inhibitory GABAergic 

interneurons in schizophrenia [8-10].  This is primarily reflected in deficits in PV-containing neurons 

in the frontal cortex [10] and, particularly, the hippocampus [11].  Enduring deficits of PV are also 

found in several animal models of schizophrenia, including after sub-chronic administration of the 

psychotogenic drug phencyclidine [12]. 

Changes in GABA-related proteins may be regulated by the epigenetic control of gene expression 

[13].   DNA methylation of cytosine at CpG sequences can influence transcription factor binding to 

gene promoter sequences and is one epigenetic factor that can be modified by environmental factors, 

including drugs, and may well contribute to drug dependence [14].  A previous study has shown an 

increase in DNA methylation in the pvalb gene promoter in mouse hippocampus after manganese-

induced neuronal damage [15].  We have hypothesized that effects on DNA methylation of the 

PVALB promoter region might reduce PV expression and relate to the PV deficits in schizophrenia 

and models of psychosis, and recently reported that hypermethylation at one site of the equivalent 

Pvalb gene promoter sequence was observed in rat prefrontal cortex and hippocampus after 

phencyclidine administration [16].   



The present study aimed to investigate whether there was a change in methylation in the promoter 

sequence of the PVALB gene in DNA isolated from blood samples taken from subjects with METH 

dependence or METH-dependent psychosis.  

         

Materials & Methods 

Subjects 

METH dependent subjects were recruited from the Central Correctional Institution for Drug Addicts, 

the Department of Corrections, Ministry of Justice of Thailand.  One hundred male METH dependent 

subjects (age, 30.13±5.09 years) were diagnosed by a psychiatrist based on clinical assessment 

according to the criteria of the Diagnostic and Statistical Manual of Mental Disorders, Fourth edition 

(DSM-IV) [17]. They were divided into two sub-groups, METH without psychosis (n=47) and 

METH-induced psychosis (n=53).  The age of onset of METH use was 19.54±6.51 years, duration of 

METH use was 9.12±5.32 years and duration of abstinence was 19.20±23.99 months.  One hundred 

and two (age, 28.64±6.28), ethnically-matched healthy male subjects with no history of drug abuse or 

psychiatric diagnosis were recruited.  Written informed consent was obtained from all participating 

subjects.  The study was approved by the Human Ethics Committee of Naresuan University. 

 

Determination of DNA methylation 

Genomic DNA was extracted from dried blood on FTA
®
 cards (Whatman, Inc., Florham Park, NJ, 

USA) using QIAamp DNA Mini Kit (Qiagen, UK).  Bisulfite conversion was performed to convert 

unmethylated cytosine residues to uracil using EpiTect Fast Bisulfite Conversion Kit (Qiagen, UK) 

according to the manufacturer’s protocol. 

A sequence containing 4 CpGs in the PVALB promoter (GRCh38, Chromosome 22 bases 

36817384 - 36817327; Figure 1), overlapping the equivalent sequence previously studied in rat [16], 

was identified and amplified by PCR (figure 2A) using primers, including a biotinylated reverse 

primer, as follows: 5’-AGT GGA GAG AGA AAG GGA GTA 3’ (forward) and 5’-[btn] AAC ACC 

AAA AAA AAA ACC ACC TCT AAA AT-3’ (reverse) (Eurofins MWG Operon, Ebersberg, 

Germany).  PCR reaction was performed using bisulfite-converted DNA as a PCR template by the 



PyroMark PCR kit (Qiagen, UK) in a final volume of 25 μl containing 1x Pyro-Mark PCR Master 

Mix, 1x CoralLoad Concentrate, 0.2 μM of each primer.  Amplification conditions were as follows: 

95°C for 15 min, 55 cycles of 94°C for 30 s, 56°C for 30 s and 72°C for 30 s, finally, 72°C for 10 

min.  Methylation at the four CpG sites was determined with a PyroMark Q24 pyrosequencer 

(Qiagen, UK) using 10 μl PCR product and employing a sequencing primer, 5’-

TTTAGGTTGGAGTGTAATG-3’ (Eurofins MWG Operon, Ebersberg, Germany).   

For long interspersed nucleotide element-1 (LINE-1), PCR amplification was performed by PCR 

(Figure 2B), as follows: 5’-TTT GAG TTA GGT GTG GGA TAT AG -3’(forward) and 5’-[btn] 

AAA AAA TCA AAA AAT TCC CTT TCC -3’ (reverse) (Eurofins MWG Operon, Ebersberg, 

Germany) using PyroMark PCR kit (Qiagen, UK) according to the manufacturer’s protocol.  

