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The synthesis and analysis of lignin-bound Hibbert ketone 

structures in technical lignins 

D. M. Miles-Barrett†, A. R. Neal†,
 
C. Hand, J. R. D. Montgomery, I. Panovic, O. S. Ojo, C. S. 

Lancefield, D. B. Cordes, A. M. Z. Slawin, T. Lebl
 
and N. J. Westwood

[a]
* 

Understanding the structure of technical lignins resulting from acid-catalysed treatment of lignocellulosic biomass is 

important for their future applications. Here we report an investigation into the fate of lignin under acidic aqueous 

organosolv conditions. In particular we examine in detail the formation and reactivity of non-native Hibbert ketone 

structures found in isolated organosolv lignins from both Douglas fir and beech woods. Through the use of model 

compounds combined with HSQC, HMBC and HSQC-TOCSY NMR experiments we demonstrate that, depending on the 

lignin source, both S and G lignin-bound Hibbert ketone units can be present. We also show that these units can serve as a 

source of novel mono-aromatic compounds following an additional lignin depolymerisation reaction. 

Introduction  

Lignin, a core component of the cell wall, is thought to be 

the most recalcitrant and intractable biopolymer in 

lignocellulosic biomass. The ability to identify and assess the 

reactivity of the different structural units within this 

biopolymer is a fundamental aspect of understanding lignin’s 

structure and advancing methods for its selective 

depolymerisation to generate renewable chemical 

feedstocks.
1–9

 Recently, interest has increased in protocols 

that liberate lignin from biomass without causing large 

structural changes to the lignin (e.g. mild organosolv 

methods).
4,10–14

 Many of these approaches have developed 

from the acidolysis methods examined in the 1940-70s.
15–19

 

Whilst progress on mild lignin isolation protocols continues, it 

is clear that structural modification of the lignin will always 

occur to some extent and that the induced changes require 

more detailed study. 

The Hibbert ketones (HKs), named after their discoverer 

Harold Hibbert,
16–18,20

 encompass a series of keto-containing 

structures that are formed on acidolysis of lignin (Figure S1).
16–

18,20
 The family includes ketones 1 and 2 (Scheme 1A)

19
 which 

are likely formed from lignin as shown in Scheme 1B. The 

acidolysis reaction begins with (i) protonation of the benzylic 

hydroxyl groups on adjacent β-O-4 units leading to (ii) the 

formation of carbocation/quinone methide intermediates.
19

  

Scheme 1A: Guaiacyl (G) 1 and sinapyl (S) 2 Hibbert ketones and their methylated 

analogues 3 and 4 were synthesised in this study. 1B: Proposed mechanism for 

generation of HK 1 or 2 and a lignin-bound Hibbert ketone (LBHK) structure on 

acidolysis of two adjacent β-O-4 units in lignin. Models 3 and 4 mimic the LBHK 

structures. For more information, see ESI Scheme S1. 
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Subsequent loss of a proton is followed by hydrolysis of the 

resulting enol ethers (not shown) to give the labile oxonium 

ions shown in (iii). Attack by H2O and collapse of the resulting 

hemi-ketals releases HK 1 or 2 (iv) (blue structure). 

Interestingly, this process as drawn should also result in 

formation of a lignin-bound Hibbert ketone structure (LBHK, 

green) from the second β-O-4 unit (from a C3-C3 degradation 

pathway, see Schemes S2-S3 for other possible pathways). 

Whilst the identification of HKs 1 and 2 during lignin 

acidolysis is well-known,
19

 the formation of the LBHK unit is 

less well studied with only partial assignments in 2D HSQC 

spectra being present in the literature to the best of our 

knowledge.
21–23

 Here we initially address this issue through the 

synthesis of 3 and 4, models of the LBHK structures. Previous 

syntheses of these types of compounds have included 

Hibbert’s original route to 1 from homoveratric acid involving 

the use of diazomethane.
18

 Lundquist has also reported a 

synthesis of 1 from an unprotected triol precursor.
19

 The most 

recent report in this area by Dalla et al. involved reaction of a 

silyl-protected Wittig reagent with the required aldehyde 

followed by LAH reduction to give 3.
24

 

