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New high-resolution geochemical and sedimentological data from Fiskegrav, East Greenland, reveal fluctuations
in marine redox conditions associated with the final disappearance of bioturbating organisms during the latest
Permian mass extinction (LPME). Sedimentological observations imply a transgressive episode, and associated
geochemical evidence for decreasing oxygen availability and the establishment of persistently ferruginous
(Fe2+-rich) conditions implies the shoreward migration of oxygen deficient waters. The long-term decline in
dissolved oxygen (DO) availability could have been exacerbated by increasing water temperatures, reducing
the solubility of oxygen and promoting thermal stratification. Mixing of the water column could have been fur-
ther inhibited by freshwater influxes that could have generated salinity contrasts that reinforced thermal strati-
fication. Enhanced runoff could also have increased the delivery of nutrients to the marine shelf, stimulating
biological oxygen demand (BOD). During the transition to persistently ferruginous conditions we identify inter-
vals of intermittent benthicmeiofaunal recolonization, events thatwe attribute to small transient increases in DO
availability. Themechanism controlling thesefluctuations remains speculative, but given the possible centennial-
to millennial-scale frequency of these changes, we hypothesise that the mid-latitude setting of Fiskegrav during
the Late Permian was sensitive to changes in atmospheric circulation patterns, which may have influenced local
precipitation and intermittently modulated some of the processes promoting anoxia.
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1. Introduction

The latest Permianmass extinction (~252 Ma) was the greatest bio-
logical catastrophe of the Phanerozoic (Benton and Twitchett, 2003;
Erwin, 2006; Bottjer et al., 2008; Burgess et al., 2014). The current con-
sensus is that it was a consequence of global warming and associated
environmental changes, attributed to an increase in atmospheric carbon
dioxide from eruptions of the Siberian Traps Large Igneous Province
(e.g. Benton and Twitchett, 2003; Reichow et al., 2009; Algeo et al.,
2011; Grasby et al., 2011; Black et al., 2014; Grasby et al., 2017).
One of the associated environmental changes that has been invoked as
a factor in the marine crisis is ocean stratification and the expansion of
anoxic or even euxinic waters during a ‘superanoxic’ event (Wignall
and Twitchett, 1996; Isozaki, 1997; Grice et al., 2005; Riccardi et al.,
2006; Shen et al. 2016), or the expansion of oxygen minimum zones
(OMZs) onto continental shelves (Stüeken et al. 2015; Clarkson et al.,
2016; Lau et al. 2016). Such studies are, however, biased towards low
nces, Massachusetts

open access article under
(tropical) palaeolatitudinal, carbonate-dominated successions of the
Palaeo- and Neo-Tethys (Foster and Twitchett, 2014), and condensed
sections including the Permian-Triassic boundary global stratotype sec-
tion and point (GSSP) in Meishan, South China. In comparison,
siliciclastic-dominated, stratigraphically expanded successions from
higher palaeolatitudes are less-well explored despite some recent
work (e.g. Algeo et al., 2012; Schoepfer et al., 2012; Knies et al., 2013;
Grasby et al., 2015).

Here we describe findings from a well-preserved, stratigraphically-
expanded siliciclastic section that provides an outstanding archive of
Late Permian conditions within a marine embayment on the southern
margin of the Boreal Ocean at Fiskegrav, East Greenland (Stemmerik
et al., 2001; Twitchett et al., 2001; Looy et al., 2001). Existing
palaeontological and geochemical data challenge the hypothesis
that anoxia had a role in the extinction. Specifically, the transition
from bioturbated sediments containing macroscopic shelly fossils to
laminated sedimentsmostly devoid of fossil evidence ofmarine animals
(Stemmerik et al., 2001; Twitchett et al., 2001) appears to predate the
onset of anoxia in this section (Fenton et al., 2007; Neilsen et al., 2010).

We have undertaken high-resolution sedimentological and geo-
chemical analyses of strata that record the Late Permian collapse of ma-
rine and terrestrial ecosystems (sensu Twitchett et al., 2001; Looy et al.,
the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://core.ac.uk/display/96709399?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.palaeo.2017.06.014&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.palaeo.2017.06.014
mailto:cwm2@st-andrews.ac.uk
http://dx.doi.org/10.1016/j.palaeo.2017.06.014
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/00310182
www.elsevier.com/locate/palaeo


211C. Mettam et al. / Palaeogeography, Palaeoclimatology, Palaeoecology 485 (2017) 210–223
2001), to refine our understanding of physical and chemical conditions
during, and in the aftermath of the LPME. Specifically, we have applied
Fe speciation to assess changes in water column redox conditions, and
sulphur (δ34Spyr), nitrogen (δ15Nbulk), and bulk organic carbon isotopes
(δ13Corg), to examine changes in biogeochemical cycling through this
key interval. Our aim is to resolve the stratigraphic relationship between
changes in redox conditions and the transition from bioturbated sedi-
ments that record the activities ofmarine benthos, to laminated horizons
that are devoid of evidence of macroscopic marine animals or bioturba-
tion (Twitchett et al., 2001). Interrogation of these data will help confirm
palaeoenvironmental conditions in marginal Boreal Ocean settings,
complementing and expanding upon the body of work available for
non-Tethyan domains during this critical period of Earth history.

2. Geological background

2.1. Palaeogeography and biostratigraphy

The Permian-Triassic (P-Tr) strata of Jameson Land, East Greenland
(Fig. 1) were deposited within a north-south orientated, fault-controlled
embayment (Kreiner-Møller and Stemmerik, 2001; Stemmerik et al.,
2001; Wignall and Twitchett, 2002; Müller et al., 2005). Unfortunately
the record of shelf conditions within this embayment for the LPME is
compromised inmany places by erosive submarine channels associated
with extensive fan and turbidite deposits (Wignall and Twitchett, 2002;
Müller et al., 2005). However, the sedimentary record of the extinction
event is preserved at Fiskegrav in a sequence of fine-grained silt- and
Fig. 1. A Fiskegrav locality at 71° 32′ 01.6″N, 024° 20′ 03.0″W. Here Late Permian outcrop
is shown as grey shading and major faults are shown as ticked lines (Location of Fig. A
shown as grey box on inset map B). C Late Permian position of Greenland at ~30°N
within Pangea (adapted from Stemmerik et al., 2001).
mud-stones, reflecting deposition in the deepest parts of a sub-basin,
but probably at depths of b100 m (Looy et al., 2001; Twitchett et al.,
2001; Wignall and Twitchett, 2002; Seidler et al., 2004).

At Fiskegrav, lithologies become slightly finer up section, consistent
with a local marine transgression as previously documented for
the LPME (Surlyk, 1990: Stemmerik et al., 1993; Kreiner-Møller and
Stemmerik, 2001; Haq and Schutter, 2008). Macroscopic shelly fossils
(ammonoids, corals, brachiopods) are present lower in the section,
but begin to disappear several metres below the top of the Schuchert
Dal Fm (Twitchett et al., 2001). The stratigraphically highest Permian
brachiopod recorded in the field occurred 1.8 m below the formational
contact (Fig. 2). Above this horizon, a limited benthic microfauna
of agglutinated foraminifera persist through the section, and fish
such as Bobasatrania are present in concretions from the base of the
Wordie Creek Fm (Stemmerik et al., 2001; Twitchett et al., 2001).
Rare small (b1 mm) bivalves and gastropods have been reported
from several metres above the base of the Wordie Creek Fm, but the
first macroinvertibrate (the bivalve Claraia) does not appear until
some 14 m above the base of the Wordie Creek Fm (Twitchett et al.,
2001). The key portion of the section at Fiskegrav (Fig. 2) is 250 cm
thick and contains the contact between the uppermost Schuchert Dal
Formation (Fm) and the overlying Wordie Creek Fm and records the
cessation of bioturbation (Twitchett et al., 2001).

