

research communications



ISSN 2056-9890

Received 5 September 2017 Accepted 15 September 2017

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: molecular structure; disorder; conformation; hydrogen bonding; supramolecular assembly; crystal structure.

CCDC reference: 1574718

**Supporting information**: this article has supporting information at journals.iucr.org/e



Mohammed A. E. Shaibah,<sup>a</sup> Belakavadi K. Sagar,<sup>a</sup> Hemmige S. Yathirajan,<sup>a</sup>\* S. Madan Kumar<sup>b</sup> and Christopher Glidewell<sup>c</sup>

<sup>a</sup>Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, <sup>b</sup>Department of Studies in Chemistry, Mangalore University, Mangalagangotri-574 199, India, and <sup>c</sup>School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK. \*Correspondence e-mail: yathirajan@hotmail.com

Ebastine, 4-(benzhydryloxy)-1-[4-(4-*tert*-butylphenyl)-4-oxobutyl]piperidine, reacts with 3,5-dinitrobenzoic acid in methanol solution to give the title 1:1 salt, ebastinium 3,5-dinitrobenzoate,  $C_{32}H_{40}NO_2^+ \cdot C_7H_3N_2O_6^-$ . In the cation, the disubstituted aryl ring exhibits orientational disorder over two sets of atomic sites having occupancies 0.706 (4) and 0.294 (6), with a dihedral angle of 41.2 (5)° between the two orientations: the bulky Ph<sub>2</sub>CH–O– substituent occupies an axial site on the piperidine ring. The two ions in the selected asymmetric unit are linked by a nearly linear N–H···O hydrogen bond and this, in combination with two C–H···O hydrogen bonds, links the ions into complex sheets.

#### 1. Chemical context

Ebastine, or 4-(benzhydryloxy)-1-[4-(4-*tert*-butylphenyl)-4oxobutyl]piperidine, is a non-sedating second generation  $H_1$ receptor antagonist, which is effective in the treatment of both allergic rhinitis, whether seasonal or perennial, and chronic idiopathic urticaria (Wiseman & Faulds, 1996; Van Cauwenberge *et al.*, 2004). The structure of ebastine has been the subject of two recent reports (Cheng *et al.*, 2005: Sharma *et al.*, 2015). Herein, we report the molecular and supramolecular structure of the 1:1 salt ebastinium 3,5-dinitrobenzoate (I), formed in the reaction between ebastine and 3,5-dinitrobenzoic acid.



2. Structural commentary

The title compound (I), consists of an N-protonated ebastinium cation and a 3,5-dinitrobenzoate anion (Fig. 1), which







#### Figure 1

The molecular structure of the ionic components of compound (I), showing the atom-labelling scheme, the  $N-H\cdots O$  hydrogen bond within the selected asymmetric unit, and the orientational disorder of the disubstituted aryl ring (the major component is drawn with full lines and the minor component with broken lines). Displacement ellipsoids are drawn at the 30% probability level and, for clarity, a few of the atom labels have been omitted.

are linked within the selected asymmetric unit a by a fairly short and nearly linear  $N-H \cdots O$  hydrogen bond (Fig. 1, Table 1). The disubstituted aryl ring in the cation is disordered over two sets of atomic sites having occupancies 0.706 (4) for the major ring orientation, labelled C161-C166, and 0.294 (4) for the minor orientation, labeled C171-C176: the dihedral angle between these two ring planes is 41.2 (5)° (Fig. 1). The piperidine ring adopts an almost perfect chair conformation, with a ring-puckering angle, calculated for the atom sequence (N1,C2,C3,C4,C5,C6) of  $\theta = 0.0$  (3)°, identical within experimental uncertainty to the idealized value for a perfect chair form of  $\theta = 0.0^{\circ}$  (Boeyens, 1978). However, although the non-H substituent at atom N1 in the ring occupies an equatorial site, as expected, the bulky Ph<sub>2</sub>CHO substituent at atom C4 unexpectedly occupies an axial site. This observation is the more surprising since in ebastine itself, both non-H substituents on the piperidine ring occupy equatorial sites (Cheng et al., 2005: Sharma et al., 2015). The 3,5-dinitrobenzoate anion in compound (I) is nearly planar: the dihedral angles between the aryl ring and the substituents at atoms C21, C23 and C25 are 1.4 (2), 4.2 (2) and 10.7 (2) $^{\circ}$ , respectively: only the O atoms of the 5-nitro group are significantly displaced from the mean plane of the anion as a whole, 0.219 (2) Å for atom O25 and 0.187 (2) Å for atom O26: the r.m.s. deviation from the mean plane for the entire anion is only 0.082 Å.

#### 3. Supramolecular features

In addition to the N-H···O hydrogen bond within the selected asymmetric unit, already noted (*cf*. Fig. 1 and Table 1), there are two C-H···O hydrogen bonds in the crystal of compound (I), which link the components into complex sheets,

|                              | •        |                         |              |                             |
|------------------------------|----------|-------------------------|--------------|-----------------------------|
| $D - H \cdot \cdot \cdot A$  | D-H      | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdot \cdot \cdot A$ |
| $N1-H1\cdots O22$            | 0.99 (3) | 1.66 (2)                | 2.634 (3)    | 167 (2)                     |
| $C2-H2A\cdots O25^{i}$       | 0.97     | 2.50                    | 3.444 (3)    | 163                         |
| $C11 - H11A \cdots O14^{ii}$ | 0.97     | 2.49                    | 3.358 (4)    | 150                         |
|                              |          |                         |              |                             |

Symmetry codes: (i) x - 1,  $-y + \frac{3}{2}$ ,  $z + \frac{1}{2}$ ; (ii) x - 1, y, z.

whose formation can, however, be readily analysed in terms of two simple, one-dimensional sub-structures (Ferguson et al., 1998a,b; Gregson et al., 2000). In the simpler of the two substructures, cations related by translation are linked by a single  $C-H \cdots O$  hydrogen bond to form a C(6) chain running parallel to the [100] direction (Fig. 2, Table 1). The second substructure involves the cations and the anions, and a combination of the N-H···O hydrogen bond and a second C- $H \cdots O$  hydrogen bond links ions related by a *c*-glide plane into a  $C_2^2(11)$  chain, running parallel to the [201] direction, in which cations and anions alternate (Fig. 3, Table 1). The combination of these two chain motifs generates a sheet lying parallel to (010) in the domain 0.5 < y < 1.0, and a second such sheet, related to the first by inversion, lies in the domain 0.0 < y < 0.5, but there are no direction-specific interactions between adjacent sheets. It is interesting to note that none of the hydrogen





Part of the crystal structure of compound (I), showing a hydrogenbonded C(6) chain of cations running parallel to [100]. For clarity, the anions, the minor disorder component of the cation, and the H atoms bonded to carrier atoms not involved in the motif shown have been omitted. The atoms marked with an asterisk (\*) or a hash (#) are at the symmetry positions (-1 + x, y, z) and (1 + x, y, z) respectively.



#### Figure 3

Part of the crystal structure of compound (I), showing a hydrogenbonded  $C_2^2(11)$  chain running parallel to  $[20\overline{1}]$ . For clarity, the minor disorder component of the cation, and the H atoms bonded to C atoms not involved in the motif shown have been omitted.

bonds in compound (I) involves the  $Ph_2CHO$  substituent, so that direction-specific interactions cannot be held responsible for the location of this substituent at an axial site on the piperidine ring.

