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Abstract.

This is a contribution to the discussion of the interesting paper by

Ding [Statist. Sci. 32 (2017) 331-345], which contrasts approaches attributed
to Neyman and Fisher. I believe that Fisher’s usual assumption was unit-
treatment additivity, rather than the “sharp null hypothesis” attributed to him.
Fisher also developed the notion of interaction in factorial experiments. His
explanation leads directly to the concept of marginality, which is essential for
the interpretation of data from any factorial experiment.
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1. WHAT SHOULD FISHER’S NAME BE
ATTACHED TO?

This interesting paper compares so-called “Neyma-
nian inference” (Section 2.2) with the so-called “Fishe-
rian randomisation test” (Section 2.3). These are linked
to two different null hypotheses, which have Neyman’s
and Fisher’s names attached to them. I believe that it is
inappropriate to use Fisher’s name for the second null
hypothesis, and that it is over-stating the case to attach
his name to the randomisation test.

Fisher’s ground-breaking work on the design of ex-
periments, and the ensuing analysis of data, was laid
out in Fisher (1925, 1926, 1935a). Throughout these, it
is notable that he did not use any notation for the re-
sponse on unit i under treatment ¢, which is written as
Y; () by Ding (2017); nor did he write down any equa-
tion expressing this quantity in terms of any others. It is
therefore problematic to identify his name with the so-
called “sharp null hypothesis” described in Section 2.3.

It is true that the discussions by Fisher (1935a) of
Darwin’s data and of the tea-tasting experiment ap-
pear to be consistent with the methodology presented
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in Section 2.3. However, the seventh edition of this
book (Fisher, 1960) contains a new subsection called
“Section 21.1 ‘Non-parametric’ Tests”, in which Fisher
refuted the idea of randomisation tests. In this new sub-
section, he said, “The reader will realise that [the ran-
domisation test] was in no sense put forward to super-
sede the common and expeditious tests based on the
Gaussian theory of errors. ...[It] has been an attrac-
tion to some mathematicians who often discuss exper-
imentation without personal knowledge of the mate-
rial. ... Experimenters should remember that they and
their colleagues usually know more about the kind
of material they are dealing with than do the authors
of text-books written without such personal experi-
ence”.

Yates was Fisher’s colleague at Rothamsted Exper-
imental Station from 1931 to 1933, and they collab-
orated for a further 30 years. In Yates (1964, 1965),
he explained Fisher’s thinking about the randomisa-
tion test. He attributed part of the above quotation to
Fisher (1960) in Yates (1964) but to the second edi-
tion Fisher (1937) in Yates (1965). He also said that
“Fisher, I think, tended to lay undue emphasis on the
importance of formal tests of significance in experi-
mental work” (Yates, 1965), and “...in many types
of experimental work estimates of the treatment ef-
fects, together with estimates of the errors to which
they are subject, are the quantities of primary interest”
(Yates, 1964). Fisher (1935b) complained that Neyman
was confusing estimation with tests of significance.
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The paper by Ding (2017) pays no attention to esti-
mation.

2. A FIXED FINITE POPULATION OR AN
ASSUMPTION OF ADDITIVITY?

Ding (2017) begins by stating that the potential-
outcomes framework has been widely used in ran-
domised experiments ever since 1923. I have practised
as a statistician for 40 years, helping to design experi-
ments and analyse the data therefrom, in subjects such
as agriculture, ecology, pre-clinical trials and human-
computer interaction. I have never used the potential-
outcomes framework.

In those subjects, the experimental unit might be a
plot in a field or a pot in a greenhouse; a microcosm in
a temperature-controlled laboratory; a dog or a mon-
key, or a limb or tissue of such a animal; a university
student for a single afternoon. In no case were the ex-
perimental units a random sample from a fixed finite
population. They were convenient, and were deemed to
be representative enough that results on them could be
extrapolated to other units, such as real farmers’ fields.
Such extrapolation is impossible unless we can assume
that

(1 Yi(t) =n + Z;,

where t; depends only on the treatment ¢ (and is usu-
ally assumed to be constant) and Z; depends only on
the experimental unit i (and is usually assumed to be a
random variable). Of course, Y;(¢) needs to measured
on a scale which makes such additivity plausible.