Here we report a synthesis of non-phenolic and phenolic 

Hibbert ketones (1-4) in both the G and S series. A detailed 

NMR comparison of lignin generated from both soft- and 

hardwoods with 3 and 4 demonstrates that LBHK structures 

are indeed present and are available for study by 2D HSQC and 

HMBC methods. In addition, the availability of compounds 1-4 

enables studies on the reactivity of the LBHK structures to be 

carried out. Studying reactions on lignin model compounds 

(e.g. β-O-4, β-5, β-β) prior to testing them on lignin has 

allowed for recent breakthroughs in several depolymerisation 

procedures.
3,25–27

 In particular, acid-induced depolymerisations 

(e.g. formic acid,
25

 triflic acid
3
) that give high weight % yields of 

C2
3
 and C3

25
 monomers have been developed. To date, these 

procedures have not been studied in the context of LBHK 

structures (e.g. 1-4), despite the fact that they are often 

present within the starting lignins or are generated as the 

depolymerisation reaction progresses. 

Results and Discussion 

Synthesis of Model Compounds 

Our approach to non-phenolic LBHK models (3 and 4) 

began with the addition of vinylmagnesium bromide to 3,4-

dimethoxybenzaldehyde (5), followed by dihydroxylation of 

the intermediate olefin to give triol 6 (39% yield over 2 steps, 

d.r. 3.0:1). Acidolysis of 6 in 2M HCl/dioxane (1:9)
19

 gave the 

desired ketone 3 in 45% yield after purification. The same 

approach was applied to 3,4,5-trimethoxybenzaldehyde (7) to 

give triol 8 in comparable yield (36% over 2 steps, d.r. 2.6:1). 

Again, acidolysis of 8 in 2M HCl/dioxane (1:9) gave the 

required ketone 4 in 37% yield. The HKs 1 and 2 were also 

synthesised as these structures would be released on 

depolymerisation of lignin samples and may prove useful as a 

versatile building block in synthesis (Scheme 2(ii)). 

 

Scheme 2: Synthetic routes to (i) lignin-bound HK models and; (ii) authentic 

samples of the Hibbert ketones. Reaction conditions: (a) vinylmagnesium 

bromide (1.1-1.2 eq.), THF, 0°C - r.t. 1 h. (b) OsO4, NMO (1.5-1.7 eq.), THF/ H2O 

(9:1), r.t. 16 hrs. (c) 1,4-dioxane: 2M HCl (9:1), 0.5 – 1 h. (d) TBS-Cl (1.2 eq.), 

imidazole (2.0 eq.), DMAP (5 mol%) DCM, r.t., 1 - 2 hrs. Thermal ellipsoid plot 

representations of 1 and 2 are shown at 50% ellipsoid probability, hydrogens 

omitted for clarity.
28

 

Initially, TBS protection of vanillin (9) was performed to 

give 10. Treatment of 10 with vinylmagnesium bromide and 

dihydroxylation gave triol 11 (61% over 3 steps, d.r. 2.1:1) in an 

analogous manner to the formation of 6 and 8. Acidolysis of 

triol 11 led directly to ketone 1 (in 68% yield) with acid 

mediated silyl deprotection observed. X-ray crystallographic 

analysis confirmed the successful synthesis of ketone 1.
28

 

Finally, TBS protection of syringaldehyde (12) gave 13. The 

addition of vinylmagnesium bromide to 13 and subsequent 

dihydroxylation gave triol 14 (53% over 3 steps, d.r. 3.3:1). 

Again, acidolysis of 14 led to the desired ketone 2 (48% yield) 

and this structure was confirmed by X-ray crystallographic 

analysis.
28

 Having successfully synthesised ketones 1-4, our focus 

turned to using these compounds in the analysis of the Hibbert 

ketone structure in lignin. 