#### 4. Database survey

The molecular structure of neutral ebastine (Cheng et al., 2005; Sharma et al., 2015) differs from that of the ebastinium cation in compound (I) in two significant respects. Firstly, there is no disorder in the neutral compound as opposed to the orientation disorder of the disubstituted aryl ring in (I) and secondly, both of the non-H substituents on the piperidine ring occupy equatorial sites in the neutral compound as opposed to the presence of one axial and one equatorial substituent in (I). Neither of the two reports on the structure of ebastine gave any description of the supramolecular assembly: one (Cheng et al., 2005) noted the presence of hydrogen bonds, but the second (Sharma et al., 2015) did not record these. Accordingly, we have now examined the supramolecular assembly of ebastine using the most recently reported atomic coordinates (Sharma et al., 2015): a combination of one  $C-H \cdots N$ hydrogen bond and one  $C-H \cdots O$  hydrogen bond links the molecules into sheets lying parallel to (100) and containing  $R_2^2(20)$  and  $R_6^6(48)$  rings, both centrosymmetric, arranges in chess board fashion (Fig. 4). Structures have also been reported recently for some structurally related compounds with pharmacological activity, including the picrate salt of the anticholinergic drug propiverine, 4-(2,2-diphenyl-2-propoxyacetoxy)-1-methylpiperidin-1-ium picrate (Jasinski et al., 2009), and the anti-spasmodic drug pargeverine, N,N-dimethyl-[2-(2,2-diphenyl)-2-prop-2-ynyloxy)acetoxy]ethylamine and its picrate and (2R,3R)-(hydrogentartrate) salts (Shaibah *et al.*, 2017).

#### 5. Synthesis and crystallization

A sample of ebastine was a gift from RL Fine Chem, Pvt. Ltd., Bengaluru, India. For the synthesis of compound (I), ebastine (100 mg, 0.20 mmol) and 3,5-dinitrobenzoic acid (45 mg, 0.20 mmol) were dissolved in hot methanol and held at 333 K for 30 min, with magnetic stirring throughout. The resulting solution was then allowed to cool slowly to room temperature, giving colourless block-like crystals (m.p. 424–428 K).

#### 6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Three low-angle reflections (021), (002) and (012), which had been attenuated by the beam stop, were omitted from the refinements. It was apparent from an early stage in the refinement that the disubstituted aryl ring was disordered over two sets of atomic sights having unequal occupancies, and corresponding to different orientations of





Part of the crystal structure of ebastine showing the formation of a hydrogen-bonded sheet of  $R_2^2(20)$  and  $R_6^6(48)$  rings. The original atomic coordinates (Sharma *et al.*, 2015) have been used and, for the sake of clarity, the H atoms not involved in the motifs shown have been omitted.

## research communications

Table 2Experimental details.

| Crystal data                                                             |                                                                        |
|--------------------------------------------------------------------------|------------------------------------------------------------------------|
| Chemical formula                                                         | $C_{32}H_{40}NO_2 \cdot C_7H_3N_2O_6$                                  |
| M <sub>r</sub>                                                           | 681.76                                                                 |
| Crystal system, space group                                              | Monoclinic, $P2_1/c$                                                   |
| Temperature (K)                                                          | 293                                                                    |
| a, b, c (Å)                                                              | 5.9168 (3), 28.3733 (12),<br>21.0782 (11)                              |
| $\beta$ (°)                                                              | 97.836 (5)                                                             |
| $V(Å^3)$                                                                 | 3505.6 (3)                                                             |
| Z                                                                        | 4                                                                      |
| Radiation type                                                           | Μο Κα                                                                  |
| $\mu \text{ (mm}^{-1})$                                                  | 0.09                                                                   |
| Crystal size (mm)                                                        | $0.23 \times 0.21 \times 0.18$                                         |
|                                                                          |                                                                        |
| Data collection                                                          |                                                                        |
| Diffractometer                                                           | Rigaku Saturn724                                                       |
| Absorption correction                                                    | Multi-scan (SADABS; Krause et al., 2015)                               |
| $T_{\min}, T_{\max}$                                                     | 0.956, 0.984                                                           |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections | 40112, 7331, 4388                                                      |
| R <sub>int</sub>                                                         | 0.061                                                                  |
| $(\sin \theta / \lambda)_{\text{max}} (\text{\AA}^{-1})$                 | 0.629                                                                  |
|                                                                          |                                                                        |
| Refinement                                                               |                                                                        |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                      | 0.065, 0.179, 1.05                                                     |
| No. of reflections                                                       | 7331                                                                   |
| No. of parameters                                                        | 470                                                                    |
| No. of restraints                                                        | 22                                                                     |
| H-atom treatment                                                         | H atoms treated by a mixture of independent and constrained refinement |
| $\Delta \rho_{\rm max}$ , $\Delta \rho_{\rm min}$ (e Å <sup>-3</sup> )   | 0.200.25                                                               |

Computer programs: CrystalClear (Rigaku, 2011), SHELXS86 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

this ring relative to its substituents. For the minor orientation, the bonded distances and the 1,3-non-bonded distances were restrained to be the same as the corresponding distances in the major orientation, subject to s.u.s of 0.01 and 0.02 Å, respectively: in addition, the anisotropic displacement parameters for corresponding pairs of atomic sites were constrained to be equal. All H atoms, other than those in the minor disorder components, were located in difference-Fourier maps. The C-bound H atoms were all treated as riding atoms in geometrically idealized positions: C—H 0.93 Å

(aromatic), 0.96 Å (CH<sub>3</sub>), 0.97 Å (CH<sub>2</sub>) or 0.98 Å (aliphatic C–H), with  $U_{iso}(H) = 1.5U_{eq}(C$ -methyl) and  $1.2U_{eq}(C)$  for other H atoms. The methyl groups were permitted to rotate but not to tilt. For the H atom bonded to the N atom, the atomic coordinates were refined with  $U_{iso}(H) = 1.2U_{eq}(N)$ , giving an N–H distance of 0.99 (3) Å. Subject to these conditions, the occupancies of the two disordered components refined to 0.706 (4) and 0.294 (4). In the final analysis of variance there was a large value, 15.256, of  $K = [\text{mean}(F_o^2)/\text{mean}(F_c^2)]$  for the group of 867 very weak reflections having  $F_c/F_c(\text{max})$  in the range 0.000  $< F_c/F_c(\text{max}) < 0.005$ .

#### Acknowledgements

The authors thank the DST-PURSE Lab. (Mangalore University) for the diffractometer and other facilities. MAES thanks the University of Mysore for research facilities and BKS thanks the UGC for the award of a Rajiv Gandhi National Fellowship.

#### References

- Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.
- Cheng, J., Zhou, Z. & Yang, G. (2005). *Acta Cryst.* E**61**, 02932–02933. Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998*a*).
- Acta Cryst. B54, 129–138. Ferguson, G., Glidewell, C., Gregson, R. M. & Meehan, P. R. (1998b). Acta Cryst. B54, 139–150.
- Gregson, R. M., Glidewell, C., Ferguson, G. & Lough, A. J. (2000). Acta Cryst. B56, 39–57.
- Jasinski, J. P., Butcher, R. J., Hakim AL-arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2009). Acta Cryst. E65, 01738–01739.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.
- Rigaku (2011). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Shaibah, M. A. E., Yathirajan, H. S., Kumar, S. M., Byrappa, K. & Glidewell, C. (2017). E73, 1488–1493.
- Sharma, R., Prasher, D. & Tiwari, R. K. (2015). J. Appl. Cryst. 48, 1299–1301.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Van Cauwenberge, P., De Belder, T. & Sys, L. (2004). Expert Opin. Pharmacother. 5, 1807–1813.
- Wiseman, L. R. & Faulds, D. (1996). Drugs, 51, 260-277.

# supporting information

Acta Cryst. (2017). E73, 1513-1516 [https://doi.org/10.1107/S205698901701324X]

## Crystal structure of ebastinium 3,5-dinitrobenzoate

## Mohammed A. E. Shaibah, Belakavadi K. Sagar, Hemmige S. Yathirajan, S. Madan Kumar and Christopher Glidewell

### **Computing details**

Data collection: *CrystalClear* (Rigaku, 2011); cell refinement: *CrystalClear* (Rigaku, 2011); data reduction: *CrystalClear* (Rigaku, 2011); program(s) used to solve structure: *SHELXS86* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2014* (Sheldrick, 2015); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL2014* (Sheldrick, 2015) and *PLATON* (Spek, 2009).

