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Università di Bologna

Cesena IT
mirko.viroli@unibo.it

Abstract—Target counting is an established challenge
for sensor networks: given a set of sensors that can
count (but not identify) targets, how many targets are
there? The problem is complicated because of the need
to disambiguate duplicate observations of the same target
by different sensors. A number of approaches have been
proposed in the literature, and in this paper we take an
existing technique based on Euler integration and develop
a fully-distributed, self-stabilising solution. We derive our
algorithm within the field calculus from the centralised
presentation of the underlying integration technique, and
analyse the precision of the counting through simulation
of several network configurations.

I. INTRODUCTION

Many sensor network problems can be expressed as
an integration – in some sense – of locally-determined
values. An obvious example is determining the average
temperature of a room from point observations made by
a field of sensors. Distributed and self-stabilising imple-
mentations of such local-to-global calculations therefore
provide a solid basis for addressing real-world sensing
problems. However, the situation also gives rise to other
questions such as: how good is the sampling that the sen-
sor network makes of the phenomenon being observed?,
what is the potential for missing key features not readily
observable in the data?, and, how do observations from
different sensors in a local area interact with one an-
other? Robust sensing requires that we can both answer
these questions in the abstract, and then propagate the
answers throughout the distributed implementation.

In this paper we take a first step towards addressing
these issues. We take an established challenge in sensor
networks – detecting and estimating the number of
targets in an area without being able to assign each
individual target an identity – and an existing solution
that uses concepts from algebraic topology, the Eu-
ler integration technique proposed by Baryshnikov and

Ghrist [1], [2]. We develop a scalable, self-stabilising
algorithm for computing an estimate of the number of
targets, using the self-stabilising field calculus [3]. We
show that the topological ideas map very naturally to
field calculus structures in a way that is robust to some
sorts of perturbations in sensors and targets, but that is
also (it turns out) very sensitive to interactions between
them. We believe that this work shows that field calculus
is an appropriate basis for a class of algorithms that have
a formal semantic basis in algebraic topology, which
suggests in turn that such algorithms may form a useful
approach to a range of problems in distributed and per-
vasive systems. We use our implementation to stress the
algorithm under diverse conditions in terms of sensors
displacement, sensing capabilities, and target counting.
In doing so, we identify both strong and weak points of
the technique, and develop some recommendations for
those wanting to use or extend it.

Our paper makes two contributions: to show that
the field calculus can be used to implement algorithms
requiring a significant amount of algebraic topology;
and to explore the relationships between sensor density,
target density, and estimation accuracy. The former is
interesting in extending the reach of field calculus, and
of self-organisation techniques in general; the latter is a
starting point for a more rigorous approach to the study
of the quality of sensor-derived information.

The remainder of this paper is as follows. Sec-
tion II presents some necessary background to the target
counting problem, field calculus, and simplicial topology.
Section III derives our algorithm and implements it in
field calculus, which we then evaluate in simulation
in Section IV. Section V concludes with some general
remarks and future directions.
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II. BACKGROUND

A. Target counting

The target counting problem can be stated succinctly
as follows: Suppose we have a sensor that can detect the
presence of targets within a certain region. An example
would be a sensor that detects short-range “chirps” from
badges worn by individuals. The sensor cannot identify
individual targets, it can only count the number it can
see. Put several of these sensors into a space together
with several (stationary) targets, and collect their counts:
How many targets are there? The subtlety of the problem
arises because several different sensors may be observing
the same target, and so we need a way to eliminate
duplicate observations.

This problem has received extensive treatment in the
literature: see Wu at alia [4] for a recent survey and
comparative evaluation (which does not however cover
the technique we use here). Most approaches make use
of detailed knowledge (or assumptions) about the sensor
coverage, typically using geometric constraints: for ex-
ample Gandhi et alia [5] require minimal overlaps in the
coverage. Statistical approaches are also possible: Guo et
alia [6] again use geometry to develop a probability mass
function over the space of co-observation. The problem
is closely related to the coverage problem of estimating
(or ensuring) that a set of sensors cover an area.