2.2. The position of the latest Permian mass extinction horizon and
Permian-Triassic Boundary at Fiskegrav

Twitchett et al. (2001) and Looy et al. (2001) were the first to docu-
ment the ranges of key marine and terrestrial fossil taxa through the
Fiskegrav section, in association with low resolution C-isotope data.
The low diversity macrofauna of Permian brachiopods, corals and am-
monoids disappears gradually during the upper few metres of the
Schuchert Dal Fm. Following the disappearance of the last Permian
macrofossil, however, the rocks remain bioturbated, indicating persis-
tence of a functioning marine ecosystem. Twitchett et al. (2001) used
the final disappearance of this bioturbation, which occurred over a
ca. 0.8 m interval at the top of the Schuchert Dal Fm, as evidence for a
‘marine ecosystem collapse’. This interval coincides with evidence of
significant disruption to marine plankton and terrestrial ecosystems
(Looy et al., 2001), and correlates well with similar marine collapses
identified from the disappearance of bioturbation in other Boreal Sea
locations, such as central Spitsbergen (Nabbefeld et al., 2010).

More recently, the C-isotope record has gained favour as a means of
correlating the LPME from the GSSP location in South China to Boreal
sites. Excursions towardsmore negative δ13Corg values arewidely report-
ed in the Late Permian Boreal record, with initial declines considered
to be coincident with the extinction event horizon followed by a
protracted and slower fall towards more negative values (e.g. Grasby
and Beauchamp, 2008, 2009; Grasby et al., 2015; Dustira et al., 2013).
The low-resolution δ13Corg data of Twitchett et al. (2001) suggested
that the initial negative δ13Corg shift at Fiskegrav correlates closely to
the disappearance of bioturbation and the onset of marine ecosystem
collapse; however our higher-resolution data show that the sharp de-
cline in δ13Corg occurred lower in the Schuchert Dal Fm. The start of
this decline coincides with the last occurrence of Permianmacroinverte-
brates (brachiopods) (Fig. 2), and correlates with palynological evidence
for the onset of a terrestrial ecosystem collapse (i.e., the decline and loss
of cordaite-pteridosperm woodlands and their replacement with more
open, herbaceous vegetation; Looy et al. 2001). If the local LPME horizon
at Fiskegrav is defined as the start of the δ13Corg excursion and the last ap-
pearance of Permian invertebrate macrofossils, then the LPME occurs in
the upper Schuchert Dal Fm, some 1.8 m below the base of the Wordie
Creek Fm, and predates final marine ecosystem collapse (Fig. 2).

The Permian-Triassic boundary (PTB) is defined at the first appear-
ance datum of Hindeodus parvus in Meishan, South China (Yin et al.,
1996). At Fiskegrav, H. parvus is first recorded ca. 23.5 m above the



Fig. 2. Sedimentary section at Fiskegrav – A Biostratigraphy relevant to the extinction event and the Permian Triassic boundary, adapted from Twitchett et al. (2001). B Position of samples
in this study. LAD= last appearance datum. FAD= first appearance datum.
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base of the Wordie Creek Fm (Twitchett et al., 2001). However, as
discussed by Twitchett et al. (2001), it is likely that the actual PTB lies
well below this horizon because (a) it is immediately underlain by a
ca. 8 m gap in exposure and sampling; and (b) the bivalve Claraia,
which characterises the Induan in most locations worldwide, occurs
ca. 10 m below the first record of H. parvus (Fig. 2). For these reasons,
Twitchett et al. (2001) suggested that the lowest possible position of
the PTB is ca. 10 m above the base of theWordie Creek Fm. It is possible
that future discoveriesmay reveal Induan-age conodonts or ammonoids
even lowerwithin theWordie Creek Formation, but to date no such fos-
sils have been discovered, even from the concretionary horizons, and so
this 10mdatum is assumed to be the lowest possible position of the PTB
(Fig. 2). The PTB at Fiskegrav thus occurs between 11.8 and 25.3 m
above the local LPME, as defined by the negative δ13Corg shift and the
last Permian brachiopod. This stratigraphy would suggest that samples
from our study are all Permian in age, and record a period of earth his-
tory after the LPME but before the PTB.

2.3. Sedimentation rates

Twitchett et al.’s (2001) original estimates of sedimentation rates at
Fiskegrav were derived by correlating Fiskegrav with Meishan, using
δ13Ccarb and conodont data, and applying the Bowring et al. (1998)
estimate that 700 (±300) kyr separated the deposition of beds 25 and
28 at Meishan. Using these data, Twitchett et al. (2001) estimated that
1 m of mudstone at Fiskegrav represents on average 20–60 kyr. More
recent radiometric age data imply that much less time separates the
volcanic ashes of beds 25 and 28 and their equivalents in South China,
which in turn suggests much more rapid deposition at Fiskegrav. For
example, Shen et al. (2011) suggest that only 180 (±80) kyr separates
beds 25 and 28, with the PTB being dated at 252.17 Ma and the extinc-
tion occurring at ca. 252.3 Ma. Using these revised dates, the inferred
position of the LPME and the highest and lowest inferred positions of
the PTB (Fig. 2; Section 2.2), 1 m of mudstone at Fiskegrav would repre-
sent on average between 5 kyr and 11 kyr. More recently still, Burgess
et al. (2014) dated bed 25 at 251.941 ± 0.037 Ma and bed 28 at
251.880 ± 0.031 Ma, an interval of ca. 60 kyr, with an estimated age
for the extinction of 251.950 Ma and for the PTB of 251.902 Ma. These
age data imply that 1m ofmudstone at Fiskegrav represents on average
between 2 and 4 kyr.

These extremely rapid sedimentation rate estimates are not simply
a function of uncertainty surrounding the local position of the PTB
at Fiskegrav. Bed 28 at Meishan postdates the H. parvus Zone, and
at Fiskegrav the H. parvus Zone appears to extend to at least the top of
the section documented by Twitchett et al. (2001), i.e., at least 30 m
above the LPME. These relationships imply sediment accumulation
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rates of at least 0.15 m kyr−1, using the Shen et al. (2011) dates, or at
around 0.5 m kyr−1 using the Burgess et al. (2014) dates. Assuming
that recent radiometric ages of Meishan volcanic ashes are correct, 1 m
of rock in the studied interval at Fiskegrav represents much b10 kyr
and possibly as little as 2 kyr.

3. Methods

3.1. Sample collection and preparation

The studied section at Fiskegrav was logged and sampled by RJT in
August 2009. Samples were collected at ~10 cm intervals (Fig. 2) from
a shallow trench dug to expose fresh outcrop. Samples were visibly
screened for evidence of alteration and approximately 5 g of each
sample was homogenised using agate ball mills at the University of
St Andrews.

