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Abstract

Open population capture-recapture models are widely
used to estimate population demographics and abun-
dance over time. Bayesian methods exist to incorporate
open population modelling with spatial capture-recapture,
allowing for estimation of the effective area sampled
and population density. Here, open population spatial
capture-recapture, both Cormack-Jolly-Seber and Jolly-
Seber models, is formulated as a hidden Markov model,
allowing inference by maximum likelihood. The method is
applied to a twelve-year survey of male jaguars (Panthera
onca) in the Cockscomb Wildlife Sanctuary Basin, Belize,
to estimate the apparent survival and population abun-
dance over time. The hidden Markov model approach is
compared with Bayesian data augmentation, demonstrat-
ing it to be substantially more efficient. A simulation study
shows maximum likelihood inference to be negligibly bi-
ased for small sample sizes and recapture rates.

1 Introduction

Many capture-recapture surveys (Seber, 1965) are con-
ducted over time periods where the surveyed population
undergoes change: individuals are born, immigrate, em-
igrate, or die. For these methods, each individual must
have a unique mark that allows detectors to record encoun-
ters with them, creating their capture history. Two widely
used statistical models for open populations, the Cormack-
Jolly-Seber (CJS) (Cormack, 1964) and Jolly-Seber (JS)
(Jolly, 1965) models, use these capture histories. For CJS
models, inference is restricted to those individuals whose
capture histories were recorded: marked individuals. From
this, the apparent survival and detectability of marked in-
dividuals can be estimated. Only apparent survival is es-
timable since animals that die and those that permanently
emigrate are indistiguishable from their capture histories.
JS models, by assuming marked and unmarked individu-
als are exchangeable, extend inference to the entire pop-
ulation: estimating population size over time, recruitment
(birth and immigration) rate, and survival rate.

Neither CJS nor JS incorporate the spatial component in-
herent in capture-recapture: individuals that range closer
to a detector are more likely to be captured by that de-
tector. Spatial capture-recapture (SCR) methods (Efford,

2004; Borchers and Efford, 2008) do use detector locations
to estimate detection probability over space. This provides
a rigorous estimate of the effective area sampled and pop-
ulation density.

SCR provides an efficient and flexible framework for closed
population capture-recapture inference. Each individual is
associated with a location in space, its activity centre. The
farther an activity centre is from a detector, the less likely
it is that the individual is captured by that detector. This
activity centre is a latent variable: it is unobserved. Max-
imum likelihood SCR modelling is achieved by numeri-
cal integration, averaging over all possible activity cen-
tres in the survey region. Bayesian SCR models (Royle
et al., 2013b) obtain inference by sampling activity centres
within a Markov chain Monte Carlo (MCMC) algorithm,
using the full joint likelihood of detection parameters and
activity centres. Alternatively, Bayesian inference can be
obtained from the marginal likelihood where integration
over activity centres is achieved by quadrature.

Existing open population SCR models (Gardner et al.,
2010; Royle et al., 2013b), which are extensions of CJS
and JS, rely on a Bayesian approach and the full joint
likelihood of detection parameters, activity centres and life
histories. Each individual has a latent life history that is
sampled within an MCMC algorithm. For JS, data aug-
mentation is used: a meta-population, of pre-determined
size, is sampled where some individuals are born, and so
contribute to the estimated population size, and some are
never born. The meta-population is chosen to ensure it
exceeds the size of the true population and the MCMC
sampling is used to infer the distribution of the popula-
tion size. This method is computationally demanding and,
when data augmentation is used, ties the interpretation of
recruitment parameters to the size of the meta-population,
which is determined by the analyst. No methods exist to
fit open population SCR models by maximum likelihood;
in particular, no algorithm other than MCMC has been
used to average over all possible life histories.

In this paper, open population SCR is formulated as a
hidden Markov model (HMM) (Zucchini et al., 2016), al-
lowing for inference to be drawn by maximum likelihood
and marginalisation over all life histories to be done ex-
actly. A HMM can be described by two processes: a hidden
process and a observation process. The hidden process is a
Markov chain of discrete states; the observations comprise
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a time series that depends on this hidden process: at each
time, an observation depends only on the current state of
the hidden process, and conditional on these hidden states,
observations are independent. For open population SCR,
the hidden process is the life history of the individual and
the observations are the capture records. HMM method-
ology provides an efficient algorithm to average over all
possible life histories. Combined with the extant numeri-
cal integration over activity centres, this allows both SCR
CJS and JS models to be fit by maximum likelihood. Also,
it allows for a semi-complete data likelihood to be com-
puted and Bayesian inference obtained more efficiently.

