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Abstract

This thesis considers the problem of calculating and observing the mixing
of modes of positive and negative frequency in inhomogeneous, dispersive
media. Scattering of vacuum modes of the electromagnetic field at a moving
interface in the refractive index of a dielectric medium is discussed. Kinemat-
ics arguments are used to demonstrate that this interface may, in a regime
of linear dispersion, act as the analogue of the event horizon of a black hole
to modes of the field. Furthermore, a study of the dispersion of the dielec-
tric shows that five distinct configurations of modes of the inhomogeneous
medium at the interface exist as a function of frequency. Thus it is shown
that the interface is simultaneously a black- and white-hole horizon-like and
horizonless emitter. The role, and importance, of negative-frequency modes
of the field in mode conversion at the horizon is established and yields a
calculation of the spontaneous photonic flux at the interface. An algorithm
to calculate the scattering of vacuum modes at the interface is introduced.
Spectra of the photonic flux in the moving and laboratory frame, for all
modes and all realisable increase in the refractive index at the interface are
computed. As a result of the various mode configurations, the spectra are
highly structured in intervals with black-hole, white-hole and no horizon.
The spectra are dominated by a negative-frequency mode, which is the part-
ner in any Hawking-type emission. An experiment in which an incoming
positive-frequency wave is populated with photons is assembled to observe
the transfer of energy to outgoing waves of positive and negative frequency at
the horizon. The effect of mode conversion at the interface is clearly shown
to be a feature of horizon physics. This is a classical version of the quantum
experiment that aims at validating the mechanism of Hawking radiation.
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Introduction

In my Thesis, I studied the behaviour of waves in dispersive media. The back-
ground on which these waves propagate can be made to reproduce conditions
analogous to the curvature of spacetime near compact spherical bodies. This
leads to the scattering of waves and the generation of waves of positive and
negative frequency.

Wlile negative frequency waves are present in all field theories, they
are usually ignored because they are suggestive of redundancies in terms of
information content. And yet, all waves oscillate with both positive and
negative frequencies. This is best illustrated when a field A is expressed by
Fourier transform,

+oo .
Ast) = = / Az w)e ™ dw, (0.1)

21 J- oo

Here, the Fourier transform of the field A(z, w) has been integrated over both
positive and negative frequencies w. For a real field, the complex conjugate
of the field, A*, equals the field and hence A(—w) = A*(w). Accordingly, the
negative component is entirely dependent on the positive component.

In this dissertation, I present my contribution to the work of a community
of researchers who investigate a particular aspect of the behaviour of waves,
for which the apparent redundancy stated above is not true. Indeed, there
exist physically realisable conditions under which the positive and negative
frequency components of a field may mix. F
observed in nonlinear optics, in an experiment in which energy was trans-
ferred from a wave with positive frequency to a wave with negative frequency
[1]. The motion of waves in the vicinity of a black hole is another example
of these conditions under which positive and negative frequencies mix. This
mixing is actually known to be at the heart of one of the most famous the-
oretical predictions of the 20" century: Hawking radiation. It is in fact in
the process of articulating the later paradigm that the former discovery was
made.



Field theory - waves of positive and negative frequency

[ will briefly elaborate upon the existence of negative frequency waves in clas-
sical Field Theory before delving into the abstract considerations of Quantum
Field Theory and General Relativity — two essential ingredients in the phe-
nomenon of Hawking radiation [2]. To this end, I will introduce the topic of
field theory via the study of a one-dimensional string, and demonstrate how
negative frequencies arise in such a theory.

At first, a string can be considered as a many -body system, a collection
of point masses connected together by “springs™ A continuous system with a
uniform density and tension emerges when the number of point masses goes
to infinity, and the distances that separate them go to zero. We begin with
a collection of N points of mass m coupled together with a spring constant
k such that they form a string of overall length L. Consider a string closed
on itself in a circle, as a ring. Then the oscillators can be assumed to be
moving about their equilibrium positions in a periodic pattern. A ring of
radius considerably greater than the equilibrium separation can be treated
as a linear system with periodic boundary conditions. The oscillators are
constrained to vibrate along the circumference of the ring. The first and
last oscillators are identical, so that if the i¢th oscillator is displaced from
equilibrium by ¢;, the periodic boundary conditions are

CEO - qEJV;
{d_rzo _ doy (0.2)
dt dt -

The kinetic and potential energy (KE and PE) of the system are
1 do;
KFE =
2" - Z ( dt )

PE =11 go (i1 - &)’

(0.3)

In the continuum limit, the distance that separates the point masses [ — 0,
N — o0, the length becomes L = N[ and the, fixed, mass per unit length and
string tension are ¢t = m/l and T = kl, respectively. Then, the displacement
and energy of the string can be defined in terms of a continuous field qu(t) =

O(zi.t) = ¢(z,t), where
p_tm doi\" 1 1t (99(=1)
KE=37 Zol( ) “/ dz(
(i — L0z, 0)\
zgz( ) 5T'/O dz( > )
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The field function (5(2, t) represents the displacement of an infinitesimal mass
from its equilibrium position at z. The Lagrangian density of this continuous
string is given by

'/OL dzL(z,t) = '/OL dz (%u (%)2 — %T (@)2) . (0.5)

We introduce the wave velocity v? = % and, for simplicity, we substitute

¢ —VT¢ = é. Then,
1{1 (a6\° [0\

Calling upon the principle of least action allows to derive the equations of
motion for the string from the Lagrangian density. Since the boundary condi-
tions (0.2) are periodic, the boundary terms are zero. Moreover, the variation
0¢ at the initial and final time are zero. The famous Euler-Lagrange equation
of motion for a continuous field is

Bor 92 0. (0.7)

So far, we have shown how a quantity referred to as a continuous field
emerges as the natural way to describe a system with infinitely many par-
ticles. It is the "displacement" of the dynamical system whereby g—’f is a
generalized velocity and the Euler-Lagrange equation (0.7) is a wave equa-
tion. The solutions of the wave equation which satisfy the periodic boundary

conditions are called the normal modes of the string. They are

(/5 ~ eii(knsznt)’ (08)
where periodicity requires k, = 27Lr7"7 n =20, £1, £2, ..., with, respectively,

k, and w, the wavenumber and frequency of the wave. Inserting (0.8) in
(0.7) gives the wave equation

W = 2. (0.9)

n —

We have arrived at a wave equation with both positive and negative frequency
solutions! Let us write the states with positive frequency as

1

@n(z t) :\/_Eei(knsznt)’ (010>
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in which case the negative frequency states thus have a time factor e®«f.

Since the wavenumber £k, is either positive or negative, it is convenient to
express the negative frequency states as the complex conjugate of the states
(0.10), ¢k (z,t). Thus the positive and negative frequency states are related
by complex conjugation.

We could conclude this short study here, but it is actually interesting
to ask ourselves the question of the normalisation of states of positive and
negative frequency. We use the canonical momentum

oL 1 9¢
(2,t) = —ox = 5= 11
7—( ) ) 8(%) '1}2 It (0 )

and Noether’s theorem! to write the normalisation condition

/dz (m1¢2 — ¢1m2) ~ 9,2 /d (a¢l él%ﬁf) (0.12)

so the states are not orthogonal in the usual sense. And yet, it can be
shown that each normal mode behaves as an independent simple harmonic
oscillator. Wherefrom quantisation of the field consists in quantising those
oscillators.