3.2. Fe speciation and major element analyses

Iron speciation measurements were undertaken at the University of
St Andrews, following the calibrated sequential extraction procedure
developed by Poulton and Canfield (2005) and extended by Clarkson
et al. (2014). Following this scheme, redox characteristics of deposi-
tional environments can be characterised by the ratios between differ-
ent pools of iron. The pool of highly reactive iron (FeHR) is defined as
the summation of pyrite iron (FePY) and other Fe species such as car-
bonate iron (FeCarb), iron oxide (FeOx) and magnetite iron (FeMag),
which are reactive towards hydrogen sulphide (H2S) and have the
potential to produce pyrite in the water column or during early diagen-
esis (FeHR = FeCarb + FeOx + FeMag + FePY). Oxic depositional condi-
tions are indicated when the ratio of highly reactive iron to total
iron (FeHR/FeT) ≤ 0.22, whilst a ratio of FeHR/FeT ≥ 0.38 indicates unam-
biguously anoxic depositional settings (Poulton and Canfeld, 2011).
Anoxic depositional settings can be further subdivided into ferruginous
(Fe2+-rich), or euxinic (sulphidic) conditions. Traditionally, unambigu-
ously euxinic depositional conditions have been inferred when the
FePY/FeHR ratio ≥ 0.8, however recent work indicates a FePY/FeHR ratio
of ≥0.7 may be indicative of euxinia (Poulton and Canfeld, 2011;
Poulton et al., 2015). Full descriptions of the chemical extraction proto-
col and iron concentration measurements performed at St Andrews
have been described previously (Izon et al., in press) and are appended
in the supplementary information.

Reproducibility of FeCarb, FeOx and FeMag pools determined by syn-
thetic, matrix matched, 1 ppm Fe standards (n N 5 in each run)was bet-
ter than 2% (1σ; RSD); whereas, reproducibility of replicate extractions
of PACS-2 (n = 5) was better than 5% (1σ; RSD). Experimental tripli-
cates (using sample 09.8.29.bx) for the distillation process demonstrate
a 1σ RSD better than 5% for determination of FePY. Reproducibility of
XRF analyses to determine FeT was assessed by experimental compari-
son with Penryhn slate, where a value of 8.95 ± 0.04% (3σ, n = 20)
was obtained against a certified value of 8.94%. Other elemental oxides
provided comparable reproducibility.

3.3. TOC, TN and stable isotope analyses

Analyses of total organic carbon content (TOC), bulk organic carbon
isotope ratios (δ13Corg) and bulk nitrogen isotope ratios (δ15Nbulk) were
performed on decarbonated rock powders. Decarbonation involved
subjecting ca. 0.5 g of homogenised, whole-rock powder to two 24-h,
10% (vol/vol) HCl leaches. Sample residues were then washed until
pH neutral using Type 1 ultrapure (18.2 MΩ•cm) water and dried at
b40 °C. Carbonate content was then calculated gravimetrically from
dry sample residues.

Total organic carbon and total nitrogen (TN) content were deter-
mined at the Imaging and Analysis Centre, Natural History Museum,
London, with all samples measured in triplicate using an Elementar
Vario Microcube elemental analyser. Replicate analyses of the commer-
cial standard ‘sandy soil’ were statistically indistinguishable from the
certified abundance value for carbon of 0.833% ± 0.05 (1σ; n = 8)
and of 0.07% ± 0.01 (1σ; n = 5) for nitrogen.

Bulk organic carbon isotope values (δ13Corg) were measured by
analysis of decarbonated rock powders at the University of St Andrews
via standard Elemental analyser-isotope-ratio mass spectroscopy
(EA-IRMS) techniques. Data accuracy was verified using an internal
sucrose standard (n = 5), with precision better than ±0.1‰ (1σ).
A subset of δ13Corg analyses were performed by Iso-Analytical Labora-
tories, Cheshire, UK, via standard EA-IRMS methods. Standard IA-R001
provided a mean δ13Corg value of −26.42‰ (n = 9), with a standard
deviation of 0.05‰ (1σ) against a certified value of −26.43 ± 0.08‰
(1σ). Sulphur isotopes (δ34Spyr) analyses were performed on the silver
sulphide (Ag2S) precipitated during the CrCl2 (FePY) distillation by
Iso-Analytical Laboratories, Cheshire, UK, using standard EA-IRMS
techniques. Data accuracy was assessed using reference materials IA-
R061 with reproducibility of ±0.11‰ (1σ; n = 10), and IAEA-SO-5
with reproducibility of ±0.2‰ (1σ; n = 10). Low TN abundances
necessitated that nitrogen isotope ratios were determined by nano-
EA-IRMS at Syracuse University, USA. Data accuracy was assessed
using IAEA N1 (Ammonium Sulphate, (NH4)2 SO4; n = 9). Mean
δ15N value for this standard was −0.04‰ and standard deviation
was better than 0.27‰ (1σ, n = 9), against a certified value of +0.4
(±0.2‰; 1σ). Detailed procedures are presented in the supplementary
information.

All isotopic values are reported in standard delta notation showing
per mil deviations from international standards as follows:

δaX ‰ð Þ ¼ aX=bX
� �

sample
= aX=bX
� �

standard
−1

� �
� 1000 ð1Þ

Where aX/bX is the ratio between the heavier (a) and the lighter
isotope (b) of element X. Ratios are reported to relevant standards:
δ13C (relative to V-PDB), δ15N (relative to air), and δ34S (relative to
V-CDT).

4. Results

4.1. Lithology

Field observations at Fiskegrav reveal a slight fining of grain-size
and a transition from bioturbated to laminated mudstones around
the contact between the Schuchert Dal and Wordie Creek formations.
For the purposes of this study, the studied section has been divided
into four broad Intervals based on lithological properties (Figs. 3
and 4). Interval 1 is entirely within the Schuchert Dal Fm, extending
from the base of the studied section to 40 cm below the contact with
the overlying Wordie Creek Fm. It is bioturbated throughout and com-
posed of blocky, grey/green siltstones and muddy siltstones. Samples
from the 50 cm section below Interval 1 were analysed for carbon
isotope (δ13Corg) values only, allowing for chemostratigraphic compar-
ison with other sections. Interval 2 spans from the top of Interval 1 to
35 cm above the formational contact, and is composed of dark-grey,
laminated, silty mudstones. Within Interval 2 there are 6 beds of
bioturbated, blocky, grey/green muddy siltstones, silty mudstones
or claystones, which are each b10 cm thick, and are similar to those
described in Interval 1. These bioturbated beds are separated by
unbioturbated, laminated horizons. The base of the Wordie Creek Fm
is marked by the appearance of small nodules containing fossil fish.
Interval 3 is ca. 30 cm thick and is composed ofmedium-grey, laminated
silty mudstones with a thin bed of light-grey blocky claystone at
ca. 50 cm above the formational contact. The uppermost Interval 4 con-
sists of ca. 75 cm of dark-grey, laminated-, silty-mudstones, with thin
beds of light-grey blocky claystone at 85 cm and 125 cm above the
formational contact.