The JS method is applied to a camera trap survey of male
jaguars (Panthera onca) in the Cockscomb Basin Wildlife
Sanctuary, Belize (Harmsen et al., 2017). The survey was
repeated for twelve years, between 2002 and 2015, during
dry season months, between January and July. A key ques-
tion for this population is how population size changes over
time and what demographic processes drive this change.
The method presented provides SCR estimates of popu-
lation density, identifies which demographic rates are re-
sponsible for population change, and provides a means of
testing whether these rates vary over time.

Finally, a simulation study is conducted to investigate the
effect of small sample size, due to low population density or
low detectability, on maximum likelihood estimates. The
simulation is based on the jaguar survey and estimates the
bias and confidence interval coverage for each estimated
parameter.

2 Methods

Consider a capture-recapture survey with K occasions and
J detectors. During the survey, n individuals are detected
and uniquely marked, or identified to have some natural
unique mark. Unique marks are used to recognise whether
an individual was detected on each occasion or not: the
capture history. Individual i has a capture history Ωi, a
J × K matrix, with kth column ωi,−,k and (j, k)th entry
ωi,j,k. The entries of the capture history depend on the
type of detector used: ωi,j,k = 0, 1 is binary for detectors
that physically trap individuals or only register whether
the individual was captured, or not, on each occasion (e.g.
DNA hair traps); alternatively, ωi,j,k can be the number
of times an individual is encountered by the detector, if
this is recorded (e.g. with cameras). The collection of all
capture histories is denoted Ω.

In SCR, each individual is associated with a latent activity
centre, xi, in two-dimensional space. The activity centre is
the spatial component of the model: it is the point in two-
dimensional space that represents the average location of
the individual over the survey time. In each occasion, the
probability that an individual is detected on a particular
detector is a decreasing function of the distance between
this detector and the individual’s activity centre: those
individuals that spend, on average, more time far away
from the detector are detected less often than those that
spend their time at a closer distance.

In open population capture-recapture, each individual has
a life history, which is unobserved. On each occasion k, in-
dividual i has one of three possible life states, si,k: unborn,
alive, or dead. Individuals who will be born in an occasion
after occasion k and those who will immigrate into the sur-
vey region after occasion k are said to be in the ‘unborn’
state; individuals that are alive in occasion k and present
in the survey region are in the ‘alive’ state; finally, those
individuals that died in some occasion before occasion k or
emigrated from the survey region in some occasion before
occasion k are said to be in the ‘dead’ state.

Here, the aim is to incorporate both SCR and open popu-
lation capture-recapture into a single, tractable likelihood.

2.1 Detection model

In a particular occasion, the probability that an individ-
ual is detected, and the number of times the individual
is detected by each detector, depends on the individual’s
activity centre and life state. This can be described by an
encounter rate model where λj,k(xi, si,k) is the mean num-
ber of captures of individual i, with activity centre xi, on
occasion k at detector j. Clearly, individuals that are yet
to be born (or to immigrate) and those who have already
died (or emigrated) cannot be detected: λj,k(xi, s) = 0 for
s = unborn, dead. For those individuals that are alive on
occasion k, λj,k(xi, alive), can be specified, for example,
as a half-normal (or many other possible functional forms
can be used, see Efford (2012)).

The number of times an individual is detected in occasion
k by detector j is assumed to have a Poisson distribu-
tion with mean λj,k(xi, si,k). Thus the probability that
an individual is seen at all in occasion k by detector j,
pj,k(xi, si,k), is

pj,k(xi, si,k) = 1− exp (−λj,k(xi, si,k))

It is equally possible to specify a form for pj,k, for example
half-normal, and derive λj,k from this.

Given the mean encounter rate, the probability of the ob-
served capture record on each occasion can be stated. If
capture records are binary, only a record of whether the
animal was seen or not seen in each occasion is made, then
the probability is

[ωi,j,k|xi, si,k] = p
ωi,j,k

i,j,k (1− pi,j,k)1−ωi,j,k

where pi,j,k = pj,k(xi, si,k), for brevity.

If capture records are counts, which are all assumed to be
independently Poisson distributed, then

[ωi,j,k|xi, si,k] =
λ
ωi,j,k

i,j,k exp(−λi,j,k)

ωi,j,k!

where λi,j,k = λj,k(xi, si,k), for brevity.