Later in this dissertation, we shall show how scalar products similar to
(0.12) can be used to define a pseudo-norm for modes of the field — whence
positive frequency states are ascribed a positive norm, and negative frequency
states are ascribed a negative norm. In Field Theory, and in particular in
Quantum Field Theory, it is usual to refer to modes of the field by their
pseudo-norm, that is, one speaks of positive- and negative-norm modes. In
Optics, and in particular in Quantum Optics, the concept of pseudo-norm is
not very well known, and practitioners would label the modes according to
their frequency. The norm nomenclature is more general than the frequency
one — for the latter may depend on the frame of reference, whilst the former
is frame-invariant. Thus, it would be generally more correct to label modes
by their norm. However, in this dissertation, both the QFT and QO com-
munities are addressed and, in an effort to use their vernacular, we will use
both nomenclatures as follows: we will gradually move from considerations
of the frequency of a mode to that of its norm when frame transformations
come into play, and explicitly show how the norm is defined in terms of the
frequency (as measured in a given frame).

In arriving at (0.8), we have not used any tools of Quantum Physics. In-
deed, we have merely considered a very-many-body system in the continuous

1See 2.2.2 for details



limit — a field — and shown how the wave equation of this system accepted
mode solutions of positive and negative frequency. Hence we have shown that
the classical, real? field oscillates with both positive and negative frequen-
cies. This is also true for other fields, such as the electromagnetic field. In
this dissertation, we will use the second quantisation scheme to study various
field theories. At various stages in what will follow, the fundamentals of field
theory outlined here will be called upon to describe wave motion in General
Relativity, in fluid flows, and in condensed matter systems such as optical
fibres and bulk silica. We will see how fields in these media have positive
and negative frequency modes of oscillation, and how these can mix, which
results in spontaneous emission of quanta of this field from the vacuum (the
state of lowest energy of the field)?>. The most famous instance of this ef-
fect is undoubtedly Hawking radiation, which is intimately tied to black hole
physics.

Spontaneous emission of light at the black hole horizon

In his efforts to tie together the three main theories of modern physics. Ein-
stein’s General Relativity [3, 4], Quantum Physics and Thermodynamics,
Stephen Hawking arrived at an intriguing conclusion: positive and negative
frequency modes of a field will mix with each other in the vicinity of black
holes [2]. Black holes are believed to result from the gravitational collapse
of stars in on themselves [5]. These bodies are so compact that the escape
velocity from their surface, the event horizon [6], is greater than the speed of
light, hence their name. Nothing, even light, can come out of a black hole.
Although direct observation of black holes is possible via their influence of
the curvature of spacetime — they create gravitational waves when they or-
bit around a point, and emit energy in the form of gravitational waves upon
merging, as was detected by the LIGO-Virgo Collaboration in 2016 [7] — the
region of spacetime behind the event horizon remains hidden from us. The
event horizon appears to be a one-way door: beyond it, motion can only be
directed toward the centre of the black hole, where a singularity lies [5]. This
implies that black holes cannot emit heat. And yet, paradoxically, black holes
seem to be in thermal equilibrium with a thermal bath [8]. In other words,
they have a temperature [9]. This is not allowed by the classical theories of

2See Appendix A for further comments on this.

3Such an equation as (0.12) can be used as the basis for a quantum mechanics capable
of describing particle production and annihilation fully: the second quantised form of the
theory. In this scheme, negative norm modes are associated with the creation operator
of the field, whilst their positive norm counterparts are associated with the annihilation
operator of the field.



physics, General Relativity and Thermodynamics, and Hawking found that
only a quantum treatment of the fields near the black hole could explain
this effect. He found that field modes of positive and negative frequency
would mix when propagating through the region of curved spacetime that
surrounds the hole. This mixing results in spontaneous emission of particles
(photons, electrons and neutrinos) that propagate away from the horizon out
to infinity, where an observer would thus detect a thermal flux coming from
the hole — Hawking radiation.

This finding poses many questions, such as the exact origin of the flux,
the fate of black holes if this outflowing energy comes at the expense of their
mass, and the information content of the flux. Moreover, the very validity
of the assumptions upon which Hawking’s calculation is based are under
question. Indeed, the effect of the mass of a black hole on the surrounding
spacetime is a stretch: to an observer away from the hole, light emitted
from an infalling object appears more and more redshifted as the object
approaches the horizon. Actually, the redshift of light emitted from the
horizon is infinite [5]. If waves from which Hawking radiation originates
were to have propagated from infinity in the past through the region of
the collapse and out to infinity, where the thermal flux can be observed,
they will have experienced an exponential redshift from the region near the
horizon to infinity. In other words, they would have had to have absurdly
large frequencies in the past to be a finite-frequency, detectable, flux at late
times. This is called the Trans-Planckian Problem, because it hints at some
unknown physics that is at play when the wavelength of light is shorter than
the Planck scale. Finally, the temperature of Hawking radiation is inversely
proportional to the mass of the black hole from which it seems to escape. A
very light black hole, of about 3 times the mass of the Sun, would thus radiate
with a temperature 8 orders of magnitude lower than the cosmic microwave
background, the Universe’s own glow. Hawking radiation cannot be observed
from astrophysical black holes.

Laboratory-based analogues of the event horizon

Of course, if the story had ended with this conclusion, the present disserta-
tion would not have been written, some 43 years after Hawking’s prediction.
In order to present the arguments that form the foundations of the work pre-
sented in this Thesis, let us discuss wave propagation on curved background,
for it is all a matter of flow.

The prediction that a thermal flux propagates away from the vicinity of
black holes was a scientific revolution — but to a rather small community of
people. Indeed, in the early 1970s, the very existence of black holes was still



not unequivocally established, and their physics was largely unknown, even
to physicists. In a seminar that he gave at Oxford, Bill Unruh then explained
that one could draw a kinematic analogy between the flow of a river toward a
waterfall and the effect of black holes on spacetime. Picture a river that flows
toward a waterfall: the velocity flow of the river will increase as the waterfall
approaches. It may be that this increase is such that at a certain point
the flow velocity equals the speed of sound, and beyond this point the flow
velocity would be supersonic (and still increasing, until the water reaches the
bottom of the fall). Away from the fall, because the flow velocity is subsonic,
sound waves may propagate up- or downstream. Although, the closer to the
fall they are emitted and the more they redshift (they shift to lower and
lower frequency). A sound wave emitted ezactly at the point at which the
flow velocity of the river equals the speed of sound would not be capable
of propagating upstream, against the flow, without experiencing an infinite
redshift. Sound waves emitted beyond this point, down the stream, would be
washed out toward the bottom of the fall, doomed. The point at which the
flow velocity of the river equals the speed of sound is the sonic analogue to
the event horizon: to sound waves, it is the point of non-return. It separates
a region of sub- from a region of super-sonic flow of the fluid in which sound
waves propagates. In analogy, the event horizon in astrophysics separates
two distinct regions of spacetime: the outside region in which light waves
may propagate toward or away from the central singularity, and the inside
region in which wave motion is only possible toward the central singularity.

In 1981, Unruh realised that this analogy was genuine: the wave equa-
tion for certain fluids is indeed identical to the equation describing the mo-
tion of waves at the horizon, the metric of curved spacetime [10]. Some
manifestations of black hole physics, namely the motion of waves in their
vicinity, may be reproduced in the laboratory! Unruh called fluid black hole
analogues "dumb holes" and showed that, in total analogy with their astro-
physical counterparts, they should emit a thermal flux. He predicted that
quantum hydrodynamical fluctuations in a moving fluid would convert into
pairs of phonons at the sonic horizon — thus reviving the hopes to shed light
on the Hawking emission mechanism.

Many analogue systems have been proposed and studied over the past 36
yeas: liquid helium [11], water waves [12, 13], sound waves in Bose-Einstein
condensates [14], slow light [15, 16], electromagnetic waves in waveguides [17]
or superconducting circuits [18] to name a few. The main focus of this Thesis
is light in dispersive media.

