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This paper focuses on the nonlinear interaction between a surface quasi-geostrophic buoyancy filament and
an internal vortex. We first revisit the stability of an isolated buoyancy filament. The buoyancy profile
considered is continuous and leads to a continuous velocity field, albeit one with infinite shear just outside
its edge. The stability properties of an isolated filament help to interpret the unsteady interaction with
a sub-surface (internal) vortex studied next. We find that, in all cases, the filament breaks into billows,
analogous in form to those occurring in Kelvin-Helmholtz shear instability. For intense buoyancy filaments,
the vortex itself may undergo strong deformations, including being split into several pieces. Generally, the
nonlinear interaction causes both the filament and the vortex to lose their respective ‘self’-energies to the
energy of interaction. The flow evolution depends sensitively on whether the vertical vorticity of the filament
and the vortex have the same or opposite signs — termed “cooperative” and “adverse” shear respectively. In
cooperative shear, the filament rolls up into a coherent surface eddy above a vortex initially placed below it,
whereas in adverse shear, buoyancy is expelled above the vortex. Although sufficiently great shear induced
by the buoyancy filament may split the vortex in both cases, adverse shear is significantly more destructive.
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1. Introduction

Modern satellite (infra red) imagery and sea surface altimetry are providing an increasingly
sharp picture of the complex nature of the dynamics of the oceans, a complexity which has
been underestimated for decades. These data primarily allow one to visualise and measure the
dynamical activity of the oceans at their surface, and here buoyancy filaments are common and
conspicuous features, see for example Gula, Molemaker and McWilliams (2014), McWilliams
et al. (2015), Iermano et al. (2012) and references therein. These data (in particular sea-surface
temperature and sea-surface height) have also been used in attempts to reconstruct the three-
dimensional structure of oceanic mesoscale currents (Isern-Fontanet et al. 2008, Wang et al.
2013) and generally to infer sub-surface ocean dynamics (Ciani et al. 2015). However, it is
clear that the surface of the oceans does not entirely control ocean dynamics at depth. It
is now well documented that the ocean interior is populated by a large number of eddies or
vortices. Examples include mediterranean water eddies observed in the Atlantic (Meddies).
It is estimated that between 35 and 40 Meddies may be found in the North Atlantic at
all times, see Richardson, McCartney and Maillard (1991), Richardson, Bower, Zenk (2000),
and Barbosa Aguiar, Peliz and Carton (2013), Sokolovskiy, Filuyshkin and Carton (2013).
Furthermore, Filyushkin et al. (2010) estimate that 150 to 200 vortex lenses populate an area
of approximately 1,800km in radius centred on the Portimao Canyon.

While such vortices may have a surface signature (e.g. an elevated or depressed sea-surface
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height), not all sub-surface vortices do, and moreover it can be difficult to disentangle several
vortices. In any case, a surface signature alone does not provide sufficient information to
deduce the depth, size and intensity of a vortex independently.

In this paper, we study the interaction between an active ocean surface and an active interior
in an idealised, yet archetypical situation. We examine, theoretically and computationally, the
interaction between a filament of surface buoyancy and an internal vortex under the quasi-
geostrophic approximation. The buoyancy profile is chosen to be a continuous distribution to
avoid the unphysical feature of a singular velocity field at its edges. The ‘elliptical’ distribution
chosen has the unique property of having uniform shear within the filament, and also permits
a semi-analytical treatment of its linear stability. The filament idealises the surface filaments
commonly observed in the oceans, and its instabilities are well known to generate small scales.
For the interior, we chose a simple, spherical vortex consisting of uniform potential vorticity
(in coordinates stretched vertically by the ratio of the buoyancy to Coriolis frequencies). This
model set-up is arguably the simplest one for studying the effects of buoyancy filaments on
sub-surface vortices, and vice versa. Simulations show surprising rich and complex dynamics,
depending on parameters like the filament—vortex intensity ratio, their vertical and horizontal
offset, etc.

The paper is organised as follows. §2 describes the mathematical formulation of the model.
83 revisits the linear stability of a buoyancy filament and illustrates its nonlinear evolution.
84 addresses the interaction between the filament and an internal vortex. The influence of the
geometry of the interaction as well as the relative intensities of the vortex and the filament
are investigated. Here we also examine the energy transfers which take place, showing that
generally the vortex and filament self-energies are depleted and transferred into interaction
energy. A few conclusions are drawn in §5.

2. Formulation

In order to explore parameter space widely, we simplify the problem to a single surface buoy-
ancy filament having an ‘elliptical’ profile (see below) interacting with a sub-surface vortex of
uniform potential vorticity (PV). Moreover, we employ the quasi-geostrophic (QG) approxi-
mation, which filters inertia—gravity waves and reduces the dynamics to material conservation
of PV and surface buoyancy. Nonetheless, material advection is nonlinear, and the interior
PV and surface buoyancy interact nontrivially via a nonlocal, three-dimensional flow field.

The QG approximation is widely used in studies of geophysical fluid dynamics. It is strictly
valid for Fi? < Ro < 1 where Fr = U/(NH) is the Froude number and Ro = U/(fL) is the
Rossby number, see e.g. Vallis (2006) for details of the derivation. Here, U is a characteristic
(horizontal) flow speed, L and H are characteristic horizontal and vertical length scales, while
f and N are the basic-state Coriolis and buoyancy frequencies, both taken constant in this
study. In fact, the QG approximation continues to be accurate for moderate Froude and
Rossby numbers, so long as they are less than unity (Tsang and Dritschel, 2015), even over
time scales long compared to (Rof)™!.

The mean surface of the ocean is located at z = 0. We consider first an ocean of infinite
depth in §3 to describe, in the simplest manner, the linear and nonlinear dynamics of the
buoyancy filament in the absence of an internal vortex. For the nonlinear simulations of the
filament—vortex interaction in §4, a finite-depth ocean is considered for practical reasons. Here,
we describe the quasi-geostrophic model in the simpler situation of infinite depth.

The layerwise two-dimensional incompressible fluid flow derives from a scalar streamfunction
1) which can be written as the sum of the streamfunction 1; induced by the interior distribution
of potential vorticity anomaly ¢, and the streamfunction s induced by the surface buoyancy
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1/)=¢z'+1/157 (1)

with, for the part due to the interior,

Ay =q, (2)

where A = §%/0z% + 0%/0y* + 0%/02? is the three-dimensional Laplacian. In A, the vertical
coordinate z has been stretched by the frequency ratio N/f. In this way, neither f nor N
appear in the re-scaled equations of motion. The streamfunction s associated with the surface
buoyancy is a harmonic function

A¢s =0, (3)
with
ops

Here, b = —gp'/(poN) is the buoyancy scaled by N (b then has units of velocity). The final
equations express material conservation of both ¢ and b in the absence of forcing, viscous and
diabatic effects,

Dq Db

Dt Dt
where D /Dt = 0/0t + ud/dx + v0/0y and where the velocity components u = —9v/Jdy and
v = 0 /0x are evaluated at the same depth as the advected variable.