The probability of the entire capture record on occasion
k, assuming detectors and detections are independent, is
thus

[ωi,·,k|xi, si,k] =

J∏
j=1

[ωi,j,k|xi, si,k]
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If detections are not independent, then detectors are com-
peting and [ωi,−,k|xi, si,k] has a multinomial distribution.
This can occur, for example, when physical trapping of the
individual in one detector removes the possibility of being
captured in another detector for that occasion.

2.2 Open population model

Two popular models in open population capture-recapture
are the Cormack-Jolly-Seber (CJS) and the Jolly-Seber
(JS) model. For CJS, individuals are known to be alive
from the first occasion they are studied: individuals can
only have life states that are ‘alive’ or ‘dead’. The proba-
bility that an individual alive in the study region in occa-
sion k survives until occasion k + 1 is called the survival
probability on occasion k and is denoted φk. In particu-
lar, only the capture histories of those individuals that are
marked, captured at least once, are used and so the popu-
lation studied, the population of marked individuals, has
known size.

For JS, individuals can be born, as well as survive and
die, during a survey. Furthermore, JS models assume un-
marked individuals are exchangeable with marked indi-
viduals, that is, their capture history arises from the same
model. This assumption allows JS models to estimate the
number of individuals ever to have lived during the survey,
N . In SCR, the total number of individuals with activity
centre x is often assumed to be Poisson distributed with
rate D(x). This rate is interpreted as the density at loca-
tion x. When incorporated with the JS model, this inter-
pretation changes. Each individual is assigned an activity
centre, just as before, at location x with rate D(x), but
that individual is, possibly, only alive for some number of
occasions.

Conceptually, all individuals are placed in a queue: some
wait to enter the queue (‘unborn’), some are in the queue
(‘alive’), and some have left the queue (‘dead’). The esti-
mate N̂ is the estimated number who were in the queue
at some point. The N individuals are divided among the
k occasions: some are in the queue from occasion 1, some
join in occasion 2, and so on. The probability that an in-
dividual is selected to join the queue in occasion k is αk.
For example, α1 is the probability that an individual is in
the queue at the beginning of the survey, that is, is alive
from the beginning; α2 is the probability that an individ-
ual is born or immigrates in occasion 2. Equivalently, the
probability that an individual enters the queue on occa-
sion k given it has not entered up to that time is denoted
βk where

βk =

{
α1 : k = 1

αk∏k−1
l=1 (1−βl)

: k > 1

Similarly, individuals leave the queue in occasion k with
probability 1− φk.

This queue can be described by a Markov chain. The life
state of an individual in an occasion depends only on its
state in the previous occasion, satisfying the Markov prop-
erty. A Markov chain is fully specified by its initial distri-
bution and transition probability matrix.

For CJS, the initial distribution δ is known, all individuals
begin in the alive state:

δ =
alive dead

( )1 0

For JS, the initial distribution depends on an estimable
parameter:

δ =
unborn alive dead

( )1− α1 α1 0

The transition probability matrix for CJS is

Γk =

alive dead( )
φk 1− φk alive
0 1 dead

For JS,

Γk =

unborn alive dead( )1− βk βk 0 unborn
0 φk 1− φk alive
0 0 1 dead

Note that βk and not αk is used as it is the conditional
probability of being born, given the individual hasn’t been
born up to that time, that is needed. This implicitly uses
the knowledge that an individual in the ‘unborn’ state
must have been in this state for all past occasions.

2.3 Hidden Markov Model

Hidden Markov models are applied to time series data
where observed records at each time point depend on an
unobserved Markov chain. Here, the capture history of an
individual is recorded over time, and each capture record
depends on the unobserved life state of that individual,
where life states follow a Markov chain. Therefore, CJS
and JS are examples of hidden Markov models.

Incorporating SCR with this formulation is simple. Con-
ceptually, for each occasion, individuals in the queue
(those that are alive) are either recorded or not depending
on their activity centre. Following hidden Markov model
methodology, this is described by a matrix, termed here
the detection matrix.