Inspired by Unruh’s finding [10] and the waveguide-based proposal of
Unruh and Schiizhold [17], a collaboration of the groups of Leonhardt and
Koénig at St Andrews demonstrated the feasibility of creating analogue event

7



horizons with a moving refractive index profile in dispersive optical media in
2008 [19]. An optical event horizon can be created by changing the speed
of light (i.e., the refractive index of the medium of propagation) with light
itself. For example, a very short and intense laser pulse modifies the index by
the optical Kerr effect. Under the pulse, the index is increased. Light will be
slowed, and, where the velocity of the waves inside the material is less than
the velocity of the pulse, the front of the pulse acts (for some frequencies) as a
black-hole-type horizon that captures light. Phenomenologically, an optical
horizon separates two discrete regions: under the pulse where the light is
slow and the pulse speed is superluminal, and outside the pulse, where the
pulse moves subluminally — in analogy with the motion of spacetime in the
River Model of the black hole. The authors calculated that light emitted at
the horizon would be in a thermal state over a narrow band of frequencies.

As in the case of emission at the astrophysical black hole horizon, sponta-
neous emission from the vacuum in analogue systems results from the mixing
of field modes of positive and negative frequency at the dumb hole and op-
tical horizons. The motion of waves in laboratory systems is influenced by
dispersion, which limits the extent to which waves in the medium may shift in
frequency. Dispersion appears to be the analogue to TransPlanckian physics,
with the advantage that the phenomenology is perfectly understood. Thus,
the study of analogue horizons may be helpful in understanding the effect of
Hawking radiation.

The observation of the generation of negative-frequency waves at the hori-
zon in water waves experiments by Rousseaux and Leonhardt in 2008 [12],
and the confirmation of this effect (and of its thermal nature) by Weinfurt-
ner and Unruh in 2011 [13], were seminal contributions to the field of ana-
logue horizons. They clearly established that the classical effect of mixing of
negative- and positive-frequency modes at the horizon is genuine, and demon-
strated the need for ultra-low temperature fluid analogues to detect Hawking
radiation. In 2016, Steinhauer announced having observed the entanglement
of the emission of sonic waves on either sides of a black-hole horizon in a
Bose-Einstein condensate (BEC) analogue [20]. Simultaneously, Rousseaux
and Parentani reported on the measurement of the two-point correlation of
the randomly fluctuating free surface (i.e., noise) created by the scattering
of long-wavelength waves at a black-hole horizon in a water tank [21]. The
findings are very interesting [22] and the claims put forth by the authors
have to be scrutinised. As for the water waves experiment [23], the observed
correlations do not arise from quantum vacuum emission at the horizon: it
is noise, a classical state, that scatters at the horizon and not quantum hy-
drodynamical fluctuations. Thus the observed signal results from stimulated
emission at the horizon and not spontaneous emission — which is the effect



ultimately sought. In the case of the BEC experiment [20], the temperature
of emission at the horizon could not be properly estimated either theoretically
or experimentally because the flow velocity gradient was not directly mea-
sured [24, 25]. In those experiments, the detection of individual quanta was
not possible, which renders further independent measurements in different
analogue systems necessary. For example, the quantum state at the output
would be best characterised by a robust measurement of entanglement such
as a Bell-type measurement [26]. This would allow to undoubtedly establish
that spontaneous pair emission has been observed.

In that regard, optical horizons are an attractive platform that can con-
tribute significantly to the articulation of the paradigms of analogue horizon
physics and spontaneous emission from the vacuum. There exist numerous
well developed theoretical frameworks for a fully quantum description of the
interaction of light with matter in a dispersive medium, and the techniques
developed at the end of the 20" century and dawn of the 215 century allow
for precise control of the experimental parameters. In particular, the sci-
ence of propagation of intense and ultrashort pulses in optical fibres and the
technology of single photon counting have reached a level of refinement that
enables single quantum detection at the output of an optical fibre. Optical
horizons are the only analogue system that will allow for the unambiguous
detection of the pair of positive- and negative-frequency particles emitted at
the horizon — a signature of the Hawking effect.

Content and structure of the dissertation

This dissertation presents the study of the scattering of light at the hori-
zon. Spontaneous emission from the vacuum in various systems, and the
kinematics and mathematical arguments that support the analogy between
laboratory systems and astrophysical black holes are the central problem
around which the various chapters are organised.

In Chapter 1, we begin with an attempt to measure the time and position
at which a moving clock ticks. In a first section, we introduce in this way
the concepts of events and relativity of measurements of events, which are
fundamental concepts in the theories of Special and General Relativity. The
transition from Special to General Relativity is then achieved in an elemen-
tary fashion by studying the curvature of spacetime. We study conditions of
extreme curvature, and in particular the case in which there is a spacetime
singularity surrounded by an event horizon — a black hole. We proceed to
elaborate upon the effects of the curvature of spacetime on waves — namely
one way motion inside the horizon and infinite frequency shift upon propaga-
tion from the horizon out to infinity. This allows us to identify key physical



phenomena characteristic of wave motion at the horizon, wherefrom we in-
troduce the River Model of the black hole and draw the analogy to fluid
mechanics by following the steps laid out by Unruh.

The formalism is transferred to optics in a second section, when we study
the motion of waves in optical fibres. We explain how a solitary wave may
form in a fibre as a result of the interplay between nonlinear and dispersive
effects in the medium. In particular, we show how the refractive index is
increased under a soliton, and how other waves will experience this transient
change in the medium properties upon interaction and slow down and shift in
frequency. We invoke kinematics arguments of the River Model of the black
hole to show how the propagation of a soliton in the fibre effectively creates
a moving horizon. This leads us to considering the frequency of oscillation of
light waves in the fibre, which yields a discussion of the first observation of
the energy transfer from a positive frequency to a negative frequency wave.
Finally, we use a toy-model for a field theory of light-matter interaction to
show the full mathematical analogy between waves in an optical medium and
waves at the astrophysical horizon.

In the first section of Chapter 2, we look back upon black hole physics
and demonstrate how they resemble thermodynamic objects, which leads us
to a paradox: how could they possibly emit heat since nothing can propagate
out of them from beyond the horizon out to infinity? This failure of classical
physics is attended to by means of a quantum study of a scalar field on a
curved background. We use second quantisation to derive Hawking’s seminal
result that black holes emit radiation with a thermal spectrum, and discuss
the implications of, and questions related to, this finding. A similar problem
is considered in the second section of Chapter 2, where we quantise a field
theory for light-matter interaction in a dispersive medium [27, 28]. A careful
study of the dispersion relation allows to draw kinematics analogies with the
case of wave motion on a curved background, and various such configurations
are found to be simultaneously realised at a moving interface in the refractive
index of the medium. We then show how the mixing of modes with positive
and negative frequencies at this interface leads to spontaneous emission from
the vacuum and discuss the implications of this effect.

Chapter 3 is dedicated to the presentation of the numerical results of this
Thesis: spectra of spontaneous emission at a moving interface in a dispersive
medium. The first section presents the algorithm developed to model the
interactions of light with matter considered in Chapter 2. In particular,
the unique algebra necessary to account for the various configurations of
modes at the interface in the refractive index is thoroughly explicated, and
its use exemplified. We then show how this algorithm may be implemented
to compute spectra of emission as they can be observed in the laboratory
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frame. Numerically computed spectra for bulk silica are presented in a second
section, where we find that the strongest emission is in a mode that has a
negative optical frequency.

