
Comput. Methods Funct. Theory
DOI 10.1007/s40315-017-0215-1

Root Sets of Polynomials and Power Series with Finite
Choices of Coefficients

Simon Baker1 · Han Yu2

Received: 21 April 2017 / Revised: 6 June 2017 / Accepted: 20 June 2017
© The Author(s) 2017. This article is an open access publication

Abstract Given H ⊆ C twonatural objects to study are the set of zeros of polynomials
with coefficients in H ,

{
z ∈ C : ∃k > 0, ∃(an) ∈ Hk+1,

k∑
n=0

anz
n = 0

}
,

and the set of zeros of a power series with coefficients in H ,

{
z ∈ C : ∃(an) ∈ HN,

∞∑
n=0

anz
n = 0

}
.

In this paper, we consider the case where each element of H has modulus 1. The

main result of this paper states that for any r ∈ (1/2, 1), if H is 2 cos−1(
5−4|r |2

4 )-
dense in S1, then the set of zeros of polynomials with coefficients in H is dense in
{z ∈ C : |z| ∈ [r, r−1]}, and the set of zeros of power series with coefficients in
H contains the annulus {z ∈ C : |z| ∈ [r, 1)}. These two statements demonstrate
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quantitatively how the set of polynomial zeros/power series zeros fill out the natural
annulus containing them as H becomes progressively more dense.
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1 Introduction

Let H ⊆ C be a finite set. Given such a H we define the root set of polynomials with
coefficients in H to be:

R(H) :=
{
z ∈ C : ∃k > 0, ∃(an) ∈ Hk+1,

k∑
n=0

anz
n = 0

}
.

Similarly, we define the root set of power series with coefficients in H to be

R∗(H) :=
{
z ∈ C : ∃(an) ∈ HN,

∞∑
n=0

anz
n = 0

}
.

The study of the sets R(H) and R∗(H) can be dated back to Littlewood [6]who studied
the case where H = {−1, 1}. Since then many related works have appeared, most
notable amongst these are the number theoretic results of Beaucoup, Borwein, Boyd
and Pinner [3], and Borwein, Erdélyi and Littmann [4], who studied the distribution
of roots and multiple roots. Related work also appeared in Bousch [5], where it was
shown that R({−1, 1}) is dense in {z : |z|4 ∈ [1/2, 2]}. In Shmerkin and Solomyak
[8] some measure theoretic and topological properties of R({−1, 0, 1}) are studied in
detail.

In what follows, we will adopt the following notational conventions:

Sr := {
z ∈ C : |z| = r}, B(z, r) := {z′ ∈ C : |z′ − z| < r

}
,

and given some interval I in R let

AI := {z ∈ C : |z| ∈ I } .

In this paper, we focus on the case where H is a subset of the unit circle S1. Under
this assumption it is straightforward to show that

R(H) ⊆ A[1/2,2] and R∗(H) ⊆ A[1/2,1).

Intuitively, one might expect that if we allowed H to become a progressively more
dense subset of S1, then R(H) and R∗(H) would begin to fill out their respective
annuli. The main result of this paper shows that this intuition is correct.
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Before stating this result we need to define a metric on S1 to properly quantify the
density of H . Given eiθ , eiθ

′ ∈ S1 let d(eiθ , eiθ
′
) = min{|θ − θ ′|, |2π − (θ − θ ′)|}.

This metric measures the interior angle of the sector of S1 determined by the two radii
eiθ and eiθ

′
.

Theorem 1.1 Fix r ∈ (1/2, 1). Suppose H ⊆ S1 is 2 cos−1( 5−4r2
4 )-dense. Then

A[r,1) ⊆ R∗(H) and R(H) is dense in A[r,r−1].

The sets R(H) and R∗(H) are related by the following formula.

Proposition 1.2 Let H ⊆ C be any finite set, then the following relations hold:

R(H) = 1

R(H)
,

and

R(H) ∩ B(0, 1) = R∗(H) ∩ B(0, 1).

In the statement of Proposition 1.2, A denotes the closure of a set A, and 1
A denotes

the set {z ∈ C : z−1 ∈ A}.
Proof Given z ∈ C suppose there is polynomial P ∈ H [x] such that,

P(z) =
k∑

n=0

anz
n = 0.

We can construct another polynomial Q ∈ H [x] such that Q(1/z) = 0. Just consider
Q(x) = xk P( 1x ) with k = deg P . Therefore, whenever z ∈ R(H) we also have
1/z ∈ R(H). This proves our first relation.

Now we shall show that,

R(H) ∩ B(0, 1) = R∗(H) ∩ B(0, 1).

Without loss of generality we can assume that H ⊆ {z : |z| ≤ 1}. If z∗ ∈ R(H) ∩
B(0, 1) then we can find a sequence (zi ) ∈ R(H)N with:

zi → z∗.

Moreover, since z∗ ∈ B(0, 1) there exists a positive numberM such that 1 < M < 1
|z∗| .