4-(Benzhydryloxy)-1-[4-(4-tert-butylphenyl)-4-oxobutyl]piperidinium 3,5-dinitrobenzoate

| Crystal data                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $C_{32}H_{40}NO_{2}^{+}\cdot C_{7}H_{3}N_{2}O_{6}^{-}$<br>$M_{r} = 681.76$<br>Monoclinic, $P2_{1}/c$<br>a = 5.9168 (3) Å<br>b = 28.3733 (12) Å<br>c = 21.0782 (11) Å<br>$\beta = 97.836$ (5)°<br>V = 3505.6 (3) Å <sup>3</sup><br>Z = 4                          | F(000) = 1448<br>$D_x = 1.292 \text{ Mg m}^{-3}$<br>Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$<br>Cell parameters from 10431 reflections<br>$\theta = 2.4-31.2^{\circ}$<br>$\mu = 0.09 \text{ mm}^{-1}$<br>T = 293  K<br>Block, colourless<br>$0.23 \times 0.21 \times 0.18 \text{ mm}$                                                                                               |
| Data collection                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                |
| Rigaku Saturn724<br>diffractometer<br>Radiation source: fine focus sealed tube<br>$\varphi$ and $\omega$ scans<br>Absorption correction: multi-scan<br>(SADABS; Krause <i>et al.</i> , 2015)<br>$T_{min} = 0.956, T_{max} = 0.984$<br>40112 measured reflections | 7331 independent reflections<br>4388 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.061$<br>$\theta_{max} = 26.6^\circ, \ \theta_{min} = 2.4^\circ$<br>$h = -7 \rightarrow 7$<br>$k = -35 \rightarrow 35$<br>$l = -26 \rightarrow 25$                                                                                                                                                       |
| Refinement                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                |
| Refinement on $F^2$<br>Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.065$<br>$wR(F^2) = 0.179$<br>S = 1.05<br>7331 reflections<br>470 parameters<br>22 restraints<br>Primary atom site location: structure-invariant<br>direct methods                | Secondary atom site location: difference Fourier<br>map<br>Hydrogen site location: mixed<br>H atoms treated by a mixture of independent<br>and constrained refinement<br>$w = 1/[\sigma^2(F_o^2) + (0.0661P)^2 + 1.0412P]$<br>where $P = (F_o^2 + 2F_c^2)/3$<br>$(\Delta/\sigma)_{max} = 0.001$<br>$\Delta\rho_{max} = 0.20$ e Å <sup>-3</sup><br>$\Delta\rho_{min} = -0.25$ e Å <sup>-3</sup> |

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

|      | X           | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|------|-------------|--------------|--------------|-----------------------------|-----------|
| N1   | 0.3135 (4)  | 0.72898 (6)  | 0.37455 (11) | 0.0510 (5)                  |           |
| H1   | 0.374 (4)   | 0.7192 (8)   | 0.3349 (12)  | 0.061*                      |           |
| C2   | 0.4460 (4)  | 0.77114 (8)  | 0.40021 (11) | 0.0479 (6)                  |           |
| H2B  | 0.6062      | 0.7629       | 0.4097       | 0.057*                      |           |
| H2A  | 0.3938      | 0.7811       | 0.4398       | 0.057*                      |           |
| C3   | 0.4185 (4)  | 0.81101 (8)  | 0.35285 (11) | 0.0457 (6)                  |           |
| H3A  | 0.4826      | 0.8018       | 0.3147       | 0.055*                      |           |
| H3B  | 0.5027      | 0.8382       | 0.3713       | 0.055*                      |           |
| C4   | 0.1701 (4)  | 0.82448 (8)  | 0.33437 (11) | 0.0457 (6)                  |           |
| H4   | 0.1579      | 0.8488       | 0.3011       | 0.055*                      |           |
| C5   | 0.0386 (4)  | 0.78137 (9)  | 0.30906 (12) | 0.0553 (7)                  |           |
| H5A  | -0.1219     | 0.7892       | 0.2994       | 0.066*                      |           |
| H5B  | 0.0916      | 0.7713       | 0.2697       | 0.066*                      |           |
| C6   | 0.0676 (4)  | 0.74172 (9)  | 0.35682 (13) | 0.0575 (7)                  |           |
| H6A  | 0.0043      | 0.7510       | 0.3950       | 0.069*                      |           |
| H6B  | -0.0160     | 0.7144       | 0.3388       | 0.069*                      |           |
| O4   | 0.0623 (3)  | 0.84055 (5)  | 0.38735 (7)  | 0.0484 (4)                  |           |
| C41  | 0.1566 (4)  | 0.88157 (8)  | 0.41962 (11) | 0.0460 (6)                  |           |
| H41  | 0.3107      | 0.8739       | 0.4403       | 0.055*                      |           |
| C141 | 0.0098 (4)  | 0.89282 (8)  | 0.47183 (11) | 0.0453 (6)                  |           |
| C142 | -0.1660 (4) | 0.86412 (9)  | 0.48464 (11) | 0.0511 (6)                  |           |
| H142 | -0.1975     | 0.8367       | 0.4610       | 0.061*                      |           |
| C143 | -0.2974 (5) | 0.87546 (10) | 0.53237 (12) | 0.0613 (7)                  |           |
| H143 | -0.4159     | 0.8557       | 0.5403       | 0.074*                      |           |
| C144 | -0.2527 (6) | 0.91565 (10) | 0.56772 (13) | 0.0686 (8)                  |           |
| H144 | -0.3422     | 0.9236       | 0.5991       | 0.082*                      |           |
| C145 | -0.0755 (6) | 0.94408 (10) | 0.55665 (15) | 0.0798 (10)                 |           |
| H145 | -0.0426     | 0.9711       | 0.5812       | 0.096*                      |           |
| C146 | 0.0550 (6)  | 0.93287 (9)  | 0.50904 (14) | 0.0719 (8)                  |           |
| H146 | 0.1749      | 0.9525       | 0.5019       | 0.086*                      |           |
| C151 | 0.1735 (4)  | 0.92244 (8)  | 0.37464 (11) | 0.0469 (6)                  |           |
| C152 | 0.3761 (5)  | 0.94689 (9)  | 0.37596 (14) | 0.0612 (7)                  |           |
| H152 | 0.5016      | 0.9380       | 0.4050       | 0.073*                      |           |
| C153 | 0.3962 (6)  | 0.98416 (10) | 0.33510 (18) | 0.0770 (9)                  |           |
| H153 | 0.5338      | 1.0003       | 0.3368       | 0.092*                      |           |
| C154 | 0.2134 (7)  | 0.99730 (11) | 0.29230 (17) | 0.0808 (10)                 |           |
| H154 | 0.2264      | 1.0222       | 0.2644       | 0.097*                      |           |
| C155 | 0.0086 (6)  | 0.97356 (11) | 0.29040 (15) | 0.0754 (9)                  |           |
| H155 | -0.1161     | 0.9827       | 0.2613       | 0.091*                      |           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