Fig. 3. Bulk chemical measurements. Horizontal shaded bars indicate bioturbated horizons in Interval 2.
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4.2. Bulk rock geochemistry

Total organic carbon content through the section is generally low
(mean = 0.2 wt%; Fig. 3; Table S3), consistent with results from previ-
ous studies (Oberhänsli et al., 1989; Stemmerik et al., 2001; Twitchett
et al., 2001). TOC abundance declines through Interval 1, and then
values fluctuate within Intervals 2, 3 and 4. The lowest values in the en-
tire section are in Interval 2, but these low wt% TOC are restricted to
Fig. 4. Fe speciation, TOC/TN and stable isotope data. Horizontal shaded bars indicate bioturbate
FeHR/FeT and FePY/FeHR. Average Fe/Al ratio of 0.53 ± 0.11 (Lyons and Severmann, 2006; Raisw
organic matter shown by graded shading in plot of TOC/TN (Gao et al., 2012).
bioturbated horizons, with higher wt% TOC in laminated horizons.
Similar fluctuations in TOC occur in Interval 3 and the lower portion of
Interval 4, although these variations do not appear to be related to obvi-
ous lithological changes. Mean TN abundances are 0.06 wt% for the
whole section, but show a subtle decline up-section (Fig. 3; Table S3).
There is variability in TN in Interval 2, with higher TN abundances with-
in laminated Intervals, although this variability is less pronounced
than that of TOC. The mean TOC/TN ratio for the whole section is 3.7;
d layers in Interval 2. Fe speciation thresholds are shown by differential shading in plots of
ell et al., 2008) is shown by vertical dashed lines in plot of Fe/Al. Redfield ratio for marine
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it declines through Interval 1 but shows variability in Interval 2, with
higher TOC/TN ratios occurring in laminated horizons. Variability in
TOC/TN ratios also occurs in Interval 3 but is not linked to lithology
(Fig. 4; Table S3).

Mean carbonate content for the section is 14.5 wt% and shows a
general increase up-section (Fig. 3; Table S3). In Interval 1, carbonate
content is relatively constant, but becomes increasingly variable up
section. In Interval 2 this variability is tied to lithology, with laminated
horizons having higher carbonate content than bioturbated horizons.
Fluctuations in carbonate content continue in Intervals 3 and 4 but are
not linked to lithological changes.

Mean Al content is 8.2 wt%, with increasing variability up section
(Fig. 3; Table S2). In Interval 2 this variability is related to lithological
changes, with higher Al content found in bioturbated horizons.
Mean Fe content is 4.4 wt% (Fig. 3; Table S2). Fe abundances rise
through Interval 1, before declining in the lower part of Interval 2
where they begin to fluctuate. Notably, Fe concentrations are highest
in laminated layers and lowest in bioturbated layers, apart from rela-
tively low values within a laminated horizon 30 cm below the base
of the Wordie Creek Fm. Variability in Fe abundance increases in
Intervals 3 and 4 despite a lack of lithological variation. Potassium
(K+) content has a mean value of 3.3 wt% (Fig. 3; Table S2). Some
variability occurs in Interval 2 but is not coupled to changes in lithology;
variability is greater in Intervals 3 and 4, despite their relatively constant
lithologies.

4.3. Iron speciation

FeHR/FeT ratios range from 0.15 to 0.59, with a mean value 0.28
(Fig. 4; Table S1). Interval 1 shows FeHR/FeT ratios consistently below
0.22. Although FeHR/FeT ratios increase through Intervals 2 and 3, they
do not exceed 0.38 until Interval 4. Variability is recorded in Interval 2,
with slightly higher FeHR/FeT ratios in laminated horizons. Similarly,
FePY/FeHR ratios display a constant and low background throughout
Interval 1; however, in contrast with FeHR/FeT ratios, FePY/FeHR ratios
vary considerably in the overlying Intervals. Variability in FePY/FeHR in
Interval 2 is driven by fluctuations in FePY abundance, with higher FePY
abundance in laminated beds. Further fluctuations in FePY/FeHR are
recorded in Interval 3, which again appear to be influenced primarily
by FePY abundance variations that occur despite lack of lithological
variation. Fe/Al ratios are predominantly within the Fe/Al thresholds
for Phanerozoic sediments of 0.53 ± 0.11, as established by Raiswell
et al. (2008).

4.4. Stable isotope data

Mean δ13Corg for thewhole section is−29.5‰, with a standard devi-
ation of 2.1‰ (1σ) (Fig. 4; Table S3). δ13Corg values decrease up-section,
beginning with a rapid fall below Interval 1 followed by a more gradual
decline above. As with other geochemical data, the δ13Corg values are
variable in Interval 2, with slightly less negative δ13Corg in bioturbated
beds. The mean δ15Nbulk value for the whole section is 5.1‰, standard
deviation of 0.6‰ (1σ) (Fig. 4; Table S3). In Interval 1, δ15Nbulk values
are lower, but record a general trend towards more positive values up-
section. In Interval 2, δ15Nbulk values fluctuate considerably, approxi-
mating the mean within bioturbated layers, but displaying lower
values in laminated horizons. The exception is one δ15Nbulk measure-
ment at ca. 5 cm below the base of the Wordie Creek Fm, where the
maximum δ15Nbulk value of 6.1‰ occurs within a laminated horizon.
The δ15Nbulk values also vary within Intervals 3 and 4 despite little
observed lithological variation, but this variability in δ15Nbulk values
becomes less pronounced at the top of the section. Most δ34Spyr values
are close to the mean of 36.5‰, but a few samples, mainly from biotur-
bated horizons are 34S–enriched, leading to a standard deviation of
9.5‰ (1σ) (Fig. 4; Table S3).
5. Discussion

5.1. Reliability of geochemical data

The geochemical composition of sedimentary rocks, and hence the
palaeoenvironmental information they contain, may become modified
by post depositional processes associated with diagenesis and meta-
morphism. To ensure that our geochemical data provide a faithful re-
cord of conditions during deposition, a range of standard evaluations
were conducted and confirm that our data are robust. Details of these
geochemical evaluations are given in the supplementary material.

5.2. Evidence of marine transgression

Trends in lithology and bulk geochemical data are all consistentwith
a transgression in the Fiskegrav section, with slightly finer material up-
section indicating deeper, lower-energy conditions. However, in addi-
tion to a shift to lower energy conditions, other factors may control
grain size. Slightly coarser-grained bioturbated horizons lower in
Interval 1 generally record lower TOC/Al, FePY/Al and carbonate/Al
ratios, whilst high abundances of TOC, carbonate and FePY are generally
recorded in laminated horizons (Figs. 3, 4, 6 A, B, C, D and E). These
data could indicate a higher detrital input of silicates (e.g. detrital
clays/micas) within shallower, more proximal depositional settings
within Interval 1, although such a conclusion is not supported by varia-
tions in potassium abundances (Fig. 3), which are a further proxy
for terrestrial input. In Interval 2 and above, the presence of slightly
finer grains within laminated beds is not likely to be the result of
minor transgressions or reduced terrestrial inputs. Rather, smaller
grain sizes and relatively low aluminium abundances in laminated ho-
rizons of Interval 2 and above probably reflect the influence of redox
changes (as identified by Fe speciation data; Sections 5.3 and 5.5)
leading to the dilution of aluminium abundances. For example, lower
oxygen availability in laminated horizons could promote the preserva-
tion of organic matter and enhanced microbial sulphate reduction
(MSR) could promote higher FePY abundances. Another important
factor causing low Al abundances in laminated horizons is likely
dilution by increased carbonate abundances. Increased carbonate
abundance in laminated horizons could reflect authigenic carbonate
cements produced in association with anaerobic oxidation of methane
coupled to MSR (Hovland et al., 1987; Peckmann et al., 2001). The
formation of carbonates by such processes could explain the anoma-
lously low ca. −10‰ δ13Ccarb values previously recorded in the lower
Wordie Creek Fm (Twitchett et al., 2001). Böttcher (2011) also argued
that authigenic manganese–calcium carbonates, with minor incorpora-
tion of magnesium and divalent iron, can form during suboxic and
anoxic early diagenesis under brackish marine conditions, similar to
the conditions which we infer for the deposition of laminated horizons
(Section 5.3).