Identification of Lignin-Bound Hibbert Ketone units in Softwood 

and Hardwood Lignins 

Two lignins, Douglas Fir (DF) and beech were isolated using 

a dioxasolv extraction method (0.2M HCl in 1,4-dioxane, 1 

hour at reflux).
27

 Analysis of the 2D HSQC NMR overlays of DF 

and beech lignin with G- and S-LBHK models 3 and 4 

respectively enabled assignment of all the relevant cross-peaks 

(Figure 1). The α-protons in both 3 and 4 can be assigned as a 

distinctive peak at δC/δH 44.6/ 3.64 ppm (Figures 1A & 1C) in a 

O
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region cut from most reported lignin NMR spectra.
21

 The γ-

protons, δC/δH 67.6/ 4.17 ppm (Figures 1A & 1C), are located 

above the β-β cross-peaks and the α- and γ-cross-peaks are, to 

the best of our knowledge, the only HK related peaks currently 

assigned in the literature.
21,22

 From the analysis of the 

aromatic regions (Figures 1B & 1D), the G6-LBHK aromatic 

cross-peak can be assigned at δC/δH 122.1/ 6.65 ppm and is 

notably more shielded in the carbon dimension than the 

G5/6native (native to the protolignin structure) cross-peak 

located at δC/δH 119.5/ 6.8 ppm (Figure 1B). The G2-LBHK cross-

peak can be assigned at δC/δH 113.5/ 6.75 ppm and the G5-

LBHK (δC/δH 112.8/ 6.88 ppm) overlaps with the G2native cross-

peak (Figure 1B). Interestingly, the S2/S6-LBHK cross-peak is in 

a region usually assigned as ‘condensed’ lignin structures 

(δC/δH 107.4/ 6.52 ppm, circled in Figure 1D). It is unlikely the 

intensity of this cross-peak corresponds solely to S-LBHK 

content, but explains it partially.  

 

 

Figure 1: 2D HSQC NMR analysis (700 MHz, d6-DMSO) of: A) DF linkage region 

overlaid with spectrum from G-LBHK model 3; B) Beech linkage overlaid with 

spectrum from S-LBHK model 4; C) DF aromatic region overlay with spectrum 

from 3; D) Beech aromatic region overlay with spectra from 3 and 4. See ESI 

Figure S2 for further detail. Circled peaks are discussed in text. 

 

Analysis of the Effect of acid concentration on Lignin Structure 

Isolation of lignin using different acid pretreatment conditions 

would be expected to influence the LBHK content. The β-O-4 

linkage is the only linkage in lignin that can give rise to a LBHK 

structure on cleavage. Therefore, if pretreatment conditions 

were used that led to reaction (and hence loss) of β-O-4 units 

it would be expected that a proportional increase in LBHK 

content would occur (note: every time two adjacent β-O-4 

units are both cleaved one molecule of HK 1 or 2 and one LBHK 

unit could be formed (Scheme 1B)). Loss of LBHK units may 

occur due to equilibration to other isomeric HKs over time (ESI 

Figure S1). To examine changes in the extent of LBHK 

formation as a function of acid concentration, dioxasolv 

extractions were conducted on two woods (DF and beech) 

using different acid concentrations. The soluble lignin 

component of the samples were analysed by 2D HSQC NMR to 

establish the effects of changes in the pretreatment conditions 

on linkage content. 

On analysis of lignins obtained from DF wood at increasing 

acid concentrations (Table 1A), several observations were 

noted: (i) the isolated yields of lignin increased with acid 

concentration, presumably due to release of additional lignin 

from the hemicellulose/cellulose components; (ii) the amounts 

of the β-β and β-5 linkages remained relatively fixed, 

suggesting that these units are not acid sensitive and (iii) as 

the acid concentration increased, the β-O-4 content decreased 

with the LBHK content increasing by an analogous amount. 

Analysis of the beech wood derived lignin as a function of 

increasing acid concentrations (Table 1B) led to the following 

observations; (i) as seen with DF, the isolated lignin yields 

increased and the β-β and β-5 content remained almost 

constant (although evidence that the epimerisation of the β-

β had occurred at higher acid concentration was obtained, ESI 

Figure S3); (ii) in contrast to DF, whilst the β-O-4 content again 

decreased as the acid concentration increased, the apparent 

increase in LBHK units was much lower than expected and was 

not analogous to the β-O-4 loss (Table 1B) This may have been 

because β-O-4 units are more prevalent in hardwoods than in 

softwoods (60-62% for hardwoods; 45-50% for softwoods).
2
 

This increases the probability that two or more β-O-4 units are 

present in succession in hardwoods. This therefore increases 

the chance that consecutive β-O-4 units are cleaved releasing 

HKs 1 and 2 and reducing the LBHK content; (iii) the S:G ratio 

(hardwoods are usually enriched in S units
2
) increased in 

favour of the S units as the acid concentration increased. 

