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Abstract

Distance sampling is a popular statistical method to esti-
mate the density of wild animal populations. Conventional
distance sampling represents animals as fixed points in
space that are detected with an unknown probability that
depends on the distance between the observer and the an-
imal. Animal movement, responsive or non-responsive to
the observer, can cause substantial bias in density estima-
tion. Methods to correct for responsive animal movement
exist, but none account for non-responsive movement in-
dependent of the observer. Here, an explicit animal move-
ment model is incorporated into distance sampling, com-
bining distance sampling survey data with independently
obtained animal telemetry data. A detection probability
that depends on the entire unobserved path the animal
travels is derived in continuous space-time. The intractable
integration over all possible animal paths is approximated
by a hidden Markov model. A simulation study shows the
method to be negligibly biased (less than 5%) in scenarios
where conventional distance sampling overestimates abun-
dance by up to 100%. The method is applied to a line
transect survey of spotted dolphins (Stenella attenuata at-
tenuata) in the eastern tropical Pacific.

1 Introduction

Distance sampling is a statistical method used to esti-
mate the population density of wild animals (Buckland
et al., 2015). It is applied to a wide variety of taxa, e.g.,
seabirds, cetaceans, primates, and ungulates. Many con-
servation and management studies depend on the accuracy
of distance sampling inference; yet, the statistical method
relies on a key assumption that is significantly violated in
many applications.

Distance sampling is a snapshot method: the survey is
assumed to occur instantaneously. Animals are idealised
as static points that are detected with unknown proba-
bility by an observer, who stands at a point or traverses
a line within the study region. Surveyed transects, lines
or points, are placed according to a randomised design
such that animals are distributed independently of the
observer. For line transects, animals are distributed uni-
formly around the line, in point transects they follow a

triangular distribution. Given this, the decline in the num-
ber of detections as distance from the observer increases
is solely due to a change in the probability of detection;
thus, the recorded locations are used to estimate this prob-
ability and, ultimately, animal density. In short, distance
sampling is a thinned point process model with unknown
thinning probability (Hedley and Buckland, 2004; Yuan
et al., 2016). The assumption that the survey is a tem-
poral snapshot of the animal population is central to dis-
tance sampling theory; the method, however, is applied to
surveys of mobile animal populations where transects are
surveyed over a time interval within which animals may
have moved a significant distance.

Animal movement can be in response to an observer’s
presence (Turnock and Quinn, 1991), attraction or avoid-
ance, or can be of the animal’s own accord, independent
of the observer. Responsive movement is a well-known
problem, and specific survey techniques, searching further
along line transects to see animals before they respond
or remaining at point transects long enough for animals
to resume normal behaviour, are recommended to mit-
igate bias in density estimates (Buckland et al., 2005).
Furthermore, double-observer methods exist that can ac-
count for responsive movement (Palka and Hammond,
2001). In comparison, movement independent of the ob-
server has received little attention. For point transects, a
snapshot method is recommended to reduce bias in esti-
mates (Buckland, 2006); however, many surveys do not
employ this method, and it does not suit technological ad-
vances where observation technology may survey a point
for a considerable time. Splitting continuous surveying pe-
riods at points into discrete snapshots involves subjective
judgments that can affect the inferences obtained (Howe
et al., 2017). Alternatively, cue-counting is used as it is not
biased by non-responsive animal movement, but this relies
on the animal population having a clearly defined cue. For
line transects, a rule-of-thumb, based on a limited simu-
lation study, deems surveys on animals that move at less
than half the observer’s speed to be free of substantial
bias (Hiby, 1982); yet, observer speed is often constrained
by the transport chosen and the terrain covered. Thus,
density can be unavoidably overestimated due to animal
movement. This overestimation is not caused by counting
the same animal more than once, but by more animals
entering the transect from outside and recorded locations
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leading to a biased estimated detection function. Surveys
of mobile animals record greater numbers of unique in-
dividuals, compared to a hypothetically immobile popula-
tion, and animals are recorded closer to the observer; both
effects led to positive bias in density estimation (Glen-
nie et al., 2015). This calls into question inference drawn
from surveys where animal movement is undeniable, and
precludes the use of distance sampling on populations of
fast-moving animals and on studies where transects are
surveyed over a long time period.