5.3. Palaeoredox evolution

Our Fe speciation data indicate a transition to lower oxygen avail-
ability up section, although unambiguously anoxic conditions only be-
came established within Interval 4. This change is consistent with an
increasing influence from anoxic waters formed deeper on the shelf,
in association with the previously documented marine transgression.
Anoxic waters were probably generated on the deeper shelf by high
BOD fuelled by the degradation of organic matter beneath a thermally
stratified water column (Friedrich et al., 2014). The intensification of
oxygen deficiency at Fiskegravmay have been related to several factors.
Rapid temperature increases leading to high sea surface temperatures
have been proposed for the Late Permian, with oxygen isotope (δ18O)
data from conodont apatite indicating a rise from ca. 24 °C to ca. 33 °C
between the extinction horizon (bed 25) and the PTB (bed 28) in the
Meishan and Shangsi sections in China (Joachimski et al., 2012; Sun
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et al., 2012). Temperature rises over the shorter time-span in the higher
palaeolatitude section studied at Fiskegrav have not been established,
but might also have been significant. These increases in water tempera-
tures could have further reduced the solubility of oxygen in sea water
(e.g., Matear and Hirst, 2003), whilst enhancing thermal stratification.
Increased fluxes of nutrients due to increased chemical weathering
could have been delivered to the shelf (e.g. Algeo et al., 2011) promoting
BOD. These fluxes are feasible, as enhanced erosion of terrestrial bio-
mass and other material are consistent with the probable availability
of dead plant material associated with reported changes in terrestrial
flora (Looy et al., 2001), which could have enhanced weathering and
erosion by destabilizing soils.
Fig. 5.Hypothesised depositional setting at Fiskegrav.AOffshore winds - air is dry restricting pr
under the influence of relatively moist on-shore winds. Higher precipitation facilitates erosion
Salinity contrasts reinforce thermal stratification, reducing mixing. C Prevailing wind direc
Stemmerik et al. (2001), (see Fig. 1C) with grey areas showing emergent land. Question mar
(2001) show as marine, but may not have been open at this time. Glennie et al. (2003) h
southwards over the Late Permian. The maximum width of the embayment at in the Late Per
could have been as wide as 400 km (Doré, 1991).
Further, we speculate that the transport of terrestrial nutrients to the
shelf was facilitated by enhanced run-off resulting from changes in
precipitation due to a combination of the palaeolatitudinal setting of
Fiskegrav and processes associated with rapid global warming. We
speculate that when oxic conditions prevailed in the water column
during the deposition of Interval 1, the depositional site of Fiskegrav at
30°N during the Late Permian may have been under the influence of
the Mid-Latitude Cell, where predominantly offshore winds from the
west (Fig. 5A, C)would have been relatively dry after passing over a sig-
nificant landmass. Alternatively, this site could have been located under
the cool descending air and high pressure conditions where the Hadley
and Mid-Latitude Cells meet. Rapid global warming (Joachimski et al.,
ecipitation. Runoff and erosion are low. B An expansion of the Hadley Cell brings Fiskegrav
and transport of nutrients to shelf. BOD is enhanced expanding oxygen deficient waters.
tions in Hadley Cell (from east) and Mid-Latitude cell (from west). Map adapted from
k and lighter shading show approximate site of Zechstein basin which Stemmerik et al.
ave suggested that the southern margin of the Boreal Ocean progressively migrated
mian was likely ca. 80 km (Stemmerik et al., 2001), although earlier estimates suggest it
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2012; Song et al., 2014) could have led to the pole-ward expansion of
the boundaries of this Hadley Cell (e.g. Lu et al., 2007; Kang and Lu,
2012). This change in circulation patterns could have brought Fiskegrav
under the influence of relatively moist onshore winds (Fig. 5B, C), stim-
ulating a relative increase in precipitation and terrestrial runoff during
deposition of Intervals 3 and 4. Importantly, this influx of fresh water
could have created vertical salinity contrasts, amplifying thermal gradi-
ents and further restricting water column mixing.

The intensification of anoxia at Fiskegrav is unlikely to be related to
an increase in the upwelling of nutrients, a processwhich can lead to the
formation of many oxygenminimum zones (OMZs) inmodern settings.
Firstly, the potential for deep, nutrient-rich waters from the wider
oceans entering thebasin is limited due to thedepositional settingwith-
in the East Greenland Basin, which was probably divorced from wider
oceanic circulation. Any upwelling nutrients in the open Boreal Ocean
would most likely have been consumed as they encountered the distal
shelf at the mouth of the embayment some 500 km to the north.
Secondly, modern OMZs are typically in waters no shallower than
ca. 100–200 m (e.g. Levin et al., 2002; Stramma et al., 2010). This is
where upwelling nutrients enter the photic zone generating biomass.
This bio-material rains to the shelf floor driving BOD and leading to
anoxic conditions. In contrast, the site of deposition at Fiskegrav was
probably shallower than 100 m.

At Fiskegrav, our Fe speciation (FePY/FeHR ≤ 0.7) data indicate the
establishment of ferruginous conditions in Interval 4, rather than poten-
tially euxinic conditions implied by previous studies (Neilsen et al.,
2010; Bond and Wignall, 2010). This apparent discrepancy in redox in-
terpretations may result from the application of different palaeoredox
proxies. For example, Neilsen et al. (2010) and Bond and Wignall
(2010) employed pyrite framboid size distributions, a method which
is based upon the assumption that small framboids (e.g. ca. 5 μm or
less) with a small standard deviation are diagnostic of sulphate reduc-
tion occurring in the water column (i.e. euxinic conditions). In such
cases, pyrite framboid sizes are limited as they can only grow at the
oxic-anoxic chemocline for a limited time before gravitational removal
from the site of active MSR (Wilkin et al., 1996; Wilkin and Arthur,
2001). The method further assumes that framboids that grow within
the sediment pile (under non-euxinic conditions) may grow to much
larger sizes, as the sediments can support their mass at the oxic/anoxic
interface for more extended periods of time.

However, recent studies indicate that small framboidsmay not be an
unequivocal indicator of water column euxinia. These studies indicate
that small framboids may also be the product of processes occurring
within the sediments, where rapid sedimentation restricts time spent
at the oxic-anoxic interface, and where a paucity of labile electron do-
nors slow MSR rates (Gallego-Torres et al., 2015). High sedimentation
rates and low TOC levels at Fiskegrav (Twitchett et al., 2001; Algeo
and Twitchett, 2010) may thus have resulted in anomalously small
framboids being formed within the sediments. The changes in water-
column redox conditions indicated by our Fe speciation data are also
broadly consistent with inferred redox changes established during the
period around the disappearance of biota from other Boreal sites. For
example at Kap Stosch (East Greenland) Pristane/Phytane (Pr/Ph) and
C35/C34 hopane ratios indicate anoxic conditions, and possibly water-
column euxinia, due to the presence of 2,3,6-trimethyl isoprenoids,
isorenieratane and crocetane, during the deposition of sediments prob-
ably equivalent to the lowermost Wordie Creek Formation (Hays et al.,
2012). However, we note that in shallow depositional settings where
the photic zone may have reached the sea floor, compounds such as
isorenieratane can be generated in microbial mats that oxidise H2S as
it percolates up from the sediments and thus might not be diagnostic
of euxinia (Meyer et al., 2011). At Festningen (Svalbard) pyrite framboid
size distributions indicate broadly anoxic conditions across the section
of outcrop where biota disappear, with the possibility of euxinic condi-
tions some 5 m higher in the section (Bond andWignall, 2010). Studies
of the degree of pyritization and TOC/sulphur ratios (Wignall et al.,
1998) indicate that parts of the Kap Starostin Fm at Festningen may
have fluctuated between oxic and euxinic conditions as well. A shift
to increased anoxia coincident with the disappearance of biota at
Festningen is also inferred from a multi-proxy redox study by Grasby
et al. (2015). Another framboid study at Tshermakfjellet (Svalbard)
also suggested that the disappearance of bioturbation is consistent
with a transition to euxinic conditions (Dustira et al., 2013).