Equation (1) is given in Bailey (2008), Section 1.5.
I explained it in more detail in Bailey (1981). How-
ever, | certainly did not invent it. It is given in Nelder
(1965), Section 3. Cox [(1958b), Chapter 2], sets out
the argument with exemplary clarity.

I do not think that Yates (1964, 1965) was rewrit-
ing history. Statisticians who learnt their subject at
Rothamsted Experimental Station, or from Fisher and
his academic descendants at the Universities of London
and Cambridge, or at C.S.I.LR.O. in Adelaide, where
Fisher spent his final years (1959-1962), all use the
additive model (1). This is a weaker assumption than
the linear model given in Section 7.2 of Ding (2017).

How is this linked to randomisation? It is argued by
Bailey (1981, 1991) and Bailey and Brien (2016) that
assumption (1): combined with a suitable method of
randomisation, allows us to assume a fairly straightfor-
ward joint distribution for (Zy, ..., Zy). This is im-
plicit, in different words, in various early papers of

Yates, starting with Yates (1933). In Yates (1935a), he
stated explicitly that “the randomisation process effec-
tively generates the distribution of z”.

The famous disagreement between Fisher and Ney-
man began with the paper Neyman, Iwaskiewicz and
Kotodziecyk (1935) read to the Royal Statistical Soci-
ety, which claims to include a proof that any experi-
ment designed as a Latin square gives biased results.
Wilk and Kempthorne (1957) developed this argu-
ment further. In 1957, Kempthorne chaired a six-week
LM.S. Summer Institute on the topic at Boulder, Col-
orado. Cox attended this; as a result, he published Cox
(1958a) arguing that the wrong question had been ad-
dressed and that Fisher had been correct to state that
there is no bias in a Latin-square experiment. The
acknowledgement at the end of Cox (1958a) makes
it clear that Cox and Kempthorne had had positive,
stimulating discussions on the topic. In later years,
Kempthorne also used assumption (1), for example, see
Kempthorne (1975b).

That workshop was nearly 60 years ago. Why are
some authors still claiming that Fisher did not assume
unit-treatment additivity?

3. ALITTLE MORE HISTORY

Further insight into the differences between Fisher’s
and Neyman’s approaches can be found in the books
by Fisher Box (1978) and Reid (1982), as well as the
more recent paper by Senn (2004). All of these are well
worth reading.

As for the paradox described in Section 3.2 of Ding
(2017), George Barnard discovered something simi-
lar and explained it in a 1955 letter to Fisher, given
in Bennett (1990), pages 29-30. He said, “We there-
fore seem to be in a situation where we can believe A,
but not B, although B is a logical consequence of A.
...such a paradox as this one inevitably arises when-
ever we have a test of a wider hypothesis (B), and of a
narrower hypothesis (A)”.

4. FACTORIAL TREATMENT STRUCTURE

Fisher [(1935a), Section 38], did indeed introduce
factorial treatment structure. There he explained that
if F1 and F, are two two-level treatment factors then
there is an interaction between F| and F5 if the ef-
fect of F| depends on the level of F,. Putting this in
different words, there is a nonzero interaction between
F| and F, if the effects of F; and F, are not addi-
tive. In the notation used in Ding [(2017), Section 4.2],
this means that Y is not in the three-dimensional vector
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space V1 4 V, spanned by g, g, and the all-1 vector 1.
But it does not make sense to consider the vector space
spanned by g, and 1: as Yates (1935b) said, “If inter-
action exists, then usually information will be required
on the responses to each factor in the presence and ab-
sence of the other”.

More generally, let S be any subset of {1,2, ..., K},
where K is the number of treatment factors. If the jth
factor has n; levels, then there are ds combinations of
levels of factors F; for j in S, where ds = [[jcsn;-
Let Vs be the subspace consisting of vectors which
are constant on each of these combinations, so that
dim(Vs) =ds. If R C S, then Vi < Vs.