Previous work has considered only how movement affects
the number of animals seen, not where they are seen
(Yapp, 1956). Random encounter models (Lucas et al.,
2015), where animals are assumed to move in randomly-
orientated straight lines at constant speed (Hutchinson
and Waser, 2007), can provide estimates of density, cor-
rected for movement, given the count of animals seen
and an independent estimate of animal speed. A detec-
tion probability can also be included, but must be ascer-
tained independently. An advantage of distance sampling
is that the detection probability can be estimated from
the data. Yet, this probability, when movement is admit-
ted, depends on the entire path the animal has travelled
whilst the transect is surveyed; this path, other than the
single location observed when the animal is detected, is
unobserved. Thus, any estimation of detection probability
that accounts for animal movement must include a con-
tinuous space-time hidden process to describe the animal’s
trajectory. Furthermore, to calculate the proportion of an-
imals never seen, the method must average over all possi-
ble animal trajectories. This can be achieved by specifying
an explicit model for the encounter process (Gurarie and
Ovaskainen, 2012).

Hidden Markov models (HMMs) (Zucchini and MacDon-
ald, 2009) are used for time series data that arise from
an unobserved (or partially observed) stochastic spatial
process. In particular, HMMs are used to analyse ani-
mal telemetry data (Langrock et al., 2012), animal loca-
tions recorded over time, where the paths taken by an-
imals between recorded locations are averaged over ac-
cording to the movement model specified. Distance sam-
pling observations consist of a single such recorded loca-
tion and the animal’s path until detection is unobserved;
thus, if independent information on animal movement is
collected, distance sampling can be viewed as a HMM,
where animal paths are a hidden process and detection
is the observed process. Tagging and tracking of animals
is becoming more common as the technology reduces in
price and size. HMMs can allow this auxiliary information
to improve distance sampling estimation. Pedersen et al.
(2011) developed a spatial HMM with an unobserved, dif-
fusive movement process which is described by a stochastic
partial differential equation. The intractable continuous-
spacetime likelihood is approximated by discretising space
into a large number of spatial cells (Eydeland, 1994); the
computations involved are costly, constraining the level of
discretisation attainable.

Here, a spatial HMM that incorporates animal move-
ment into distance sampling using independently obtained

animal movement data is presented. The continuous-
spacetime likelihood and its discrete approximation are
described. A simulation study compares this method to
conventional distance sampling, and the method is applied
to a line transect survey of spotted dolphins (Stenella at-
tenuata attenuata) in the eastern tropical Pacific (ETP)
(Gerrodette and Forcada, 2005; Gerrodette et al., 2008).

2 Methods

Suppose n animals are detected in total over the survey.
The goal is to estimate the total abundance in the sur-
vey region, N . In distance sampling surveys, observers
search transects and record the location of any animal
they encounter. In line transect sampling, the perpendic-
ular distance from the line to each encounter is recorded;
in point transects, the radial distance is recorded. Use of
two-dimensional location data, forward distance on line
transects and angle of detection on points, is seldom used
(Borchers and Cox, 2017). Furthermore, the time of a de-
tection, though routinely recorded, is not used. Here, a
model is developed that uses both pieces of information:
for the ith detected animal, let ~xi be the two-dimensional
location of the animal, when detected, relative to the ob-
server and ti be the time between the observer beginning
to survey the transect that animal i was seen on and the
time animal i was detected.

Recording the single location an animal is encountered
provides no information about how the animal moves: in-
dependent data is required on animal movement. Suppose
m animals are tracked or tagged and their movement paths
recorded over time. It is assumed the movement of these
tagged animals is representative of the movement of any
animal in the study area. Note it is not required that the
tagged animals be members of the surveyed population.

2.1 Model

In conventional distance sampling (CDS), the probability
density function (pdf ) of the recorded animal locations is
estimated. A detection function, g(x), is defined as the
conditional probability an animal is detected given it re-
sides at location x. For line transects, location is defined as
the perpendicular distance the animal is from the line; for
point transects, it is defined as the radial distance from the
point. The probability density of the observed distances is
then given by

f(x) =
g(x)λ(x)∫

P g(x)λ(x) dx

where P is the set of all animal locations and λ is the
probability density function of the animal’s location. CDS
makes the design-based assumption that transects are
placed according to a randomised scheme. This implies
for line transects that λ is the density of a uniform distri-
bution over P and for point transects a triangular distri-
bution over P.
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A convenient functional form is chosen for the detection
function and its parameters estimated by maximum like-
lihood. This form is chosen ad hoc to be half-normal or
exponential with some polynomial adjustments. Alterna-
tively, an explicit model for the detection process can be
specified by a two-dimensional hazard-rate function h(x, t)
(Borchers and Cox, 2017; Skaug and Schweder, 1999),
which describes the detection rate of an animal residing
at point x at time t. This is equivalent to a survival pro-
cess where death is interpreted as detection and the de-
tection intensity varies over time and space. In practice,
CDS analyses do not use the time of detections, a detection
function can be derived from a given hazard by integrating
over the time interval that an animal is at risk of detec-
tion. Nonetheless, here, the term CDS is used to refer to
2D hazard models also. The hazard commonly depends on
the radial distance between the observer and the animal,
r(~x, t), such that the hazard is infinite at zero radius and
decreases with increasing radius.

