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Abstract - Coordination of actions requires that organisms actively monitor the movements of others. The current 

study examined acoustic cues within the fee-bee song of chickadees that may provide listening conspecifics with 

information about the movements of singers. The difference between direct and reverberant acoustic energy present 

during the second note of the fee-bee song provided clear indications of how far the song had traveled. Preliminary 

analyses suggest that this distance cue may be robust to variations in the spectra and amplitude of song components, 

and that the acoustic features of the fee-bee song may facilitate simultaneous comparisons of reverberating fees with 

directly received bees by listening birds. Comparing coincident reverberation with directly received sounds may be a 

previously unsuspected way that animals living in reverberant environments can monitor the movements and 

interactions of conspecifics. 
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To interact successfully, an organism must assess the actions of other individuals and respond 

accordingly. Individuals occasionally can use visual information about the movements of others to 

accomplish this, but in some situations, they must rely on information from other modalities. For instance, 

whales and dolphins cooperatively forage in situations where they are unlikely to be able to see 

conspecifics (Connor, 2000), and birds defend territories in wooded environments where familiar 

neighbors and unfamiliar intruders are only intermittently visible (e.g., Fitzsimmons, Foote, Ratcliffe, & 

Mennill, 2008). In these contexts, sounds can provide important clues about the actions of others, 

including where they are going and what they are doing. 

How animals use sounds to monitor and manipulate the actions of others has been studied most 

extensively in territorial songbirds. For a bird to be able to exclude other birds from a specific area, it 

must be able to judge when those birds are intruding – this often requires that the territory defender 

estimate other birds’ distances based on received sounds. Birds use several acoustic cues to do this, 

including variations in overall amplitude, differential spectral attenuation, and signal distortions 

associated with reverberation (reviewed by Naguib & Wiley, 2001). Some acoustic features of songs, 

such as rapid trills, degrade rapidly as they propagate, suggesting that these features may function, at least 

in part, to provide information about a vocalizing bird’s distance from any listening birds (Naguib, 2003; 

Wiley & Richards, 1978). Judging the distance to a vocalizing individual is complicated by the fact that 
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not all individuals produce sounds at the same intensity or with identical spectrotemporal features; 

absolute values of received features thus cannot unambiguously reveal a singing bird’s location.  

 Most past studies of auditory distance estimation by birds (referred to as ranging) have 

emphasized the need for listening birds to compare received sounds with properties of the original sound 

features produced at the source (e.g., Fotheringham & Ratcliffe, 1995; Nelson & Stoddard, 1998; Wiley, 

1998). Because a listener cannot simultaneously perceive a sound at its source and at a distance, such 

comparisons require that listeners compare heard sounds to internal representations of undistorted songs 

or calls (Morton, 1986, 2012). Knowledge of source features is not always a prerequisite for assessing 

auditory distance, however. For instance, echoes generated by environmental reflections can provide 

information about source distance that does not depend on knowledge of source features (Nelson & 

Stoddard, 1998). Similarly, by sequentially comparing directly received sounds to the reverberation 

generated by those sounds, listeners can estimate the range of a sound source without knowing the 

intensity of the source (Larsen, Iyer, Lansing, & Feng, 2008; Zahorik, 2002). Past assessments of the role 

reverberation plays in auditory distance estimation by birds have typically focused on how reverberation 

distorts song features (Dabelsteen, Larsen, & Pedersen, 1993; Fotheringham & Ratcliffe, 1995; Holland, 

Dabelsteen, Pedersen, & Paris, 2001; Nelson & Stoddard, 1998; Wiley & Richards, 1978). However, 

reverberation can also enhance long-distance transmission if the energy within sounds is focused within a 

narrow frequency band (Slabbekoorn, Ellers, & Smith, 2002). 