| C156     | -0.0118 (5)                      | 0.93637 (9)  | 0.33152 (13)               | 0.0603 (7)  |           |
|----------|----------------------------------|--------------|----------------------------|-------------|-----------|
| H156     | -0.1504                          | 0.9207       | 0.3302                     | 0.072*      |           |
| C11      | 0.3376 (6)                       | 0.68892 (10) | 0.42095 (17)               | 0.0865 (11) |           |
| H11A     | 0.2213                           | 0.6656       | 0.4071                     | 0.104*      |           |
| H11B     | 0.3101                           | 0.7005       | 0.4625                     | 0.104*      |           |
| C12      | 0.5687 (5)                       | 0.66527 (9)  | 0.42801 (16)               | 0.0724 (9)  |           |
| H12A     | 0.6523                           | 0.6664       | 0.4737                     | 0.087*      |           |
| H12B     | 0.6523                           | 0.6776       | 0.4014                     | 0.087*      |           |
| C13      | 0.5462 (5)                       | 0.61430 (10) | 0.41343 (17)               | 0.0833 (10) |           |
| H13A     | 0.4697                           | 0.6108       | 0.3700                     | 0.100*      |           |
| H13B     | 0.4481                           | 0.6005       | 0.4417                     | 0.100*      |           |
| C14      | 0.7637 (6)                       | 0.58644 (10) | 0.41954 (15)               | 0.0709 (8)  |           |
| 014      | 0.9451 (4)                       | 0.60527 (8)  | 0.43408 (16)               | 0.1170 (10) |           |
| C161     | 0.7488 (5)                       | 0.53513 (9)  | 0.40590 (14)               | 0.0659 (8)  | 0.706 (4) |
| C162     | 0.5497 (7)                       | 0.51590 (14) | 0.3727 (3)                 | 0.0902 (17) | 0.706 (4) |
| H162     | 0.4245                           | 0.5351       | 0.3599                     | 0.108*      | 0.706 (4) |
| C163     | 0.5386(7)                        | 0.46828 (14) | 0.3589 (3)                 | 0.0907 (18) | 0.706 (4) |
| H163     | 0.4054                           | 0.4561       | 0.3364                     | 0.109*      | 0.706 (4) |
| C164     | 0.7209 (5)                       | 0.43792 (9)  | 0.37782 (13)               | 0.0587 (7)  | 0.706 (4) |
| C165     | 0.9157 (9)                       | 0.45915 (18) | 0.4048 (5)                 | 0.103 (4)   | 0.706 (4) |
| H165     | 1.0458                           | 0.4407       | 0.4147                     | 0.124*      | 0.706 (4) |
| C166     | 0.9308 (9)                       | 0.50664 (17) | 0.4185 (4)                 | 0.099(3)    | 0.706 (4) |
| H166     | 1.0697                           | 0.5192       | 0.4367                     | 0.119*      | 0.706 (4) |
| C171     | 0.7488 (5)                       | 0.53513 (9)  | 0.40590 (14)               | 0.0659 (8)  | 0.294 (4) |
| C172     | 0.5662 (15)                      | 0.5073 (3)   | 0.4211 (5)                 | 0.0902(17)  | 0.294 (4) |
| H172     | 0.4497                           | 0.5216       | 0.4396                     | 0.108*      | 0.294 (4) |
| C173     | 0.5554 (15)                      | 0.4594 (3)   | 0.4093 (5)                 | 0.0907 (18) | 0.294 (4) |
| H173     | 0.4382                           | 0.4415       | 0.4223                     | 0.109*      | 0.294 (4) |
| C174     | 0.7209 (5)                       | 0.43792 (9)  | 0.37782 (13)               | 0.0587 (7)  | 0.294 (4) |
| C175     | 0.9160 (17)                      | 0.4626 (4)   | 0.3793 (15)                | 0.103 (4)   | 0.294 (4) |
| H175     | 1.0483                           | 0.4468       | 0.3726                     | 0.124*      | 0.294 (4) |
| C176     | 0.9267 (18)                      | 0.5104 (4)   | 0.3905(12)                 | 0.099(3)    | 0.294 (4) |
| H176     | 1.0625                           | 0.5262       | 0.3872                     | 0.119*      | 0.294(4)  |
| C181     | 0 7009 (5)                       | 0.38550 (9)  | 0.36135(13)                | 0.0591(7)   | 0.22      |
| C182     | 0.6091 (6)                       | 0.35909(12)  | 0.41549 (16)               | 0.0925(11)  |           |
| H18A     | 0.5908                           | 0.3264       | 0.4044                     | 0.139*      |           |
| H18B     | 0.4643                           | 0.3721       | 0.4220                     | 0.139*      |           |
| H18C     | 0.7145                           | 0.3622       | 0.4541                     | 0.139*      |           |
| C183     | 0.9278(5)                        | 0.36413(11)  | 0.35081 (18)               | 0.0903(11)  |           |
| H18D     | 1.0326                           | 0.3661       | 0 3897                     | 0.135*      |           |
| H18E     | 0.9883                           | 0.3811       | 0.3175                     | 0.135*      |           |
| H18F     | 0.9059                           | 0.3317       | 0.3386                     | 0.135*      |           |
| C184     | 0.5349(5)                        | 0.37825(11)  | 0.3900<br>0.29982 (14)     | 0.0753 (8)  |           |
| H18G     | 0.5895                           | 0.3949       | 0.2653                     | 0.113*      |           |
| H18H     | 0.3872                           | 0.3900       | 0.2055                     | 0.113*      |           |
| H18I     | 0.5240                           | 0.3453       | 0.2898                     | 0.113*      |           |
| C21      | 0.7522 (4)                       | 0.5455       | 0.19856 (11)               | 0.0431(5)   |           |
| $C^{21}$ | 0.7522(7)<br>0.8763( $\Lambda$ ) | 0.66070 (8)  | 0.17050(11)<br>0.22368(11) | 0.0458 (6)  |           |
| U44      | 0.0/03(4)                        | 0.000/2(0)   | 0.22300(11)                | 0.0700(0)   |           |