Here, the recorded detection times and the two-
dimensional recorded location are used to estimate the
search process. Detection times are required since animals
recorded at later times on the transect have had longer to
move and so may have originated at a further distance.
Rather than condition on the animal residing at a single
fixed point, the detection probability is derived conditional
on the animal travelling a fixed path over space. Given an
animal travels a path ~x and is seen at location ~xτ at time
τ , the conditional pdf is

g(~x, τ) = Sτ (~x)h(~xτ , τ)

where

St(~x) = exp

(
−
∫ t

0

h(~xs, s) ds

)
is the probability of the animal eluding detection until
time t. Notice, detection probability now depends on time
and the entire trajectory of the animal. For brevity, we
term the model presented here MDS: movement in dis-
tance sampling.

Similar to CDS, if in place of assuming the distribution of
animals, we assume the movement process is known, and
in place of conditioning on the location of an animal, we
condition on the path an animal has taken, the pdf of the
observed encounter on a transect of duration T is given
by:

f(~x, τ) =
g(~x, τ)Λ(~x)∫

χ

∫ T
0
g(~y, t) dt dΛ(~y)

(1)

where Λ is the probability measure over all (measurable)
paths, χ, that an animal could have taken, that is, Λ(~x) is
the probability of path ~x. The denominator is the proba-
bility an animal is seen at some time on the transect and
is required as we do not observe those animals that were
never encountered.

Yet, the paths of animals are unobserved and distance
sampling surveys provide no information on how animals
move. Thus, independent animal movement data is re-
quired to determine Λ. Here, animal movement is de-
scribed by diffusion with average speed parameter ν. This

makes Λ, the probability of a given path occurring, math-
ematically tractable: it is a Gaussian probability distri-
bution. For telemetry data, one can condition on the ini-
tial location of the animal and compute the likelihood, LΛ

easily (Okubo and Levin, 2013); for distance sampling sur-
veys, the initial locations are assumed to be independently
distributed with respect to the transect.

From the distance sampling survey, given animal i was
recorded in location ~xi at time τi, the likelihood for the
detection parameters, θ, is obtained by averaging over all
possible animal paths:

Lθ =

n∏
i=1

∫
χi
g(~x, τi) dΛ(~x)

pi

where χi is the space of all measurable paths that
pass through location ~xi at time τi, and pi = 1 −∫
χ
STi(~x) dΛ(~x) is the probability the encounter with an-

imal i occurs at some time when the transect is surveyed
for total time Ti.

Assuming the distance sampling survey and the animal
telemetry data are independent, the combined likelihood
Lθ,λ = LθLλ can be maximised to obtain maximum like-

lihood estimates, (θ̂, λ̂). Methods in section 2.2 describe
the approximations used to compute the likelihood. Max-
imising the combined likelihood means that uncertainty
in the movement parameters is propagated to the den-
sity estimation. Abundance can be estimated using either
approach already available in distance sampling: a model-
based estimator or a Horvitz-Thompson-like estimator.

The Horvitz-Thompson-like estimator of abundance is

N̂ =

n∑
i=1

1

p̂i

A sandwich estimator for the variance of N̂ can be derived
analogously to the estimator used in CDS (Fewster et al.,
2008).

Alternatively, an explicit model for abundance can be in-
tegrated (Buckland et al., 2016). For example, the Poisson
process:

LN =
(Npenc)

n exp(−Npenc)
n!

where penc is the average probability of detection during
the survey. This gives a model-based estimate of abun-
dance by maximising the likelihood:

Lθ,λ,N = Lλ
Nn exp(−Npenc)

n!

n∏
i=1

∫
χi

g(~x, τi) dP(~x)
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2.2 Computation

The continuous space-time likelihood is analytically in-
tractable. The integral over all possible animal paths can
be approximated by quadrature. A buffer region around
each transect is discretised into K cells of length and width
∆x and time is discretised into steps of duration ∆t. An-
imal movement occurs at these time-steps, thus animals
are stationary within time-steps.