0 and 0 (5)

3. Stability of the surface buoyancy filament

We start by revisiting the stability of a filament of surface buoyancy in the absence of an inter-
nal vortex. This is done using the standard SQG model where the fluid domain is semi-infinite
(and defined here for z > 0). Formal aspects of the dynamics of surface quasi-geostrophy
(SQG) are described in Held et al. (1995). It should be noted that Lapeyre and Klein (2006)
indicate that SQG dynamics itself provides a good approximation of the surface dynamics
even beyond the formal validity of quasi-geostrophy theory. Juckes (1995) analysed the linear
stability of a filament of uniform buoyancy. The discontinuity of the buoyancy distribution at
the edge of the filament is associated with a logarithmic singularity of the velocity field along
the edge. In the same paper, the author extended his results to estimate the growth rates for
a filament with smoothed edges to remove the velocity singularity. We revisit the stability
problem using a different buoyancy distribution which corresponds to a simpler (linear) veloc-
ity field within the filament, with no singularity at its edge. This buoyancy distribution stems
from an exact solution for elliptical distributions of surface buoyancy obtained in Dritschel
(2011). These solutions are obtained from the limiting forms of three-dimensional ellipsoidal
volumes of uniform potential vorticity (cf. Dritschel, Reinaud and McKiver (2004)) for which
the vertical axis length is shrunk to zero. By infinitely stretching one of the axes of the ellipse,
one obtains a filament of buoyancy which exhibits the same structure for the internal velocity
distribution, namely a linear dependence on the cross-filament coordinate. This distribution
was used by Scott (2011) to study the nonlinear evolution of a buoyancy filament. Here, we
address its linear stability.

Consider a filament of width of 2a lying parallel to the z—axis and centred on y = 0. The
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Figure 1. Left: surface buoyancy profile b (red) and corresponding along-filament velocity profile u (black). The velocity
is obtained numerically from the code used for the nonlinear simulations. The image on the right provides a close-up of
the internal region where velocity field is linear.

buoyancy distribution in the y-direction (cross-section) is given by

_ AN _
by) = b/l (a) , for —a<y<a (6)
0, for |y| >0

in equilibrium. Because of its shape and origin, this profile will henceforth be referred to as
the ‘elliptical’ profile, following Scott (2011). The maximum buoyancy of the filament is b,.
This buoyancy profile induces a linear, along-filament velocity field inside the filament,

b,
u:Ue(y)E?y for —a<y<a. (7)

In equilibrium the cross-filament velocity v is zero by symmetry. The basic-state configuration
is illustrated in figure 1.

Consider a straight material line y = ¥ of constant buoyancy in equilibrium. We displace
the material line by a small perturbation n(z,g,t) in the y—direction, without changing the
buoyancy attached to the fluid particles. Thus, the displaced material line is y = §+n(x, 7, t).
As it retains its original buoyancy, we have b(y) = b(y) = b(y — 7). Linearising this, we obtain

(8)

Here and below, linearisation allows us to replace § by y in n(z, g, t). Hence, the (Eulerian)
buoyancy perturbation is given by

b(y) = b(y) — by, where b, =

sl

b (2, y,t) = bly) — bly) = —n(z,y,t) by(y). (9)
The evolution of the displacement 7 is obtained from the linearised kinematic condition
on on
E + Ue(y)% - U(l’,y,t),

where v is the linearised cross-filament velocity due to the perturbation. As the basic flow
is independent of x, we can consider displacements in the form of a monochromatic wave
n(x,y,t) = 7(y)e*® =Y with wavenumber k. Substituting this in the equation above and
evaluating v (see Appendix 1), we obtain

on(0) = Ukn(0) + bm% /0 1(0') cos 0' K (ka(cos 6 — cos§")) df’, (10)



August 18, 2016

Geophysical and Astrophysical Fluid Dynamics rdcl5-revision

0.09

0.08

0.07F

0.06

0.05

5+ €il

o/ (bmfr)

0.04

0.03

0.02

0.01F

005 0.2 ] 0.6 0 10 T2 -3 -2 -1 0 1 2 3

o ka

Figure 2. Linear stability of the buoyancy filament with an elliptical profile. Left: non-dimensional growth rate oa /by,
vs the non-dimensional wavenumber ka. Right, illustration of the eigenmode for the most unstable mode with ka ~ 0.729
and oa/bmy ~ 0.089.

where we have used the coordinate transformation y() = —acosf, 0 < 6 < m. The integral on
the right-hand side is calculated numerically by discretising # into N equally spaced intervals
of width Af = 7/N. Over each interval, we take the displacement amplitude to be a constant
denoted by 7, for 1 < m < N. This results in the algebraic system,

N
a ‘
%ﬁj =ka (—ﬁj cos 0 + Z ﬁmem) , 1<j<N, (11)
m

m=1

where G, is the kernel

1 9,,,+A9/2
- / cos 'Ky (ka(cos 0 — cos ') do’
0

T J6,,—A0/2
obtained by two-point Gaussian quadrature over each discrete layer m. This is an N x N
matrix eigenvalue problem for N eigenvalues 0 = o; (1 < j < N) and N corresponding
eigenvectors 7;,, (1 < j,m < N) giving the spatial structure of the perturbation. Instability
occurs if the imaginary part of any eigenvalue is positive.

Results are presented in figure 2. Here, we have used N = 2000. The uniform shear b,,/a
inside the filament is used to normalise the growth rates o. The longitudinal wavenumber k
is normalised by a~!, where a is the filament’s half thickness. The left panel shows the maxi-
mum normalised growth rate, while the right panel shows the structure of the corresponding
eigenmode in terms of the displaced buoyancy contours,

Ym(T) = Y + R (nm eikx)

where R denotes the real part, 7, is the equilibrium centerline location of the m* discrete
layer, and € is an arbitrary amplitude used for illustration purposes. The lines of constant phase
tilt to the left with increasing y, as is typical of shear instability. This enables disturbances on
different contours to phase lock with each other. Note the quarter wavelength shift between
the upper and lower density interfaces that is characteristic of maximum shear instability
(maximises the energy transfer to the perturbation).