 Black-capped chickadees (Poecile atricapillus) provide a model system for exploring how 

singing birds may use sound to track the movements of conspecifics. Each spring, chickadees form 

neighborhoods of breeding pairs, within which they actively defend wooded areas covering 1-13 acres 

(Mennill & Otter, 2007; Stefanski, 1967). Countersinging interactions appear to be an important 

component of territory defense by chickadees, and most such interactions involve singers either moving 

toward or away from each other (Dixon & Stefanski, 1970; Fitzsimmons et al., 2008). Songs appear to be 

particularly important for long-range interactions, because chickadees in territorial disputes often switch 

to producing calls when they are in visual contact (Dixon & Stefanski, 1970; Ficken, 1981). The songs 

produced by black-capped chickadees typically conform to a single type (referred to as a “fee-bee” song) 

consisting of two tonal notes. Based on a combination of playback studies and acoustic experiments, 

Fotheringham and Ratcliffe (1995) suggested that the complexity of chickadee habitats precluded ranging 

based on song degradation cues (see, however, Lohr, 2008), raising the question of how singing 

chickadees might use songs to coordinate their movements. 

 The goal of the present study was to evaluate whether chickadees might be able to use cues within 

received songs other than overall amplitude, frequency range, or degradation-related cues to judge a 

singer’s distance. We predicted that reverberant tails from fee notes that coincided with bee notes could 

provide useful information about how far a song had travelled. Furthermore, we hypothesized that the 

acoustic structure of the fee-bee song facilitates the kinds of simultaneous, across-frequency comparisons 

that a listening chickadee would need to make in order to range singers using such cues. 

 

Method 

 

Subjects 

 

Fee-bee songs were recorded from ten captive, adult black-capped chickadees, five male and five 

female. Each bird was placed within a cage (30×40×40 cm) that was housed within a sound-attenuating 

chamber (Industrial Acoustics Co. Inc.; inner dimensions 58×168×83 cm). Songs were recorded 

(mono,16 bit, 44.1 kHz) using an AKG C 1000s condenser microphone (AKG Acoustics GMbH) located 

40 cm above the top of the cage connected to a Marantz PMD 670 digital recorder (Marantz America 

Inc.). 
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Procedure 

  

A sound transmission experiment was conducted in an open field during the spring season in 

Buffalo, NY. Measurements were made at night in order to minimize interference from local singing 

birds. One song from each bird was broadcast and recorded at multiple distances. A Roland JC-120 

amplifier (Roland Co.) was used to broadcast the songs through a 12” Roland speaker at a height of 1.5 

m. Levels of fee-bee song playbacks were measured at 80±3 dB SPL, 1 m away from the speaker with a 

RadioShack 33-4050 analog sound level meter (RadioShack Co.), so that playback levels were 

comparable to those naturally produced by chickadees (Christie, Mennill, & Ratcliffe, 2004a, b; Nowicki, 

1983). A Zoom (Zoom Co.) H4 digital recorder (48 kHz sampling rate) equipped with two unidirectional 

condenser microphones (frequency response range = 20 Hz to 20 kHz) was mounted on a microphone 

stand at a height of 1.5 m. Broadcasts were recorded at distances of 2, 10, 20, 40, 60, and 80 m from the 

speaker.   

 

Data Analyses 

  

Recordings were analyzed using Raven Pro 1.4 for Mac OS X by manually selecting individual 

fee or bee notes and automatically measuring peak frequency and peak power from each note (Figure 1). 

Additionally, the bee note was analyzed a second time with all spectral energy other than energy at the 

peak frequency of the initial fee note bandpass-filtered, to determine the peak power for reverberation 

from the fee note present during reception of the bee note. Measures of differences between peak power at 

the peak frequency in the bee note and peak power at the peak reverberated frequency from the fee note 

were calculated and analyzed as a function of recording distance.  

 The features of recorded songs at the source were also visualized using an auditory spectrogram 

in which filter spacing and bandwidths matched auditory filter bandwidths measured 

electrophysiologically from Carolina chickadees (Henry & Lucas, 2010). 

 
Figure 1. A fee-bee song recorded from a distance of 80 m in an open field. Note that the duration of reverberant tails for each 

note is comparable to the duration of the entire song. Boxes illustrate how individual notes were manually selected prior to 

automated measurement of peak frequencies and peak power (FFT = 2048, 98% overlap; Hanning window). 