Now let us consider any polynomial in H [x]

P(x) =
k∑

n=0

anx
n .
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The following result holds for |zi | ≤ M |z∗|

|P(z∗) − P(zi )| ≤
k∑

n=0

|an||(z∗)n − zni |

=
k∑

n=0

|an||z∗ − zi ||(z∗)n−1 + (z∗)n−2zi + ... + zn−1
i |

≤
k∑

n=0

|an||z∗ − zi |n(M |z∗|)n−1

≤ |z∗ − zi |
k∑

n=0

|an|n(M |z∗|)n−1.

Since |an| ≤ 1 and M |z∗| < 1 the latter summation can be bounded uniformly with
respect to k, namely:

k∑
n=0

|an|n(M |z∗|)n−1 ≤ C,

where C > 0 is a constant that only depends upon z∗.
Each zi is the root of some polynomial Pi ∈ H [x], in which case by the above, for

i sufficiently large we have

|Pi (z∗)| = |Pi (z∗) − Pi (zi )| ≤ C |z∗ − zi |. (1)

For the sequence (Pi ) there is either a uniform upper bound for the degrees of the
Pi , or there exists a subsequence along which the degrees tend to infinity. In the first
case, there must exist a polynomial Q ∈ H [x] and a subsequence (Pi j ) such that
Pi j = Q for all i j . By (1) we must then have Q(z∗) = 0. Suppose deg Q = L , then

T (x) = Q(x)
∞∑
n=0

xn(L+1)

is a power series with digits in H . For this particular power series we clearly have
T (z∗) = 0. Therefore, in the first case we have z∗ ∈ R∗(H). Now suppose there
exists a subsequence (Pi j ) such that deg Pi j → ∞. Via a diagonalisation argument,
one can assume without loss of generality that there exists a sequence (an) ∈ HN and
an increasing sequence of natural numbers (ln), such that for all i j ≥ ln the coefficient
of the degree n term of Pi j is an . In other words, as the i j become sufficiently large
the lower order terms of the Pi j ’s start to coincide. It follows from (1) then that for
this sequence (an) we must have
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∞∑
n=0

an(z
∗)n = 0.

Therefore, z∗ ∈ R∗(H) and R(H) ∩ B(0, 1) ⊆ R∗(H) ∩ B(0, 1).
Now suppose z∗ ∈ R∗(H) ∩ B(0, 1). Then there is a sequence (an) ∈ HN such

that

∞∑
n=0

an(z
∗)n = 0.

This series is absolutely and uniformly convergent in B(0, c) for any 0 < c < 1. Since
z∗ ∈ B(0, 1) it is contained in one of these sets for c sufficiently close to 1. We see
that the function:

P(x) =
∞∑
n=0

anx
n

is holomorphic on the interior of the unit disc, and therefore, the roots of P must form
a discrete set. Since z∗ belongs to the root set of P there must exist r > 0 such that

{z ∈ C : P(z) = 0} ∩ B(z∗, r) = {z∗}.

Now, suppose that z∗ /∈ R(H), then there exists a ball B(z∗, r ′) such that B(z∗, r ′) ⊆
B(z∗, r) and

R(H) ∩ B(z∗, r ′) = ∅.

We can then consider the following integral with PN (x) = ∑N
n=0 anx

n

IN =
∫

∂B(z∗,r ′)

P ′
N (x)

PN (x)
dx.

By our conditions on r ′ we see that PN has no zeros in B(z∗, r ′) for all N ∈ N.
Therefore, by the argument principle (see [1, p. 152]) we must have IN ≡ 0. One
can also assume that r ′ is sufficiently small so that PN converges to P absolutely and
uniformly. Therefore,

0 = lim
N→∞ IN =

∫
∂B(z∗,r ′)

P ′(x)
P(x)

dx.

However, it follows from another application of the argument principle, and the fact
that P(x) has a single zero in B(z∗, r ′) at z∗, that the above integral cannot be 0. This
contradiction implies z∗ ∈ R(H) and our proof is complete. ��

123



S. Baker, H. Yu

It is natural to wonder whether there exists a set H such that the sets R(H) and
R∗(H) fill up their ambient annuli, that is A[1/2,2] and A[1/2,1) respectively. In fact
such a H cannot exist. For any H ⊆ S1 there exists z ∈ C with modulus 1/2 and
δ > 0, such that R(H) ∩ B(z, δ) = ∅ and R∗(H) ∩ B(z, δ) = ∅. This is because of
the following simple reasoning. Since H is a finite set there exists z ∈ C such that
|z| = 1/2 and

|ai + a j z| > 1/2

for all ai , a j ∈ H . Equivalently

|ai + a j z| >
|z|2

1 − |z| (2)

for all ai , a j ∈ H . By continuity, equation (2) holds under small perturbations of z.
Therefore, there must exist δ > 0, such that for all z′ ∈ B(z, δ) we have

|ai + a j z
′| >

|z′|2
1 − |z′| .

Since ∣∣∣∣∣
k∑

n=2

an(z
′)n

∣∣∣∣∣ ≤ |z′|2
1 − |z′|

for all (an) ∈ Hk and k ∈ N, it follows that z′ cannot be the zero of a power series or a
polynomial. Therefore we must have R(H) ∩ B(z, δ) = ∅ and R∗(H) ∩ B(z, δ) = ∅.