For CJS, the detection matrix for occasion k is

Pk(xi) =

alive dead( )
[ωi,−,k|xi, si,k = alive] 0

0 [ωi,−,k|xi, si,k = dead]

The detection matrix for JS is similar: a 3 × 3 diagonal
matrix with diagonal entries [ωi,−,k|xi, si,k = s] for s =
unborn, alive,dead.
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si,k−1 si,k si,k+1

ωi,·,k−1 ωi,·,k ωi,·,k+1

Figure 1. HMM formulation of open population spatial
capture-recapture model: individual i has life state si,k and
capture record (over all detectors) ωi,·,k in occasion k. Life
history is a hidden Markov process and capture records are
independent conditional on life history. Nodes represent
random variables and arrows terminate on variables whose
distribution is defined conditional on the variable from whence
the arrow originated. Unconnected nodes are conditionally
independent given their parent nodes.

The power of recognising this to be a hidden Markov model
is clear when it comes to averaging over all possible life
histories, weighting each by their probability. It is simply
a matrix product:

[Ωi|xi] = δPi,1Γ1Pi,2Γ2 . . .Γi,K−1Pi,Kε

where Pi,K = PK(xi) and ε is a column vector of ones
with the appropriate size.

2.4 Spatial model

Until now, the activity centre of each individual has been
treated as known. The conditional probability [Ωi|xi]
must be averaged over all possible activity centres to com-
pute the unconditional likelihood of each capture history,
[Ωi]. Here, it is assumed that activity centres are dis-
tributed according to a, possibly inhomogeneous, Poisson
process with intensity D(x) at spatial location x.

For CJS, the number of individuals, n, is fixed and known;
thus, the distribution of these activity centres are realised
from a binomial point process:

[x1, · · · ,xn] =
1

n!

n∏
i=1

D(xi)

D̄

where D̄ =
∫
D(x) dx, the total intensity of activity cen-

tres over all space.

For JS, the number of observed individuals, n, is a random
quantity that depends on the probability of an individual
being seen at least once. The set of all activity centres,
for the whole population, is thinned to create a subset of
those individuals that were seen. Clearly, individuals with
activity centres closer to the detectors are more likely to
be included in this subset. The probability of an animal
with activity centre at x being seen at least once, p(x),
is the thinning probability. The resultant set of activity

centres arises from a thinned Poisson process with rate
D(x)p(x) at location x. The thinning probability is com-
puted easily: the probability of being seen at least once is
the complement of the probability of never being seen: if
Ω0 is the capture history of an individual that is never seen
by any detector on any occasion, then p(x) = 1 − [Ω0|x]
is the probability of being seen at least once during the
survey with activity centre x. The probability density of
the activity centres is then given

[x1, · · · ,xn] =
1

n!

n∏
i=1

D(xi)p(xi) exp(−D(xi)p(xi))

2.5 Likelihood

The likelihood L, assuming individuals to be independent,
is now tractable.

For CJS, the likelihood is

L = [Ω] =

∫
[x1, . . . ,xn]

n∏
i=1

[Ωi|xi] dx1 · · ·xn

For JS, as n is a random quantity, only the capture histo-
ries of those animals seen at least once are observed, thus
the likelihood is

L = [Ω] = p−n·

∫
[x1, . . . ,xn]

n∏
i=1

[Ωi|xi] dx1 · · ·xn

where p· =
∫
p(x)[x] dx is the probability of being seen

at least once averaged over activity centre x.

The integration of all possible activity centres is performed
by simple quadrature.

Maximum likelihood estimation can be used to obtain
point, variance and interval estimates of all parameters
in the standard way; similarly, priors can be specified for
parameters and MCMC used with this semi-complete data
likelihood.

2.6 Abundance

For JS models, the total number of individuals to have
lived at some time during the survey is estimated:

N̂ =

∫
D̂(x) dx

This quantity, however, is rarely of interest. The true in-
terest lies in estimating abundance over time. The mean
estimated density in occasion k can be computed:

D̂k(x) = D(x)δΓ1 . . .Γk−1ε1

where ε1 is the 3× 1 vector (0, 1, 0). The estimated abun-
dance is then derived in the usual way: N̂k =

∫
D̂k(x) dx.

When parameters are estimated by maximum likelihood,
the variance and confidence intervals for N̂k can be ob-
tained by parametric bootstrap, sampling from the asymp-
totic distributions of the maximum likelihood estimators.
If Bayesian estimation were used, posterior inference for
Nk is obtained trivially from the above formula and the
posteriors of the model parameters.
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Figure 2. Cockscomb Basin Wildlife Sanctuary, Belize with
approximate positions of camera traps during the survey.