Interrogation of TOC and TN records provides further support for
a decline in oxygen availability up-section. Syn-depositional oxidative
processes promote the degradation of organic matter, liberating car-
bon degradation products (CO2), whilst retaining some nitrogenous
products as either ammonium (NH4

+) adsorbed on to clays or as or-
ganic nitrogen (Gao et al., 2012). Consequently, TOC/TN ratios may
fall below the Redfield minima (which Meyers (1997) established as
ca. 4 for algae and Gao et al. (2012) establish as ca. 5 for marine
organic matter) in settings where oxidative degradation of organic
matter occurs. This inference is supported further by the observation
that lower TOC/TN ratios indicative of oxidative degradation are most-
ly recorded from bioturbated beds (Figs. 4, 6f; Table S3), where oxida-
tive mineralisation of organic matter would have been enhanced by
the activities of bioturbators irrigating the sediment with O2-bearing
waters (Aller 1994; Kristensen, 2000). However, TOC/TN ratios are still
close to the Redfield minima in laminated horizons (Figs. 4, 6f;
Table S3), which we interpret this as indicating the loss of organic car-
bon associated with anaerobic respiration, e.g., via microbial nitrate or
sulphate reduction (Lückge et al., 1999).

Relatively high TOC/TN ratios are recorded in Interval 1 despite ex-
tensive bioturbation and Fe speciation data indicating oxic deposition.
Normally we would expect oxygenated depositional environments
to be associated with lower organic carbon preservation, leading to
lower TOC/TN ratios in bioturbated sediments than in laminated beds,
as seen in Interval 2. We suggest that these high TOC/TN ratios in
Interval 1 may represent higher inputs of marine organic carbon into
the sediments resulting from higher primary productivity in early
stages of the extinction event, compared with conditions higher in the
section. Alternatively, these values could represent fluxes of dead ter-
restrial organic matter from the reorganisation of terrestrial vegetation
(Looy et al., 2001), alongwith the initial dieback ofmarine biota. In prin-
ciple, sedimentary TOC/TN ratios can also bemodified by changes in the
detrital flux of clay minerals into the depositional setting, in circum-
stances where potassium (K+) in clay minerals has been replaced
by ammonium (NH4

+), either adsorbed onto or incorporated within
the structure of minerals (Sterne et al., 1989). However, a significant
input of such material is unlikely at Fiskegrav, as no relationship is
apparent between K abundance, a proxy for clay input, and TOC/TN
(Fig. 6g; R2 = 0.01) (e.g. Saitoh et al., 2014 and references therein).

5.4. Stable isotope biogeochemistry

Our new δ13Corg data (Fig. 4, Table S3, Section 5.4) show a trend to-
wards increasingly negative δ13Corg values up section which can be di-
vided into two phases; first a sharp fall from ca. −24‰ to ca. −27‰,
in the 50 cm below Interval 1, followed by a more gradual change to
ca. −30‰. Large excursions in the Late Permian δ13Corg marine record,
such as that noted here, are reported from around the world. They are,
however, a complex phenomenon and could have been influenced by
a number of factors. These include the extensive input into the bio-
sphere of 13C-depleted carbon from the eruption of the Siberian Traps
along with carbon released during contact metamorphism between
the eruptingmagmas and organic-rich sediments. Additional factors in-
clude the possibility of the input into thebiosphere of sea-floormethane
hydrates, destabilised by increasing global temperatures (Korte and
Kozur, 2010 and references therein).

These large shifts towards increasingly negative δ13Corg values could
also have been amplified by processes that contributed to the more
gradual shift to even lighter δ13Corg values recorded across and above



Fig. 6. Cross plots ofmajor elements alongwith TOC and TN. Dashed line in F andG shows Redfield C/N ratiominimum for organic matter (Gao et al., 2012). In F data plotted below and to
right of dashed line shows sub-Redfield ratios, in G data plotted to the left of the dashed line shows sub-Redfield ratios. Open squares represent laminated horizons and filled circles
represent bioturbated sediments.
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the formational contact. An increase in freshwater input up section
could have led to an increase in the proportions of terrestrially derived
organic material. However, the effects of such potential changes in the
proportions of terrestrial to marine material are difficult to assess. In
modern settings there is considerable overlap between the average
δ13C values for marine and terrestrial vegetation, although the δ13C of
marine plants is generally isotopically heavier than that of land plants
(Cloern et al., 2002). However, the relative δ13C values for marine and
terrestrial plants prior to the end of the Mesozoic may have been
reversed (Arthur et al., 1985). Further, we cannot discount a role for
an input of reworked sedimentary organic carbon weathered from the
local Palaeozoic hinterland, the isotopic composition of which is un-
known, nor the impact of changes in atmospheric pCO2 causing changes
in fractionation effects associated with photosynthesis. Probably the
most important factors for the slow decline in δ13C values are a combi-
nation of the incursion of isotopically light deeper water (e.g. Meyer
et al., 2016) associated with the transgression and an increase in the
anaerobic recycling of carbon during methnogenesis/methnotrophy,
or by other the presence of other anaerobic microbes in low-oxygen
settings (e.g. Luo et al., 2014).

Declining oxygen availability up section, leading to a fall in rates of
oxidative degradation of organic matter, cannot be invoked as a factor
influencing a shift towards isotopically lighter δ13Corg values. Whilst in-
creased oxidative degradation can lead to increases in δ15Norg through
processes of deamination and decarboxylation (Freudenthal et al.,
2001), oxidative degradation of carbon may have the opposite effect
and reduce δ13Corg by up to ca. 1.6‰ (Freeman, 2001; Freudenthal
et al., 2001; Lehman et al., 2002; Koehler et al., 2017).

The δ15Nbulk values at Fiskegrav (ca.+4‰ to ca.+6‰) are similar to
values for modern marine organic matter, which has an average δ15N
value of ca. +5‰ to +6‰ (Sigman et al., 2009). These values are also
similar to slightly lower than those reported for Panthalassic sites
(Algeo et al., 2012; Schoepfer et al., 2012; Knies et al., 2013; Grasby
et al., 2016) and for the Late Permian of Svalbard (Grasby et al., 2015).
These values are inconsistent with evidence for nitrogen limitation
(e.g., δ15N ≤ 0‰, indicative of N2 fixation), and probably represent nitri-
fication within a predominantly oxic surface ocean followed by incom-
plete denitrification within OMZs. Significantly, positive δ15Nbulk values
indicative of denitrification provide further evidence that the water
column was not euxinic, as nitrate is a more favourable electron accep-
tor for anaerobic respiration than sulphate, and should be consumed
within the water column by denitrification prior to the onset of water
column MSR.