B. Field calculus

The algorithms discussed in this paper can be im-
plemented on top of a variety of distributed models
of computation, as its basic assumption is that de-
vices communicate local information asynchronously
with neighbours. However, in presenting design and
technical details we shall use the field calculus compu-
tational model [7], [3] and its incarnation in the Protelis
language [8]. They are at the core of the aggregate com-
puting paradigm [9], recently proposed as an approach
for designing resilient distributed systems by abstracting
away from individual devices behaviour and focusing
on the global, aggregate behaviour of the collection
of devices. This approach provides smooth composition
of distributed behaviour, allowing the development of
highly reusable “building block” operators, a candidate
of which is the target counting solution considered in
this paper.

The unifying abstraction of field calculus is a model
of the distributed data structures that can be collectively
manipulated as a “computational field” (or “field” for
short), inspired by physical concepts like magnetic fields,

that maps each device in a network to a local value of
some sort. In field calculus every expression, value or
variable is a field: for example, a collection of temper-
ature sensors produce a field of ambient temperatures,
smart-phone accelerometers produce a field of movement
directions, a notification application produces a field of
messages currently being displayed on those phones,
and a field of vectors might guide the movement of
autonomous drones.

Such fields are constructed and manipulated using four
syntactic program constructs:

• Functions: f(e1,...,en) applies function f to
arguments e1,...,en. The function can be a
“built-in” primitive (any stateless mathematical,
logical, or algorithmic function), a sensor or actua-
tor, or a user-defined or imported library method.

• Dynamics: rep(v <- i) { s1;...;sn} de-
fines a local state variable v initialized with value
i and updated at each computation round with the
result of executing the list of statements in its body
s1;...;sn: this defines a field evolving over
time in each device according to the update policy
specified by the body.

• Interaction: nbr(s) gathers a map at each device
(actually, a field) from all neighbors (including the
device itself) to their latest resulting value of com-
puting s. A special set of built-in “hood” functions
can then be used to summarize such maps back to
ordinary expressions, e.g., minHood(m) finds the
minimum value in the map m.

• Restriction: if (e) {s1;...;sn} else
{t1;...;tn} implements branching by
partitioning the network into two regions: where
e evaluates to true the block s1;...;sn is
computed, elsewhere t1;...;tn is computed
instead. Notably,because if is implemented by
partition, the statements in the two branches are
encapsulated and no action taken by them can have
effects outside of the partition.

Critically, each of these constructs can be interpreted
equivalently in terms of either aggregate-level manip-
ulation of fields or as elements of a protocol for in-
dividual devices to interact in order to carry out such
manipulations. They are also universal [10], in that any
causal and approximable space-time computation can
be represented by them. Together, these two properties
yield a provably sound foundation for aggregate pro-
gramming, ensuring that distributed services expressed
in field calculus can be safely and predictably composed



and modulated.
Having this small set of constructs also supports

portability, infrastructure independence, and interaction
with non-aggregate services. Aggregate programming
can be hosted on any device or infrastructure where
these four constructs can be implemented, including
heterogeneous mixtures of devices with different sensor,
actuator, computation, and communication capabilities,
so long as the devices have some means of interacting.

C. Simplicial topology

We commonly speak of the topology of a sensor
network as meaning the communication links between
nearby nodes. There are however far richer ways of
using topology for applications in sensing. Topology
concerns the ways in which local properties integrate
across aggregated structures and spaces. An example is
the existence of “holes” in a surface, whose influence can
be detected locally and whose count can be determined
globally by an integration process.

There are various ways of defining topological spaces,
but for this paper we choose to work with simpli-
cial topology. (Edelsbrunner [11] provides an accessible
introduction.) A space in this framework is called a
simplicial complex and resembles a generalised form of
network. Two vertices, referred to as 0-simplices, can
be connected by a edge (a 1-simplex), and three edges
can be combined to form a 2-simplex by “filling in the
triangle”. It is important to note that constructing a 2-
simplex is a deliberate action: not all triangles need be
filled, which can lead to “holes” in the complex. In
general a k-simplex is a k-dimensional structure defined
by (k + 1) (k − 1)-simplices (its faces). A simplicial
complex is closed if it recursively contains all the faces
of all its simplices. The closure of a simplex is the set
consisting of itself, its faces, the faces of its faces, and
so on: at bottom, a k-simplex p is defined by (k + 1)
0-simplices, which form its basis, which we denote B(p).