The experiment conducted to observe the effects of waves of positive and
negative frequency scattering at a soliton is presented in the last Chapter of
the dissertation, Chapter 4. We begin with a derivation that shows that a
coherent, continuous wave, probe of positive frequency would transfer energy
to a wave with negative frequency (observable in the UV) upon scattering at
the soliton. This parametric amplification of waves with opposite-sign fre-
quency has never been observed before in optics. We discuss the place of the
experiment in the field in the light of other studies of stimulated emission at
the horizon in water waves setups [12, 13, 21] and its relation to the nonlin-
ear optics experiment [1] that established the reality of negative frequency
waves in optics. After explaining the setup, we characterise the ability of
our apparatus to resolve and detect a negative-frequency signal. In the next
section, we present the classical effect of horizons on waves: the shift of fre-
quency experienced by waves impinging on the horizon. We explain how this
positive-frequency-to-positive-frequency wave scattering effect is a signature
of horizon physics. Advances toward observing the negative-frequency sig-
nal are then discussed via a study of the signal to noise ratio in the UV.
In particular, we report the observation of a peak at 247nm. We discuss
the origin of this signal and the possibility of this peak being related to the
signal sought. We then conclude with a discussion of future developments
of this experiment and considerations of the route toward the detection of
spontaneous emission of light quanta in an optical fibre.
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Chapter 1

Theory of spacetime curvature
in optical fibres

From astrophysics to the laboratory, and more precisely to optical fibre sys-
tems, this chapter will present the fundamentals of the science of analogue
spacetimes realisations. Leaving the concepts of quantum field theory — in
curved spacetime and for light-matter interaction — that describe the spon-
taneous creation of light from the vacuum to a later chapter, here we focus
on classical physics in its most modern form: starting from Special Relativity
and moving on to introduce concepts of General Relativity, we will show how
a black hole influences the fabric of the universe. Considering the generative
idea of analogue spacetimes, the flow of the above-mentioned fabric and how
it can be recreated in laboratory systems will then lead us to investigate our
experiment: light in optical fibres.

1.1 From astrophysics to the laboratory

1.1.1 Curvature of spacetime

The theories of relativity, Special and General Relativity, have been used
since the first half of the twentieth century to explore the boundaries of Na-
ture. In this section we wish to gain an understanding of physics in the
vicinity of black holes — General Relativity, the Theory of Gravitation that
describes matter and motion near massive objects. Discussing the key con-
cepts of Special Relativity, the theory of the very fast, will provide us with
the principles essential to examine spacetime curvature as described by Gen-
eral Relativity. We will see how spacetime curves in the vicinity of a black
hole and what metric best describes this phenomenon.

12



Special Relativity

Our journey with Relativity begins with a clock that ticks and moves past
a point in a particular inertial frame. We seek to measure the distance s
and time ¢ between two ticks. t is referred to as the time separation between
two subsequent events, and s is called the space separation. Our common
experience, for example with the siren of an ambulance rushing by us in the
street, tells us that these space and time separation are frame dependent
quantities. Yet, all inertial observers agree on the time as measured by the
clock between two events in the frame of the clock. This is the proper time

T,

=1 -5 (1.1)

Because t > s, it is also referred to as the timelike spacetime interval. 7
is invariant, that is frame independent. The above equation recalls the
Pythagorean theorem (72 = t* + s?) which gives the distance between two
points in Euclidean space. Similarly, this metric gives the separation be-
tween any two events (for which ¢ > s) in spacetime. It provides all infor-
mation about the (non quantum) features of spacetime and can be extended
to predict trajectories. One can also find the proper distance, or spacelike
spacetime interval, between two events:

o? =5 — (1.2)

A spacetime interval is then defined as the combination of the spacelike and
timelike spacetime intervals of the metric.

Special Relativity is valid within the inertial frame, that is a flat region
of spacetime. In terms of the mathematics of Relativity, this is the realms
of particular pseudo-Riemannian metrics. Take g, a symmetric covariant
2-tensor field (a pseudo-Riemannian metric on a manifold V'), defined such
that

(9:5) " = (9)". (1.3)

In a moving frame, it is written as

with ' = {¢',2/,4/, 2’} the coordinates in the moving frame, and in a labo-
ratory (natural) frame as
g = gydx'da’ (1.5)

with z* = {¢,z,y, z} the coordinates in the natural frame. By definition, g is
a non-degenerate quadratic form: it can be written as a sum of independent

13



real linear forms of dx* in the moving frame

i
The number of ¢, = 1 or —1 is the signature of the metric. For all point
1 € V., g defines a scalar product between two four-vectors of the vector
space
(v,w) = gy(v, w) = gi;(x)v'w’. (1.7)
A flat spacetime is a manifold isometric with a pseudo-Euclidean space (that
is Re™) with metric

giydatde’ =) e (da')?, e = £1. (1.8)

4

And a spacetime is locally flat if the manifold V' is locally isometric to a flat
space. Flat spacetime is best and most often described by the Minkowski
metric, a flat metric on Re"™:

n

g=—(dz?)* +> (dz')? (1.9)
i=1
which has a (—+ +...+) signature in the Misner-Thorne-Wheeler convention
[5]. In the natural frame (Cartesian coordinates) it is the symmetric, position
dependent, matrix

-100 0
0 100

971 0 010 (1.10)
0 00 1

An important concept in Relativity is that of geodesics, the path that
a particle which would not be accelerating follows. It is said of a geodesic
that it is a locally separation-extremising curve. In other words, geodesics
are curves that locally give the shortest distance between two events. To
define a geodesic, one has to call on the principle of causality: because the
Minkowski metric is a Lorentzian metric, it is time oriented, and so is the
manifold (flat spacetime, Re"*") ou which it is defined. The length of a
causal curve vy joining z, to z, on V is

b
[ = / Ld), (1.11)

with the Lagrangian

, dx®
I = gaﬁ(qr(k))iaiﬁ, J— % (1-12)
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with parameters A = a and A\ = b () is the path length). Then a geodesic
joining x, and 1z, is defined as a solution of the Fuler equation for this
Lagrangian:

d oL oL

d\9i®  dzo
On flat spacetime, the distance between nearby parallel geodesics is constant.
The acceleration of distance between nearby geodesics is an indicator of a
curved spacetime. In the cosmos, most regions of spacetime are flat over
only a limited range of space and time. If a pair of free test particles ex-
periences a relativistic acceleration with respect to one another (relativistic
tidal forces), then spacetime is not flat but curved. When this is the case,
the prevailing theory of Physics is no longer Special Relativity but General
Relativity. Einstein’s genius was to realise that the curvature of spacetime,
the rate of acceleration of distance between nearby geodesics, was identical
to relativistic tidal forces.

= 0. (1.13)

General Relativity

Newton would appeal to the principle of material indifference to express the
idea of the invariance of physical laws and phenomena upon the reference
frame in which they are expressed. Einstein extended this principle by relying
ou tensor fields as objects for physical laws. Siuce those are intrinsic objects
on a manifold, they are represented by their frame specific components but
pass from one frame to the other via general laws. The extension to Newton’s
principle, general covariance, and the Newton-Galileo equivalence principle
(the independence of the acceleration of a body on its mass under gravity)
inspired Einstein to use Lorentzian differential geometry and ushered-in the
theory of General Relativity.

Replacing the Minkowski spacetime of Special Relativity by a general
Lorentzian manifold and appealing to the Newton equivalence principle be-
tween inertial and gravitational masses allowed Einstein to invent General
Relativity. According to this theory, a four-dimensional curved Lorentzian
manifold unites space and time (which were previously considered as a priori
given structures). The metric of this spacetime is linked with its curvature
and governs its causality structure. Both in Special and General Relativity,
the basic observable quantity is the length of a timelike curve as a measure of
the proper time between two events. A massive object in free fall follows the
timelike geodesics of the metric: their equations of motion are independent
of their mass. Light rays are null geodesics in General Relativity, i.e. the
trajectories of particles with zero rest mass.