| H22 | 0.8338     | 0.6448      | 0.2587       | 0.055*     |
|-----|------------|-------------|--------------|------------|
| C23 | 1.0631 (4) | 0.64614 (8) | 0.19644 (12) | 0.0486 (6) |
| C24 | 1.1306 (4) | 0.66812 (9) | 0.14419 (12) | 0.0525 (6) |
| H24 | 1.2571     | 0.6579      | 0.1263       | 0.063*     |
| C25 | 1.0032 (4) | 0.70587 (9) | 0.11964 (11) | 0.0505 (6) |
| C26 | 0.8156 (4) | 0.72192 (8) | 0.14567 (11) | 0.0493 (6) |
| H26 | 0.7327     | 0.7476      | 0.1278       | 0.059*     |
| C27 | 0.5535 (4) | 0.71822 (9) | 0.23013 (13) | 0.0504 (6) |
| O21 | 0.4514 (3) | 0.75292 (7) | 0.20644 (9)  | 0.0689 (5) |
| O22 | 0.5158 (3) | 0.69618 (6) | 0.27979 (9)  | 0.0649 (5) |
| N23 | 1.1983 (4) | 0.60593 (8) | 0.22480 (13) | 0.0672 (6) |
| O23 | 1.1460 (4) | 0.58894 (8) | 0.27369 (12) | 0.0920 (7) |
| O24 | 1.3561 (4) | 0.59235 (8) | 0.19822 (12) | 0.1010 (8) |
| N25 | 1.0724 (5) | 0.72964 (9) | 0.06325 (12) | 0.0700 (7) |
| O25 | 1.2546 (4) | 0.71894 (9) | 0.04679 (11) | 0.0974 (8) |
| O26 | 0.9409 (5) | 0.75808 (9) | 0.03539 (11) | 0.1034 (8) |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|      | $U^{11}$    | $U^{22}$    | U <sup>33</sup> | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|------|-------------|-------------|-----------------|--------------|--------------|--------------|
| N1   | 0.0585 (13) | 0.0405 (10) | 0.0606 (13)     | 0.0002 (9)   | 0.0321 (11)  | -0.0031 (10) |
| C2   | 0.0490 (14) | 0.0496 (13) | 0.0474 (14)     | 0.0035 (11)  | 0.0147 (11)  | -0.0072 (11) |
| C3   | 0.0470 (14) | 0.0421 (12) | 0.0508 (14)     | -0.0017 (10) | 0.0168 (11)  | -0.0075 (11) |
| C4   | 0.0480 (14) | 0.0472 (13) | 0.0444 (13)     | 0.0039 (11)  | 0.0150 (11)  | -0.0043 (11) |
| C5   | 0.0430 (14) | 0.0664 (16) | 0.0576 (16)     | 0.0005 (12)  | 0.0108 (12)  | -0.0223 (13) |
| C6   | 0.0514 (16) | 0.0545 (15) | 0.0722 (18)     | -0.0128 (12) | 0.0285 (14)  | -0.0229 (14) |
| O4   | 0.0520 (10) | 0.0442 (9)  | 0.0527 (10)     | 0.0011 (7)   | 0.0203 (8)   | -0.0131 (7)  |
| C41  | 0.0446 (13) | 0.0415 (12) | 0.0521 (14)     | 0.0040 (10)  | 0.0076 (11)  | -0.0054 (11) |
| C141 | 0.0513 (14) | 0.0397 (12) | 0.0453 (13)     | 0.0080 (11)  | 0.0082 (11)  | -0.0019 (10) |
| C142 | 0.0510 (15) | 0.0579 (15) | 0.0441 (14)     | 0.0011 (12)  | 0.0058 (12)  | -0.0045 (12) |
| C143 | 0.0581 (17) | 0.0772 (19) | 0.0501 (15)     | 0.0059 (14)  | 0.0130 (13)  | 0.0065 (14)  |
| C144 | 0.088 (2)   | 0.0690 (18) | 0.0540 (17)     | 0.0236 (17)  | 0.0277 (16)  | 0.0054 (15)  |
| C145 | 0.122 (3)   | 0.0537 (17) | 0.070 (2)       | 0.0072 (18)  | 0.040 (2)    | -0.0174 (15) |
| C146 | 0.100 (2)   | 0.0518 (16) | 0.0696 (19)     | -0.0091 (15) | 0.0334 (18)  | -0.0129 (14) |
| C151 | 0.0498 (14) | 0.0416 (12) | 0.0521 (14)     | 0.0045 (11)  | 0.0171 (12)  | -0.0075 (11) |
| C152 | 0.0595 (17) | 0.0526 (15) | 0.0755 (19)     | 0.0007 (13)  | 0.0234 (15)  | -0.0081 (14) |
| C153 | 0.079 (2)   | 0.0557 (17) | 0.106 (3)       | 0.0001 (16)  | 0.047 (2)    | -0.0010 (18) |
| C154 | 0.117 (3)   | 0.0544 (17) | 0.083 (2)       | 0.0105 (19)  | 0.056 (2)    | 0.0096 (16)  |
| C155 | 0.092 (2)   | 0.0709 (19) | 0.0646 (19)     | 0.0251 (18)  | 0.0133 (17)  | 0.0088 (16)  |
| C156 | 0.0614 (17) | 0.0567 (16) | 0.0640 (17)     | 0.0072 (13)  | 0.0131 (14)  | 0.0013 (14)  |
| C11  | 0.109 (3)   | 0.0547 (16) | 0.110 (3)       | 0.0158 (17)  | 0.069 (2)    | 0.0279 (17)  |
| C12  | 0.089 (2)   | 0.0500 (15) | 0.086 (2)       | 0.0124 (15)  | 0.0381 (18)  | 0.0181 (15)  |
| C13  | 0.087 (2)   | 0.0635 (18) | 0.095 (2)       | 0.0207 (16)  | -0.0026 (19) | -0.0269 (17) |
| C14  | 0.073 (2)   | 0.0543 (16) | 0.083 (2)       | 0.0038 (15)  | 0.0015 (17)  | -0.0062 (15) |
| O14  | 0.0782 (17) | 0.0650 (14) | 0.200 (3)       | -0.0039 (12) | -0.0078 (17) | -0.0152 (16) |
| C161 | 0.0586 (17) | 0.0523 (15) | 0.085 (2)       | 0.0033 (14)  | 0.0038 (15)  | -0.0064 (14) |
| C162 | 0.071 (3)   | 0.063 (2)   | 0.125 (5)       | 0.028 (2)    | -0.031 (3)   | -0.023 (3)   |
| C163 | 0.062 (2)   | 0.065 (2)   | 0.136 (5)       | 0.0107 (19)  | -0.023 (3)   | -0.029 (3)   |

# supporting information

| C164 | 0.0531 (16) | 0.0537 (15) | 0.0714 (18) | 0.0057 (13)  | 0.0157 (14) | -0.0063 (13) |
|------|-------------|-------------|-------------|--------------|-------------|--------------|
| C165 | 0.064 (2)   | 0.056 (2)   | 0.181 (11)  | 0.0166 (17)  | -0.013 (3)  | -0.014 (4)   |
| C166 | 0.061 (2)   | 0.057 (2)   | 0.170 (10)  | 0.0066 (17)  | -0.017 (3)  | -0.011 (3)   |
| C171 | 0.0586 (17) | 0.0523 (15) | 0.085 (2)   | 0.0033 (14)  | 0.0038 (15) | -0.0064 (14) |
| C172 | 0.071 (3)   | 0.063 (2)   | 0.125 (5)   | 0.028 (2)    | -0.031 (3)  | -0.023 (3)   |
| C173 | 0.062 (2)   | 0.065 (2)   | 0.136 (5)   | 0.0107 (19)  | -0.023 (3)  | -0.029 (3)   |
| C174 | 0.0531 (16) | 0.0537 (15) | 0.0714 (18) | 0.0057 (13)  | 0.0157 (14) | -0.0063 (13) |
| C175 | 0.064 (2)   | 0.056 (2)   | 0.181 (11)  | 0.0166 (17)  | -0.013 (3)  | -0.014 (4)   |
| C176 | 0.061 (2)   | 0.057 (2)   | 0.170 (10)  | 0.0066 (17)  | -0.017 (3)  | -0.011 (3)   |
| C181 | 0.0610 (17) | 0.0529 (15) | 0.0659 (17) | 0.0014 (13)  | 0.0175 (14) | 0.0020 (13)  |
| C182 | 0.121 (3)   | 0.087 (2)   | 0.073 (2)   | -0.007 (2)   | 0.028 (2)   | 0.0090 (18)  |
| C183 | 0.079 (2)   | 0.069 (2)   | 0.124 (3)   | 0.0164 (17)  | 0.019 (2)   | -0.014 (2)   |
| C184 | 0.085 (2)   | 0.0685 (18) | 0.074 (2)   | -0.0021 (16) | 0.0180 (17) | -0.0076 (16) |
| C21  | 0.0455 (13) | 0.0423 (12) | 0.0432 (13) | -0.0045 (10) | 0.0127 (11) | -0.0105 (10) |
| C22  | 0.0518 (14) | 0.0467 (13) | 0.0406 (13) | -0.0047 (11) | 0.0124 (11) | -0.0067 (10) |
| C23  | 0.0479 (14) | 0.0481 (13) | 0.0496 (14) | 0.0050 (11)  | 0.0062 (12) | -0.0117 (11) |
| C24  | 0.0476 (14) | 0.0601 (15) | 0.0527 (15) | -0.0056 (12) | 0.0173 (12) | -0.0186 (13) |
| C25  | 0.0535 (15) | 0.0581 (15) | 0.0428 (14) | -0.0097 (12) | 0.0169 (12) | -0.0076 (12) |
| C26  | 0.0536 (15) | 0.0480 (13) | 0.0472 (14) | -0.0034 (11) | 0.0106 (12) | -0.0072 (11) |
| C27  | 0.0486 (15) | 0.0505 (14) | 0.0548 (16) | -0.0031 (12) | 0.0166 (12) | -0.0165 (13) |
| O21  | 0.0677 (13) | 0.0620 (12) | 0.0798 (13) | 0.0171 (10)  | 0.0207 (10) | -0.0063 (10) |
| O22  | 0.0747 (13) | 0.0646 (11) | 0.0634 (12) | 0.0063 (9)   | 0.0386 (10) | -0.0071 (10) |
| N23  | 0.0668 (16) | 0.0624 (15) | 0.0715 (16) | 0.0143 (12)  | 0.0064 (14) | -0.0117 (13) |
| O23  | 0.1038 (18) | 0.0849 (15) | 0.0873 (16) | 0.0259 (13)  | 0.0133 (14) | 0.0247 (13)  |
| O24  | 0.0920 (17) | 0.1013 (17) | 0.1138 (19) | 0.0466 (14)  | 0.0293 (15) | -0.0112 (15) |
| N25  | 0.0849 (19) | 0.0748 (17) | 0.0557 (15) | -0.0129 (14) | 0.0292 (15) | -0.0015 (13) |
| O25  | 0.0960 (18) | 0.127 (2)   | 0.0806 (16) | -0.0088 (15) | 0.0543 (14) | -0.0002 (14) |
| O26  | 0.132 (2)   | 0.1008 (18) | 0.0844 (17) | 0.0167 (16)  | 0.0413 (16) | 0.0340 (15)  |
|      |             |             |             |              |             |              |