Notice that all integrals to be approximated are of the
form ∫

χ

St(~x) dΛ(~x)

for some time t. Approximating animal movement by
jumps at each time-step, the function S can be separated
into components:

St(~x) = s0(~x0)s∆t(~x∆t)s2∆t(~x2∆t) . . . st(~xt)

where sl(~x) = exp
(
−
∫ l+∆t

l
h(~x, u) du

)
is the probability

of eluding detection during a single time-step given the
animal is at location ~x. Notice, observer movement can be
integrated analytically within each time-step, thus only
animal movement is discretised. Let Pt be a K×K diago-
nal matrix with kth diagonal st(~yk) where ~yk is the centre
location of spatial cell k.

The integration over all paths is replaced with a sum over
all paths on the discrete grid. When discretised, diffusive
animal movement can be approximated by a continuous-
time Markov chain (Pedersen et al., 2011). The transition
rate matrix of this chain, G, is block-Toeplitz in struc-
ture, and computing the matrix exponential, to obtain the
transition probability matrix Γ = exp(G∆t), is computa-
tionally demanding.

The integral is approximated by a spatial HMM likelihood:∫
χ

St(X) dΛ = p0P0ΓP1Γ . . .PtΓ1 (2)

where p0 is 1×K row vector representing the initial distri-
bution of animals on the grid with respect to the transect
and 1 is a K × 1 column vector of ones.

In distance sampling surveys, the range of detection dis-
tances can be small compared to the distances an animal
can travel during a survey period. The former makes it
necessary that ∆x be adequately small while the latter
requires the buffer around the transect, and so the grid,
to be large. Ultimately, K is large. This makes the matrix
calculations in equation (2) computationally demanding.
The block-Toeplitz structure of G can be exploited to ac-
celerate computations using a 2D discrete Fourier trans-
form (Lee, 1986) and the Krylov subspace approximation
to the matrix exponential (see Appendix).

For spatial HMMs, there is no analytical bound on the
error of this approximation. Practical advice is to reduce
the discretisation until the inference obtained no longer
significantly changes.

2.3 Simulation study

A simulation study is conducted to demonstrate the per-
formance of MDS compared to CDS for two particular
distance sampling surveys. The magnitude of the bias in
CDS depends on the relationship between relative animal
speed, transect width, and the shape of the detection func-
tion (Glennie et al., 2015). This simulation study considers
the effect of animal speed when all other factors are fixed.

A study population of 100 animals in 100 square kilome-
tres is simulated. Animals move according to a diffusion
process with average speed varying from 0.5 metres per
second to 4.0 metres per second.

Two distance sampling surveys were simulated on this
population: a line transect study and a point transect
study. The line transect survey consists of 50 transects
of length 1 kilometre; the observer traverses each line at
speed 1 metre per second. Hence, simulation scenarios
cover relative animal speeds of 50% to 400% the speed
of the observer. For the point transect survey, 100 points
were surveyed, each for 5 minutes.

In both surveys, the hazard of detecting an animal at a
radial distance r is given by αr−β for parameters α, β > 0.
Detection parameters were chosen such that for a hypo-
thetically immobile animal population, the effective area
searched was approximately 0.015 square kilometres. This
corresponds to a line transect with half-width 30 metres
and point transect with radius 100 metres.

The independent animal telemetry data required was sim-
ulated from the diffusion process, recording the location
of ten tagged animals every minute for one hour.

One hundred simulations were performed. A distance sam-
pling model with no animal movement was fit to each sim-
ulated data set. For fair comparison, a two-dimensional
hazard was used in this model also, unlike CDS mod-
els where a one-dimensional hazard is commonly used. A
MDS model, as presented in this paper, was fit to each
data set with the auxiliary movement data.

The relative bias, mean square error and confidence in-
terval coverage was estimated for each scenario, with and
without movement incorporated.

2.4 Application: spotted dolphins

The presented method is applied to a 2006 shipboard line
transect survey conducted in the eastern tropical Pacific
on spotted dolphins, estimating the abundance within the
core area, as defined by Gerrodette and Forcada (2005).

Dolphin schools are treated as the individual unit of de-
tection and group size estimated separately. This is a stan-
dard approach in CDS; however, incorporating movement
makes the approach more questionable. In particular, we
assume that schools do not fuse or break-up during the
time the observer surveys each transect. Furthermore, we
assume the movement model, informed by tags on single
individuals, describes the movement of a school as a whole.
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The radial distance and angle to each detected spotted
dolphin school was recorded. Only sightings in Beaufort
state 2 or less were retained. Once an encounter occurs,
observers cease to survey and approach the detected school
in ‘closing mode’. The times when surveying ceased and
resumed are recorded. This affects the detection proba-
bility. Short breaks in effort cannot be ignored, nor can
the transect be subdivided. The former leads to underes-
timation of detection probability and the latter leads to
overestimation. The following hazard accounts for this in-
terrupted effort:

h(~x, t) = αr(~x, t)−βe(t)

where r(~x, t) is the radial distance at time t between the
observer and location ~x, and e(t) = 1 when the observer
is on effort at time t and zero otherwise. Thus, animal
movement during off-effort time is accounted for.