Amplification conditions was initiated by 95°C for 15 min and it was followed by 55 cycles of 94°C 

for 30 sec, 50°C for 30 sec and 72°C for 30 sec, finally 72°C for 10 min.  PyroMark Q24 CpG LINE-

1 sequence-based Pyrosequencing® technology was used to quantify mean methylation at three CpG 

sites in positions 331 to 318 of LINE-1 (GenBank accession number X58075) (Qiagen, UK). 

Pyrosequence programme set up and reading were performed using PyroMark Q24 2.0.6.20 

software (Qiagen, UK).    

 

Statistical analysis 

The statistical analysis employed SPSS 17.0 (SPSS Inc., USA).  The primary analysis was to test for a 

difference in methylation across the four CpG sites between the METH and control groups. Secondary 

exploratory analyses were undertaken to determine if any effect was primarily in the METH psychosis 

group, and to investigate differences at the individual CpG sites.  Statistical differences between 

groups were identified initially by multivariate ANOVA; secondary analyses employed univariate 

ANOVA. The correlation of DNA methylation with age was measured by Pearson correlation.  The 

methylation results are expressed as % mean±SD.        

  



Results 

The percentage methylation across the four CpG sites in the sample groups is shown in Figure 3.  A 

significant difference in PVALB methylation between METH and control groups was identified 

(F=2.944; p=0.022).  This reflected increases in methylation in the METH group that reached 

significance in CpG1 (F=6.740; p=0.010) and CpG2 (F=8.015; p=0.005). The effect remained in the 

psychosis subgroup (F=2.666; p=0.035) in which the significant effects at CpG1 and CpG2 remained, 

with a near-significant difference (F= 2.153; p=0.051) emerging for CpG3. No significant difference 

was apparent between the non-psychotic subgroup and controls (F=2.153; p=0.077), nor was there a 

significant difference in PVALB methylation between METH groups with and without psychosis 

(F=1.002; p=0.4). A significant correlation between PVALB methylation and age was found in the 

control group but not in the METH subjects (Table 1).   

Mean LINE-1 methylation showed no significant difference between the METH and control 

groups (75.27±6.16 vs controls: 75.04±5.27; t=0.291; p=0.7), nor between the psychosis subgroup 

and controls (76.35±6.17; t=1.318; p=0.19). 

 

Discussion 

These results revealed that DNA methylation of a sequence in the PVALB promoter region was 

significantly increased in METH dependence, with the effect primarily observed in subjects with a 

METH-induced psychosis. This finding was in the absence of any apparent effect on a global measure 

of DNA methylation, that of LINE-1.  The correlation of methylation with age seen in the control 

group is an expected finding; a positive correlation with age is a common feature of DNA methylation 

[18]. The fact that this effect was lost in the METH group suggests that METH dependence has a 

disruptive effect on the normal control of DNA methylation in which a resultant hypermethylation 

masks the influence of age. 

It seems likely that the PVALB hypermethylation in METH dependence is associated essentially with 

the emergence of psychosis, although the lack of statistical significance in the difference in 

methylation between the psychosis and non-psychosis subgroups means that we cannot be confident 

in drawing this conclusion. 



It is not possible to ascribe a causal effect of METH dependence on this specific hypermethylation 

of PVALB in this cross-sectional study.  While it is conceivable that individuals with higher levels of 

PVALB promoter methylation may be susceptible to METH-dependent psychosis, studies in animals 

suggest PVALB hypermethylation seems more likely to be a consequence rather than a cause of 

METH dependence.  The observations that hypermethylation in equivalent sequences in the PV gene 

promoter of mice born to mothers following Mn-induced neurotoxicity [15], and of rats previously 

undergoing a subchronic regime of phencyclidine administration [16], both indicate that neuro- and 

psychoactive substances can have specific effects on PV gene methylation.  In particular, the latter 

study and our findings both support an association between PV gene hypermethylation and psychosis, 

since phencyclidine administration is used as a model for some of the symptoms of schizophrenia.  