## Geometric parameters (Å, °)

| N1—C2  | 1.491 (3) | C13—H13A  | 0.9700    |
|--------|-----------|-----------|-----------|
| N1-C11 | 1.493 (3) | C13—H13B  | 0.9700    |
| N1-C6  | 1.496 (3) | C14—O14   | 1.201 (3) |
| N1—H1  | 0.99 (3)  | C14—C161  | 1.484 (4) |
| C2—C3  | 1.503 (3) | C161—C166 | 1.344 (5) |
| C2—H2B | 0.9700    | C161—C162 | 1.397 (5) |
| C2—H2A | 0.9700    | C162—C163 | 1.382 (5) |
| C3—C4  | 1.517 (3) | C162—H162 | 0.9300    |
| С3—НЗА | 0.9700    | C163—C164 | 1.396 (4) |
| С3—Н3В | 0.9700    | C163—H163 | 0.9300    |
| C4—O4  | 1.434 (3) | C164—C165 | 1.355 (6) |
| C4—C5  | 1.507 (3) | C164—C181 | 1.528 (4) |
| C4—H4  | 0.9800    | C165—C166 | 1.378 (5) |
| C5—C6  | 1.504 (4) | C165—H165 | 0.9300    |
| C5—H5A | 0.9700    | C166—H166 | 0.9300    |
| С5—Н5В | 0.9700    | C172—C173 | 1.381 (8) |
| С6—Н6А | 0.9700    | C172—H172 | 0.9300    |
|        |           |           |           |

## supporting information

| С6—Н6В                      | 0.9700      | С173—Н173           | 0.9300               |
|-----------------------------|-------------|---------------------|----------------------|
| 04—C41                      | 1.423 (3)   | C175—C176           | 1.376 (8)            |
| C41—C151                    | 1.510 (3)   | С175—Н175           | 0.9300               |
| C41 - C141                  | 1 526 (3)   | C176—H176           | 0.9300               |
| C41—H41                     | 0.9800      | C181 - C183         | 1.517(4)             |
| $C_{141} - C_{142}$         | 1 377 (3)   | C181 - C182         | 1.517(1)<br>1.526(4) |
| C141 - C146                 | 1 386 (3)   | C181 - C184         | 1.520(1)<br>1.530(4) |
| $C_{142}$ $C_{143}$         | 1 390 (3)   | C182—H18A           | 0.9600               |
| C142 - H142                 | 0.9300      | C182—H18B           | 0.9600               |
| C142 - 11142<br>C143 - C144 | 1 368 (4)   | C182—H18C           | 0.9600               |
| C143_H143                   | 0.9300      | C183—H18D           | 0.9600               |
| C144 - C145                 | 1 368 (4)   | C183—H18E           | 0.9600               |
| $C_{144} = C_{145}$         | 0.0300      | C183—1118E          | 0.9000               |
| C144 - 11144<br>C145 - C146 | 1.384(A)    | C183 - H18G         | 0.9000               |
| $C_{145} = C_{140}$         | 0.0200      | C104—11100          | 0.9000               |
| C145—11145                  | 0.9300      | C184 H18I           | 0.9000               |
| $C_{140}$                   | 1,292 (2)   | $C_{104} = H_{101}$ | 1.280(2)             |
| C151—C152                   | 1.382(3)    | $C_{21} = C_{20}$   | 1.360(3)             |
| C151 - C156                 | 1.383 (4)   | $C_{21} = C_{22}$   | 1.383(3)<br>1.524(2) |
| C152—C153                   | 1.379 (4)   | $C_{21} = C_{27}$   | 1.524 (3)            |
| C152—H152                   | 0.9300      | C22—C23             | 1.3/8(3)             |
| C153—C154                   | 1.363 (5)   | C22—H22             | 0.9300               |
| С153—Н153                   | 0.9300      | $C_{23}$ $C_{24}$   | 1.3/1(3)             |
| C154—C155                   | 1.382 (5)   | C23—N23             | 1.4/3 (3)            |
| С154—Н154                   | 0.9300      | C24—C25             | 1.370 (3)            |
| C155—C156                   | 1.381 (4)   | С24—Н24             | 0.9300               |
| С155—Н155                   | 0.9300      | C25—C26             | 1.381 (3)            |
| С156—Н156                   | 0.9300      | C25—N25             | 1.472 (3)            |
| C11—C12                     | 1.512 (4)   | C26—H26             | 0.9300               |
| C11—H11A                    | 0.9700      | C27—O21             | 1.226 (3)            |
| C11—H11B                    | 0.9700      | C27—O22             | 1.265 (3)            |
| C12—C13                     | 1.481 (4)   | N23—O24             | 1.215 (3)            |
| C12—H12A                    | 1.0216      | N23—O23             | 1.215 (3)            |
| C12—H12B                    | 0.8703      | N25—O26             | 1.215 (3)            |
| C13—C14                     | 1.501 (4)   | N25—O25             | 1.215 (3)            |
| C2—N1—C11                   | 112.0 (2)   | C11—C12—H12A        | 113.2                |
| C2—N1—C6                    | 110.00 (18) | C13—C12—H12B        | 107.6                |
| C11—N1—C6                   | 110.5 (2)   | C11—C12—H12B        | 110.1                |
| C2—N1—H1                    | 107.3 (14)  | H12A—C12—H12B       | 110.5                |
| C11—N1—H1                   | 109.0 (14)  | C12—C13—C14         | 116.4 (3)            |
| C6—N1—H1                    | 107.9 (15)  | C12—C13—H13A        | 108.2                |
| N1—C2—C3                    | 111.04 (19) | C14—C13—H13A        | 108.2                |
| N1—C2—H2B                   | 109.4       | C12—C13—H13B        | 108.2                |
| C3—C2—H2B                   | 109.4       | C14—C13—H13B        | 108.2                |
| N1—C2—H2A                   | 109.4       | H13A—C13—H13B       | 107.3                |
| C3—C2—H2A                   | 109.4       | O14—C14—C161        | 120.9 (3)            |
| H2B—C2—H2A                  | 108.0       | O14—C14—C13         | 120.9 (3)            |
| C2—C3—C4                    | 111.94 (19) | C161—C14—C13        | 118.2 (3)            |