The location of the ship was recorded every ten minutes. It
is assumed the ship travels in a straight line at a constant
speed between these records. The movement model does
not account for movement caused by ocean current; it is
assumed that the animals and ship are drifting in the same
direction and at the same rate, thus this movement has no
effect on their relative positions.

Independent tag data is collected on nineteen spotted dol-
phins (Scott and Chivers, 2009) providing fixed locations
at approximately 15 minute intervals over 1–2 days.

School abundance is estimated using a Horvitz-Thompson-
like estimator:

N̂ =

n∑
i=1

1

p̂i

where n is the number of detected schools and pi is the
probability school i is detected. The total number of spot-
ted dolphins is estimated as N̂ ŝ where ŝ is the estimated
mean school size.

Goodness of fit is evaluated by a chi-squared test. The
perpendicular distance from the transect line is subdivided
into discrete bins; the observed and expected number of
sightings in each bin is compared.

3 Results

3.1 Simulation study

Line transect simulation

CDS estimators of detection probability and abundance
had bias > 10% when animal speed exceeded 1.5 metres
per second and CDS overestimated abundance by > 100%
for speed > 3.5 metres per second. In contrast, MDS led to
< 5% bias for all scenarios (Figure 1). Mean square error
for CDS estimators was dominated by their bias; MDS
showed constant MSE across all animal speeds (Figure 2).

Confidence interval coverage across all parameters for CDS
was less than 40% for speeds over 1.0 metre per second
and fell to 0% for speeds over 2.0 metres per second. MDS

coverage was nominal within 1% for all parameters and
across all simulation scenarios.
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Figure 1. Percentage relative bias in estimated mean
detection probability (left pane) and abundance (right pane)
for conventional distance sampling (dashed line) and distance
sampling with movement incorporated (solid line) against
animal speed (metres per second) estimated from 100
simulations of a line transect survey of 50 transects with
truncation width 30 metres and observer speed 1 metre per
second. Dotted lines mark 5% relative bias.
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Figure 2. Percentage relative root mean square error
(RMSE) in estimated mean detection probability (left pane)
and abundance (right pane) for conventional distance
sampling (dashed line) and distance sampling with movement
incorporated (solid line) against animal speed (metres per
second) estimated from 100 simulations of a line transect
survey of 50 transects with truncation width 30 metres and
observer speed 1 metre per second.

Point transect simulation

CDS point transect sampling behaved similarly with bias
> 10% for animal speed > 2 metres per second and bias
reaching 90% for speed around 4 metres per second. In-
corporating movement reduced bias to < 5% across all
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scenarios and MSE varied negligibly. CDS 95% confidence
interval coverage was poor (< 45%) for all parameters
when animal speed exceeded 2 metres per second, while
coverage was nominal for all parameters when movement
was incorporated.
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Figure 3. Percentage relative bias in estimated detection
probability (left pane) and abundance (right pane) for
conventional distance sampling (dashed line) and distance
sampling with movement incorporated (solid line) against
animal speed (metres per second) estimated from 100
simulations of a point transect survey with 100 transects of
radius 100 metres, surveyed each for 5 minutes. Dotted lines
mark 5% relative bias.
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Figure 4. Percentage relative root mean square error
(RMSE) in estimated mean detection probability (left pane)
and abundance (right pane) for conventional distance
sampling (dashed line) and distance sampling with movement
incorporated (solid line) against mean animal speed (metres
per second) estimated from 100 simulations of a point transect
survey with 100 transects of radius 100 metres, surveyed each
for 5 minutes.

3.2 Application: spotted dolphins

Estimated abundance of spotted dolphin schools in the
core area, as defined by Gerrodette and Forcada (2005),
differed between models (Table 1). Mean group size was
164 with large variability due to the rare detection of very
large schools (> 2000 individuals). Incorporating move-
ment reduced the abundance estimate by 22% (33292 ani-
mals). The coefficient of variation (CV) for the abundance
estimator was reduced (by 7.4%) when animal movement
was accounted for. The average speed of the ship was
17km/h; the estimated average speed of each spotted dol-
phin was 7.4km/h. The large reduction in the abundance
estimate indicates that even though the dolphins move
relatively slowly compared to the ship, bias can be sub-
stantial, because, whilst being surveyed, they can move
a large distance compared to the width of the transect.
This highlights the danger of assessing whether movement
is a problem based solely on relative animal speed; MDS
can account for the interdependent effects of animal speed,
transect width, and detection function shape.