 

Results 

 

 Analyses of the energetic features of fee-bee songs recorded at close ranges (2 m) showed that 

peak power was focused within a narrow band for each note for each singer (fee note range = 3.2 – 3.9 
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kHz; bee note range = 2.9 – 3.6 kHz). The specific bands varied across singers, but the ratio of the two 

bands was comparable across individuals (mean ratio = 1.11, SD = 0.04; Weisman & Ratcliffe, 2004, 

reported a mean ratio of 1.134 from a sample of 154 wild birds). Reverberant tails clearly revealed the 

narrow bands within which energy was focused for both notes (Figure 1). Tails were evident at all 

recorded distances between 10 – 80 m and extended well beyond the duration of each note. In particular, 

the reverberant tail from the initial fee note persisted beyond the duration of the following bee note, such 

that energy from both narrow bands was evident within spectral analyses of the bee note (Figure 2A). 

Peak power within the fee and bee notes decreased systematically with distance (Figure 2B). 

Transmission loss was comparable across songs from different birds, despite individual variation in the 

frequency bands where song notes were focused.  

Peak power from reverberation of the fee note also decreased systematically with distance (Figure 

2B), but transmission loss was less than for either directly received note. Consequently, the difference 

between the peak power of the directly received bee note and the peak power within the reverberant tail 

from the fee note was negatively correlated with distance from the source (r = -0.86, p = 0.028). Auditory 

spectrographic analyses of the fee-bee song (Figure 2C) revealed that the notes within the song were 

spaced the minimal amount necessary to activate two adjacent auditory filters. 

 

Discussion 

 

 Results from the current transmission experiment indicate that reverberation may facilitate 

auditory distance estimation by enabling listening chickadees to compare long-lasting reverberant energy 

from the first note in a fee-bee song with simultaneously received acoustic energy from the second note. 

By detecting any changes in this distance cue that occur across consecutive songs, listeners can 

potentially monitor the movements of singers when they are beyond visual range. 

 

Cues to Singer Distance 

 

 Researchers have identified several acoustic cues that birds use, or could use, to determine the 

distance to a singer (Table 1). Mammals make use of many of these same cues when judging auditory 

distance (Kolarik, Moore, Zahorik, Cirstea, & Pardhan, 2016). Some cues provide information only about 

the relative distance to a source, whereas others can provide more specific information about the absolute 

distance (Naguib & Wiley, 2001). In some cases, acoustic cues to distance may be useful only within a 

familiar environment (Nelson & Stoddard, 1998). The three acoustic cues that have attracted the most 

scientific attention to date are variations in song amplitude, frequency content, and reverberation-related 

degradation (Fotheringham & Ratcliffe, 1995; Phillmore, Sturdy, & Weisman, 1998; Pohl, Klump, & 

Langemann, 2015; Radziwon, Welch, Cone, & Dent, 2011).  

 Songs become quieter as they travel farther. Birds clearly can make use of amplitude cues to 

judge singer distance in some circumstances (Nelson, 2000; Radziwon et al., 2011). Amplitude cues are 

less reliable than other distance cues because of amplitude variations caused by factors other than source 

distance, such as differences in source levels, atmospheric conditions, and height of the singer (Morton, 

1982; Wiley & Richards, 1978, 1982). Chickadees trained to discriminate songs recorded from different 

distances varied in their use of amplitude cues, with some individuals using them and others ignoring 

them (Phillmore et al., 1998).  

Past considerations of spectral energy as a possible cue for assessing the distance to a singing bird 

note that higher frequencies often attenuate more rapidly than lower frequencies in bird habitats (Wiley & 

Richards, 1978). Using spectral attenuation to judge auditory distance requires detailed knowledge of the 

frequency content of the song at the source. For chickadee song, researchers suggested that the initial 

frequency in the frequency-modulated (FM) down-sweep that starts each fee note (Figure 1) will degrade 

rapidly with distance such that the bandwidth of FM in a received fee note might provide a distance cue to 

listeners (Shackleton, Ratcliffe, & Weary, 1992). However, in highly reverberant habitats, such as those 

frequented by black-capped chickadees (Smith, 1991), constructive and destructive interference can 
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introduce fluctuations in frequency attenuation that confound interpretation of variations in the spectra of 

received songs. Using acoustic transmission studies, Fotheringham and Ratcliffe (1995) found that 

differential frequency attenuation in fee-bee songs did not reliably indicate source distance (however, see 

Christie et al., 2004a). 