3 Application: Jaguars

The aim is to estimate the population size and demo-
graphics over time of male jaguars in the Cockscomb
Basin Wildlife Sanctuary, Belize (Harmsen et al., 2010).
Capture-recapture camera trap surveys were conducted
for each year between 2002− 2008 and 2011− 2015. Each
survey was considered an occasion and capture histories
comprised counts of the number of times each jaguar was
seen on each camera trap. A total of 21 camera traps were
used at some time during the survey. Nineteen of the cam-
eras remained in the same position for each survey. Over
12 occasions, 53 unique male jaguars were detected with
an average of 23.4 detections per individual.

3.1 Model

A SCR Jolly-Seber model was fit to the data with param-
eters: λ0 (mean encounter rate at a camera), σ detection
range of a camera, φ apparent survival rate, β arrival rate
(birth/immigration), and density D. Density necessarily
changes with time; models were considered where each pa-
rameter could be constant across occasions or a separate
value be estimated for each occasion. The models were
compared by AIC (Table 1).

λ0 σ φ β ∆AIC
M1 3 3 – 3 0
M2 3 3 3 – 2.5
M3 – 3 3 – 5.7
M4 – 3 3 3 12
M5 – 3 – 3 15.5

Table 1. Models (M1 – M5) with the five lowest AIC among
all models; ∆AIC is the difference between each model’s AIC
and the lowest AIC attained among all models. Each model
has parameters λ0 (mean encounter rate at a detector), σ
(detection range), φ (survivial probability), and β (arrival
rate) that are constant across occasions (–) or time-varying
(3).

The model with lowest AIC had constant survival proba-
bility φ̂ = 0.85. Encounter rate λ0, detection range σ, and
arrival rate β varied by occasion. Mean detection probabil-
ity per occasion was 0.42. Detectability increased sharply
from 0.39 before 2011 to 0.44 after 2011. This is presumed
to be due to the cameras being changed from film to dig-
ital: the model has identified this effect. Estimated mean
density was estimated for each occasion (Figure 3) with an
average density of 1.73 per 100 square kilometres. There
was no statistical evidence that density changed over time
(Figure 4). These conclusions are similar to those drawn
by Harmsen et al. (2017) on the same population.

The number of arrivals appears constant across most years
(Figure 5) except between occasions 2007 − 2008 and
2008 − 2010 where less arrivals, births/immigrations, oc-
curred. The average density of arrivals is 0.38 per 100
square kilometres. By contrast, the estimated arrival den-
sity in 2007− 2008 is 0.17 per 100 square kilometres. The
estimated arrival density between 2008−2010 is 0.56; this,
however, spans a longer time period, 3 years, and so the
average annual arrival rate is 0.19 per 100 square kilome-
tres.

3.2 Comparison with augmentation

For comparison, the simplest model, that with no time-
varying parameters, was fit using the augmentation ap-
proach (proposed in Gardner et al. (2010)) and the max-
imum likelihood method presented here. The Bayesian
method was implemented in rjags 4.6 (Plummer, 2013)
with weakly informative priors.

Both methods were implemented on a desktop Intel(R)
Core(TM) i7-4790 CPU (@3.6 GHz) with a cache size of
8 Gb and 16 Gb of RAM. Furthermore, both models were
fit using four processor cores under similar working condi-
tions. Maximum likelihood inference was obtained in 5.5
minutes, while inference by data augmentation took 23
hours to obtain a sample from the posterior, requiring
around 100000 iterations. Inference from the two meth-
ods was similar, differing most in the estimated detection
range, σ (Table 2). This discrepancy may be due to the low
effective sample size achieved (< 1000) for the parameter
σ.

MLE Bayes MLE CI Bayes CI
λ0 0.05 0.05 (0.04, 0.05) (0.04, 0.06)
σ 5163 5546 (4892, 5448) (5061, 6494)
α1 0.22 0.23 (0.12, 0.36) (0.1, 0.48)
φ 0.82 0.81 (0.76, 0.87) (0.74, 0.87)
N̄ 21 20 (16, 24) (15, 24)

Table 2. Maximum likelihood point estimates (MLE) and
95% confidence intervals (MLE CI) compared with data
augmentation approach with Bayesian posterior means(Bayes)
and 95% credible intervals (Bayes CI) for mean encounter
rate λ0, detection range σ, probability of being alive in the
first occasion α1, survival probability φ and average number of
jaguars alive in each occasion N̄ .