As a function of ka, the maximum growth rate vanishes as ka — 0, for very long waves,
then rises to a single maximum at ka ~ 0.729 before falling to zero at ka ~ 1.094, beyond
which all short wave perturbations are neutrally stable. For comparison, in the case of the
uniform buoyancy filament analysed by Juckes (1995), maximum instability occurs at longer
wavelengths, kaq. ~ 0.52, and has a growth rate nearly twice as large, oy,; =~ 0.203. Juckes
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(1995) showed that smoothing the edges of the uniform filament has the effect of shifting
the instability to shorter wavelengths and slightly reducing its growth rate. The substantial
difference in maximum growth rates between the elliptical and uniform filament is likely due
to the higher shear inside the uniform filament. By ‘elliptical’ filament we mean a straight
filament with an elliptical buoyancy profile. In the elliptical filament, this shear is uniform
and equal to b,,/a. In the uniform filament, the shear is non-uniform and is found from the
derivative of

b,

Uyni = — 1N
a

y+a
y—a
(see Juckes (1995)). The shear in fact diverges at the edges of the filament. Even at its centre,
we find

dy ,—o T a
which is twice as large as in the elliptical filament. This, we believe, explains the nearly twice
as large maximum growth rate.

4. Nonlinear dynamics

Scott (2011) performed a nonlinear simulation of the elliptical filament perturbed by a single
period of a sine wave (not an eigenmode). He confirmed the expected instability and its nonlin-
ear roll up into a billow with a connecting braid, which further rolls up into small billows, etc.
Here, we revisit the nonlinear evolution of the elliptical filament, now initiating the perturba-
tion with the most unstable eigenmode and considering two periods in z. Like Scott (2011), we
use the highly-accurate Contour-Advective Semi-Lagrangian (CASL) algorithm of Dritschel
and Ambaum (1997), extended by Dritschel (2011) for the surface QG equations. Here, we
use a further refinement, the Combined-Lagrangian Advection Method (CLAM) developed by
Dritschel and Fontane (2010). This is the most accurate contour-advection method available.
Full details of the standardised numerical parameter settings are provided in Dritschel and
Fontane (2010).

The simulation uses a coarse ‘inversion’ grid of 1024% on which the velocity is computed by
spectral methods. Buoyancy is represented by material contours, down to scales as small as a
16th of the inversion grid spacing. The effective resolution is 163842. We use a doubly-periodic
domain with equal side lengths of 2. To accommodate two periods, we then take the filament
half width to be a ~ 0.364. The maximum buoyancy b,, is set to 1.

As in many past studies of filament instability, the filament first rolls up into coherent billows
connected together by braids (see figure 3). These braids are continuously stretched by the
rotating billows. In the case of vorticity in two-dimensional flow, the braids largely thin and
become increasingly passive (Dritschel et al (1991)). However, as noted previously by Scott
(2011) as well as by Harvey and Ambaum (2010), buoyancy braids are increasingly unstable
as they become thinner, despite the large scale strain induced by the billows. This means that
the braids subsequently roll up, and the braids between these smaller billows also roll up.
But, unlike in the case of a uniform buoyancy filament, here the primary braids have much
weaker maximum buoyancy than the billow cores, so the secondary roll up of the braids is
less intense. The braids carry relatively low-lying buoyancy, and therefore feel greater relative
strain. Nevertheless, even the secondary braids roll up, and it is likely that this continues to
successively smaller scales (see Scott (2011)). This results in great complexity at late times,
as illustrated in figure 4 at ¢t = 80 (with two successive zooms). Whether or not scales collapse
to zero in finite time is still an open question, though this can occur for a uniform buoyancy
braid (see Scott and Dritschel (2014)).



August 18, 2016 Geophysical and Astrophysical Fluid Dynamics rdcl5-revision

7

) 0.90

) 0.75

) 0.60

. 0.45

) 0.30

) 0.15

) 0.00
0.90 0.90
0.75 0.75
0.60 0.60
0.45 0.45
0.30 0.30
0.15 0.15
0.00 0.00
-0.15 -0.15

Figure 3. Nonlinear evolution of a buoyancy filament with an elliptical profile. The filament is initially perturbed with
the most unstable eigenmode with ka = 0.729 over two periods in the z-direction. Images correspond to t = 0, 23, 28,

and 30.
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Figure 4. Late-time buoyancy field starting from an elliptical profile, here at ¢ = 80. Left: zoom into the domain
[0, ] x [—7/2, 7 /2] within the overall 27 X 27 domain. Right: further zoom into the domain [ /8, 37w /16] x [217 /32, 237 /32].
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In this section, we have considered only the dynamics at the surface z = 0. However, there
is an influence below which would be felt by any sub-surface structure, such as the internal
vortex considered in the following section. Notably, the longest wavelengths on the buoyancy
filament penetrate deepest. This is analysed in Appendix 2 in terms of the decay of the
buoyancy field b = 0vs/0z with depth for the basic-state elliptical filament. We show that
the buoyancy contained in the horizontal wavenumber kj, = VA2 + 12 decays as €% (z < 0),
where k and [ are the longitudinal and meridional wavenumbers respectively.

5. Interaction between the filament and an internal vortex

5.1. Flow geometry

We next turn our attention to the interaction between the surface buoyancy filament studied
above and an internal vortex. The vortex provides a specific perturbation which in general
excites a number of unstable modes on the filament. In return, the filament moves and deforms
the vortex. We start with a spherical internal vortex of uniform potential vorticity ¢ for
simplicity. We take the radius r of the sphere to be a, equal to the half width of the filament
so that the two structures have the same length scale (other radii have been considered and
their effects are briefly discussed below). The vortex is centred at a depth 2H below the
surface, and is horizontally offset from the filament by a distance 2p. The computational
domain is doubly-periodic horizontally with dimensions 27 x 2x. In the vertical direction, it
is necessary to use a finite depth in the numerical simulations, and here we take the depth to
be 27 also (in the N/ f stretched reference frame). This depth well approximates an infinite
depth, to within an error of approximately e =27 (see Appendix 2).

With a second boundary at z = —2m, it is necessary to add another boundary condition to
be able to solve for the streamfunction 1. As is commonly done, we take the bottom surface
to be isothermal (zero buoyancy), implying 91 /0z = 0 there. The alternative is to prescribe
no flow (¢» = 0) there or to impose a zero vertical velocity, but we have not examined the
impact of these options.

A schematic of the flow is presented in figure 5. To keep the effects of periodicity in the
horizontal directions as small as practically possible, we chose a small filament half width and
vortex radius, both equal to a = 0.25. Moreover, we have limited p to the range [0,0.6] and
H to the range [0.13,1].