 

 

 
 

 
 
Figure 2. (A) Spectral peaks are evident both from the directly received bee note and from the reverberant tail of the preceding 

fee note (feeR) after a song has traveled 80 m (FFT = 2048; 98% overlap; 250 ms Hanning window). (B) Differences in power at 

the peak frequency between the bee note and the reverberated fee note decreased systematically with distance. Data points are 

means from ten songs; standard error bars for most points are not visible because of low variation across broadcasts. (C) An 

auditory spectrogram of a fee-bee song that corresponds to a chickadee’s auditory filter bandwidth at 3.5 kHz (~600 Hz; see 

Figure 1 for a more standard, high-resolution spectrogram) shows that the frequency spacing between the fee and bee notes 

corresponds closely to the spacing between two adjacent auditory filters (dashed and dotted lines delineate processing by adjacent 

filters; FFT = 115, 98% overlap, Hanning window). 
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Table 1 

Potential Auditory Distance Cues within Chickadee Fee-Bee Songs  

Distance Cue                                         Limitations 

Note amplitude                    Varies with source amplitude and position 

Fee frequency spectrum  Changes are small in chickadee habitats 

Inter-note duration Varies with source duration and habitat 

General degradation  Changes are small in chickadee fee-bee song 

Amplitude fluctuations   Highly variable across different habitats 

Direct-to-reverberant energy ratio   Requires isolating signal from reverberation 

Reverberation amplitude Varies with source amplitude and position 

Reverberation frequency spectrum Changes are small in chickadee habitats 

Environmental echoes Cues are location-specific 

Source elevation Listener must know source height 

Coincident reverberation  Relative amplitude of two notes must be consistent 

 

 Reverberation of a song during transmission can lead to a variety of different spectral and 

temporal cues that are indicative of source distance (Holland et al., 2001; Naguib, 2003; Richards & 

Wiley, 1980). In chickadee songs, these cues may include the duration of individual notes, the duration of 

the interval between notes, degradation of the general frequency contours, and the presence or absence of 

breaks within individual notes (Fotheringham & Ratcliffe, 1995; Lohr, 2008). As with the frequency 

content of songs, the value of each of these cues depends on a listener’s knowledge of what song features 

were originally produced by the singer. The one attempt at varying reverberation-related cues during 

playbacks of songs in the presence of wild chickadees found that listeners showed comparable responses 

to both degraded and undegraded songs (Fotheringham & Ratcliffe, 1995).  

 In the current study, broadcast fee-bee songs showed distance-related changes in the difference 

between the amplitude of the frequency with maximum amplitude from the second received note (the bee) 

and the amplitude of the frequency with maximum amplitude from the reverberant tail generated by the 

first note (the fee). Specifically, the difference between the two spectral peaks decreased as the distance 

from the source increased. Unlike all previously noted distance cues, estimating source distance from this 

difference cue (hereafter referred to as a coincident reverberation cue) does not require knowledge of the 

source level, frequency content, or frequency contour produced by the singer. In other words, if a 

listening chickadee used this cue to estimate a singer’s distance, then the estimate should not change if the 

singer shifts its song notes to different frequencies or increases overall song amplitude, because the 

relative difference between spectral peaks within the received song would remain constant despite such 

changes. In the case of coincident reverberation cues, reverberation facilitates auditory distance estimates 

not because of song distortion, but because it preserves acoustic information generated by the initial fee 

note (see also Slabbekoorn et al., 2002).  

 

Perception of Changes in Singer Distance 

 

 Coincident reverberation has yet to be directly manipulated in playback experiments, making it 

difficult to assess if and when listening chickadees might attend to this cue. To our knowledge, possible 

use of coincident reverberation cues in auditory distance judgments has never been investigated in any 

species. Humans have been tested on their ability to detect differences in the intensities of two 

simultaneously presented tones centered at different frequencies, however (Dai & Green, 1992; Feth & 

O'Malley, 1977; Versfeld & Houtsma, 1995). Such distinctions can be viewed as a special case of profile 

analysis (Green, 1987), which is closely related to auditory discrimination of spectral shape (Bernstein & 

Green, 1988; Bregman, Patel, & Gentner, 2016; Langemann, Zokoll, & Klump, 2005). Profile analysis 

involves detecting an absolute increment in the amplitude of one tonal signal among a background of 
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other tonal signals. Spectral shape discrimination similarly involves distinguishing patterns in spectral 

levels; recognition of such differences is thought to contribute to timbre perception (Cynx, Williams, & 

Nottebohm, 1990; Hoeschele, Cook, Guillette, Hahn, & Sturdy, 2014; Lohr & Dooling, 1998). In the case 

of coincident reverberation cues within received fee-bee songs, both directly received and reverberant 

spectral peaks decrease in amplitude with distance, but at different rates, so that the relative difference in 

amplitude between the two peaks gradually decreases with distance.  