There exist various forms of the Einstein field equations [3, 4], for the
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purpose of the current discussion it suffices to appeal to the Einstein equation
in vacuum. This states that the Lorentzian metric g must satisfy

Ricei(g) =0, (1.14)

with Ricci the Ricci curvature tensor, a special Riemannian tensor that de-
scribes the curvature of spacetime (see [29] for more details). It is zero
because the stress-energy tensor in space outside a star is zero, we are in
vacuum. This equation for the gravitational field means that, in General
Relativity, gravity is identified with the curvature of spacetime — a massive
object will deform spacetime.

Soon after the publication of Einstein’s theory of General Relativity,
Scwharzschild was the first to construct an exact solution to the Einstein’s
equation in vacuum (1.14). His solution models the gravitational field out-
side spherically symmetric isolated bodies, such as the Sun or Earth, or a
proton.

1.1.2 The Schwarzschild spacetime
Schwarzschild metric

Written in standard polar coordinates (¢, 7,8, ¢), the smooth spherically sym-
metric metric solution to Finstein’s field equation (1.14) by Schwarzschild is

[30]

et = — (1 . 2%) (dt)? + (1 _ 27—’”)1 (dr)? + 1 ((d0)? + sin® 0(dg)?)
(1.15)

As for the Minkowski metric, we express the Schwarzschild metric in matrix
form as

—(1 - 2m) 0 0 0
B 0 (1-2m)-1 0 0
0 0 0 72%sinf

where ¢ is the time as measured at infinity, and m is a constant that has
implications on the nature of this metric. Indeed,

e when m = 0, the Schwarzschild metric is identical to the Minkowski
metric of flat spacetime,

e when m # 0, the metric is singular for » = 0 and has a coordinate
singularity for r = 2m. Clearly, the sign of the constant m # 0 is very
important in determining the properties of the metric: a metric where
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m would be negative has been given no physical interpretation to date.
On the other hand, for positive m, the Schwarzschild metric is a regular
Lorentzian metric with ¢ timelike and r spacelike (r > 2m).

For r < 2m, r # 0, the metric is a regular Lorentzian one, but the time- and
space-like character of the ¢ and r coordinates interchanges with the case
where the metric describes a flat spacetime. The case of r = 2m is peculiar
and deserves a discussion of its own. 1 — Q'ﬂ vanishes for » = 2m, implying
that the Schwarzschild metric in standard coordinates is singular there: gg
vanishes and ¢, becomes infinite — the metric is not a smooth Lorentzian
metric for r = 2m. Together with the change in time- and space-like character
of the ¢ and r coordinates for r < 2m, r # 0, this hints that » = 2m is not a
genuine singularity of Schwarzschild spacetime: it only appears to be in the
(t,1,0,¢) coordinates, which are unsuited to the region r < 2m. Thus one
cannot make physical predictions from the Schwarzchild metric at r = 2m
and needs to use another coordinate system. This apparent singularity in
the Schwarzschild metric is important. Indeed, no classical signal (i.e., one
not due to a quantum effect) can escape from the regions r < 2m: the
hypersurface Re x{r = 2m} is called an event horizon. A spacetime with a
source of radius a < 2m is called a black hole.

Let us express the Schwarzschild metric as Eddington [31], Lemaitre [32]
and Finkelstein [33] suggest to do. We perform a change of coordinates for
r < 2m from the canonical Schwarzschild time ¢ to the retarded time v,

v:t+r+2mlog<2i—1), (1.17)
m

(note that this change of coordinates from (¢.r, 0, @) to (v,r, 0. ¢) is singular
for » = 2m) to express the Schwarzschild metric in the Eddington-Finkelstein
(EF) form:

gpr = — (1 - 27_”) (dv)? + 2drdv + r* (sin? 0(dg)* + (d6)*) . (1.18)

T

This equation defines a vacuum Einsteinian spacetime referred to as the EF
black hole. As ¢"" = 0 for r = 2m, the submanifold » = 2m is a null surface.
Imposing § = constant, ¢ = constant, we find two families of radial light
rays: one represented by straight coordinate lines v = constant, and the
other given by

2 4
- (1——'”) dv+2dr =0 = dv = (— m +2) dr (1.19)
r 2m —r
which integrates for r < 2m to
v = 2r + 4mlog (|2m — r|) + constant. (1.20)
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In the domain < 2m, the EF metric can be expressed in the Shwarzschild
formviat=v —r —2mln (— — 1) and reads

—1

i = (277” - 1) (dt)?— (2?—7” - 1) (dr)?++2 ((d0)? + sin 0(de)?) (1.21)
with ¢ spacelike and r timelike! The metric is not static anymore. The EF
metric is genuinely singular for » = 0. This is in general interpreted as a
spacelike 3-surface, or hypersurface. An EF spacetime is called a black hole
because no future light ray issuing from a point where r < 2m crosses the
event horizon r = 2m (see Fig.1.1).

Black hole
oou*)dary

Time \I
A |
-&
N
)

Vi
""v

N
'\!

Singularity

{ Ttk

Figure 1.1: The history of a spherically symmetrical star collapsing to form
a black hole. The wavy arrows at each point indicate how an ingoing or
outgoing light flash propagates. Figure and caption from [34|. Spacetime
around a black hole is curved, so the worldlines of the light flashes are directed
towards the 'inside’. At a characteristic distance from the singularity (r = r,
the Schwarzschild radius), these worldlines are so tilted that they become
vertical in the diagram. This form a surface (a cylinder of outer surface the
vertical dashed line) called the event horizon.

At this stage, we can digress shortly and remark that, upon time-reversal,
there exists another extension of Schwarzschild spacetime:

r

2
gwn = <1 - —m) (dv)? — 2drdv +r* (sin? 6(do)? + (d0)?) . (1.22)
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This is a white hole, nothing can penetrate into it. Indeed, every outgoing
radial null geodesics in Schwarzschild spacetime emanates from the white
hole.

Event horizon

In relativity, the velocity of light in vacuum ¢ is constant, invariant. Yet the
curvature of spacetime, the dependence of the measure of proper time on the
observer, causes light in a gravitational field to redshift, and time to dilate.

It can be shown (see [29]) that, in a Schwarzschild spacetime where both
an object A and the observer O are at rest, the period of the radiation when
emitted from the object T4 is related to the period upon observation T

(TA < 7’()) by
2 2
T, :\/1 - ﬁ\/a =g, (1.23)
To T4

Hence the observed period is larger than the emitted period, and an observer
would observe a redshift in the spectral lines of the atom radiation. In the
limit of % small, we see that, to a faraway observer (Wheeler’s bookkeeper),
a signal emitted from r4, = 2m (source located at the horizon) would have
infinite wavelength. This is called the infinite-redshift effect and has im-
plications for the validity of the Hawking radiation temperature derivation.
This infinite-redshift effect gives full physical meaning to the common saying
that "nothing can escape a black hole": light emitted from the horizon would
have infinite period upon observation, or, symmetrically, zero period upon
emission. This is not a signal, it cannot be detected [35].

The dependence on the observer of the measure of the proper time can
be illustrated by computing the radial velocity that must be applied to the
object A (with respect to the observer O at rest in the Schwarzschild metric)
for it to escape the gravitational attraction — the escape velocity.