2 Proof of Theorem 1.1

We now turn our attention to proving Theorem 1.1. We start with the following tech-
nical proposition.

Proposition 2.1 Let z ∈ A(1/2,1). Suppose H is 2 cos−1(
5−4|z|2

4 )-dense, then for any
z′ ∈ B(0, 2) there exists a ∈ H such that z−1(z′ − a) ∈ B(0, 2).

Remark 2.2 It is useful to point out that the conclusion of this proposition is equivalent
to:

B(0, 2) ⊂
⋃
a∈H

a + zB(0, 2).

Proof Let us start by fixing z′ ∈ B(0, 2). Consider the point z′z−1. Clearly z′z−1 ∈
B(0, 2|z|−1). Let

S(z′z−1, |z|−1) := {ω ∈ C : |ω − z′z−1| = |z|−1}
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z z−1

θ

Fig. 1 A diagram of S|z|−1

z′z−1 intersecting B(0, 2)

be the circle centered at z′z−1 with radius |z|−1.
Since z ∈ A(1/2,1) we must have S(z′z−1, |z|−1) ∩ B(0, 2) �= ∅. In fact this inter-

section must contain an arc of S(z′z−1, |z|−1). This arc is parameterised by two radii
of S(z′z−1, |z|−1) with interior angle θ . See Fig. 1 for a diagram describing the inter-
section of S(z′z−1, |z|−1) with B(0, 2). It is easy to see that the angle θ is minimised
when z′z−1 is as far from the origin as possible, i.e., when z′ hasmodulus 2. Employing
elementary techniques from geometry we can see that the angle θ is at least twice the
size of a particular angle of the triangle whose sides have length |z|−1, 2, and 2|z|−1

(see Fig. 1). Therefore, we can use the well-known cosine rule from trigonometry to
show that θ is always bounded below by

2 cos−1
(5 − 4|z|2

4

)
.

Since H is 2 cos−1(
5−4|z|2

4 )-dense as a subset of S1, there must exist a ∈ H such
that z′z−1 − az−1 is contained in the arc of S(z′z−1, |z|−1) which intersects B(0, 2).
In particular, for this choice of a we have z−1(z′ − a) ∈ B(0, 2). ��

Theorem 1.1 now follows almost immediately from Proposition 2.1.

Proof of Theorem 1.1 By the relations given in Proposition 1.2 to prove Theorem 1.1
it is sufficient to only prove the statement relating to R∗(H). Fix r ∈ (1/2, 1) and let H

be a 2 cos−1( 5−4r2
4 )-dense subset of S1. Note that H is automatically 2 cos−1(

5−4|z|2
4 )-

dense for any z ∈ A[r,1). So we can apply Proposition 2.1 for any z ∈ A[r,1). Let us
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now fix z ∈ A[r,1) and apply Proposition 2.1 when z′ = 0. So there exists a0 ∈ H
such that x0 := z−1(−a0) ∈ B(0, 2). Rearranging yields

0 = a0 + x0z.

Applying Proposition 2.1 again with x0 in the place of z′ yields a1 and x1 := z−1(x0−
a1), such that x1 ∈ B(0, 2) and

0 = a0 + a1z + x1z
2. (3)

One can then apply Proposition 2.1with z′ = x1 . Repeating this procedure indefinitely
yields a sequence (an) and (xn) such that xn+1 = z−1(xn − an+1) for all n ∈ N.
The terms in (xn) remain in B(0, 2). Therefore, we are able to repeatedly apply the
substitution xn+1 = z−1(xn − an+1) in (3) and we obtain

0 =
∞∑
n=0

anz
n .

Therefore, z ∈ R∗(H). Since z was arbitrary we have A[r,1) ⊆ R∗(H). ��

The proof of Theorem 1.1 was based upon ideas from β-expansions. The argument
given relied upon adapting methods from [2,7]. The proof can easily be adapted to
show that under the hypothesis of the theorem, for every z′ ∈ B(0, 2) there exists
(an) ∈ HN such that

∑∞
n=0 anz

n = z′.

3 Some Further Problems

There are some more challenging problems related to root sets R(H), R∗(H). We
mentioned in the beginning of this paper that there exist various results of multiple
roots [3,4]. We say that a z ∈ C is a multiple root of a holomorphic function f of
order k if for all integers i = 0, 1, 2, . . . , k

f (i)(z) = 0.

Adopting the notation in this paper, we can define for any integer k ≥ 0:

Rk(H) : =
{
z ∈ C : ∃k > 0, ∃(an) ∈ Hk+1,

P(w) =
k∑

n=0

anw
n, z is a k-th order root of P(w)

}
.
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R∗
k (H) : =

{
z ∈ C : ∃(an) ∈ HN,

P(w) =
∞∑
n=0

anw
n, z is a k-th order root of P(w)

}
.

Not so much has been studied about the above multiple root set, some partial results
can be found in [8]. We can, for example, consider the following questions:

• Are Rk(H), R∗
k (H) dense in any non-degenerate annulus?

• What about the connectedness and path-connectness of Rk(H), R∗
k (H)?

• What can we say about the boundary of Rk(H), R∗
k (H)?
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