Further, define the subspace Vg by

Vs =P V=
RCS
For example, if n1 =ny = n3 =2 then V123 is spanned
by the vectors 1, g1, 5, 83, 812, &13> &23 and g3,
while V|53 = V12 + Vi3 + V23, which does not contain
8123- _ _

Suppose that Y is in Vs. Then to say that Y exhibits
S-interaction means that ¥ is not contained in the sub-
space Vg , or, rather, Y is not sufficiently close to this
subspace.

Under the assumption (1), this definition of interac-
tion should be applied to the vector T. Thus the ex-
istence of a nonzero S-interaction means that the as-
sumption that T € Vs cannot be simplified to the as-
sumption that T € Vg, and so no testing is done on any
proper subset R of S. Thus it is not true that “analo-
gous discussion also holds for general factorial effects
due to symmetry”. The vectors g; and g, do indeed
have the same mathematical properties, but the con-
cepts of “main effect” and “two-factor interaction” are
not so easily interchangeable.

In Bailey (2015), I define the F; F; interaction to be
the difference between the orthogonal projection of
onto V1, and its projection onto V| + V. Figure 5.11
of Bailey (2008) shows all the subspaces that need to
be considered when K = 3. These should make it clear
that there is no symmetry between main effects and in-
teractions.

In fact, this observation is not new. Nelder (1977)
called the R-effect marginal to the S-effect if R & S,
and lamented that some statisticians neglect marginal-
ity. He made the point again in Nelder (1994, 1998).
As Kempthorne (1975a) said bluntly: “The testing of
main effects in the presence of interaction, without
additional input, is an exercise in fatuity.” It is un-
fortunate that some recent papers about factorial de-
signs, including Dasgupta, Pillai and Rubin (2015),

Ding (2017), Pauly, Brunner and Konietschke (2015),
ignore marginality completely.

5. ONE PARTICULAR FACTORIAL EXPERIMENT

The factorial experiment described in Ding [(2017),
Section 6.3], could serve as a textbook example of what
not to do in the design and conduct of an experiment
and the processing of its data. In the first place, we are
told that the purpose of the experiment is “to identify
the optimal combination of (levels of) the four factors”.
This is a perfectly valid purpose, but it has nothing to
do with hypothesis testing; it is closer to estimation.
Moreover, the factorial structure of the treatments is
irrelevant to this purpose; the aim is simply to select
the best one of 16 treatments.

Although the paper by Ding (2017) is about ran-
domisation, nothing is said about how the 16 treat-
ments were randomised to the 32 experimental units
in this experiment. The experimental units can be iden-
tified by their sequence in time, and the data should
be presented in this order, to aid identification of time
trends or sudden changes. Moreover, although three
different students were involved, we are not told their
roles. If some helicopters were made or thrown by one
student, and other helicopters by another, then the stu-
dents give a blocking factor: this information should be
taken into account during the randomisation and pre-
sented with the data.

Any practising statistician will cast her or his eyes
over the data before embarking on formal analysis.
This enables obvious mistakes or anomalies to be spot-
ted. With these data, the first glaring omission is the
lack of measurement units. Were the flight times mea-
sured in minutes and seconds? Have they been con-
verted to the decimal format shown? If so, there is a
danger of spurious accuracy.

The second obvious feature of the data is that the two
measurements for each treatment are, in most cases,
surprisingly close. Did the students really make 32 he-
licopters in a completely randomised design? Did they
make the second helicopter for each treatment imme-
diately after the first? Did they actually make only
16 helicopters and fly each one twice? If they used
the second or third procedure then this experiment has
pseudo-replication and so it is impossible to test for
any treatment effects. Pseudo-replication is one of the
oldest, and most common, faults in designed experi-
ments; see Hurlbert (1984, 2009), Sparks, Bailey and
Elston (1997).

Even without the foregoing problems, if we want to
use these data to investigate which factors, and their
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combinations, affect flight times, then we have to re-
spect marginality. We are told that the interactions
F| F5 and F F, Fy are both nonzero. This means that
the vector T cannot be assumed to belong to a proper
subspace of Vi3 + Vi24. There is therefore no point in
testing for the interactions Fi1F», F1F4 and F> Fy, or
for any of the main effects.
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