As above, rp is the coordinate of the static observer, and r4 is that
of the test object. The trajectory of bodies of small size and mass in the
gravitational field of a black hole are timelike geodesics of the Schwarzschild
spacetime with mass m < rp/2. We denote by ds the element of proper time
on a timelike curve,

ds® = —gapdr™da”. (1.24)

Thus the proper-time initial velocity is 7o = dr/ds(O), and the variation of
the time parameter is denoted by ¢ = dt/ds. Our object, which is supposed
to be in free motion after its departure, thus follows a radial geodesic curve
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and hence satisfies the equation [29]

(1 —2—m>i:E: (1— 2—m> fo, (1.25)

r To

where FE is a constant and 75 is the 7 coordinate of the static observer. Note
that for the sake of the present computation, we consider a Schwarzschild
spacetime with mass m < ro/2. As a result of the definition 1.24,

1= (1 — Q—m) - (1 — 2—m>—1 72 (1.26)

r r
Hence the differential equation for the parameter

2
=B 14 (1.27)
,
Clearly, the maximum of r is attained for 7 = 0 (a reversal of velocity implies
that the object turns back at this point). This is for

2m,

= 1.2

Tpm
Obviously, the parameter r can only maximise to ), if £ < 1. The escape
velocity, corresponding to an infinite value of r); corresponds to /¥ = 1. By

(1.27), this velocity is
72 = 2m (1.29)
o
For the observer at rest, the relativistic escape velocity /3 is given by the ratio
of the radial space and time components V! and V° of the velocity vector
in the proper frame of this observer (of components (7o,%s) in the natural

frame of the coordinates ¢, 7). The proper frame of the observer is

0 2m " 2m\ 2
™ =1 — —dt, " = (1 - —) dr. (1.30)
To

O
The velocity vector has components (7o,%o) in the natural frame of the
coordinates t,r. Therefore,

-1

om . 2
Vo :w S V= (1 - —m> Fo. (1.31)

To To

And, finally, when E = 1, plugging (1.26) and (1.28) and rearranging yields

Vi 2m
T =y —. 1.32
Vo 70 ( 3 )

b=
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This escape velocity tends towards the velocity of light when ro — 2m.

If, now, the velocity of the object is less than the escape velocity, according
to the above calculation, the time it takes it to fall back to its departure point
is twice the parameter time it takes to attain r;;. We calculate the proper
time this takes using

t d 2 ot 1_Mdt
4= / Yy / IR (1——m> dl = /0 Ml_ﬁd—Z(O)dtJ (1.33)
. 2 g

with the change of variables

D= (-2 (-2 o sy

o ro

We perform yet another change of variables and set (dr/dt)(0) = v (and
remember that m/ro is small) to obtain

2

t 2m 2
54 / v < mo o, T )dt, (1.35)

To To

The proper time as measured by the observer sitting at ro between the
departure and return is

t 2 t
so = / Y —%di / 1—-) dt. (1.36)

This proper time differs from that measured in the frame of the object: the
delay (within our approximation) is

t 2 m 2
Sa— S0 = / " ( mym,m ) dt. (1.37)
To

To

Since r > rp, this delay is greater than zero. The above derivation shows
that, when spacetime is curved, the proper time measure depends on the
observer frame. This is a significant departure from Special Relativity. Light
propagating away from a black hole will, because of the steep curvature of
spacetime, significantly redshift.

In an inertial frame, no signal can move in any direction faster than light:
this means that the forward light-cone contains all possible worldlines for a
passing particle. Since worldlines can run through a horizon only in the ra-
dial inwards direction, the horizon effectively causally disconnects the inside
region from the outside region of the black hole. As we have seen earlier, no
future light ray originating from inside the horizon of a Schwarzschild black
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hole can escape to outer space. In addition, in the inner region of the black
hole, where r < 2m, the radius r decreases inexorably. This means that
motion inside the horizon is possible in only one way, towards the central
singularity. Whatever falls on the black hole and crosses the event horizon
is therefore doomed and feeds our earlier conclusion about the blackness of
black holes.

In conclusion, we have seen that the Schwarzschild metric, solution to
Einstein’s equation for the gravitational field in vacuum, can describe situ-
ations of extreme curvature. These gravitational collapses have been given
the name of black holes because they deform spacetime in such a way that
anything coming too close is doomed to fall on their central singularity. The
boundary between the inner and outer regions of a black hole is referred to
as the event horizon. We have shown that it causally disconnects worldlines,
even those of light rays, and that a signal emitted from this hypersurface
would be infinitely redshifted before it reaches a far away observer (meaning
that no signal can travel outwards from the event horizon).

1.1.3 Laboratory event horizons
The River Model of flowing spacetime

Let us have a closer look at the EF metric (1.18), by writing it in yet a
different form, as Painlevé [36] and Gullstrand did [37]. The present form
has the advantage of offering an intuitive interpretation of the distortion of
spacetime in the vicinity of a black hole. It reads [38]

gpc = —dthg + (dr + 3dtpe)” + 12 ((d6)? + sin® 0(de)?) | (1.38)

with 3 :\/i:’g’ the Newtonian escape velocity (see Eq.1.32, and note that r, is
the spatial tortoise coordinate of the static observer) and ¢ pg the proper time.
In this form, the metric describes ordinary flat space. What is interesting is
that space itself is flowing radially inwards at velocity 3. At the horizon r =
I'sehw, 0 = ¢ (equals 1 in the metrics units). This metric is the fundamental
brick of the River Model of black holes.

The River Model has the same features as the original Schwarszchild met-
ric. In particular, an object that falls through the horizon appears redshifted
to an outside observer, and frozen at the horizon: tps increases so, as the
object approaches the horizon, it takes an ever increasing time for the light
it radiates to progress backwards against the infalling space and finally reach
the observer. What is interesting is that the equations governing the propaga-
tion of sound waves in an inviscid, barotropic, irrotational fluid are identical
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to those for a massless scalar field propagating in a Geuneral Relativity metric
[10]. In other words, such a fluid can be used to reproduce the physics of
black hole event horizons. Unruh showed in 1981 that sound horizons (of
what he calls "dumb holes’) emit Hawking Radiation and ushered-in the field
of laboratory analogues to event horizons realisation.

Intuition of dumb holes

When a fluid flows faster than the speed of sound somewhere in an inho-
mogeneous flow, a sonic horizon appears. Since the speed of sound is the
maximal speed for excitations of the fluid, the horizon separates two regions
of fluid flow, a supersonic region from a subsonic region. By analogy these
are identified with the inner and outer regions, respectively, of a black hole.
The fluid is a self contained quantum system: its degrees of freedom are
conserved. This means that, in the presence of a sonic horizon, waves in-
coming on the horizon (incoming modes) will convert into outgoing modes
(outgoing waves). But waves cannot propagate from inside to outside the
horizon of a black hole, and neither can they in the case of a sonic horizon.
Yet, in the case of the fluid analogue, outgoing modes come from incoming
degrees of freedom that turned backwards’ at the horizon — an example of
a general phenomenon that occurs for dispersive waves in an inhomogeneous,
dispersive medium.

Sound waves, in the present context, are waves propagating on the fluid
(this could be water) surface, with gravity and surface tension as the restoring
forces — because of the interplay between those forces, a fluid with a free
surface is considered to be a dispersive medium. The frequency dispersion
of sound waves implies that waves of different wavelengths travel at different
phase velocities.! Propagating sound waves of non-zero amplitude only can
exist when the angular frequency w and the wave number k = 27” (X the
wavelength) satisfy a functional relationship known as the dispersion relation,
of the form w? = gk tanh(kh), where g is the acceleration by gravity and h
the depth of the water. In a co-moving frame at rest with a fluid flowing at
velocity u, the dispersion relation becomes

(w — uk)? = gk tanh(kh). (1.39)

Because of dispersion, the phase velocity v, = w/k and group velocity v, =
Ow/ 0k are different: i.e., in water, the phase of sound waves will propagate at
different speed from the wave packets. These velocities clearly are frequency-
dependent. Or, conversely, a sound wave whose group velocity changes as it

!This is a linear effect (contrarily to amplitude dispersion whereby waves or larger
amplitude have a different phase velocity from small-amplitude waves).
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propagates in the inhomogeneous, dispersive medium, will experience a shift
in frequency — and ‘turn backwards’ at the horizon, as mentioned above.
Let us now explain this effect.