Various measures can be constructed over a simplicial
complex. For our purposes the most important is the
Euler characteristic χ(S) of a complex S, which is
defined as the alternating sum over k of the number of
k-simplices the complex contains:

Definition 1 (Euler characteristic). For a closed simpli-
cial complex S containing #Sk k-simplices, the Euler
characteristic is defined as:

χ(S) =

∞∑
k=0

(−1)k #Sk (1)

The Euler characteristic functions as a kind of hole
counter. A complete triangulated coverage of a plane
has χ = 1; removing a disc changes the value to 0; in
general removing n discs gives χ = 1−n. Conversely, a
plane with two isolated triangulated “islands” has χ = 2.
The Euler characteristic satisfies the inclusion-exclusion
principle so that χ(A∪B) = χ(A) + χ(B)− χ(A∩B)

D. Target counting via Euler integration

The use of Euler integration for target counting is
explored by Baryshnikov and Ghrist [1], [2] by devel-
oping a theory of integration with respect to the Euler
characteristic. We restrict ourselves here to discussing
(without proof) only those ideas we need for our current
application, although we return to some more general
observations in the conclusion.

Suppose we have a set of sensors. These trivially form
a simplicial complex S with a sensor at each vertex (0-
simplex), and no higher-order simplices. Each sensor p
maintains a count h(p) of the targets it can see – a purely
local property. Suppose we now introduce a set A of
targets to be observed by the sensors. The target counting
problem is to determine #A, the size of the target set,
from the sensors’ observations.

Each target has an “impact” on the sensor field: for
each target a ∈ A, define the target support Ua ⊂ S
of sensors that detect a. The sensor field’s counting
function on 0-simplices can now be defined as h(p) =
#{a|p ∈ Ua}, the number of targets that impact upon
each sensor p. The only constraint on Ua is that it is
compact and contractible, which means roughly that it
can be smoothly contracted to a point and thus contains
no holes. In particular, we do not require that the Ua be
the same for each target, nor that they have a constant
radius, nor that they are convex or have any other
geometric restriction. Note also that it is likely that many
sensors will co-observe the same target and therefore
count it multiple times in the height function h, and we
cannot therefore simply sum h(p) and expect to get a
meaningful estimate of #A.

Let us now enrich our simplicial complex. Place a
target between a pair of sensors p and q: both may
now detect that target, and we add a 1-simplex to S
whose basis is the set {p, q}. Do this for all pairs of
sensors – and then for triples and so on. This creates
an abstract simplicial complex whose simplices capture
the co-observational behaviour of the sensors, such that
any target could be counted by each of the sensors
in that simplex’ basis. Note that the geometry of the
sensors gives rise to the topology of the complex – but



all geometric information is then discarded, leaving an
abstract topological structure. We now extend h to all
simplices in S by setting h(p) = min({h(q)|q ∈ B(p)}),
the minimum count of any sensor in its basis.
h defines a “landscape” over the simplicial complex,

where each simplex lies at a given integer “height”.
Taking the closed complex S, construct a sequence of
sub-complexes {h > s} consisting of those simplices
p ∈ S for which h(p) > s. The construction of h
guarantees that these level sets are themselves all closed
simplicial complexes, which means we can compute
χ({h > s}) for each. If we increase s from zero
and compute χ({h > s}) at each step – “flooding”
the landscape and looking only at progressively higher
“peaks” – we compute the Euler characteristic of the
landscape at each height as the “water rises”.

What does all this have to do with sensing? The 0-
simplices define the sensors, making observations that
are captured by the height function. The higher simplices
define the possible duplicate countings of a single target
by several sensors. The extension of the height function
across the complex therefore encodes both the target
counts and their potential duplicate structure. Given a
sufficiently dense network of sensors (a slightly delicate
point to which we return later) and some very unchal-
lenging assumptions about the impact of targets on the
sensors (which we ignore for reasons of clarity), it turns
out that we can get an estimate of the number of targets
by integrating the height function across the complex S
with respect to the Euler characteristic:

#A =

∫
S
h dχ

≈
∞∑
s=0

χ({h > s})

Put another way, the simplicial complex created from
the sensor network encodes enough information about
the co-observational behaviour of the sensors to reject
duplicate observations of targets. The estimate becomes
exact in the continuum limit of an infinitely dense
field of infinitely small sensors: while this is clearly
impossible in reality, less dense arrangements can still
give meaningfully accurate counts.