Our δ15Nbulk values are higher than values published for Tethyan sec-
tions, which generally show declines to values close to 0‰ (e.g. Saitoh
et al., 2014; Xiang et al., 2016). These low δ15Nbulk values in Tethyan sec-
tions are attributed to enhanced diazotrophy under nitrate-limited con-
ditions (Saitoh et al., 2014). Whilst our δ15Nbulk data does not indicate
that nitrate limitation was a factor at Fiskegrav, we do note that
the lack of bioturbation in Intervals 2, 3, 4, which we attribute to anoxic
conditions, could have imparted some degree of nutrient stress, as
ventilation and irrigation of the substrate by bioturbation would nor-
mally release sequestrated nutrients for recycling into the overlying
water (Hansen andKristensen, 1997). Fe limitation restricting biological
activity, also seems unlikely given that Fe is available in ferruginous
conditions, as opposed to euxnic conditions, where it can be titrated
from the water column, whilst phosphate limitation is also unlikely in
laminated horizons as phosphate is more readily released from sedi-
ments in anoxic conditions (Kraal et al., 2010).

Sulphur isotope data from Fiskegrav do, however, support an impor-
tant role for MSR in organic matter remineralization within the sedi-
ments. During the Late Permian, the δ34S of seawater sulphate in the
East Greenland Basin is estimated to have been+11.5‰, as established
from evaporitic deposits in the Karstryggen Fm which underlies the
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Schuchert Dal Fm (Nielsen and Shen, 2004), and consistent with other
Late Permian data (Strauss, 1997; Kaiho et al., 2006; Peryt et al., 2010).
Our new δ34Spyr data mostly range from −44.3 to −34.2‰ (with out-
liers at−16.4,−1.8 and+43.1‰ as discussed in Section 5.5), in agree-
ment with previously published values (Neilsen et al., 2010). These
data imply a fractionation in δ34S between seawater sulphate and
sulphide (εSO4 – H2S) of between ~46‰ and ~56‰, assuming H2S is
the dominant source of sulphur in pyrite. We interpret these δ34Spyr
values as recordingMSR rather than euxinia and/or fractionation effects
associated with sulphur oxidation and disproportionation processes
(cf. Fenton et al., 2007; Neilsen et al., 2010). Recent work has demon-
strated that large fractionations between seawater sulphate and
sulphide (εSO4 – H2S ≥ 60‰) can be produced via MSR alone, at low
sulphate reaction rates, when organic electron donors are limited
(Canfield et al., 2010; Sim et al., 2011). The low TOC values at Fiskegrav
support a limited carbon flux to sulphate reducers in the sediments, and
could easily support such moderately large fractionations during MSR.

5.5. Fluctuations in depositional conditions and the disappearance of
benthos

Superimposed on the overall transgressive event and decline in
oxygen availability is a covariation of geochemical fluctuations with
changing lithology and bioturbation throughout Interval 2, with the
bulk chemical properties of the two lithologies plotting into two distinct
populations (Fig. 7). As discussed above (Section 5.2), smaller grain
size and low Al coupled to higher TOC, FePY and carbonate abun-
dances in laminated horizons, and vice versa for bioturbated horizons,
probably reflect redox changes resulting in enhanced preservation of
organic matter, MSR, and carbonate precipitation in oxygen restricted
laminated layers. The alternations of laminated and bioturbated mud-
stone in Interval 2 indicate that at times the seafloor was devoid of
Fig. 7. Cross plots of major elements and TOC and TN in Interval 2 only. Dashed lines in F and G
below and to the right of the dashed line shows sub-Redfield ratios; in G, data plotted to the left
filled circles represent bioturbated horizons.
benthic animals and at other times supported an infaunal community
of micro- and meiofauna, although macroscopic shelly fossils remained
absent. Fe speciation data indicate that potentially anoxic conditions
(0.22 ≤ FeHR/FeT ≤ 0.38) were prevalent during the deposition of the
upper three bioturbated horizons, which may indicate low oxygen
availability. However, many modern benthic organisms are able to
tolerate dissolved oxygen (DO) levels as low as 1 mg L−1 before
abandoning their burrows (Levin et al., 2009), or even inhabit hypoxic
environments (Braeckman et al., 2013). Further, modern studies indi-
cate that intermittent rises in DO concentrations to around 1 mg L−1,
for periods as short as a fewweeks ormonths, may allow temporary ac-
cess to the substrate for opportunistic benthos (Berge, 1990; Lu andWu,
2000; Ryu et al., 2010). Once recolonization begins, bioturbation to
depths of several centimetres can occur rapidly (Graf, 1989; Pope
et al., 1996; Hartmann et al., 2009). We suspect that such short-term
small fluctuations in redox conditions against a background of long-
term anoxia may be undetectable by the bulk Fe speciation method.
In addition, the accumulation of pyrite within the laminated layers
is much higher than within bioturbated horizons, possibly due to rela-
tively higher abundances of TOC fuelling more vigorous rates of MSR
within these sediments. This could have allowed the build-up of H2S
just beneath the sediment-water interface, rendering the substrate
uninhabitable.

Additional geochemical data does, however, support the transient
presence of oxygen during the deposition of the upper three biotur-
bated horizons in Interval 2. Specifically, lower TOC/TN ratios and ele-
vated δ15Nbulk values in the bioturbated horizons in comparison to
laminated layers (Figs. 4, 7f; Table S3) indicate syn-depositional oxida-
tive degradation (Freudenthal et al., 2001; Möbius et al., 2010; Saitoh
et al., 2014). Changes in the relative input of marine and terrestrial or-
ganicmatter and their influence on δ15Nbulk values are difficult to assess,
as there can be a significant overlap between marine and terrestrial
show Redfield C/N ratio minimum for organic matter (Gao et al., 2012). In F, data plotted
of the dashed line shows sub-Redfield ratios. Open squares represent laminated layers and
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matter, with the δ15N of modern terrestrial flora (including saltmarsh
plants) ranging from ca. −4‰ to ca. +18‰ (Schoeninger et al., 1983;
Cloern et al., 2002).

Fe speciation data in the laminated unbioturbated horizons of
Intervals 2 and 3 are similar to the values measured in the uppermost
bioturbated horizons of Interval 2. While this trend suggests that
oxygen may have been transiently available during the deposition of
these horizons, such putative oxidative events must have been slight
and extremely short, precluding the recolonization of the sea bed.

Data from Interval 2 (Fig. 8B) show that bioturbated horizons have
slightly higher δ13Corg, but significantly lower TOC abundances, than
laminated beds. This could imply that δ13Corg values in these horizons
are controlled by the oxidative breakdown of organicmatter, with labile
organic matter being removed from bioturbated horizons leaving
the remaining refractory organic matter 13C-enriched. However, as
noted above, such processes can actually lead to isotopically lighter
δ13Corg values (Meyers, 1994; Freeman, 2001; Freudenthal et al., 2001;
Lehman et al., 2002; Koehler et al., 2017). It is possible that such
δ13Corg variability is due to variations in the influence of 13C-depleted
transgressive deeper waters, produced by periodic upwelling, as has
been proposed to explain similar patterns in δ13Ccarb values in Late
Permian sediments fromNhi Tao, Vietnam (Algeo et al., 2008). However,
wewould not anticipate this to be the case at Fiskegrav, where we spec-
ulate that laminated horizons in Interval 2 are associated with onshore
winds, which would preclude upwelling (Section 5.6). Therefore the
most likely causes for these small variations in δ13Corg values are
methane recycling and the activities of other anaerobic microbes gener-
ating 13C-depleted organic matter during the deposition of laminated
horizons (e.g. Luo et al., 2014).