5.2. Numerical method

The numerical method used is described in Perrot et al. (2010). It is an extension of CASL
to include the surface buoyancy dynamics, with special care to focus resolution near the
upper boundary where the flow is expected to be most complex. The domain is discretised
in the vertical direction by 1024 horizontal layers. To find the velocity field from the surface
buoyancy and the interior PV contours, they are first converted onto fine horizontal grids with
a resolution of 10242 using a fast-fill algorithm (Dritschel and Ambaum (1997)). The interior
PV field ¢ is then averaged to a coarser grid of 2563, where it is inverted (using FFTs and
spectral differentiation) to find the contribution v; to the total streamfunction and hence to
the velocity field u; = —9v;/dy and v; = 9v;/dx. This exploits the fact that the velocity field
is typically of broader scale than q. However, at and near the upper boundary, we use the finer
10242 horizontal grid in the uppermost 4 layers to find the velocity field u, and v, due to the
surface buoyancy b. This anticipates the finer scales of motion typically associated with the
dynamics of surface buoyancy, and significantly improves accuracy. Note: the spectral forms
of us and v are obtained analytically at each height z from the Fourier coefficients of b (see
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Perrot et al. (2010) and Appendix 2).

To control the inevitable scale cascade of b and ¢, contour surgery is carried out every
few time steps at 1/16th of the inversion grid resolution (as is conventional, see Fontane
and Dritschel (2009)). We keep track of the maximum strain on contours, the maximum of
S = |u(x;j41)—u(x;)|/|x;+1—x;| over all nodes j, and perform surgery and node redistribution
when the time integral of Smax, from the last time these operations were done, exceeds 1.5.
This is the only form of dissipation occurring in CASL numerical simulations, and is much
weaker than in conventional simulations using e.g. hyperviscosity (see e.g. Dritschel and Tobias
(2012) and references).

The time integration is carried out using a Runge-Kutta fourth order scheme, with a time
step At adapted to resolve the maximum strain on contours. Specifically, we choose At =
min(0.2/Smax, 0.17/(max), where Smax is the maximum straining rate along a contour and
Cmax 1s the maximum relative vertical vorticity at the surface. There is no CFL restriction and
no numerical instability associated with choosing a larger time step. The time step is chosen
purely to maintain high accuracy (see Fontane and Dritschel (2009) for further discussion).

5.3. Parameter space

Four dimensionless parameters control the interaction between the surface buoyancy filament
and the internal vortex. The first is the ratio of their widths, which we take to be unity except
in a couple simulations briefly discussed below. The second is the ratio of their intensities,
governed by the parameter A = b,,/(aq). This is the ratio of the shear inside the buoyancy
filament to the uniform PV within the vortex. As we shall see below, the interaction depends
critically on the sign of A. Without loss of generality, we set the PV within the vortex to
be ¢ = 27, a positive value. Hence, the sign of A is dictated by that of b,,. Positive b,, or
A corresponds to clockwise (or negative) rotation of a localised buoyancy anomaly, and vice
versa. Hence b,,, > 0 means that the buoyancy rotates in the opposite direction to the internal
vortex, a situation called ‘adverse shear’, whereas b,, < 0 corresponds to ‘cooperative shear’
(Dritschel (1989)). The remaining two dimensionless parameters are p/a, the ratio of the
horizontal offset 2p to the filament width 2a, and H/a, the ratio of the vertical offset 2H to
2a.

5.4. Time evolution

We first examine the flow evolution in two contrasting situations, with A = —4 and A = +4.
In both cases, the vortex starts directly beneath the filament (p = 0) at a depth 2H = 1,
corresponding to H/a = 2. The cooperative shear case with A = —4 is shown in the top

panels of figure 6. There are three noticeable characteristics of the flow. First, the velocity
field induced by the internal vortex causes the filament to rapidly roll up into billows. This
is expected as the filament itself is unstable. Second, one large billow forms on the top of the
internal vortex. Finally, the internal vortex is only moderately deformed by the shear induced
by the surface buoyancy filament. By contrast, the evolution is very different for the adverse
shear case with A = +4, shown in the bottom panels of figure 6. The rapid billow formation
is the only similar characteristic, but here no billow forms over the internal vortex. Moreover,
the shear induced by the filament on the vortex pulls the vortex into a thin filament. This is
consistent with the greater destructive capability of adverse shear in vortex interactions (Kida
(1981), Dritschel (1990), Legras and Dritschel (1993), Trieling, Dam and van Heijst (2010)).

The adverse shear not only stretches the vortex into a filament, but prevents a billow from
forming over the vortex initially. The shear induced by the vortex is largest above it and, as
it opposes the shear of the filament there, it results in a stagnation point at the centre of
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Figure 5. Flow geometry illustrating the initial conditions for a surface buoyancy filament and an internal vortex.

Figure 6. Surface buoyancy and PV evolution for p/a = 0, H/a =2 and A = —4 (top) and A = 4 (bottom). Buoyancy
contours are rendered in blue for b < 0 and in red for b > 0. PV contours (in the interior) are rendered in black. The
view is from the top, looking down into the flow. The times displayed are t = 2.5, 5, 7.5, and 10 (top), while they
are t = 2.5, 5, 7.5, and 12.5 (bottom). The surface buoyancy filament is represented by 50 levels of buoyancy iso-value
(contours) equally spaced in (0, bm).

the filament directly above the vortex. This flow structure causes the filament to thin fastest
above the vortex, inducing billows on either side of it. By contrast, cooperative shear results
in a centre (an elliptical flow region) at the surface above the vortex. This induces a large
billow to form directly above the vortex, as observed.

For both cases illustrated in figure 6, the surface buoyancy field becomes highly intricate.
Braids between billows roll up. Other billows merge and split, and the braids between those
billows roll up into smaller billows, and so on, resulting in a rapid growth in flow complexity.
There are scale cascades occurring in both directions, scale growth through billow formation
and merging on the one hand, and scale reduction through the creation and stretching of
braids at ever smaller scales.
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5.5. Parameter dependence

We next investigate more generally how the flow evolution depends on the parameters of the
initial flow state, A, p/a and H/a.

We begin by studying the influence of H/a keeping p/a = 0 and A = +2 — again both
cooperative and adverse shear are considered. Varying H/a has two main effects. On the one
hand, it controls the amplitude of the flow induced by the vortex on the filament. Notably
however the growth of disturbances on the filament after the initial perturbation by the vortex
occurs at a rate proportional to the shear within the filament, b, /a. This can be much greater
than the shear induced by the vortex, which may be estimated to be ~ ¢(H/a) 3, noting that
the velocity field external to a spherical vortex decays like (a/r)? where 7 is the distance from
the vortex centre. On the other hand, decreasing H/a increases the shear induced by the
filament on the vortex. The initial maximum horizontal shear induced by the filament can be
calculated semi-analytically from the surface buoyancy distribution at ¢ = 0. Then b = b(y, 2)
and

du 0%, O, Ob

oy oyr 922 0z
using the fact that v is a harmonic function. After Fourier transforming the surface buoyancy
b(y,0) in y, we can obtain the interior shear directly from

oty B 861 B elz +e—l(47r+z)

oy "o oo (=0

where b;(z) is the Fourier coefficient of b(y, z) and [ is the y wavenumber (see Appendix 2).
Notably, only the coefficients of b at the surface are required.