For comparison, the expected number of sightings within
each 0.5 kilometre from the transect line was calculated
(Figure 5). MDS had a similar goodness of fit as CDS to
the data (chi-squared test gives p-value of 0.31 for CDS
and 0.35 for MDS); however, the estimated detection func-
tion differs considerably between the two methods (Figure
6). The CDS estimated detection function has a narrower
shoulder and smaller detection scale indicating that ani-
mal movement has caused negative bias in the estimation
of detection probability. If the survey had indeed taken
place in a snapshot of time, CDS estimates the proba-
bility of an animal being detected, given it is inside the
transect, to be 0.47; MDS estimates this to be 0.62. Note,
this deficiency does not result in a marked difference in
goodness-of-fit to the observed data, but has an impor-
tant effect on the final abundance estimate.
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Figure 5. Observed number of spotted dolphin schools sighted
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(shaded bars) with expected number of sightings from
conventional distance sampling model (dashed lines) and
distance sampling with movement (solid lines)
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Figure 6. Estimated detection function for a hypothetically
immobile spotted dolphin population for conventional distance
sampling (dashed line) and distance sampling with movement
(solid line)

Estimate CV(%) LCL UCL
CDS density 910 19.9 430 983
MDS density 707 12.5 533 880

Table 1. Maximum likelihood estimates of spotted dolphin
school density (per 106km2) with coefficient of variation (CV)
and lower and upper 95% confidence interval bounds for
conventional distance sampling (CDS) and distance sampling
with movement (MDS)

4 Discussion

Distance sampling surveys on mobile animal populations
should not ignore animal movement. The simulation study
demonstrates the remarkable bias that non-responsive an-
imal movement can cause. Incorporating this movement
into distance sampling can mitigate this bias and remove
the subjective judgment of when movement bias may have
occurred and to what extent.

The cost of this improvement in estimation is the need for
additional information on animal movement. The expense
and practicality of collecting such data depends on the
species to be surveyed. Tag data on cetaceans, ungulates,
and seabirds is becoming more common. When no such
data is available, a ‘plug-in’ estimator of the movement
parameters could be used, similar to the multipliers used
in CDS. Accounting for movement on imperfect knowl-
edge is better than ignoring it completely. The movement
information need not come from animals in the same pop-
ulation as that surveyed by distance sampling, nor be col-
lected in the same time period. Nevertheless, it is assumed
tagged animals behave as representative members of the
study population; thus, it is recommended that movement
information be collected around the same time the dis-
tance sampling survey is conducted and on animals that
are members of the study population.

Estimating a detection process that depends on time nec-
essarily requires detection times be recorded. In practice,

this information is often recorded in the field, but not used
in CDS models. Here, this information is essential and any
application of the model would require this data to be col-
lected. Furthermore, as for the ETP survey, periods of on
and off effort must be recorded. When the observer pauses
their efforts, animals continue to move; failing to record
this information leads to underestimation of the detection
probability. Records of the observer’s location over time
must also be kept. Furthermore, the relative location of
detected animals should be recorded relative to the ob-
server; this is contrary to practice in CDS where measure-
ments are made relative to the point or line. Also, animal
location must be recorded in two-dimensional space.

Assumptions

The assumptions made in the theory presented are syn-
onymous with those made in CDS. Violations of these as-
sumptions will cause bias in the inference obtained.

1. The path an animal travels is independent of the ob-
server: animals do not respond to the observer and
their movement is independent of the transect place-
ment, that is, surveying does not preferentially take
place in areas animals would avoid or be attracted to.

2. Animals at zero radius are detected: this assumption
can be violated for animals that are not always avail-
able for detection, for example, a diving cetacean can
be missed by an observer in a ship directly above it
(Borchers et al., 2013; Barlow, 2015).

3. Location measurements are exact: this assumption
applies to observed locations of animals on the dis-
tance sampling survey and the recorded locations of
tracked animals. Observation error in animal teleme-
try data is common and can be accounted for (John-
son et al., 2008). Models for measurement error in
distance sampling can also be incorporated (Marques,
2004).

4. Animal movement is diffusive: the simple model that
animal movement is a spatially-invariant, isotropic
diffusion process is violated by many animal popu-
lations; more realistic movement models can be con-
sidered. No matter what movement model is incorpo-
rated, one assumes that all animals in the survey move
according to the specified model. Departures from the
movement model could cause detection probability to
be biased.