Averaging over life history using a HMM compared with

5



●

●

●

●

●

●

●

●

●
●

●
●

0.5

1

1.5

2

2.5

3

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Year

D
en

si
ty

 p
er

 1
00

 s
qu

ar
e 

ki
lo

m
et

re
s

Figure 3. Estimated density per 100 square kilometres (solid line) of male jaguars in the Cockscomb Basin Wildlife
Sanctuary, Belize for each occasion (points) with lower(dashed line) and upper (dotted line) 95% approximate confidence
interval bounds estimated by parametric bootstrap with 1000 resamples.
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Figure 4. Estimated change in density per 100 square kilometres (solid line) of male jaguars in Cockscomb Wildlife Sanctuary,
Belize (points) with lower(dashed line) and upper (dotted line) 95% approximate confidence interval bounds estimated by
parametric bootstrap with 1000 resamples. Horizontal line at zero density change (dot-dash line) given for reference.
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Figure 5. Estimated annual density of arrivals per 100 square kilometres (solid line) of male jaguars in Cockscomb Wildlife
Sanctuary, Belize from each survey year (points) with lower(dashed line) and upper (dotted line) 95% approximate confidence
interval bounds estimated by parametric bootstrap with 1000 resamples.

data augmentation was 250 times faster, provided simi-
lar inference, and avoided auto-correlation issues common
when MCMC is applied to models with latent temporal
processes.

4 Simulation study

The bias in maximum likelihood estimation of density and
survival was investigated by simulation. Surveys identical
to the jaguar survey, with the same camera locations and
number of occasions, were simulated. The survival proba-
bility φ, detection range σ and arrival rates α, we set equal
to the estimates given in Table 2. For each of six scenar-
ios, 100 surveys were simulated. The percentage bias and
95% confidence interval coverage was calculated for each
parameter.

For three scenarios, the true density of activity centres
D took three values 0.5D̂, D̂, and 2D̂ where D̂ was the
density estimated from the model fit in section 3.2. Mean
bias in density estimation was small < 5%, even when
the mean unique number of individuals sighted over the
entire survey were few, n = 27 (Table 3). Bias in survival
probability was negligible (< 1%). Coverage for density
estimation was nominal on average and only slightly less
than nominal (94%) on average for survival probability.

Three further scenarios considered the effect of detection
probability on bias. Mean encounter rate λ0 took three val-
ues 0.5λ̂0, λ̂0, and 2λ̂0 where λ̂0 was the estimated mean
encounter rate in 2. Bias in density estimation was simi-
lar to previous scenarios and confidence interval coverage

nominal on average. Bias in survival probability was larger
when the number of recaptures per individual were fewer,
however, bias was negligible. Confidence interval coverage
was nominal on average for survival probability.

n D bias D coverage φ bias φ coverage
27 1.2 96.1 -0.4 95.0
55 2.7 95.2 0.0 96.0

107 1.1 94.5 -0.4 92.0

Table 3. Estimated percentage bias in density of activity
centres D and survival probability φ with Monte Carlo error
(SE) computed from 100 simulations of the fitted jaguar model
with no time varying parameters, for each of three surveys
with n unique individuals seen on average

m D bias D coverage φ bias φ coverage
17 1.3 94.0 -1.3 95.0
32 2.8 95.4 -0.7 94.0
62 1.2 94.5 -0.0 98.0

Table 4. Estimated percentage bias in density of activity
centres D and survival probability φ with Monte Carlo error
(SE) computed from 100 simulations of the fitted jaguar model
with no time varying parameters, for each of three surveys
with an average of m recaptures per individual

Overall, the simulation study indicates that inference on
density and survival obtained by maximum likelihood is
negligibly biased, even when populations are sparse or an-
imals cryptic.
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5 Discussion

Formulating open population spatial capture-recapture
(SCR) as a hidden Markov model (HMM) brings several
advantages. The efficient algorithm that exists to compute
a HMM likelihood makes the open population SCR like-
lihood, marginalised over all activity centres, tractable.
Similar to the use of closed population SCR, this allows
the method to produce inference in a simple, efficient way.
Furthermore, it brings the potential to fit more sophisti-
cated models, for example, with time-varying parameters,
and perform model selection in a practical time frame.