| С2—С3—Н3А                               | 109.2       | C166—C161—C162                                      | 117.5 (3)            |
|-----------------------------------------|-------------|-----------------------------------------------------|----------------------|
| С4—С3—НЗА                               | 109.2       | C166—C161—C14                                       | 121.8 (3)            |
| С2—С3—Н3В                               | 109.2       | C162—C161—C14                                       | 120.3 (3)            |
| C4—C3—H3B                               | 109.2       | C163—C162—C161                                      | 120.0 (4)            |
| НЗА—СЗ—НЗВ                              | 107.9       | C163—C162—H162                                      | 120.0                |
| Q4—C4—C5                                | 105.72 (18) | C161—C162—H162                                      | 120.0                |
| 04                                      | 113.48 (19) | C162—C163—C164                                      | 122.1 (4)            |
| $C_{5}-C_{4}-C_{3}$                     | 108 75 (19) | C162 - C163 - H163                                  | 119.0                |
| 04—C4—H4                                | 109.6       | C164 - C163 - H163                                  | 119.0                |
| C5-C4-H4                                | 109.6       | $C_{165} - C_{164} - C_{163}$                       | 115.0<br>115.2(3)    |
| $C_3 - C_4 - H_4$                       | 109.6       | $C_{165} = C_{164} = C_{181}$                       | 113.2(3)<br>124.3(3) |
| C6-C5-C4                                | 111 3 (2)   | $C_{163}$ $C_{164}$ $C_{181}$                       | 124.3(3)<br>120.2(3) |
| C6 C5 H5A                               | 100 4       | $C_{103} = C_{104} = C_{101}$                       | 120.2(5)<br>123.3(5) |
| $C_{4}$ $C_{5}$ $H_{5}$ $A$             | 109.4       | $C_{104} = C_{105} = C_{100}$                       | 123.3 (3)            |
| C4 - C5 - H5P                           | 109.4       | C164 - C165 - H165                                  | 110.5                |
| $C_0 - C_5 - H_5 B$                     | 109.4       | C100 - C105 - H105                                  | 118.5                |
| C4—C5—H5B                               | 109.4       | C101 - C100 - C105                                  | 121.5 (5)            |
| H5A—C5—H5B                              | 108.0       | C161—C166—H166                                      | 119.3                |
| NI                                      | 111.49 (19) | C165—C166—H166                                      | 119.3                |
| N1—C6—H6A                               | 109.3       | C173—C172—H172                                      | 119.0                |
| С5—С6—Н6А                               | 109.3       | C172—C173—H173                                      | 120.1                |
| N1—C6—H6B                               | 109.3       | С176—С175—Н175                                      | 118.8                |
| С5—С6—Н6В                               | 109.3       | C175—C176—H176                                      | 118.7                |
| H6A—C6—H6B                              | 108.0       | C183—C181—C182                                      | 109.0 (3)            |
| C41—O4—C4                               | 116.44 (17) | C183—C181—C164                                      | 112.3 (2)            |
| O4—C41—C151                             | 112.52 (19) | C182—C181—C164                                      | 109.4 (2)            |
| O4—C41—C141                             | 106.93 (18) | C183—C181—C184                                      | 107.5 (2)            |
| C151—C41—C141                           | 112.66 (18) | C182—C181—C184                                      | 108.4 (2)            |
| O4—C41—H41                              | 108.2       | C164—C181—C184                                      | 110.1 (2)            |
| C151—C41—H41                            | 108.2       | C181—C182—H18A                                      | 109.5                |
| C141—C41—H41                            | 108.2       | C181—C182—H18B                                      | 109.5                |
| C142—C141—C146                          | 117.8 (2)   | H18A—C182—H18B                                      | 109.5                |
| C142—C141—C41                           | 122.5 (2)   | C181—C182—H18C                                      | 109.5                |
| C146—C141—C41                           | 119.7 (2)   | H18A—C182—H18C                                      | 109.5                |
| C141—C142—C143                          | 121.1 (2)   | H18B—C182—H18C                                      | 109.5                |
| C141—C142—H142                          | 119.4       | C181—C183—H18D                                      | 109.5                |
| C143—C142—H142                          | 119.4       | C181—C183—H18E                                      | 109.5                |
| C144 - C143 - C142                      | 120 1 (3)   | H18D-C183-H18E                                      | 109.5                |
| C144— $C143$ — $H143$                   | 120.1 (5)   | C181 - C183 - H18F                                  | 109.5                |
| C142 - C143 - H143                      | 120.0       | $H_{18D}$ (183 $-H_{18F}$                           | 109.5                |
| $C_{142} = C_{143} = C_{143}$           | 110.7(3)    | H18E C183 H18E                                      | 109.5                |
| $C_{145} = C_{144} = C_{145}$           | 119.7 (5)   | $C_{181} = C_{183} = H_{18G}$                       | 109.5                |
| C143 - C144 - 11144                     | 120.2       | $C_{101} = C_{104} = H_{100}$                       | 109.5                |
| C143 - C144 - H144                      | 120.2       |                                                     | 109.5                |
| $C_{144} = C_{145} = U_{145} = U_{145}$ | 120.5 (5)   | $\Box_{10} = \bigcup_{104} \Box_{104} = \Box_{104}$ | 109.3                |
| C144 - C145 - H145                      | 119.9       |                                                     | 109.5                |
| C140 - C143 - H143                      | 119.9       |                                                     | 109.5                |
| C145 - C146 - C141                      | 121.0 (3)   |                                                     | 109.5                |
| C145—C146—H146                          | 119.5       | C26—C21—C22                                         | 119.2 (2)            |
| C141—C146—H146                          | 119.5       | C26—C21—C27                                         | 120.1 (2)            |