III. A SELF-STABILISING TARGET COUNTER

In this section we use the approach of Euler integration
to derive a field calculus solution to the target counting.
Our solution is interesting in two distinct ways:

1) it is fully distributed and self-stabilising, demon-
strating that the field calculus can be used to imple-
ment algorithms based on topological structures;
and

2) it offers a continuous approximation of the target
count with no additional mathematical machinery.

We first derive a distributed calculation for the Euler
characteristic. We then implement this algorithm in field
calculus using Protelis [8], a practical language that
implements the field calculus semantics [12].

A. Distributed calculation of the Euler characteristic

Definition 1 given in previous section is a global def-
inition of Euler characteristic, in the sense of requiring
global knowledge of all the simplices in the complex.
The definition must therefore first be re-formulated into
a distributed form as a sum of local Euler contributions
that can be computed at individual nodes and then
summed:

Definition 2 (Euler contribution). Suppose we have
simplicial complex S with a basis of N 0-simplices.
Suppose that each 0-simplex n knows, for each order
k, the number #Sn

k of k-simplices of which it is part.
Then:

χ(S) =

N∑
n=1

( ∞∑
k=0

(−1)k
#Sn

k

k + 1

)

=

N∑
n=1

χn

Proof. For a closed simplicial complex S, each k-
simplex will be included in instances of #Sn

k for exactly
(k + 1) 0-simplices (its basis). For each k, the outer
sum will therefore collect together (k + 1) instances of
a term 1

k+1 for each k-simplex in the complex, making
each k-simplex contribute ±1 to the value of χ(S) as
required.

Definition 2 sums the locally-perceived Euler contri-
bution χn for each node n to form the global Euler
characteristic. This requires only that we broadcast local
knowledge of the structure of the complex, and can
therefore be used more naturally in field calculus.

B. Aggregate target count

We tackle the distributed implementation of the inte-
gral in three steps by providing:

1) an algorithm to compute the Euler contribution
locally;



2) a mean to ”slice” the network based on the number
of sensed devices; and

3) a distributed sum and propagation of the overall
result

1) Local computation of the Euler contribution: First
of all, we define a function returning a tuple with all the
neighbouring devices’ UIDs:
def neighborsAsTuple() {
unionHood(nbr(self.getDeviceUID()))

}

The actual type of the identifier returned by
self.getDeviceUID() is not relevant for this
discussion, insofar as different identifiers can be told
apart. (The actual type depends on the specific Protelis
back-end implementation in use: it usually binds to
a MAC address for devices with a single network
interface.) Expression nbr(x) builds a local view
of the field x, namely a data structure mapping each
neighbouring device to its evaluation of x. Expression
unionHood(x) takes a field as input, and returns the
set of the field values.

We can now extract enough information about the sub-
part of the network in which each device is located to
build all the simplices it is part of:
def neighborsNeighbors() {
unionHood(nbr([self.getDeviceUID(),

neighborsAsTuple()]))↪→

}

This function returns a set of 2-tuples whose first element
is the UID of each neighbour, and whose second element
is a tuple of all its neighbours. This information is
sufficient to locally compute all the simplices the sensor
is part of. For easier manipulation, this structure can be
converted to a plain Java Map. We show here an Xtend
function that provides this conversion by (i) grouping by
the first element of the tuple, and then (ii) mapping the
values to the second element:
class CountingUtil {
def static asMap(Tuple t) {
t.groupBy[it.get(0)]
.mapValues[it.get(0) as Tuple]
.mapValues[it.get(1)]

}
...

}

This conversion function can be called from Protelis, as
the language has access to the Java APIs:
import CountingUtil.asMap
def neighborhoodMap() {

asMap(neighborsNeighbors())
}

Once this information is built then, by exploiting the
aggregate programming paradigm, the computation of
the Euler contribution can be performed entirely locally:
def static double chi(Map<DeviceUID,Tuple> n){
Sets.powerSet(n.keySet).groupBy[it.size]
.mapValues[it.filter[set |
set.forall[device |
n.getOrDefault(device, createTuple)
.containsAll(set.reject[it==device])

]
]

]
.mapValues[it.size as double]
.map[(-2*(it.key%2)+1)*it.value/(it.key+1)]
.reduce[$0 + $1]