Contours of the dimensionless shear directly below the filament, v = ¢~ *du(y = 0, 2)/9y,
are plotted in figure 7 as a function of A and H/a. A priori, one would expect this shear, if
adverse, to overwhelm the vortex if it exceeds 0.0768¢ (based on the behaviour of an initially
spherical QG ellipsoid subject to steady uniform horizontal shear, see McKiver and Dritschel
(2003)). This criterion is seen to work well for vortices subject to adverse shear. In general,
cooperative shear is non-destructive, though it can lead to tearing of filaments from the vortex,
as seen here when |v| is large.

The dependence of the flow evolution on the depth of the vortex H/a is shown next in
figure 8, again for both cooperative and adverse shear, all at a fixed identical time, ¢t = 10.
The approximate criterion v > 0.0768 divides the two cases on the left where the vortex is
ripped apart from the two cases on the right where it remains intact. For strong cooperative
shear at small H/a (top left panel), the periphery of the vortex is torn away leaving a reduced
vortex core below the surface buoyancy billow that forms in the centre of the domain. As
expected, in all cases for both the cooperative and adverse shear, the buoyancy filament
breaks into billows. At the time shown, the billow formation is more advanced for decreased
H. Recall that in the linear stage the amplitude of disturbances on the unstable filament
grows as Ae’’, where A is the initial amplitude of the perturbation and o the growth rate.
The effect of decreasing H/a is roughly equivalent to increasing A; hence, a given disturbance
amplitude will be reached earlier for decreasing H/a. We also see that when the vortex is
near the surface, it breaks into thin filaments (primarily in the adverse shear cases). These
PV filaments become weaker dynamically as they thin, by contrast to the surface buoyancy
filaments. As a result, the evolution of the PV filaments is increasingly dictated by the flow
generated by the breaking buoyancy filament. In the most extreme case shown (H/a = 0.52),
even in the adverse shear case the PV filaments appear to follow the swirling patterns of the
billows generated from the buoyancy filament. By contrast, for weaker shear (larger H/a) the
internal PV is more able to remain compact and dynamically active, and tends to reside away
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Figure 7. Magnitude of the shear induced by the filament scaled by the PV of the vortex, |v|, as a function of |A|
and H/a. Markers are placed in the diagram corresponding to the numerical experiments for (a) cooperative shear with
A < 0, and (b) adverse shear with A > 0. A circle (o) indicates that the vortex remains ellipsoidal. A plus sign (+)
indicates that the vortex has been either partially or completely strained out. This confirms that « > 0.0768 provides a
fair estimate of the shear required for a strong deformation of the internal vortex subject to adverse shear.

from the buoyancy billows.

We next study the influence of A, keeping p/a = 0 and H/a = 2. Since the characteristics of
the vortex (r and ¢) are fixed, by also fixing the location of its centre (p, H), the flow initially
induced by the vortex on the filament is the same in all cases. Varying A however changes
the rate at which the filament destabilises and rolls up into billows. Taking this into account,
figure 9 shows the flow state at the equivalent ‘buoyancy time’, 7 = ta/|by,| = 5/8 = 0.6125.
For the reference case, this corresponds to ¢ = 2.5 while for the smallest |A|, it corresponds
to t = 250, a time by which the deep vortex has rotated over 80 times. As a consequence, the
weak buoyancy filament forms a tight spiral which rolls up into many small billows.
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Figure 8. Surface buoyancy and PV contours at t = 10 for p/a = 0, A = —2 (top) and A = 2 (bottom) for various values
of the dimensionless vertical offset H/a. From left to right 2H/a = 0.52, 1, 2, and 4. The surface buoyancy filament is
represented by 50 levels of buoyancy iso-value (contours) equally spaced in (0, bm).

Figure 9. Surface buoyancy and PV contours for p/a = 0, H/a = 2 and from left to right A = £0.04 at ¢t = 250,
A=404att=25,A=42att=>5and A = 44 at t = 2.5. Top: cooperative shear with A < 0; bottom: adverse shear
with A > 0. The surface buoyancy filament is represented by 50 levels of buoyancy iso-value (contours) equally spaced
in (0, bm).

Initially, the filament instability is suppressed by the straining induced by the deep vortex.
This straining comes from the decrease in rotation speed of the vortex flow with horizontal
distance from the vortex centre. But, as the filament scale reduces, the potential for instability
increases. Eventually, the shear within the filament, which scales with b, divided by the local
filament half width a(t), is great enough to overcome the strain induced by the vortex below
it and billows form. Harvey and Ambaum (2010) have found for example that the minimum
strain needed to stabilise the uniform-buoyancy filament is

5> 0.0371b—m,
a

This threshold keeps increasing as a(t) decreases, so eventually the limited vortex strain will be
insufficient to stabilise the buoyancy filament. That is, the weaker the filament (the smaller
A is), the smaller a(t) must be before instability and roll up occurs. Essentially, the local
shear inside the filament, b,,/a(t), must exceed the roughly fixed straining induced by the
vortex. The exception is the billow formation above the vortex in the cooperative shear case.
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Figure 10. Surface buoyancy and PV contours at ¢t = 5 for A = £2, H/a = 2 and from left to right p/a = 0, 0.8, 1.6, and

2.4. Top: cooperative shear with A < 0; bottom: adverse shear with A > 0. The surface buoyancy filament is represented
by 50 levels of buoyancy iso-value (contours) equally spaced in (0, bm).

Figure 11. Surface buoyancy and PV contours for A = +2, p/a = 0.5, H/a = 0.52 and from left to right at ¢t = 1, 1.5,
2.5 and 10. Top: cooperative shear with A < 0; bottom: adverse shear with A > 0. The surface buoyancy filament is
represented by 50 levels of buoyancy iso-value (contours) equally spaced in (0, by,).

Otherwise, around the vortex the filament is twisted into a spiral and thinned until its shear
becomes sufficiently intense to form further small-scale billows. Even the larger A cases for
adverse shear show some suppression of filament roll up above the vortex, but as the vortex
induced straining weakens with horizontal distance, there is less stretching of the filament and
a correspondingly more rapid growth of the filament instability, resulting in larger billows.