In a dispersive fluid, sound waves whose group-velocity is lower than
the fluid flow-velocity will experience a black-hole horizon. Because of the
frequency-dependence of the group-velocity, this horizon is not a sharp in-
terface (unlike the absolute event horizon of astrophysical black holes). Each
incoming sound wave actually experiences a continuous reversal of its group
velocity as it approaches the point where the fluid flows faster than sound
can. This continuous reversal of the group velocity results from a smooth
evolution from one branch of the dispersion relation (1.39) of the medium to
another. The phenomenology of group-velocity reversal and frequency shift
at the horizon is as follows: an incoming, high frequency mode is dragged
toward the horizon by the faster fluid flow. As it moves towards the horizon,
the wave-vector k of the mode decreases and its group velocity increases,
eventually reaching and exceeding the flow velocity. The incoming wave
packet then begins converting into outgoing modes propagating back out
away from, and through, the horizon, into the outside and inside region of
the dumb hole, respectively. Indeed, in a dispersive medium, mode conver-
sion does not imply that energy is transferred from one incoming mode to
one outgoing mode only. On the contrary, one incoming mode can transfer
energy to all of the outgoing modes upon scattering at the horizon. And,
symmetrically, the energy in an outgoing mode can be contributed by all the
incoming modes. Because of dispersion, outgoing modes will have different
group velocity than the incoming mode. For example, under dispersion, the
change in wave vector of the the ‘reflected” mode is accompanied by a fre-
quency shift, to lower frequencies: a redshift. That is, the outgoing mode is
redshifted with respect to the incoming mode.

A peculiarity of inhomogeneous, dispersive media, is that they support
modes with both positive and negative frequencies (as can be seen already
from Eq.(1.39)). Like the scattering of modes at the horizon, this surprising
feature will be detailed later in this dissertation (see sections 1.2.2, 2.1.2 and
2.2.2 for example). Unruh showed that energy is converted from the positive
and negative branch of the dispersion relation of the fluid in the amount
predicted by the Hawking emission theory.

Over the course of the present discussion, the focus has swiftly shifted
from the original system considered by Unruh, acoustic flows [10], to more
general considerations of dispersive media. The idea of dumb holes can in-
deed, as will be exemplified later in this chapter and all along the present
Thesis, be generalised to any medium where a flow can be made to have
a gradient such that its velocity eventually exceeds that of waves in the
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medium.

Analytic of dumb holes

Having developed an intuitive understanding of the idea behind the analogy
of dispersive flows with the kinematics of spacetime in the vicinity of a black
hole horizon, it is possible to establish analytically the connection between
these two system by deriving the wave equation of acoustics in lowing fluids.
In order to proceed analytically, however, we must constrain our considera-
tions to a nondispersive medium, as in the initial paper by Unruh [10]. As
we will see shortly, this nonetheless captures the main ideas of the dumb hole
proposal. Fluid dynamics are ruled by the equation of continuity?

op+V-(pv)=0 (1.40)
and Euler’s equation

d,
pd_;’ =p(Ov+ -V =F, (1.41)

with p the fluid density, v the flow velocity vector field, ¢ the time as measured
in the laboratory frame, and F' the sum of all forces exerted on the fluid [39].
Following on the above discussion and after the work of Unruh [10], the flow
is taken to have zero viscosity with the only forces being those due to the
pressure p as well as Newtonian gravity and arbitrary external driving forces.
The latter two are accounted for by the potential ¢, yielding

F=-Vp—pVe. (1.42)
Wherefrom the Euler equation 1.41 is rewritten as

1
v = —;Vp —Vo—(v-V)uv. (1.43)

The enthalpy h of the barotropic fluid can be defined as a function of the

pressure as h(p) = [ p‘zz:) so that Vh = %Vp. Furthermore, for a vorticity
free flow, a velocity potential ¢/ can be introduced such that v = =V [40]

so as to reduce Euler’s equation to

v. (—aﬂp hat %(w)? n ¢) — 0. (1.44)

2Note that in this section, the partial derivative with respect to a variable is denoted
by 6, = % (only when greek indices p, v are written do we use the relativistic-covariant
formulation).
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In order to linearise the equations of motion 1.40 and 1.44 around a back-
ground, the exact motion (p, p, ¢) is separated into an average background
motion (po, Po, ¥o) and low amplitude acoustic disturbances (p1, p1, ¥1) [39].
The continuity equations (1.40) for the background and acoustic disturbances
are

dpo + V- (povg) = 0, (1.45)

o1+ V- (pov1 + prvg) = 0. (1.46)

Similarly, the barotropic condition can be used in linearising the Euler equa-
tion (1.44), resulting in the pair

1
awrum+;vwf+¢=0 (1.47)
p1 = po (0,101 + vg - Viiy) (1.48)
Additionally, the barotropic assumption p; = g_p 1 gives
dp
p= a—ppo (Dh1 + o - V1) (1.49)

Substituting the latter consequence of the linearised Fuler equation finally
reveals the wave equation that describes the propagation of the linearised
scalar potential 1/, that is that of acoustic disturbances:

0 d ,
—(3,5 (—ppo (at’(/)l + Vo * V?/)Q) +V (poV’(/)l — a—gpovo (Otz/)l + Vo - Vz/)1)> = 0

Ip
(1.50)
Unruh identified the local speed of sound as C% = g—g and realised that
Eq.(1.50) could be cast into the equation of motion for a massless scalar field
in a spherically symmetric geometry with static (inverse) metric [10] (note

this is in 3+1D)

-1 -}
gvr="00 ... . . (1.51)
—uh R0 —
which compares with the Painlevé-Gullstrand metric (1.38) near the horizon
of a black hole. There is a sonic horizon for the acoustic disturbance
where the local speed of sound equals that of the background fluid . This
is a remarkable result: the velocity flow of a fluid can be analogous to a
curved background for sound waves provided there is a flow-velocity gradient
to supersonic flow. All the results of this Thesis build upon this finding.
We will now turn away from fluids and sounds and discuss the translation
of Unruh’s idea of analogues to another setup: light in an optical fibre.
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1.2 Developments in optical event horizon re-
alisation

Light in optical fibres can be made to interact with itself to create a flowing
medium. This section of the Thesis presents the tools of fibre optics that we
rely upon to create those light-f

1.2.1 Fiber optics

Light is an attractive experimental setup: it exhibits quantum properties at
any temperature and is well understood and studied. We will here review
the essential physics of light in optical fibres, swiftly progressing from linear
optics to the lowest-order nonlinear response. We will conclude with the
introduction of the essential constituent to the realisation of optical event
horizons — the physics of the interaction of a soliton with a weak probe
wave.

Nonliner optics and pulse propagation

When a weak light wave interacts with a single body, the charged particle
of a molecule or an atom, the wavelength of the output wave is identical
to that of the input wave. Through the interaction with the molecule, the
wave can suffer from attenuation, dispersion, deflection or be delayed, but
the characteristic frequency of the waves will remain unaffected. The regime
of weak light-matter interaction is ruled by the linear optics approximation.