5. Sampling is representative and independent: for the
distance sampling survey, this assumption requires
transects be placed according to a randomised de-
sign, that transects be independent, and that animals
be independent. For animals that travel in groups,
treating groups as the independent unit to be sampled
may be a better choice. For the movement model, it
is assumed that tagged animals move independently
and that the sample of tagged animals be representa-
tive of the surveyed population. One can use teleme-
try from tagged animals who are not members of the
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surveyed population, but only with the assumption
these animals exhibit movement patterns similar to
those animals surveyed by distance sampling.

Model extensions

The model formulation is flexible and can include exist-
ing extensions of conventional distance sampling. Here,
only a hazard that depends on radial distance was consid-
ered. A hazard that depends on angle and radius could be
used. For point transects, any detection function can be
used to define a hazard (Borchers et al., 2015). Yet, for
line transects, the method relies on an analytical form for
St: observer movement makes integration of the hazard
more complicated. This could be avoided by discretising
observer movement similarly to animal movement, that is,
the observer only moves at time-steps and not within time-
steps; however, this can introduce significant bias when
discretisation is rough and often requires much lower lev-
els of discretisation than otherwise necessary.

Another popular extension is multiple-covariate distance
sampling (Marques and Buckland, 2003). Including covari-
ates in the detection process could be handled similarly
with this model where parameters in the hazard can de-
pend on environmental conditions over space and time.
Given this, it is important to highlight that any covariates
included would need to be known for each time and each
location in space. This may require one to assume that
covariates are constant in the time between their record-
ing. Additional information on the movement of detected
individuals can also be incorporated. Observed locations
or observed directions of travel can be used to improve
estimation of the unknown path each animal took. Fur-
thermore, responsive movement could be accounted for if
the response, how an animal’s location changes over time
with respect to the observer, is recorded for one or more
focal individuals.

Including covariate information in the movement model
is more computationally demanding. The HMM computa-
tional algorithm used depends on the block-Toeplitz struc-
ture of the transition rate matrix, G. A block-Toeplitz
structure is equivalent to assuming that the transition
rates are spatially invariant. Relaxing this assumption in-
creases computation time and limits the level of discreti-
sation that can be practically obtained.

Additionally, this assumption limits the range of possible
movement models that can be considered. Bias in density
estimation from animal movement is at its worst when an-
imal movement is persistent in a single direction. A move-
ment process with persistent movement would require the
discretisation of a 4-dimensional space: location and veloc-
ity. Given current computational resources, it is likely any
practical discretisation of this space would be too coarse to
provide good estimators of detection parameters. Never-
theless, for many taxa, animal movement is more complex
than can be described by a diffusion process, and so ex-
tending MDS to include advection-diffusion or Ornstein-
Uhlenbeck animal movement models could improve the
inference obtained.

Finally, the methods presented can be extended to double-
observer distance sampling, where two observers survey
the transect simultaneously. If multiple sightings of an in-
dividual by different observers can be matched together,
then only animal paths that pass through these multiple
observed locations need be considered, providing informa-
tion on animal movement directly from the distance sam-
pling data and improving the estimation of each animal’s
detection probability.

Conclusion

Animal movement can be incorporated with distance sam-
pling. The presented theoretical framework provides a ba-
sis for further development and the computational ap-
proach discussed makes the method applicable. Account-
ing for animal movement can mitigate the bias it causes
in the surveys where distance sampling is applied, and it
can widen the application of distance sampling to animals
whose movement has so far prohibited its use.
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Cañadas, A., and Langrock, R. (2013). Using hidden
Markov models to deal with availability bias on line
transect surveys. Biometrics, 69(3):703713.

Buckland, S. T. (2006). Point-transect surveys for song-
birds: robust methodologies. The Auk, 123(2):345–357.

Buckland, S. T., Anderson, D. R., Burnham, K. P., and
Laake, J. L. (2005). Distance sampling. Wiley Online
Library.

Buckland, S. T., Oedekoven, C. S., and Borchers, D. L.
(2016). Model-based distance sampling. Journal of
Agricultural, Biological, and Environmental Statistics,
21(1):58–75.

Buckland, S. T., Rexstad, E. A., Marques, T. A., and
Oedekoven, C. S. (2015). Distance sampling: methods
and applications. Springer.

Eydeland, A. (1994). A fast algorithm for computing in-
tegrals in function spaces: financial applications. Com-
putational Economics, 7(4):277–285.