}

The algorithm first computes the power set of the
neighbours set: these are all the potential simplices the
local devices may be part of. It then groups them by
order: at the end of this step, we have a map from the
order of the simplex to the set of potential simplices.
For each entry of such set, we must keep only the
valid candidates, namely those simplices for which every
sensor is present in the neighborhood of every other
sensor in the set. We obtain a map from the order of
each simplex to the set of simplices (expressed as set
of device UIDs). The algorithm requires to count the
number of such simplices, and as such we can map
this set to its own order, and obtain a mapping from
simplex order to number of simplices. At this point, the
formula can be applied directly: -2*(it.key%2)+1)
returns either 1 (if the simplex size is even), or -1 (if
it is odd), determining the sign of the contribution. The
subsequent operations compute the Euler contribution χn

as per Definition 2.
2) Network slicing: We now have all the machinery

in place to be able to compute the individual χn, and we
need to do this for all the possible values of n. We do
this by leveraging the concept of alignment introduced
by the field calculus in order to “slice” the network into
level sets formed from the number of targets sensed, as
described in section II-D. In field calculus, devices are
considered aligned at some point during the evaluation
of computational round if they reached the same point
in the evaluation tree. Devices that are not aligned on
some sub-part of the evaluation tree compute that part
of the program as if they were part of distinct, non-
communicating sub-networks. In pure field calculus, the
only construct that can break alignment (producing the
so-called domain restriction) is if: devices that compute
on different branches belong to different domains. With
the higher-order version of the calculus (implemented in



Protelis) the mechanism is generalised to support this
kind of domain restriction via function application. We
use alignment to produce views of the sensor network
that capture the sub-networks that observe more than
some height h, enabling an easy computation of the
local view of the simplicial structure and the consequent
evaluation of the local Euler contribution. This is done
by means of two functions:
import CountingUtil.range
import CountingUtil.chi
def map(t, f) {
if (t.isEmpty()) {[]}
else { [f.apply(t.head())]
.mergeAfter(map(t.tail(), f)) }

}
def slices(height) {
map(range(1, height), h -> {
chi(neighborMap())

})
}

map is an aligned implementation of a functional map
over a tuple, leveraging recursion. slices uses map
to “slice” the network over all the perceived heights,
computing χn for each such level. The range function
has been implemented in Xtend as:
def static Tuple range(int min, int max) {
createTuple((min..max).toList)

}

With these elements in place, we can compute the local
Euler contribution by reducing the tuple returned by
slices with a sum operation:
def localContribute(targets) {
slices(targets).reduce(self, 0, (a, b) -> {a

+ b})↪→

}

This function takes as input the number of targets sensed
by the device, and returns the local Euler contribution.

3) Distributed summation and result broadcast: Once
the local contributions are ready, the calculation of the
global Euler characteristic integral requires that all such
values are summed, and the result made available to
every device in the network. This kind of co-ordination
can be expressed in a compact and self-stabilising way
with Protelis.

Our strategy is to elect as leader the device closest
to the barycentre of the network. We then build a
spanning tree over the network converging on the leader,
sum the values along such tree, and then broadcast
the result back to the whole sensor network. All such
functions can be built using self-stabilising “building
blocks” [13], making the derived aggregate program
itself self-stabilising [14].
def isLeader() {
S(Infinity, ()->{nbr(1)})

}
def merge(info) {
summarize(isLeader(), (a,b)->{a+b}, info, 0)

}

Function isLeader relies on the S building block to
identify a device as leader. The first parameter denotes
how large the portion of the network where a single
leader is elected can be: in our case, we need a single
device for the whole network. The second parameter is
the distance metric: we use the hop count, but any other
valid distance metric would work as well.

Function merge relies on summarize and
isLeader to realise the two remaining operations. It
create a spanning tree, aggregates along its branches, and
then broadcasts the result. (For the sake of conciseness
we omit the definition of this function. It can be found
as part of the Protelis base library [15].)

Now, supposing that the local counting of targets
is provided by a sensing device whose value can be
accessed by means of reading the environmental vari-
able count. The distributed counting of targets can be
performed simply by calling:
merge(localContribute(env.get("count")))

IV. ANALYSIS

The Euler integration approach to target counting
presents two major advantages – and also two major dis-
advantages. The advantages are related to the amount of
information needed in order to perform the computation.
The method does not require any target identification,
which might be complicated and susceptible to spoofing;
nor does it require a global knowledge of the network
structure; nor of any geometric information such as the
area of sensor overlaps. These are significant simplifica-
tions for real-world operations.