The theoretical framework presented is general, incorpo-
rating Cormack-Jolly-Seber and Jolly-Seber models, al-
lowing inference to be obtained by maximum likelihood or
Bayesian methods. Here, maximum likelihood was imple-
mented and shown to produce negligibly biased inference,
even when sample size or recapture rate was low. Com-
pared with an augmentation approach, maximum likeli-
hood inference was similar in this case and obtained sub-
stantially faster. This is not a comparison of maximum
likelihood and Bayesian approaches; it is a comparison
of augmentation and marginalisation. A Bayesian semi-
complete data likelihood approach would also be more ef-
ficient than augmentation. Sampling correlated temporal
processes within a Markov chain Monte Carlo (MCMC)
algorithm often leads to poor mixing and low effective
sample size, requiring long chains to be generated. When
interest lies in the demographic parameters and not the
personal histories of each individual, numerical marginali-
sation over life histories, possible using a HMM algorithm,
leads to better mixing and thus faster convergence to the
posterior distribution. For complex models, in particular,
where parameters vary over time or detection probabil-
ity is heterogeneous, improving mixing can improve the
inferences obtained.

5.1 Assumptions

The assumptions made in open population SCR are the
combination of those made in SCR and those made in
capture-recapture open population modelling:

1. Animals have unique marks that do not change during
the survey.

2. Marks are recorded correctly; animals are not
misidentified.

3. Animals are independent. The life history, detection
probability, and activity centre of an animal is inde-
pendent of all other animals.

4. Animals are exchangeable, that is, animals with the
same activity centre and life history, are equally likely
to be detected and, if unborn, to be born (immigrate),
or, if alive, to die (emigrate). For CJS, the animals
referred to are solely those that are marked, while for
JS it refers to all animals in the population.

5. Emigration from the survey region is permanent.

5.2 Extensions

The proposed method is flexible and can be extended to
integrate further population structure, obtain more de-
tailed inference, and incorporate auxiliary data. In par-
ticular, all extensions available for closed population SCR
can be adapted to this context, e.g., covariates (Borchers
and Efford, 2008), telemetry (Royle et al., 2013b), acous-
tics (Borchers et al., 2015; Stevenson et al., 2015), non-
euclidean distance metrics (Royle et al., 2013a), and mix-
ture modelling (Pledger, 2000). In particular, covariates
can be included to explain variability in detection, prob-
ability, density and demographic rates, e.g., age and sex
structured inference can be obtained. Furthermore, demo-
graphic rates can vary over space and time, providing in-
ference on the relationship between population dynamics
and habitat.

Inference on survival, rather than apparent survival, is also
possible. Dispersal of an animal’s activity centre over time
is unlikely to cause bias in density or survival estimates
provided the animal remains within the survey region (Er-
gon and Gardner, 2014). SCR modelling accounts for this
movement by associating the animal with an activity cen-
tre that is the average of its movement across the entire
survey time; yet, if the animal emigrates from the survey
region, this movement is not accounted for, and is treated
as synonymous with death. Transients, animals that tem-
porarily emigrate from the survey region, provide inference
on this migration process. For example, if a particular an-
imal is seen often by a detector, followed by a long period
of time it is never seen, and then it is seen again later, this
suggests the animal temporarily emigrated. Allowing for
transitions of life state from dead to alive with probability
ρ accounts for this possibility. Formal statistical tests can
be performed to determine if ρ > 0, that is, if the capture-
recapture records evince that transience occurs in the pop-
ulation. Assuming that temporary emigration and perma-
nent emigration occur at the same rate implies that the
estimated survival probability is the true survival prob-
ability and not only apparent. Whether this assumption
holds strongly depends on the study population. Account-
ing for dispersal directly by allowing an animal’s activity
centre to move over time has been implemented by aug-
mentation (Royle et al., 2016); a method to marginalise
over all possible dispersals is a focus for future work.

Finally, auxiliary data on the study population can be used
to improve inference on population dynamics. Recorded
births or dead recoveries of marked individuals are direct
observations of that individual’s life state; HMM method-
ology allows for this information to be used: marginal-
isation occurs only over those life histories that conform
with the direct observations made. Furthermore, similar to
developments in integrated population modelling (Schaub
and Abadi, 2011), concurrent studies on the surveyed pop-
ulation, for example, records of productivity or migration,
can be used. As individuals are assumed to have unique
marks, these data sets need not be assumed independent;
observations made directly on a marked individual can be
incorporated with that individual’s life history.
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5.3 Software

An R (R Core Team, 2017) package, openscrpop, is avail-
able on GitHub to fit the models presented in this paper:

http://github.com/r-glennie/openpopscr
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