Recent experimental studies show that birds are more sensitive to similarities and differences in 

spectral shape than was previously assumed (Bregman et al., 2016; Hoeschele et al., 2014). Chickadees, 

in particular, appear to find relative differences in the amplitudes of frequencies produced within fee-bee 

songs to be highly salient (Hoeschele et al., 2014). These findings suggest that chickadees are likely to 

perceive variations in the relative intensities of the spectral peaks that are present during reception of a 

bee note. But, these findings do not address the resolution with which listening birds might discriminate 

or identify particular spectral shapes, which would determine the precision with which listeners could 

map received sounds to different source distances. Humans trained to discriminate between two-tone 

sounds were able to discriminate level differences as small as 0.2 – 0.5 dB, even when the average 

intensity level of the tones was roved across 20 dB (Versfeld & Houtsma, 1995). Humans are most 

sensitive to differences in the intensity of simultaneously presented sinusoidal tones when one tone is just 

outside the critical band of the other tone (Dai & Green, 1992; Feth & O'Malley, 1977).   

Chickadees undoubtedly can recognize the acoustic features of fee-bee songs and detect 

differences in those songs (Hahn et al., 2016, 2017; Hoeschele et al., 2010; Phillmore, Sturdy, Turyk, & 

Weisman, 2002; Phillmore et al., 1998). To make use of coincident reverberation cues in estimating the 

distance to a singer, a listening chickadee would need to be able to detect and discriminate relatively 

small differences in intensity levels across the two frequency bands associated with fee and bee notes. 

Interestingly, the peak frequencies of fee and bee notes fall within the region of greatest auditory 

sensitivity in chickadees (Wong & Gall, 2015), and the spacing between these two peaks matches the 

width of auditory filters in a listening chickadee’s peripheral auditory system (Figure 2C; Henry & Lucas, 

2010). Because singing chickadees maintain a relatively fixed frequency ratio between the two notes 

when they shift their songs up or down in frequency (Weisman & Ratcliffe, 1989, 2004; Weisman, 

Ratcliffe, Johnsrude, & Hurly, 1990), the relationship between peak frequency spacing and auditory filter 

bandwidth holds true for all fee-bee songs. This correspondence between peak frequency spacing and 

auditory resolution suggests that the acoustic structure of the fee-bee song may facilitate discrimination of 

coincident reverberation cues by listening birds.  

The ability of chickadees to reliably estimate singer distance based on coincident reverberation 

cues does not depend on knowledge of source characteristics, but it does require that the singer produce 

notes at consistent amplitude levels. If there are unpredictable differences between the sound pressure 

levels of fee and bee notes across repetitions, then this will lead to changes in relative differences between 

the levels of spectral peaks that are unrelated to source distance. For example, if a singing chickadee 

gradually decreased the intensity of its fee note relative to its bee note across song repetitions, then this 

could lead to gradual changes in received coincident reverberation cues that would be comparable to 

those produced by a singer with a more consistent song that is moving toward the listener. Conversely, if 

a singer were to attenuate its bee note relative to its fee note (as singing chickadees often do when they 

produce a short break midway through their bee note), then this would generate coincident reverberation 

cues similar to those that would occur if the singer were farther from the listener. Intriguingly, recent 

acoustic analyses show that dominant singing chickadees reliably produce songs with comparable spectral 

energy in their fee and bee notes (Hoeschele et al., 2010), providing a stable baseline for cross-note 

comparisons. Experimental studies of timbre discrimination in zebra finches and budgerigars show that 

they can detect changes of 1 – 3 dB in harmonic levels, which is slightly better than performance by 

humans (Cynx et al., 1990; Lohr & Dooling, 1998). Human sensitivities for detecting such changes in two 

non-harmonic tones predict that deviations in the range of 0.2 – 0.5 dB are potentially discriminable by 

birds and other vertebrates. Collectively, these features of fee-bee song production and perception 
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strongly suggest that chickadees should be capable of judging differences in coincident reverberation cues 

with sufficient accuracy to provide useful information about a singer’s location. 