| C152—C151—C156                                          | 118.5 (2)                   | C22—C21—C27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.7 (2)            |
|---------------------------------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| C152—C151—C41                                           | 120.3 (2)                   | C23—C22—C21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.6 (2)            |
| C156—C151—C41                                           | 121.2 (2)                   | С23—С22—Н22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.2                |
| C153—C152—C151                                          | 121.4 (3)                   | С21—С22—Н22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.2                |
| C153—C152—H152                                          | 119.3                       | C24—C23—C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 122.4 (2)            |
| C151—C152—H152                                          | 119.3                       | C24—C23—N23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 118.5 (2)            |
| C154—C153—C152                                          | 119.7 (3)                   | C22—C23—N23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.2 (2)            |
| C154—C153—H153                                          | 120.2                       | $C_{25}$ $C_{24}$ $C_{23}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 117.0(2)             |
| C152—C153—H153                                          | 120.2                       | $C_{25}$ $C_{24}$ $H_{24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121.5                |
| $C_{153}$ $C_{154}$ $C_{155}$                           | 120.0(3)                    | $C_{23}$ $C_{24}$ $H_{24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121.5                |
| $C_{153}$ $C_{154}$ $H_{154}$                           | 120.0                       | $C_{24}$ $C_{25}$ $C_{26}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 127.6(2)             |
| $C_{155} - C_{154} - H_{154}$                           | 120.0                       | $C_{24}$ $C_{25}$ $C_{26}$ $C_{25}$ $C_{26}$ $C_{25}$ $C_{26}$ $C_{25}$ $C_{26}$ $C$ | 122.0(2)<br>117.6(2) |
| $C_{156}$ $C_{155}$ $C_{154}$                           | 120.4(3)                    | $C_{26}$ $C_{25}$ $N_{25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 117.0(2)<br>119.8(2) |
| C156—C155—H155                                          | 119.8                       | $C_{20} = C_{25} = 1.25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 119.0(2)             |
| C154—C155—H155                                          | 119.8                       | $C_{21} = C_{26} = C_{25}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.3                |
| $C_{155} = C_{156} = C_{151}$                           | 120.1 (3)                   | $C_{21} = C_{20} = H_{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.3                |
| C155 C156 H156                                          | 120.1 (5)                   | 021  027  022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120.5<br>127.0(2)    |
| C151 C156 H156                                          | 120.0                       | 021 - 027 - 022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 127.0(2)             |
| N1 = C11 = C12                                          | 120.0<br>114.0(2)           | 021 - 027 - 021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 116.1(2)             |
| N1 = C11 = H11A                                         | 114.0 (2)                   | 022 - 027 - 021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 113.0(2)<br>124.5(3) |
| $\Gamma_{12}$ $\Gamma_{11}$ $\Gamma_{11}$ $\Gamma_{11}$ | 108.8                       | 024 N23 C23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 124.3(3)             |
| N1 C11 H11P                                             | 108.8                       | 024 - N23 - C23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 117.3(3)             |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$    | 100.0                       | 025 - N25 - 025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 117.7(2)<br>124.2(2) |
|                                                         | 100.0                       | 026 N25 C25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 124.2(3)             |
|                                                         | 10/./                       | 020 - N25 - C25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 117.0(3)             |
| C13 - C12 - C11                                         | 111.0 (5)                   | 025—N25—C25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 118.1 (3)            |
| C13—C12—H12A                                            | 104.2                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| C11—N1—C2—C3                                            | -179.77 (19)                | Q14—C14—C161—C166                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.3 (6)             |
| C6-N1-C2-C3                                             | -56.5 (2)                   | $C_{13}$ $-C_{14}$ $-C_{161}$ $-C_{166}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -170.9(5)            |
| N1-C2-C3-C4                                             | 57.2 (2)                    | 014-C14-C161-C162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -162.5(4)            |
| $C_2 - C_3 - C_4 - O_4$                                 | 614(2)                      | $C_{13}$ $-C_{14}$ $-C_{161}$ $-C_{162}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 164(5)               |
| $C_2 = C_3 = C_4 = C_5$                                 | -559(2)                     | $C_{166} - C_{161} - C_{162} - C_{163}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 56(7)                |
| 04-C4-C5-C6                                             | -663(2)                     | $C_{14}$ $C_{161}$ $C_{162}$ $C_{163}$ $C_{16$ | 1786(4)              |
| $C_{3}$ $C_{4}$ $C_{5}$ $C_{6}$                         | 55.8(3)                     | $C_{161} - C_{162} - C_{163} - C_{164}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.8(7)               |
| $C_2 = N_1 = C_6 = C_5$                                 | 57.0(2)                     | $C_{162} = C_{163} = C_{164} = C_{165}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -62(8)               |
| $C_1 = N_1 = C_6 = C_5$                                 | -1788(2)                    | $C_{162} = C_{163} = C_{164} = C_{181}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1799(4)             |
| C4-C5-C6-N1                                             | -57.7(3)                    | $C_{163}$ $C_{164}$ $C_{165}$ $C_{166}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 57(11)               |
| $C_{5}-C_{4}-O_{4}-C_{4}$                               | -179.83(19)                 | $C_{181} - C_{164} - C_{165} - C_{166}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 179.0 (6)            |
| $C_3 - C_4 - O_4 - C_{41}$                              | 61.1 (3)                    | $C_{162}$ $C_{161}$ $C_{166}$ $C_{165}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -6.3(10)             |
| C4-O4-C41-C151                                          | 53.7 (3)                    | $C_{14}$ $C_{161}$ $C_{166}$ $C_{165}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -179.2(6)            |
| C4-O4-C41-C141                                          | 177.88 (18)                 | $C_{164}$ $C_{165}$ $C_{166}$ $C_{161}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5(13)              |
| 04-C41-C141-C142                                        | 4.6 (3)                     | $C_{165}$ $C_{164}$ $C_{181}$ $C_{183}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -24.9(6)             |
| $C_{151} - C_{41} - C_{141} - C_{142}$                  | 128.7 (2)                   | $C_{163}$ $C_{164}$ $C_{181}$ $C_{183}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 148.2 (4)            |
| 04—C41—C141—C146                                        | -176.5(2)                   | $C_{165}$ $C_{164}$ $C_{181}$ $C_{182}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 96.3 (6)             |
| C151—C41—C141—C146                                      | -52.4 (3)                   | C163—C164—C181—C182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -90.6 (4)            |
| C146—C141—C142—C143                                     | 1.4 (4)                     | C165—C164—C181—C184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -144.6 (6)           |
| C41—C141—C142—C143                                      | -179.7 (2)                  | C163—C164—C181—C184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28.4 (4)             |
| C141—C142—C143—C144                                     | -0.2 (4)                    | C26—C21—C22—C23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.4 (3)              |
|                                                         | $ = \langle \cdot \rangle $ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •• (-)               |

| C142—C143—C144—C145 | -1.2 (4)   | C27—C21—C22—C23 | -176.3 (2) |
|---------------------|------------|-----------------|------------|
| C143—C144—C145—C146 | 1.4 (5)    | C21—C22—C23—C24 | -0.9 (4)   |
| C144—C145—C146—C141 | -0.1 (5)   | C21—C22—C23—N23 | 178.1 (2)  |
| C142—C141—C146—C145 | -1.3 (4)   | C22—C23—C24—C25 | 0.0 (4)    |
| C41—C141—C146—C145  | 179.8 (3)  | N23—C23—C24—C25 | -179.0 (2) |
| O4—C41—C151—C152    | -129.7 (2) | C23—C24—C25—C26 | 0.4 (4)    |
| C141—C41—C151—C152  | 109.3 (2)  | C23—C24—C25—N25 | -179.6 (2) |
| O4—C41—C151—C156    | 50.5 (3)   | C22—C21—C26—C25 | -1.0 (3)   |
| C141—C41—C151—C156  | -70.5 (3)  | C27—C21—C26—C25 | 176.7 (2)  |
| C156—C151—C152—C153 | -0.6 (4)   | C24—C25—C26—C21 | 0.1 (4)    |
| C41—C151—C152—C153  | 179.6 (2)  | N25-C25-C26-C21 | -180.0 (2) |
| C151—C152—C153—C154 | -0.2 (4)   | C26—C21—C27—O21 | 1.3 (3)    |
| C152—C153—C154—C155 | 0.6 (5)    | C22—C21—C27—O21 | 179.0 (2)  |
| C153—C154—C155—C156 | -0.3 (5)   | C26—C21—C27—O22 | -177.2 (2) |
| C154—C155—C156—C151 | -0.5 (4)   | C22—C21—C27—O22 | 0.5 (3)    |
| C152—C151—C156—C155 | 0.9 (4)    | C24—C23—N23—O24 | -4.2 (4)   |
| C41—C151—C156—C155  | -179.3 (2) | C22—C23—N23—O24 | 176.8 (2)  |
| C2—N1—C11—C12       | -72.4 (3)  | C24—C23—N23—O23 | 174.9 (2)  |
| C6—N1—C11—C12       | 164.5 (3)  | C22—C23—N23—O23 | -4.1 (4)   |
| N1-C11-C12-C13      | -122.9 (3) | C24—C25—N25—O26 | 168.7 (3)  |
| C11—C12—C13—C14     | -179.2 (3) | C26—C25—N25—O26 | -11.3 (4)  |
| C12-C13-C14-O14     | -1.7 (5)   | C24—C25—N25—O25 | -9.9 (4)   |
| C12-C13-C14-C161    | 179.5 (3)  | C26—C25—N25—O25 | 170.2 (2)  |
|                     |            |                 |            |

*Hydrogen-bond geometry (Å, °)* 

| D—H···A                       | D—H      | H···A    | D···A     | D—H··· $A$ |
|-------------------------------|----------|----------|-----------|------------|
| N1—H1…O22                     | 0.99 (3) | 1.66 (2) | 2.634 (3) | 167 (2)    |
| C2— $H2A$ ···O25 <sup>i</sup> | 0.97     | 2.50     | 3.444 (3) | 163        |
| C11—H11A…O14 <sup>ii</sup>    | 0.97     | 2.49     | 3.358 (4) | 150        |

Symmetry codes: (i) x-1, -y+3/2, z+1/2; (ii) x-1, y, z.