We next study the influence of the dimensionless horizontal offset p/a, keeping A = +2 and
H/a = 2. Four increasing values of the offset are considered (from left to right) in figure 10.
There are three main effects. First, for p/a > 0 the vortex centre is no longer centred at a
point of zero velocity, so it is advected by the velocity field induced by the filament. Second,
the straining flow induced by the vortex on the filament is no longer symmetric. Moreover, this
asymmetry is enhanced by the fact that the vortex propagates and therefore changes where it
most strongly disturbs the filament. Third, as the initial horizontal offset between the vortex
and the filament increases, the interaction between the two weakens. This is expected since
the straining due to the vortex diminishes with the cube of the distance between the vortex
and the centre of the filament.
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Figure 12. Effect of vortex size. Top: cooperative shear with A < 0; bottom: adverse shear with A > 0. In all cases
H/a = 2 with a = 0.25. Results are shown at the dimensionless time t; = 27t/q = 3. From left to right, first column:
Ty = 272/24, A = 40.4; second column: T, = 7/48, A = +4; third column: T', = 272/24, A = +40; last column:
'y = 5127w2/375, A = £4. The surface buoyancy filament is represented by 50 levels of buoyancy iso-value (contours)
equally spaced in (0, bm).

An interesting sub-case occurs when the vortex is located just below the surface with its
centre lying directly below the edge of the filament (p/a = 0.5). This propels the vortex
at the fastest possible rate initially. Two examples (for cooperative and adverse shear) are
illustrated in figure 11. In these examples, the vortex is strongly sheared and pushed along
by the velocity field induced by the filament. The vortex then rapidly disintegrates into a
myriad of small-scale vortices and filaments which are swept around the billows formed by
the unstable filament.

Finally, we investigate the effect of varying the vortex radius r relative to the filament
half width a. We keep a = 0.25 as well as H/a = 2, but now vary r and/or ¢. In the
first set of numerical experiments, we fix the strength of the vortex I', = [[[ . qdV =
47qr3 /3 = +72 /24, the same as in the reference case for which r = 0.25 and q = 27. Keeping
by, = £27, we consider A = b,,/(aq) = £0.4, +4 and £40, adapting r to keep I';, = +m/48.
This gives r ~ 0.116, 0.25 and 0.539, respectively. The flow structure at the dimensionless
time t, = 27t/q = 3 is presented in figure 12 (left 3 columns). We see that, at least over
this range of r, the vortex size has virtually no influence on the evolution of the buoyancy
filament. The strip destabilises according to the most amplified mode consistent with the
imposed periodicity. By contrast, if we increase the vortex radius to r = 0.8 while keeping
q = 27 (and therefore A = 44), the vortex is substantially stronger (I', = 51272 /375, which
corresponds to r/a = 3.2) and thereby exerts greater strain on the buoyancy filament. This
is illustrated in the right column in figure 12. For cooperative shear (top), the vortex wraps
the filament into a spiral which is just beginning to destabilise. For adverse shear, the core
of the vortex consolidates after shedding substantial filaments, which roll up underneath the
buoyancy billows. Above the vortex (and parts of the ejected filaments), the braid connecting
the innermost buoyancy billows itself rolls up into many smaller billows.

5.6. FEnergetics

We next examine the distribution of energy within the flow. The surface buoyancy variance
spectrum

Blkn)= > |bgal®
TPk,
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Figure 13. Surface buoyancy spectra B(kp) for p/a = 0 at the times indicated. (A) : A = —0.04, H/a =2. (B) : A
—4,Hla=2.(C): A=—-2,H/a=052. (D):A=004,H/a=2. (E): A=4,H/a=2. (F): A=2, H/a = 0.52.
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reference line for k;s is indicated.

is shown in figure 13 for several choices of flow parameters. Here, we see how the nonlinear
dynamics redistributes buoyancy with scale kj, (the horizontal wavenumber). Recall that in
surface quasi-geostrophy, this variance equals the surface ‘self’-kinetic energy

1B (k. 1) = 0] (k, D)

where u; is the velocity at the surface induced by the buoyancy alone, and a hat denotes a
horizontal Fourier transform. It is important to notice that this quantity does not include the
part of the surface velocity induced by the interior PV distribution. Hence, it is not the actual
kinetic energy at the surface (unless ¢ = 0). However, the surface buoyancy variance spectrum
allows one to analyse the energy transfer associated with surface buoyancy alone.

All cases shown in figure 13 exhibit a small to moderate decrease of the buoyancy variance
at the largest scales (small kj). This decrease is accompanied by an increase in the energy at
small to intermediate scales. In particular, in the ‘inertial range’ far from both the domain
scale and the grid scale, the spectrum shallows to k~5/3 in the most turbulent cases exam-
ined. This spectral form is consistent with the rigorous mathematical analysis of surface QG
energy spectra in Tran, Blackbourn and Scott (2011). The initial k‘,;?’ spectrum is due to the
singularity in 9b/Jy at the edge of the filament. The k}:3 spectrum occurring at very high
kp, is a numerical artefact. At high kj, the buoyancy field b is being advected by a flow field
which is truncated at the wavenumber kj = 512 corresponding to the grid resolution. As a
result, finer scales in b are partially suppressed for kp > 512.

We next consider the total, domain-integrated energy of the flow. This is given by

E, = /// (u2 +0%+ b2) dxdydz = /// |V¢|2da:dydz,
D D

and is conserved in the absence of diabatic and viscous effects (see Held et al. (1995) and
Capet et al. (2008)). We decompose the total energy E; into three parts as follows:

Et—// V(i + )2V = Ey + By + E;
D

Eq://waiPdv

where
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Figure 14. Energy components computed from data on a 2562 grid for p/a = 0, H/a = 2, and A = £0.04. Left,
cooperative shear with A < 0, and right, adverse shear with A > 0. Ey is the self energy of the internal vortex, Ej is the
self energy of the buoyancy filament, E; is the interaction energy, and E; is the total energy.

is the self energy associated with the vortex alone (positive definite),

By = ///D Vips|*dV

is the self energy associated with the filament alone (also positive definite), and

E,-—Et—Eq—Eb—Q// Ve - Vaps dV
D

is the interaction term, which can be either positive of negative depending on whether the
interaction is a sink or a source of energy. This term may be interpreted as the correlation
between the flow contributions of the buoyancy filament and the vortex. As shown below, it is
mainly positive for cooperative shear and negative for adverse shear. This makes sense since
the interaction energy is the product of the two velocities u; and ug, which largely oppose
each oin (0, by, )ther for adverse shear.