Possible explanations for this include: (a) the G aromatic units 

are retained but have increasingly reacted at the C5 position as 

acid concentration was increased (the lignin is increasingly 

condensed) and/or (b) that the G unit-rich S1 layer of the cell 

wall (in hardwoods
29

) is preferentially extracted at lower acid 

concentrations whereas the S2 and S3 layers of the cell wall 

(which are richer in S units than the S1 layer in hardwoods
29

) 

are also extracted at higher acid concentrations.  
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Table 1: Dioxasolv extractions to give A) softwood DF lignin and B) hardwood beech lignin. 
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0.05 2.3 34 5 14 8 (42) 0.05 1.2 1.8: 1 53 8 5 3 (56) 

0.2 4.4 28 6 15 18 (46) 0.2 9 3.3: 1 40 11 3 7 (47) 

0.4 6.9 24 6 15 23 (47) 0.4 11.2 3.6: 1 32 10 3 10 (42) 

 

All extractions were conducted on a 10 g scale. Number per 100 C9 units was calculated based on integrations of 2D HSQC NMR cross-peaks (see ESI Figures S4-S5). 

For standard error analysis of 3 repetitions, see ESI Tables S3-S4. To assess possible concerns over the use of 2D HSQC NMR analysis for linkage quantification (as end-

groups (e.g. LBHKs) are suggested to be over-represented within lignin 2D HSQC NMR spectra
2
), NMR experiments were conducted to assess the dependence of cross 

peaks integral values on T1 relaxation times (ESI Table S5-S6). In these experiments, the number per 100 C9 units was found to increase for β-O-4 units and decrease 

for β-5, β−β and LBHK units when the D1 time was extended from 1s to 15s. Values in parentheses = total number of β-O-4 + LBHK units. The results presented here 

should be viewed as semi-quantitative. The quantitative 2D HSQC NMR analysis of lignin can only be obtained using specific pulse sequences.
30

 * the reported 

isolated yields are after Et2O precipitations (as sequential washings whilst they removed low MW contaminants, significantly lowered lignin isolated yields (~50% loss) 

due to partial fractionation of lignin).  

GPC elution profiles of the beech lignins showed that the 

weighted average of the molecular weight (Mw) decreased 

with increasing acid concentration (ESI Tables S1-S2). This 

suggests that the increased condensation (see (a) above) does 

not explain the observed increase in the S:G ratio. In summary, 

the amount of LBHK units in a particular lignin clearly varies 

depending on the wood type and pretreatment conditions. 

HMBC analysis of dioxasolv lignins 

Assessing whether both the S- and the G-lignin-bound 

Hibbert ketone structures were present in the lignins was 

difficult by 2D HSQC NMR (Figure 1). This was due to overlap of 

the aliphatic cross-peaks associated with the two LBHK 

structures and also because of the overlap between the 

distinctive S-LBHK aromatic cross-peaks and the S2/6condensed 

cross-peaks in lignin. To determine whether G-LBHK and/or S-

LBHK structures were present in our lignins, HMBC analysis 

therefore had to be used (Figure 2). An indication that this 

experiment could be used came from the fact that the cross-

peak corresponding to the β-carbonyl carbon (δC 208.6 ppm) in 

the G-LBHK model 3 could be observed due to its coupling to 

the LBHK α-proton (δH/δC 3.63-3.67/44.6 ppm) (Figure 2A and 

figure legend for labelling). The β-carbonyl carbon in 3 also 

coupled with the G1, G2 and G6 protons (Figure 2A). 

Comparison of the cross-peaks in 3 with those observed in the 

same region of the DF lignin HMBC spectrum (Figure 2B) 

confirmed that the G-LBHK structure was present in the lignin 

sample (Figure 2C for overlay of HMBC spectra). As expected, 

no signals corresponding to the S-LBHK structure were 

observed in this softwood-derived lignin (softwoods are very 

G-rich, vide infra).  

HMBC analysis of the S-LBHK model 4 (Figure 2D) revealed 

that the S1 and S2/6 cross-peaks were distinguishable from the 

corresponding G-aromatic cross-peaks in the G-LBHK model 3. 