An increase in PVALB methylation in METH dependent subjects may result in a reduction of 

PVALB gene and PV protein expressions.  Previous studies showed that DNA hypermethylation is 

involved in suppressing expression of related genes whereas DNA hypomethylation is often related to 

gene over-expression [19].  Correlation between DNA hypermethylation of the serotonin transporter 

(5-HTT) promoter and the depletion in 5-HTT mRNA expression was found in the brain in 

schizophrenia [20].  An increase in brain-derived neurotrophic factor (BDNF) methylation is 

reportedly related to reductions in BDNF mRNA [21].  Therefore, it is conceivable that PVALB 

hypermethylation may result in diminished PV protein expression in schizophrenia and METH-

induced psychosis.  As mentioned above, animal models of both disorders, as well as human 

schizophrenia, show deficits in PV-expressing neurons, although a direct association between PV 

gene hypermethylation and diminished PV expression has yet to be demonstrated.  

This study was only undertaken in male Thai subjects, reflecting the limited availability of samples 

and the sex distribution of METH abuse in the population. This limits the ability to extrapolate to 

female subjects and, inevitably, other ethnic groups, which needs to be addressed in further work. We 

recognize that the assessment of blood DNA, rather than DNA deriving from brain tissue, is another 

substantial but inevitable limitation to our study.  However, previous work has demonstrated that 

hypermethylation of the 5-HTT promoter in saliva of schizophrenia patients paralleled changes in 

post-mortem brain [20], and others have found concordant changes in methylation of DNA between 



blood lymphocytes and brain tissue [22].  Thus differences in DNA methylation in peripheral blood 

cell may well indicate differences in DNA methylation and its functional consequences in the brain.   

 

Conclusion 

This study revealed a significant increase in DNA methylation of the PVALB promoter in METH 

dependence, particularly METH-dependent subjects with psychosis.  PVALB hypermethylation may 

well contribute to the reduction of PV protein expression previously reported in an animal model of 

METH abuse and to GABAergic system deficits in METH dependence. Furthermore, PVALB 

promoter hypermethylation may conceivably contribute to the PV deficits common both to models of 

psychosis and to human psychotic illness. 

  



Executive summary 

Background: Methamphetamine (METH) is a neurotoxin and psychostimulant drug with potent 

effects on the central nervous system resulting in alterations of neurotransmitter systems such as that 

of GABA.  Parvalbumin (PV)-containing GABAergic interneurons are diminished in schizophrenia 

and in models of psychosis and drug abuse.   

This study was designed to determine whether there is abnormal DNA methylation of the PVALB 

promoter region in subjects with METH dependence and psychosis, as such an effect could contribute 

to diminished expression of PV.  

Results 

A significant increase in PVALB methylation was found in METH dependence and METH-induced 

psychosis.  This finding was not associated with effects on a global measure of DNA methylation. 

Conclusion 

Our results show METH dependence and METH-induced psychosis are associated with PVALB 

hypermethylation.  This specific increase in PVALB methylation may be a consequence of METH 

dependence and could conceivably contribute to deficits in PV expression that might in turn underlie 

METH-induced psychosis. 
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Figures and Figure legends 

     5'GCGCACCTCCTGCGTGTCCTTGACGGCAGGTGGACTTTCCAGACCCAGCTGGTGACGC 3’ 

Figure 1. The DNA sequence in the promoter region of the PVALB gene studied. The four methylated 

CpG sites are shown in bold. 
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Figure 2. Gel electrophoresis of PVALB (A)  and LINE-1 (B) PCR products from bisulfite DNA 

template. –: negative control, C: from control group, M: from METH-dependent group. 

  



 

 

 

Figure 2.  Percentage methylation of four consecutive CpG sites in the PVALB promoter sequence of 

controls, METH-dependent subjects and the subgroups of psychotic or non-psychotic METH-

dependent subjects.  Columns and bars represent mean values and standard deviations respectively. 

*p ≤0.05, **p≤0.01 vs control. 

  



Table 

Table 1.  Correlation of parvalbumin methylation and age in case and control subjects 

Groups Parvalbumin methylation sites 

CpG1 CpG2 CpG3 CpG4 mean 

METH (n=100) 

rho, p 

 

-0.01, 0.91 

 

0.07, 0.49 

 

0.03, 0.79 

 

0.16, 0.10 

 

0.03, 0.73 

Control (n=102)  

rho, p 

 

0.37, 0.000 

 

0.22, 0.03 

 

0.21, 0.03 

 

0.16, 0.12 

 

0.33, 0.001 

 

Values in bold type show statistical significance after Pearson correlation test.   

 