Numerically, the horizontal gradients appearing in the expressions above are computed spec-
trally, while fourth-order compact differencing is used in the vertical direction. The integration
is performed by the trapezoidal rule in physical space. Due to the large memory space required
for computing V; and V), the integration is performed on the same 2563 grid used to repre-
sent the interior velocity field in the nonlinear simulations. While the surface and near-surface
layers are resolved on a grid four times finer, for the purpose of computing the energy compo-
nents we have truncated the spectra of Vi; and Vi, there to 128 total wavenumbers, as in the
interior. This means that the energy between wavenumbers 128 and 512 is not accounted for,
even though these wavenumbers are used in the nonlinear simulations. This affects only the
part of the domain near the upper surface, and then only weakly since the energy contained
in these scales is a small portion of the total. Moreover, the contribution to the energy in this
range of wavenumbers is only significant within a vertical grid interval Az = 27 /256 of the
surface.

Results for p/a =0, H/a = 2 and A = +0.04 are presented in figure 14. In these two weak
buoyancy cases, the self energy of the internal vortex is almost conserved. This is consistent
with the fact that the vortex remains almost undeformed. The overall variation is AE, ~
10, comparable to the variation in total energy E;. On the other hand, the interaction
energy exhibits a variation around 10 times larger, and its upward trend is nearly perfectly
compensated by the downward trend in the self energy due to the buoyancy filament. Hence,
as the filament destabilises, it loses energy to the interaction energy. There is little difference
between the adverse and cooperative shear cases in terms of energetics.
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Figure 15. Energy components as in figure 14 but for p/a = 0, H/a = 2, and A = £2. Left, cooperative shear with
A < 0, and right, adverse shear with A > 0.

For the same dimensionless horizontal and vertical offsets, p/a = 0 and H/a = 2, the vortex
can be stretched out by increasing the relative intensity of the filament, A. In figure 15, for
A = +2, we show how the various energy components evolve. The corresponding PV and
buoyancy evolution is shown in figure 6. In the adverse shear case, the vortex is overwhelmed
by the shear induced by the buoyancy filament. Regarding the energetics, the vortex energy
plunges in the adverse shear case, and this is followed by a decay in both the self energy of
the buoyancy filament and the total energy (which is dominated by the self energy of the
filament). The interaction energy rises significantly, more than the vortex self energy decays.
By contrast, in the cooperative shear case, the vortex self energy oscillates and weakly decays.
The interaction energy first rises then falls and oscillates — there is no clear trend. Again,
there is a decay in both the self energy of the buoyancy filament and the total energy, and
again the decrease in self energy of the filament is the dominant process energetically.

The lack of conservation of energy is expected since buoyancy typically exhibits a forward
spectral cascade at the surface (Tran, Blackbourn and Scott (2011)), and therefore this cascade
inevitably carries energy, in the inviscid limit, beyond the wavenumber truncation used. This
is not unlike the behaviour exhibited by three-dimensional homogeneous turbulence, which
similarly exhibits a forward energy cascade.

Regarding the vortex self energy Fj, it exhibits its maximum possible value at t = 0 when
the vortex is a perfect sphere. Any deformation reduces the vortex self energy. The oscillations
in F; seen in figure 15 for the cooperative shear case indicate that the vortex first deforms
then rebounds close to a spherical form before being further deformed, and so on. This is
typical of the way in which cooperative shear acts on vortices (Dritschel (1990)).

One final example illustrates the energy transfers occurring during particularly strong in-
teractions. We consider a vortex near the surface with H/a = 0.52 with no horizontal offset
p/a = 0 and with filament-vortex intensity ratios A = 2. The evolution of the energy com-
ponents is presented in figure 16. In both cases the vortex is strongly deformed, but recovers
somewhat in the cooperative shear case and loses only 10-15% of its self energy E,. No recov-
ery occurs in the adverse shear case — the vortex disintegrates into a myriad of filaments (see
lower left panel of figure 8). Here also the interaction energy decreases by 30-40% in magni-
tude. The plateau reached from t = 6 to 18 is likely associated with the passive-tracer-like
behaviour of the interior PV as it is swept around by the more energetic surface buoyancy.
The situation for cooperative shear is less clear: there are thin filaments of PV ripped from the
vortex at early time which subsequently get swept up by the buoyancy field, but a significant
part of the PV field remains coherent and mainly concentrated in the original vortex (see
upper right panel of figure 8). The self energy of the buoyancy filament Fj again dominates
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Figure 16. Energy components as in figure 14 but for p/a = 0, H/a = 0.52, and A = £2. Left, cooperative shear with
A < 0, and right, adverse shear with A > 0.

the energetics and is largely responsible for the decay in total energy E;. The arrest of this
decay at late times in the cooperative shear case occurs because the main billows formed early
on do not subsequently strongly interact. By contrast, the billows merge in the adverse shear
case, leading to a stronger and sustained decay in Fj and FE;.

6. Conclusion

This paper has studied the stability of a surface buoyancy filament having uniform shear, and
has examined its complex nonlinear interaction with an internal vortex. We have explicitly
shown that the filament is linearly unstable, with a maximum growth rate of approximately
8.9% of its internal shear. The preferred mode of instability has a wavelength of approxi-
mately 4.3 times the width of the filament. In its nonlinear stages, the instability results in
the formation of a series of billows. The billows are connected by weak braids (with lower
amplitude buoyancy) which subsequently destabilise at much smaller scales. As such, this
instability provides a rapid route to the generation of small scales at the surface. The cascade

in physical space is associated with the formation of a shallow k;s/ 3 inertial range in the
buoyancy variance spectra. Since the buoyancy variance is equivalent to the surface energy,
the k,:5/ 3 spectrum indicates a strong forward cascade of energy to small scales.

Additionally, we have shown that the surface buoyancy may, under certain conditions,
strongly disrupt an internal vortex. This happens when the vortex is near the surface and
the buoyancy anomaly is strong. The form of the interaction depends crucially on the rela-
tive directions of the shear associated with the vortex and the filament. In adverse shear, the
interaction tends to be significantly more destructive. In cooperative shear, the vortex can
largely withstand the strong shear induced by the filament, since that shear tends to make
the vortex rotate faster and thus spend less time aligned with the extensional axis of strain.

By analysing the energy components of the interaction, we have found that the self energy of
the vortex typically diminishes as it is deformed from its initially spherical shape (in vertically-
stretched QG coordinates). The greater the deformation, the greater is the loss in vortex
self energy. This energy is transferred to the filament-vortex interaction energy and the self
energy of the filament. As the filament rolls up into billows, and the connecting braids roll
up forming progressively finer scales, the self energy of the filament eventually exhibits a
moderate decay (for fixed spatial resolution). This is due to the forward cascade of buoyancy
variance, inevitably resulting in dissipation of energy.

We have further explored the effect of a horizontal offset between the centre of the vortex
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and the centre of the filament. For large offsets, the vortex is hardly disturbed but seeds a
disturbance on the buoyancy filament which causes it to roll up. For moderate offsets, the
vortex is initially propelled along the filament, disturbing different parts as it moves. This
leads to a more complex asymmetric interaction.