On the other hand, the global result depends on the
topological structure of the network, as well as on the
position of the targets. Essentially the simplicial complex
is an approximation of the real space in which the sensors
are located, which is sampled only at the locations of
the sensor nodes (the 0-simplices). Clearly if the targets
are positioned in a “dead zone” not observed by any
sensors, their presence will not be sampled. But it turns
out that there are other situations in which a target is
observed by a sensor but does not correctly appear in the
target count. Figure 1 shows an example where the same
network can count correctly or not depending solely on
the positions of the targets. Intuitively, these errors are
caused by targets located in such a way that no sensor
can detect both of them (thus raising its count), and no
sensor detects the separation between them (thus splitting



Fig. 1. Example of counting failure due to target positioning. Black filled nodes are targets, other nodes are sensors. White sensors count
zero targets, red count one, and blue count two. The overall count is correct in the two leftmost examples, respectively because the two
targets are separately detected (they are far enough) and because they are detected together (they are close enough). The enumeration fails
on the rightmost example, because the two targets cannot be detected as two separate objects by any of the sensors.

the appropriate level set). Since no identity or position
is associated with a target, they become impossible to
distinguish from a local, purely topological point of view.

In this section, we investigate the practical implica-
tions of varying network densities, shapes, and the ratios
between the communication and target detection ranges.

A. Experimental setup

We run our experiments in a square arena of 10x10m
into which we deploy randomly-placed targets, and sen-
sors with four different displacements: a regular and a
perturbed square grid, and a regular and a perturbed
hexagonal grid. We vary geometrically both the device
density (from 0.04 devices

m2 to 20 devices
m2 ) and the number

of targets to track (from 1 to 100). We reduce the
communication range with the square root of the device
density increase, guaranteeing that the overall network
shape stays similar regardless of the number of sensors
deployed. We tune the parameters so that the commu-
nication range is sufficient for the square grid to have
a Moore neighbourhood, and for the hexagonal grid to
have six neighbours for any sensor not on the network
edge. Figure 2 depicts the different displacements, along
with their communication links. We test each scenario
with multiple values of target detection ranges: 1

4 , 1
2 ,

3
4 , 1, 3

2 , and 2 times the communication range. We call
this the sensing/communication ratio (SCR). We let the
simulation progress until all the sensors yield a stable
value, and we measure the average normalised root mean
square error (RMSE), defined as:

ERMS =

∑N
d=0 (

T−cd
T )2

N

where N is the number of devices, T the number of
targets, and cd the actual target count at device d. We
run our experiments on the Alchemist simulator [16].

B. Device density and network shape

Raising the network density is not immediately bene-
ficial, as depicted in Figure 3. The issue, shown in Fig-
ure 1, is the root cause of this somewhat counter-intuitive
behaviour: counting initially gets worse with higher
sensor densities, and then starts declining. With low
device densities, in fact, there is a high chance that one or
more sensors sees all the targets that have been deployed,
and with very high densities there is an increasing chance
of detecting the “emptyness” surrounding a single target
– and consequently a high chance of being able to tell it
apart from others. This consideration can be reflected in
terms of target spatial distribution: tightly-packed targets
or very sparse targets are easier to count. Device distri-
bution is also relevant to the algorithm, as it may create
disruptions in the simplicial complex structure. Perturbed
grids both perform worse than their regular counterparts.
On the other hand, different regular network structures
do not influence the algorithm badly: counting errors are
comparable between square and hexagonal grids.

C. Sensing/Communication range ratio

Raising the SCR ratio can produce very different
results depending on the regularity of the network, as
Figure 4 shows. Sensing ranges that are too short end
up creating holes in the sensed space, leaving some
targets entirely undetected. Raising the sensing range
is beneficial up to a point, after which the counting
stabilises for regular networks but badly diverges for
irregular ones. Our hypothesis is that values around
0.50/0.75 allow for an optimal coverage of the space



Fig. 2. Simulation screenshots. From left to right: regular square grid, perturbed square grid, regular hexagonal grid, perturbed hexagonal
grid. Pink dots are targets, other dots are sensors. Colour indicates the number of targets sensed: red if none, blue if a single one, green if
two.
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Fig. 3. Counting error against sensor density for different target counts (coloured lines) and different device displacements. Each point is
the mean of 20 simulation runs, error bars show mean ± standard deviation. A 100% estimation error is marked with a black dashed line.
The algorithm works well with regular networks and extreme sensor densities. The higher the number of targets to track, the higher the
probability that the algorithm incurs the issue depicted in Figure 1

that also minimises the overlap between sensing regions.
Raising the value further causes irregular networks to
badly fail at counting.