8



Fewster, R. M., Buckland, S. T., Burnham, K. P.,
Borchers, D. L., Jupp, P. E., Laake, J. L., and Thomas,
L. (2008). Estimating the encounter rate variance in
distance sampling. Biometrics, 65(1):225236.

Gerrodette, T. and Forcada, J. (2005). Non-recovery of
two spotted and spinner dolphin populations in the east-
ern tropical pacific ocean. Marine Ecology Progress Se-
ries, 291:1–21.

Gerrodette, T., Watters, G., Perryman, W., and Ballance,
L. (2008). Estimates of 2006 dolphin abundance in
the eastern tropical pacific, with revised estimates from
1986-2003. Technical report, NOAA, NMFS Technical
Memorandum NOAA-TM-NMFS-SWFSC-422.

Glennie, R., Buckland, S. T., and Thomas, L. (2015). The
effect of animal movement on line transect estimates of
abundance. PloS one, 10(3):e0121333.

Gurarie, E. and Ovaskainen, O. (2012). Towards a general
formalization of encounter rates in ecology. Theoretical
Ecology, 6(2):189202.

Hedley, S. L. and Buckland, S. T. (2004). Spatial mod-
els for line transect sampling. Journal of Agricultural,
Biological, and Environmental Statistics, 9(2):181–199.

Hiby, A. (1982). The effect of random whale movement on
density estimates obtained from whale sighting surveys.
REP. INT. WHAL. COMMN., 32:791–794.

Howe, E., S.T., B., Desprs-Einspenner, M.-L., and Khl, H.
(2017). Distance sampling with camera traps (in press).
Methods in Ecology and Evolution.

Hutchinson, J. M. C. and Waser, P. M. (2007). Use, mis-
use and extensions of “ideal gas” models of animal en-
counter. Biological Reviews, 82(3):335359.

Johnson, D. S., London, J. M., Lea, M.-A., and Durban,
J. W. (2008). Continuous-time correlated random walk
model for animal telemetry data. Ecology, 89(5):1208–
1215.

Langrock, R., King, R., Matthiopoulos, J., Thomas, L.,
Fortin, D., and Morales, J. M. (2012). Flexible and prac-
tical modeling of animal telemetry data: hidden Markov
models and extensions. Ecology, 93(11):2336–2342.

Lee, D. (1986). Fast multiplication of a recursive block
Toeplitz matrix by a vector and its application. Journal
of Complexity, 2(4):295–305.

Lucas, T. C., Moorcroft, E. A., Freeman, R., Rowcliffe,
J. M., and Jones, K. E. (2015). A generalised random
encounter model for estimating animal density with re-
mote sensor data. Methods in Ecology and Evolution,
6(5):500–509.

Marques, F. F. and Buckland, S. T. (2003). Incorporating
covariates into standard line transect analyses. Biomet-
rics, 59(4):924–935.

Marques, T. A. (2004). Predicting and correcting bias
caused by measurement error in line transect sam-
pling using multiplicative error models. Biometrics,
60(3):757–763.

Okubo, A. and Levin, S. A. (2013). Diffusion and ecologi-
cal problems: modern perspectives, volume 14. Springer
Science & Business Media.

Palka, D. and Hammond, P. (2001). Accounting for re-
sponsive movement in line transect estimates of abun-
dance. Canadian Journal of Fisheries and Aquatic Sci-
ences, 58(4):777–787.

Pedersen, M. W., Patterson, T. A., Thygesen, U. H., and
Madsen, H. (2011). Estimating animal behavior and
residency from movement data. Oikos, 120(9):12811290.

Scott, M. D. and Chivers, S. J. (2009). Movements and
diving behavior of pelagic spotted dolphins. Marine
Mammal Science, 25(1):137–160.

Skaug, H. J. and Schweder, T. (1999). Hazard models for
line transect surveys with independent observers. Bio-
metrics, 55(1):29–36.

Turnock, B. J. and Quinn, T. J. (1991). The effect of re-
sponsive movement on abundance estimation using line
transect sampling. Biometrics, pages 701–715.

Yapp, W. B. (1956). The theory of line transects. Bird
Study, 3(2):93104.

Yuan, Y., Bachl, F., Lindgren, F., Brochers, D., Illian, J.,
Buckland, S., Rue, H., and Gerrodette, T. (2016). Point
process models for spatio-temporal distance sampling
data. arXiv preprint arXiv:1604.06013.

Zucchini, W. and MacDonald, I. L. (2009). Hidden Markov
models for time series: an introduction using R, vol-
ume 22. CRC press Boca Raton.

9


	Introduction
	Methods
	Results
	Discussion