We have identified a condition for vortex extension in the case of adverse shear, namely
that the local horizontal shear at the vortex centre du/dy exceeds 0.0768q where ¢ is the
PV within the vortex. The shear du/0y can be calculated semi-analytically from the initial
buoyancy distribution. This condition is based on the behaviour of an initially spherical QG
vortex subject to uniform horizontal shear (McKiver and Dritschel (2003)).

As regards oceanographic applications, this idealised study shows that the horizontal loca-
tion of a surface buoyancy anomaly does not necessarily correspond to a deep vortex below it.
In fact, in some cases, a vortex may correspond to a zone depleted of buoyancy. Consequently,
deep vortex detection from sea surface temperature (or sea surface density anomaly) alone is
generally not reliable, see Carton et al. (2010) and 'Hégaret et al. (2014).

In this study, we have emphasised the buoyancy filament as the archetype flow structure
capable of efficiently generating small scales, either on its own or in conjunction with a deep
vortex. One can envision other forms of interaction, e.g. with a moving internal structure such
a heton or a baroclinic dipole crossing under a buoyancy filament, or with bottom topography.
Such studies may provide further insight into some of the fundamental dynamical mechanisms
at play in the interaction of surface jets and deeper mesoscale structures, both key ingredients
in the oceans circulation.

7. Appendix 1: derivation of the dispersion relation for a buoyancy filament

We consider a basic-state buoyancy filament parallel to and centred on the z-axis. Starting
from the kinematic condition

Dn

v

Dt ’
which expresses the fact the buoyancy contours are material, v can be calculated in spectral
space from

(12)

b=——b, (13)

which uses the inversion relation ¢ = —b/|k| and © = ike, where k = (k, ) is the wave vector.
Here, é is the Fourier transform of any variable £ in physical space.

Since the basic state is independent of x and ¢, we can seek solutions proportional to
¢(kx=0t) "where o is determined from an eigenvalue problem below. For any physical variable
&, we take

E(x,y,t) = —E(y)e' 0. (14)
Now since the buoyancy perturbation satisfies b’ = —n l_)y generally, it follows that the same
is true for the spectral amplitudes:
. _ b Y
V= —ijby =ij— ——. (15)
@ \/1~ (y/a)?

To obtain ¥ we carry out, formally, the inverse Fourier transform of v with respect to [,

1 0o ) ik [ l;l ily
5= — / pelvgr = - [ 28 g1, (16)
2 J_ o 2 J_ oo VK2 + 12
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using (13). Next, to obtain V' as function of the perturbation amplitude 7 we carry out a
Fourier transform of & in y:
oo
B’—/ Ve W dy'.
—0o0

Only ¥ contributes to v as, in equilibrium, v = 0. Moreover, because we consider only dis-
turbances which displace the material contours within the filament, then & # 0 within the
filament only (i.e. for |y| < a after linearisation). Hence, we can rewrite the above and make
use of (15) to obtain

. “_ b [© Y o
b/ = b’eiZly dy/ = —ﬂ f]—eilly dy/.
2 / 2
a @ )0 T=y]a)

Therefore, using this in (16), we find

o ikby, etty—y") /.
© 2ma? / / NS 2
where the order of integration has been swapped. For the inner integral, the imaginary part

is zero by symmetry while the real part gives

e}

cos(l(y —y'))

oo R /k? + 12
where K is the modified Bessel function of the second kind (from Abramowitz and Stegun,
1964, p 376, formula 9.6.21). The kinematic relation written for 7 therefore reads

e R

" — _

e my a2 _aT/ Yy 1_ (y’/a)2 0 y—y Yy,

where U, = b,,y/a is the linear shear flow within the filament. The apparent singularity of
the integrand at 3’ = 4+a can be removed by the substitution ¢y = —acos’, with 0 < 6’ < T,
for which

dl = 2Ko(k(y —y")),

d /
y — d917

N IE

leading to the final expression

ikbm,

™

(kUe —o)n(0) = — /OTr 17(0") cos ' Ko(ka(cos §' — cos 0))db'.

8. Appendix 2: Sub-surface influence of the buoyancy filament

In this appendix, we examine how the energy associated with a buoyancy filament is dis-
tributed with depth. For this we diagnose the quantity blz(z), the depth dependent horizontal
spectrum of b = 95 /0z as well as the spatial distribution of b?(y, z), the potential energy
density. Note: the filament is independent of x, so [ here refers to the y wavenumber.

Starting from the analytical profile of buoyancy at the surface b(y, z = 0) = by,\/1 — (y/a)?,
we perform a Fourier transform in gy to obtain its spectral coefficients I;l(z = 0) and hence the
spectral streamfunction ¢;(z = 0) = —b;(z = 0)/|I|. The depth-dependent streamfunction can
then be found by solving

82¢ 0%

AV =52 g2 =0
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Figure 17. Top: close-up of the spatial distribution of the interior buoyancy squared (potential energy density)) b2(y, z)
due to an elliptical buoyancy filament at the upper surface. The domain shown is —7/4 < y < 7/4 and —7/4 < z < 0.
Bottom: z velocity component u(y, z) in the same domain.

subject to the boundary conditions

0 0
w0 =bw0), 9

After the Fourier transform in y, the solution is seen to be

y,—2m) =0.

~ I;Z(Z = 0)
=——  cosh((2 -2
i(2) Tsinb(270) cosh((2m + 2)I), T<z<0,
(see Perrot et al, 2010), from which we determine
~ o osinh((2r 4 2)l) . el — el
bi(z) = bi(z = O)W =b(z= O)W

by differentiation with respect to z.

These spectral coeflicients can be used to generate the buoyancy variance spectrum as a
function of height, and to reconstruct the spatial field of b(y, z). Here, this is done on a 10242
grid. Results are presented in figure 17 for b,, = 1. The top panel shows that almost all the
energy is concentrated in the vicinity of the filament, and decays very rapidly away from it,
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Figure 18. Horizontal spectra of the potential energy l;f for different depths. The depth is indicated by layer indices on
a 10242 grid. The surface is at z = 0. The bottom is at z = —2m, where b = 0 is imposed.

both in the vertical and horizontal directions. The bottom panel illustrates the structure of
the velocity field associated with the buoyancy filament. The peak velocities are located at
the edges of the surface filament. The velocity decays rapidly with depth, as does b. Figure 18
shows the horizontal spectra of buoyancy variance in the 6 layers nearest the upper surface.
Recall that the total depth is 27, and the domain is divided into 1024 equal layers. The
depth of layer 1014 is therefore only at a depth of less 1% of the domain depth. Hence, the
energy contained at high wavenumbers has a negligible influence on the interior, except for
the uppermost few layers.
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