An overlay of the HMBC spectrum of 4 (Figure 2D) with that of 

the beech lignin (Figure 2E) showed that the S1 and S2/6 

aromatic cross-peaks were present in both spectra (Figure 2F). 

Cross-peaks that overlapped with those of model 3 were also 

observed in the beech lignin analysis. This confirmed that both 

G- and S-LBHK structures were formed during acidolysis of the 

hardwood.
§
 In the next phase of the project we decided to 

investigate whether chemical modification of the LBHK 

structures in DF lignin could be achieved. 

Reaction of LBHKs and analysis by 2D HSQC-TOCSY NMR 

To investigate the reactivity of the lignin-bound Hibbert ketone 

structures the following experiment was proposed (Figure 3). 

Reduction of our sample of DF Lignin with NaBH4 would be 

expected to convert any ketones to the corresponding alcohols 

(including in the LBHK structures) to give reduced DF lignin 

(referred to here as DF
RD

). It was decided to use a 2D HSQC-

TOCSY NMR experiment to assess if reduction of the LBHK 

units had been successful as this experiment enables complete 

spin systems to be observed. Thirteen weight percent of 

NaBH4 in THF: H2O (2:1) at room temperature was used to 

convert a DF lignin sample (prepared using 0.4 M HCl, Table 

1A) to the corresponding DF
RD

. 

To aid structural assignment model 3 was also reduced by 

NaBH4 to give a sample of 15 (Figure 3). 2D-HSQC-TOCSY NMR 

analysis of 15 (Figure 3A for the set of cross-peaks at δC 65.7 

ppm) showed that TOCSY transfer from γ−CH to α, β and β/γ-

OH protons had occurred. Analogous cross peaks were present 

in the 2D HSQC-TOCSY NMR spectrum of the DF
RD

 lignin 

(Figure 3B) and excellent overlap of the two sets of cross-peaks 

was observed (Figure 3C) confirming the reduction of the 

carbonyl group in the LBHK units had occurred as predicted. 
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Figure 2: 2D HMBC NMR analysis (700 MHz, d6-DMSO) of: A) G-LBHK 3; B) DF 

lignin (0.4M dioxasolv); C) HMBC overlay of A and B; D) S-LBHK 4; E) Beech lignin 

(0.4M dioxasolv); F) HMBC overlay of A, D and E. Peak at δC/δH 3.65/117.9 in DF 

lignin (B and C) corresponds to C5 of a G-LBHK unit (green). *Peak at δC/δH 

136.1/3.63 ppm corresponds to 
13

C3/5 observed from 
1
H 3.63 ppm of p-OMe of 

S-LBHK model 4 (blue). For 
13

C numbering, see annotated figures above. Blue 

bands in C emphasise the lack of S-LBHK present in the DF lignin. For full data see 

ESI Figures S11-S12. 

In addition, comparison of the 2D HSQC NMR of 15 with 

that of the sample of DF
RD

 (ESI Figure S13) supported the view 

that reaction of the ketone group in the LBHK units had been 

achieved. 

 

 
Figure 3: 2D HSQC-TOCSY NMR analysis (700 MHz, d6-DMSO): expansion of CH-

γ cross-peak at 
13

C 65.7 ppm of: A) Model 15 and B) DF
RD

. C) Overlay of spectra 

from A and B. See ESI for acquisition parameters. Reaction conditions: (i) NaBH4, 

THF: H2O (2:1), r.t. 16 hours. ESI Figures S14-S15 for full 2D data. Note: the only 

cross-peak not observed in lignin corresponded to the β/γ-OH. Possible 

rationalisations for this observation include the expected T2 relaxation 

differences in lignin compared to 15 or exchangeability of the -OHs within the 

lignin sample. 

Releasing novel aromatic monomers from LBHK-containing lignins 

We have recently reported a method of selectively 

depolymerising lignin through controlled processing of 

adjacent β-O-4 units.
27

 Here we initially explored whether this 

methodology (selective oxidation followed by reductive C-O 

bond cleavage) could be used to cleave the existing LBHK units 

from the lignin to give the HKs 1/2 or derivatives of them. 