Use of coincident reverberation cues for estimating source distance is complicated by the fact that 

both transmission loss and reverberation vary across habitats (Huisman & Attenborough, 1991; Richards 

& Wiley, 1980; Yang, Kang, Cheal, Van Renterghem, & Botteldooren, 2013), and as a function of source 

and receiver positions (Nelson & Stoddard, 1998; Padgham, 2004), such that a received spectral shape 

might be associated with different absolute distances in different habitats. For example, spectral peaks 

present in the bee note might be equal at a distance of 80 m in one environment, but not in a different 

habitat. Many environmental variables affect how songs attenuate and reverberate during transmission 

(Richards & Wiley, 1980; Wiley & Richards, 1978, 1982). Because most of the conditions that affect 

propagation along a direct path will also affect transmission of reverberated echoes along indirect paths, 

habitat-dependent effects on attenuation will be correlated with habitat-dependent effects on 

reverberation. Nevertheless, a listening bird must either account for possible habitat-dependent effects on 

received signals, or learn through experience how changes in spectral shape relate to variations in singer 

distance within a particular habitat, to accurately map coincident reverberation cues onto different source 

distances. This constraint applies to all other known auditory distance cues as well, and so does not 

require listening birds to possess any processing capacities beyond those that they are currently assumed 

to have. Habitat-dependent propagation effects are less likely to affect a listening bird’s ability to track a 

singer’s movements, because if a singer is stationary, approaching, or leaving while singing multiple 

songs, then the difference between reverberation and a directly received note will remain stable, increase, 

or decrease accordingly. 

 

Relevance for Coordinating Actions 

 

 Chickadees produce and use songs differently from many other songbirds (Dixon & Stefanski, 

1970; Ficken, 1981; Mennill & Otter, 2007; Odum, 1941; Stefanski, 1967). Black-capped chickadees’ 

entire song repertoire typically consists of a single two-note song (for exceptions, see Gammon & Baker, 

2004; Gammon, Baker, & Tipton, 2005; Kroodsma et al., 1999). They use this song year-round, in a wide 

variety of behavioral contexts (Avey, Quince, & Sturdy, 2008; Dixon & Stefanski, 1970; Fitzsimmons et 

al., 2008; Lippold, Fitzsimmons, Foote, Ratcliffe, & Mennill, 2008). In natural settings, songs are thought 

to be produced mainly by males (Ficken, 1981), but recent evidence suggests that females also sing (Hahn 

et al., 2015; Hahn, Krysler, & Sturdy, 2013). In the context of territorial defense, pairs of familiar 

neighbors commonly have been observed singing when they are both approaching a territory boundary, 

when they are both leaving a territory boundary, and when they are both remaining at fixed distances 

from each other at locations not near a territory boundary (Fitzsimmons et al., 2008; Lippold et al., 2008; 

Stefanski, 1967). Solo singing is also quite common (Mennill & Otter, 2007); in some cases, this appears 

to serve to attract missing mates or young progeny (Dixon & Stefanski, 1970; Odum, 1941). Generally, 

fee-bee songs appear to be used when birds are separated by at least 10 m (Dixon & Stefanski, 1970). It is 

clear from these observations that fee-bee songs play an important role in mediating social interactions, 

particularly when interacting birds are not visible to one another. Although the song traditionally has been 

described as a “summons” (Odum, 1941), recent observations made with an acoustic array suggest that 

interacting chickadees also often sing when they are moving apart (Fitzsimmons et al., 2008). Regardless 

of what other functions the fee-bee song may serve, the evidence to date strongly indicates that the song 

provides a way for listening chickadees to monitor changes in the location and actions of the singer. It is 

thus surprising that some researchers have concluded, based on acoustic and playback experiments, that 

fee-bee songs are ill suited for this purpose (Fotheringham & Ratcliffe, 1995). 