D. Recommendations

The above results show that for regular networks of
carefully-placed sensors the Euler integration approach
works very well. However, the approach has been shown
to be sensitive to the regularity of the network, to its
density, and to the ratio between the sensing and com-
munication ranges. Particular attention must therefore be
devoted to choosing a proper sensor density for the target
system, as intermediate choices would spoil the counting.

In the case that the sensor comes with a fixed sensing
range, and where this is wider than its communication
range, then significant care is required in the spatial
arrangement of the devices.

The fact that increased density does not always lead to
better estimations is counter-intuitive, and suggests that
there is a deeper connection between the structure of the
network and its ability to correctly sample the space in
which it is positioned. It would be interesting to explore
how to quantify this relationship: what constitutes a
“good enough” triangulation for a given SCR?
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Fig. 4. Counting error against sensing/communication range ratio (SCR) for different sensor densities and 32 targets to count. Different
sensor displacements are depicted in different colours. Each point is again the mean of 20 simulation runs, error bars show mean ± standard
deviation. Higher SCR can be beneficial for regularly-shaped networks, but very detrimental for irregular ones. A “sweet spot” can be
identified around 0.5/0.75: at this ratio, there is maximum coverage of the space with minimum overlapping.

E. Comparison with other work

Perhaps the most comparable work in the literature
on target counting is that of Gandhi at alia [5], which
uses geometrical and statistical techniques to generate
a minimal set of non-redundant sensors. A sensor is
redundant if removing it does not remove coverage of
a point in the space under observation. This approach
clearly reduces the number of possible duplicate obser-
vations (since it reduces the number of sensors observing
common locations), and indeed the authors derive an
estimate for the number of targets given (in our notation)
by:

N̂t =

∑
p h(p)√
m

where p ranges over the set of non-redundant sensors and
m is the maximum degree of overlapping observations
for any point in the space under observation. The actual
target count is then constrained to lie within the range[

N̂t√
m
, N̂t
√
m

]
.

We note that, while this technique uses m as a minimal
value for overlap, the Euler integration technique has a
maximally-dimensioned k-simplex, the dimension of the
complex as a whole. While not the same value, they seem

sufficiently close to suggest that similar bounds could
be derived for the Euler integration technique – with
the significant benefit of then requiring less geometric
information and no redundancy-elimination step (which
is a global operation). This is a topic we are interested
in pursuing further.

V. CONCLUSION

In this paper we have presented a fully distributed and
self-stabilising implementation of the Euler integration
algorithm for counting unidentifiable targets in a wire-
less sensor network. The implementation is written in
the practical aggregate programming language Protelis,
an implementation the higher-order field calculus. This
programming paradigm provides a very straightforward
way to compactly write fully-distributed algorithms that
leverage the topological features of the sensor network.
We evaluated the performance of the algorithm in several
network configurations, varying sensor density, displace-
ment, and sensing capabilities, and from our results
drew some recommendations for the actual usage of
integration-based counting.

Any target counting system is at best an approx-
imation, depending critically on the coverage of the
space by the sensors and ther relative positions of the



targets. We would emphasise two further corollaries of
this observation. Firstly, the approximation is sensitive
to counting errors in the sensors themselves – and such
errors are unavoidable, especially in long-lived systems
as sensors degrade mechanically. Secondly, the coverage
can be changed by sensor movement, failure, occlusion,
and other factors. We have accounted for neither of these
factors in our work: neither is at present well-understood,
and both require significantly more research if we are to
build systems that are robust to the real-world challenges
to sensor systems.

There is also clearly a relationship between the num-
ber of sensors that potentially observe a target (rep-
resented by the order of the k-simplices representing
their co-observation) and the redundancy of information
within the system. One might imagine that higher-order
simplices might indicate an opportunity to turn off some
nodes in order to save battery power – although doing so
then changes both the topology of the complex and the
density of sampling, and therefore invites the problems
observed above. More work is needed to explore these
issues, but they potentially offer a mathematically well-
founded way to adapt sensor behaviour without compro-
mising data quality – or, perhaps more accurately, while
allowing the data quality compromise to be calculated.
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