Unfortunately, our protocol was not useful in this case (for 

preliminary studies see ESI Scheme S4 and Figure S16). Our 

attention therefore turned to a second depolymerisation 

methodology we have collaborated on that has been 

developed by Barta and de Vries et al.
3,26a-b  

Barta and de Vries’ work has shown that efficient lignin 

depolymerisation can be achieved by in situ trapping of acid 

(HOTf or M(OTf)x)-generated aldehydes with 1,2-ethanediol to 

generate predominantly C2 protected acetals (Scheme 

3A).
3,26a-b

 The generation of acidolysis products derived from 

intermediates on the minor C3-acidolysis pathway was also 

observed in this previous work (see ESI Scheme S5).
26a

 

However, the focus of the original reports
26b

 was not on the 

fate of the LBHK units that were already present in the starting 

dioxasolv lignins. Here we investigate this issue further 

through the use of our samples of compounds 1 and 3. These 
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studies were then followed by reaction of a lignin containing 

LBHK units.  

Two situations were initially considered. In the first of 

these, the LBHK unit is attached to an acid-stable linkage. It 

seemed most likely that the outcome of the reaction with, for 

example catalytic Bi(OTf)3 and 1,2-ethanediol,
26b

 would be that 

the corresponding lignin-bound ketal would form and no 

monomer unit would be released (Scheme 3B). In support of 

this view, successful conversion of model compound 3 to the 

corresponding ketal 16 was achieved under standard 

depolymerisation conditions (Bi(OTf)3 (5 wt.%), 1,2-ethanediol 

(1 eq.), 1,4-dioxane, 140 °C
26b

 (Schemes 4A, S6 and Figure 

S17)).  

The second situation occurs when the LBHK unit is attached to 

an acid-cleavable linkage (Scheme 3C). In this case release of 

the corresponding Hibbert ketone-derived ketal 17 was 

expected. This could be achieved either by initial ketal 

formation whilst the HK unit was attached to the lignin 

followed by release of 17 or by release of HK 1 followed by 

ketal formation to give 17. To explore this further, the reaction 

of Hibbert ketone 1 with Bi(OTf)3 (5 wt.%) and 1,2-ethanediol 

was attempted and led to the unexpected generation of 

dioxene 18 as the major product (Schemes 4B, S7 and Figure 

S18) with only small quantities of ketal 17 being observed. 

Isolation of 18 proved possible by chromatography and full 

structural assignment was carried out (Figure S19). One 

possible mechanism for the formation of 18 from 1 is shown in 

Scheme 4C. 

 

Scheme 3: A) Controlled depolymerisation of lignin under TfOH or M(OTf)x 

reactions conditions as previously reported by Barta /de Vries et al.
3,26a-b

. 

Proposed reactivity of the LBHK structure when subjected to M(OTf)x 

depolymerisation conditions when the LBHK unit is located adjacent to: B) an 

acid-stable linkage and C) an acid-cleavable linker. 

 

Scheme 4: Reaction of A) Model LBHK 3 and B) HK 1, under Lewis-acid-catalysed 

depolymerisation conditions: Bi(OTf)3 (5 wt. %), ethylene glycol (1 wt. eqv.), 1,4-

dioxane, 140 °C, 15 minutes. . C) Proposed mechanism for the formation of 18 

from 1. Note: The formation of a small amount of a second product in the 

reaction with 3 was observed (Figure S17). However, the quantities of this 

second product were too small to enable definitive structural assignment. 

In an attempt to form ketal 17 (rather than 18) as the 

major product on reaction of 1, a screen of different metal 

triflates was conducted (ESI Table S7 and Figure S20). This 

study led to a decision to use Sc(OTf)3 (5 wt.%) in the reaction 

with lignin rather than Bi(OTf)3 as a product distribution of 

0.04: 0.77: 0.19 (1: 17: 18) was obtained on reaction of 1 with 

Sc(OTf)3 as compared to the 0: 0.15: 0.85 (1: 17: 18) ratio 

obtained with Bi(OTf)3 under analogous reaction conditions.* 

Treatment of DF lignin with Sc(OTf)3 (5 wt.%) in the 

presence of 1,2-ethanediol (1 wt. eqv.) in 1,4-dioxane at 140 

°C for 15 minutes in a sealed tube was followed, after work-up, 

by analysis of the low molecular weight fractions using the GC-

FID technique (Figure 4). This analysis clearly showed that 

products 17 and 18 had formed from lignin (by comparison 

with authentic samples of 17, r.t: 24.83 mins and 18, r.t. 23.60 

mins, Figures 4B and 4C).  