Although sulphur isotope (δ34Spyr) values are generally stable, they
do show some fluctuations, especially in Interval 2 where δ34Spyr values
are generally higher in bioturbated horizons (Fig. 4, Table S3).Modifica-
tion of δ34Spyr values at Fiskegrav has previously been attributed to
oxidative recycling of sulphur, but this mechanism should produce
increasingly negative δ34Spyr values in ventilated horizons (Neilsen
et al., 2010; Fenton et al., 2007). Differences in δ34Spyr values could the-
oretically reflect changes in rates of MSR associated with variations
in the abundance and quality of electron acceptors, such as organic car-
bon (Sim et al., 2011). However, again we might expect the opposite
trend to that observed, with smaller δ34S fractionations in laminated
layers where TOC abundances are higher. Closed system sulphate
reduction can decrease fractionations during MSR, due to the effects
of Rayleigh distillation; however, it is difficult to imagine a scenario
whereby bioturbated horizons would be more closed to exchange
with overlying seawater than the laminated layers. We also observe ex-
treme 34S–enrichment in one data point, where δ34Spyr=+43.1‰. Such
‘superheavy pyrite’ values have been reported in modern shallow-
water environments and linked to sedimentary reworking and biotur-
bation (Fike et al., 2015), although the mechanism controlling these
34S enrichments is currently unknown. Given that most of our slightly
34S-enriched δ34Spyr values are from bioturbated horizons, we suggest
Fig. 8. Cross plots δ13Corg and TOC for whole section (A) and Interval 2 only (B). Open sq
that these values could represent the influence of biologically mediated
mixing of reduced and oxidized sediments, partially offsetting the frac-
tionation effects associated with MSR.

5.6. Causes of punctuated redox changes

Depending upon the age constraints we apply for sedimentation
rates, the deposition of Interval 2 could represent between 2 kyr and
10 kyr (Section 2.3). These estimates imply that transitions between
bioturbated and laminated beds in Interval 2 are on broadly millennial
or even centennial timescales. Given the limited information available,
we speculate that the most parsimonious explanation for these deposi-
tional and redox fluctuations is that they reflect changes inweather pat-
terns resulting from Hadley Cell dynamics. For example, Wang et al.
(2007) reveal variations in rainfall intensity in Brazil that have occurred
on both millennial and orbital timescales over the last 90 kyr, which
they argue could be related to displacement in the mean position of
the intertropical convergence zone and associated asymmetry inHadley
Cell characteristics. Additionally, shifts in the latitudinal position of the
SouthernWesterlies resulting fromHadley Cell dynamics have been im-
plicated in changing weather patterns and millennial-scale changes
in sediment characteristics off the west coast of Chile (Lamy et al.,
2001). Climatic variations with millennial frequency have also been
inferred and identified in other Holocene records (Bond et al., 1997,
2001; Sarnthein et al., 2003; Debret et al., 2007; Santos et al., 2013), in
Dansgaard–Oeschger cycles during the Pleistocene (Dansgaard et al.
1993; Grootes and Stuiver, 1997), and also for some Carboniferous
and Permian rhythmites, leading to suggestions that such climatic
periodicity could be endemic throughout the Phanerozoic (Elrick and
Hinnov, 2007; Franco et al., 2012).

If we accept themost rapid sedimentation rates for Fiskegrav, where
1 m is equivalent to ca. 2 kyr, then the fluctuations we see must repre-
sent sub-millennial variability. Such climate cyclicity on timescales of
between 300 and 700 years have also been identified in the Holocene
from a range of latitudes and have been linked to solar forcing, changes
in the Earth's magnetic field and/or teleconnections between ocean-
atmosphere and ice sheet dynamics (e.g. Gallet et al., 2005; Moberg
et al., 2005; Zanchettin et al., 2013; Soon et al., 2014; Xu et al., 2014).
We point in particular to a study of the western Mediterranean Sea, at
latitude 36°N, broadly similar to the latitude of Fiskegrav in the Permian,
where millennial and sub-millennial climate variability has been
invoked to explain changes in sediment transport, including wind-
blown dust and fluvial runoff, along with changes in marine produc-
tivity and redox conditions (Rodrigo-Gámiz et al., 2014). However,
we note that the probable lack of polar ice during the Permian im-
plies that some of the teleconnections and mechanisms controlling
climate fluctuations in the Permian may be different to those in the
Holocene.

We speculate that the putative expansion of the Hadley Cell during
the Late Permian (Section 5.3) was complex and oscillatory upon
millennial or shorter timescales. Changes during the deposition of
uares represent laminated layers and filled circles represent bioturbated horizons.
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Interval 2 possibly reflect changes between predominantly onshore
winds and offshore winds. When under the influence of the Hadley
Cell (Fig. 5B, C), increased precipitation and runoff could have enhanced
water column stratification, thus restricting mixing during the deposi-
tion of laminated horizons. Simultaneously, enhanced fluxes of fresh-
water could have delivered additional nutrients from the hinterland,
thus stimulating BOD. In contrast, periods of offshore winds and resul-
tant rain shadow effects under Mid-Latitude influence (Fig. 5A, C)
could have led to lessened freshwater input. This climate regime could
have reduced salinity stratification, with smaller nutrient fluxes simul-
taneously leading to reduced BOD at the ocean floor.

Following this scenario, the disappearance of intermittent recoloni-
zation at the top of Interval 2 could indicate that the northwards expan-
sion of theHadley Cell boundarymeant that deposition at Fiskegravwas
decreasingly influenced by climatic fluctuations and onshore winds,
and increased runoff gradually became the norm. However, we do
note some continued geochemical fluctuations within Intervals 3 and
4, suggesting that these climatic variations could have continued more
sporadically. By this time, a general transgression could have resulted
in depositional conditions deep enough that climatic forcing had a de-
clining influence on sedimentary processes at the sea floor, and more
persistent anoxia precluded recolonization.

6. Conclusions

Sedimentological and geochemical evidence from the upper
Schuchert Dal and lowerWordie Creek formations at Fiskegrav demon-
strate that the collapse of the Late Permian shallow shelf ecosystem and
the cessation of bioturbation occurred during a marine transgression
and under progressively more oxygen-deficient conditions. Declining
oxygen availability is attributed to the transgressive shoreward expan-
sion of oxygen deficient waters, and the possible intensification of
BOD resulting from increased delivery of terrestrially derived nutrients
and water column stratification. During this change the water column
was characterised by a shift from oxic to ferruginous depositional
conditions.

A lack of evidence for euxinic conditions (Fe speciation and δ34Spyr)
is supported by δ15Nbulk data that is indicative of nitrate availability,
which could have provided amore energetically favourable electron ac-
ceptor than sulphate for anaerobic respiration in the water column.
These δ15Nbulk data also imply that nitrate-limitation was not a signifi-
cant factor contributing to the extinction or recovery of marine organ-
isms at Fiskegrav, although periods without bioturbation may have
reduced the recycling of nutrients from the sediments.

Fluctuations in geochemistry and sedimentology throughout the
middle part of the section record a dynamic depositional setting that
fluctuated between periods of reduced oxygen availability, where ben-
thic colonisation was prevented, and periods of oxygenation, when
some bioturbation occurred, probably by an infaunal meiobenthos.
Given the temporal frequency of these events, which appear to match
the proposed millennial- or centennial-scale timings of Palaeozoic,
Pleistocene and Holocene environmental cyclicity, the primary mecha-
nismdriving these eventswas probably climatic forcingwhich generated
relative high-frequency changes in precipitation and ultimately nutrient
delivery to the shelf.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.palaeo.2017.06.014.
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