 Our findings suggest, instead, that many of the acoustic properties of the fee-bee song are 

conducive to providing information about the distance of the singer, if listeners compare the level of a 

received bee note to the level of coincident reverberation from the preceding fee note. Current methods 

are inadequate for objectively measuring what any individual chickadee knows about the movements of 

other birds. Laboratory experiments can reveal, however, whether chickadees are able to make the kinds 
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of fine auditory distinctions in two-tone sounds that they would need to make in order to judge a singer’s 

distance using coincident reverberation cues from fee-bee songs.  

 One subtle feature of the fee-bee song that has received relatively little attention to date is a brief 

amplitude dip in the approximate middle of the bee note, which can vary in duration within and across 

individuals (Fotheringham & Ratcliffe, 1995; Hoeschele et al., 2010; Lohr, 2008). This feature has led 

some researchers to describe the song as the “fee-bee-ee” or “hey-sweetie” song (Kroodsma et al., 1999). 

Lohr (2008) suggested that this feature might serve as a ranging cue, since reverberation from the bee 

note produced prior to the dip would tend to fill in the gap as a singer’s distance from a listener increased 

(i.e., larger dips correspond to shorter ranges). Chickadees appear to have some control over the presence 

and duration of this amplitude modulation, because it is not present in all bee notes (Kroodsma et al., 

1999). If singers vary their bee breaks across song repetitions, then the duration or absence of this gap 

will be unreliable as a ranging cue unless listeners know what each song was like at the source. On the 

other hand, if listeners are using coincident reverberation cues to range singers, then singers can 

potentially use these gaps to transmit information beyond just their own position. In particular, 

temporarily decreasing the amplitude of the bee note will decrease the difference between reverberant and 

directly received acoustic energy, thereby providing two different cues correlated with source distance – 

one corresponding to the actual singer’s distance and the second corresponding to a “virtual” distance. 

Studies monitoring when and how singing chickadees vary the gap within their bee notes are needed to 

clarify the role of this feature.  

 

Limitations and Future Directions 

 

 One limitation of the acoustical measurements collected in this preliminary study is that they do 

not fully characterize the range of propagation paths experienced by chickadees. Undoubtedly, the range 

of propagation effects experienced by a wild chickadee will be greater than might be measured from a 

fixed-height microphone within an open field. Open-field measurements provide a conservative estimate 

of available reverberant cues, because wooded environments generate more reverberation than open 

environments; reverberant tails comparable to the ones analyzed here have been observed in various 

chickadee habitats (e.g., Fotheringham & Ratcliffe, 1995). Nevertheless, additional measurements from a 

wider range of source-receiver configurations are clearly needed to fully assess the viability of coincident 

reverberation as a distance cue. 

 A second limitation of our acoustic experiment is that recordings were made on a single day at 

night. It is known that vertical temperature profiles vary with time of day in ways that affect how sounds 

propagate, and that variations in atmospheric conditions can also affect propagation (Huisman & 

Attenborough, 1991). It is unclear how such variations would affect the attenuation or reverberation of 

fee-bee songs in habitats frequented by chickadees, or the extent to which this might interfere with 

perception and assessment of any auditory distance cues within these songs. It is impractical to test all the 

different environmental conditions within which chickadees are likely to hear songs, so computer 

simulations of song propagation and reverberation likely will be needed to fully explore the effects of 

different conditions on the viability of different distance cues. 

The fact that coincident reverberation cues can be found within chickadee fee-bee songs suggests 

that similar coincident reverberation cues may also be present within other animals’ long-range 

vocalizations. For instance, Carolina chickadees (Kroodsma, Albano, Houlihan, & Wells, 1995; Lohr, 

Nowicki, & Weisman, 1991), and mountain chickadees (Lohr, 2008) produce songs with acoustic 

characteristics similar to those of the fee-bee song produced by black-capped chickadees. Animals that 

live in highly reverberant, low visibility environments and that often coordinate their movements (e.g., 

whales and dolphins) would be the most likely to benefit from the use of such cues. Consistent with this 

possibility, recent analyses of songs produced by humpback whales revealed that individual sounds 

within their songs also generate reverberant tails that overlap with subsequent sounds, and that ratios of 

frequencies across consecutive sounds are similar to those found in chickadee songs (Mercado, 2016). 

Closer examination of correlations between the spectra of sequential sounds produced by other species 
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that acoustically communicate over long distances may further clarify the extent to which such auditory 

distance cues enable organisms to better coordinate their actions when visual inputs are degraded. 
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