The most likely explanation for the production of 17 and 18 

is that they have been released from LBHK structures that 

were already present in the starting lignin and adjacent to an 

acid cleavable linkage. In addition, the major product in the 

lignin-derived sample was acetal 19, which is known to result 

from the cleavage of adjacent β-O-4 units within the starting 

lignin.
26a

 It was observed that the ratio of 17:18 differed when 

Sc(OTf)3 was used with lignin as compared to the model 

studies with 1.
‡
 Importantly, however, it was demonstrated 

that novel lignin-derived aromatics 17 and 18 were formed 

from lignin in this reaction. 
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Figure 4: GC-FID traces of A) G-acetal 19; B) semi-purified sample of 18; C) 17 

and D) the crude reaction mixture from the DF depolymerisation with Sc(OTf)3. 

See ESI Figures S22-S25 for full GC-FID Traces and Figures S26-S29 and Tables S8-

S11 for GC-MS analysis.  

Conclusions 

Here we report a scalable and rapid synthetic route to the G- 

and S-Hibbert ketones (1 and 2) and the model compounds 3 

and 4. Detailed NMR analysis of 3 and 4 enabled the 

assignment of cross peaks corresponding to the lignin-bound 

Hibbert ketone structures in full for the first time. Additional 

studies using advanced 2D NMR techniques confirmed that 

when a hardwood is used as the source of lignin, both G- and 

S-LBHK structures are formed. This level of detailed structural 

assessment has not previously been carried out on the lignin-

bound Hibbert ketone structures to the best of our knowledge. 

In addition, we have shown that it is possible to reduce the 

ketone functional group in the LBHK units in lignin (using 2D 

HSQC-TOCSY analysis) and that novel aromatic monomers 17 

and 18 can be generated from lignin that contains LBHK 

structures. We believe this study extends significantly the 

current understanding of this interesting structural unit in 

acid-generated technical lignins.  

Acknowledgements 

This work was supported by EPSRC Ph.D. studentships 

(EP/1518175 (DMB), EP/1517938 (AN)), the Industrial 

Biotechnology Innovation Centre (Ph.D. studentship to DMB), 

CRITICAT Centre for Doctoral Training (Ph.D. studentship to IP; 

EP/L016419/1), EPSRC grants EP/J018139/1 and EP/K00445X/1 

(SOJO) and an EPSRC Doctoral Prize Fellowship (CSL). We also 

acknowledge the EPSRC UK Mass Spectrometry Facility at 

Swansea University for mass spectrometry analysis. We would 

like to thank Prof. Kamer (University of St Andrews) for use of 

GC-MS/FID equipment, Professor Katalin Barta and Dr Reuben 

Carr for useful discussions. 

Notes and references 

§ It should be noted that both dioxasolv DF and beech lignins underwent very 

careful purification to remove contamination by HKs 1 and/or 2 (ESI Figures S6-

S12). This is an important issue that was relatively easy to spot in our system but 

this is not always the case and great care should be taken to consider potential 

contamination with low molecular weight impurities when interpreting reaction 

profiles and NMR spectra. 

* Sc(OTf)3 would be expected to yield these results based on its Lewis acidity and 

hydrolysis constants. Bi(OTf)3 is more acidic than Sc(OTf)3 likely encouraging the 

subsequent conversion of 17 to dioxene 18. In a separate experiment (ESI Scheme 

S8 and Figure S21) it was shown that reaction of 17 under the Bi(OTf)3 conditions 

led to the formation of 18. Sc(OTf)3 has been reported to be on the boundary of 

metal triflates that can/cannot perform the previously reported lignin 

depolymerisation chemistry.
26b

 

‡ It should be noted that the number of equivalents of M(OTf)X used in the lignin 

depolymerisation procedure (see ESI) were weight equivalents and there are 

therefore significant differences compared to the study using 1. It cannot (at this 

time) be ruled out that the products 17 and 18 were generated during the cleavage 

of remaining consecutive β-O-4 linkages but even if this were the case it seems 

very likely that LBHK structures were intermediates en-route to their formation. 
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