A monochromatic electromagnetic radiation propagates in an optical fibre
with phase velocity v, = =, where ¢ is the speed of light in vacuum and
n the refractive index of the fibre material (of its core). The ultra short
pulses that are usunally sent in optical fibres are however not monochromatic
but broadband: they are made of a wave at the carrier frequency and then
numerous other waves at other frequencies around the carrier and are set
by the mode spacing determined by the laser cavity that travel under an
envelope. This envelope propagates with velocity v,(w) = ngﬁ, the group
velocity. We call n,(w) the (frequency-dependent) group index and define it

as
0
ng(w) = n(w) + wa—Z, (1.52)

it explicitly depends upon the frequency of the wave, and therefore so does
vg. The group velocity of the wave packet is different from (and can be lower
than) the phase velocity of the various frequency components it is made of
(for the phase velocity is also frequency dependent). The phenomenon of
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frequency-dependence of the group and phase velocities — they differ in a
dispersive medium — is what is called dispersion. It stems from material
and waveguide dispersion, that is the frequency-dependence of, respectively,
the refractive index and the size of the mode in the fibre. The latter depends
mainly on the dimension of the core of the fibre. As a consequence of group-
velocity dispersion, different spectral components of the pulse, because they
will experience different refractive indices, will travel at different speeds. This
results in a temporal broadening of the propagating pulse: the intensity of the
pulse will be dispersed. The overall spectrum of the light packet is however
not affected, for the pulse only spreads in time. Dispersion thus appears to
tie in with the linear approximation. Three regimes of dispersion exist

e Normal dispersion where the high frequency (short wavelength) com-
ponents travel faster than low frequency ones,

e Anomalous dispersion where the low frequency (long wavelength) com-
ponents travel faster than the high frequency ones,

e The point of zero dispersion.

Dispersion leads to a walk-off between the different spectral components of
the ultrashort light pulse: by (1.52), different frequency components of the
pulse will travel at different group velocity in the medium. Thus the pulse
broadens in the time domain and its peak intensity decreases. This eventually
limits the efficiency of nonlinear effects: because two spectral components will
propagate at different speed, the total electric field leads to lower nonlinearity
strength.

In the situation where the light field impinging upon the ahove-mentioned
molecule has a high intensity, the output wave will have a different frequency.
In fact, if the intensity of the light is high enough, a pulse will induce effects on
its own phase and amplitude through interaction with the molecule, resulting
(by the virtue of Fourier Transform) in a change in its frequency. This
regime of interaction is called nonlinear optics, because it stems from the
nonlinear scattering of light and the nonlinear nature of the refractive index
of the material. In order to understand why this is, let us explore a simple
model of light and matter interaction. We model the medium in which light
propagates, any dielectric such as silica — of which fibres are made of — for
example, as a collection of charged particles. These basically are composed
of light electrons bound to heavy ions. Maxwell’s equations then allow us to
interpret the propagation of light in this medium as propagating disturbances
of the electric and magnetic fields. The polarisation of these fields depends
upon the response of the bound charges within the medium to the electric

28



field. In simple words, as an oscillating electric field travels in the material,
the electric charges oscillate, inducing an electric dipole and radiating light
(this is not instantaneous) at the driving frequency. In linear optics, when the
light is of weak intensity, the polarisation of the medium is a linear response
to terms of the first power of the electric field only. Hereafter we will only
be interested in intense light fields that induce an anharinonic motion of
the bound electrons of the material through propagation. This results in
the polarisation of the medium becoming nonlinear and light being radiated
at harmonic frequencies of the fundamental driving and wave mixing. For
the purpose of this thesis, we will only consider phenomena belonging to
the perturbative regime intensity interval (intensities of the order of 10! to
5 x 10"¥W.cm ?). In this regime we consider the charged particles — the
electrons — to be bound to the atom nucleus.

Pulse propagation in optical fibres obeys Maxwell’s equations [41, 42, 43]

0B
E=——-.
v at’
oD
VxH:J+5? (1.53)
VD = Prs
VB = 0.

where E and H are the electric and magnetic fields, respectively, J is the free
current density, ps is the free charge density, and B and D are related to E
and H by the constitutive relations

D = ¢E + P,

(1.54)
B=,H+M

P and M are the polarisation and magnetisation, respectively. The latter
is zero in optical fibres — these are non-magnetic — and so are J and py
— fibres are non conducting and electrically neutral. Substituting the con-
stitutive relations into Maxwell’s equations yields, via elimination of D and

B,
oH
E=—puy—
oE 0P
H=e— +—
v o T o (1.55)
VE = —iVP,
€0

VH = 0.
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Taking the curl of the first equation allows for elininating the magnetic
field. We have successfully combined Maxwell’s equations for light in a fibre
to obtain the following propagation equation which involves the light field
and the polarisation that is generated by the propagation of this light field:

O*E 0*P

V x (V X E) _‘_MO‘{OW = —MOW

(1.56)
The product ppeg = 1/¢* with ¢ being the speed of light in vacuum. As
mentioned previously, the polarisation features both a linear and a nonlinear
component:

P(r.t) = Pr(r,t) + Pyr(r ). (1.57)

The linear (nonlinear) component of the polarisation is accounted for through
the first (second) term of Eq. 1.57. The linear part of the polarisation
describes the dispersion of the medium while the nonlinear part describes
the nonlinear effects, through the first and second two terms of the following
equation, respectively:

P(r,t) = eoxVE(r, ) + X PE*(r,t) + egx O E3(r, 1) (1.58)

where we have Taylor-expanded the electric field of the nonlinear terms and
X%, (k) = (1,2,..), is the & order of susceptibility of the medium. The
dominant contribution to the polarisation induced by electric dipoles is pro-
vided by the linear susceptibility (! (which is related to the refractive index
by n?(w) = 14+ xW(w)). A medium such as silica has inversion symmetry
at the molecular level (silica is said to be centro-symmetric) and thus zero
second order susceptibility ¥ = 0, making the third order susceptibility
responsible for the lowest-order nonlinear effects in optical fibres.

Optical pulse

Let us now decompose the electric field associated with short laser pulses into
the product of a modal distribution (spatial distribution of the electric field
inside the waveguide) times a temporal envelope and the carrier frequency.

F(r), modal distribution
E(r,z,t) = F(r)A(z,t)e™*" { A(z,t),  temporal envelope (1.59)
wo = iioc, carrier frequency

In an experiment, we actually measure the power, and not the amplitude, of
the electromagnetic field P(z,¢) = |A(z,1)|?, that is the modulus squared of
the envelope). Typically, a short laser pulse has a peak power ranging from
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some hundred watts to hundreds of kilowatts and can be as short as a few
femto seconds. Depending on the peak power and duration of the pulse, the
nonlinear effects observed in a fibre can be very different. As for the modal
distribution, it is typically accurate enough to consider the propagation of
the fundamental mode only and to assume its shape to be Gaussian. Because
the transverse energy distribution of the fundamental mode does not vary
through propagation, we generally study the change in shape of the temporal
envelope and disregard the effects of diffraction.

Translating the above considerations into the pulse propagation equa-
tion (1.56), one arrives at the Generalized Nonlinear Schrodinger Equation®
(GNLSE) that accounts for the combined effects of Loss (first term), Disper-
sion (second term) and all the nonlinear effects we will elaborate upon in the
next paragraph (terms on the right-most side of the equation) [44]:

0A A
E _A Z A ”‘ Tk

. 0 too / |2 /
in (””*h“’“aT) (A () [ R |A T -T) dT).

Eq.(1.60) governs the evolution of the field amplitude A(z,¢) (in units of
W 1/2) expressed in a frame of reference moving at the group velocity v, =
1/8; of the pulse envelope such that T' = t — z/v,. The nonlinear coeffi-
cient «y (in units of W—'.m™!) describes the strength of nonlinear effects. It
is related to the effective mode area® of the electric field in the fibre A, i
by v = wone/cAcsp — the strength of the nonlinear effects depends on the
intensity and confinement of the electric field in the fibre (ns is the non-
linear refractive index, see discussion below). The frequency dependence of
the mode area, and thus of v, is described by the term 744,,. The function
R(T) = 1~— f, + f-hr(T) describes the nonlinear response and it includes
both the instantaneous contribution (the Kerr effect) and delayed response
(hg(T), Raman scattering). The coefficient f, represents the Raman frac-
tional contribution to the overall nonlinear response [44].

The terms on the left hand side of the equation account for the linear
propagation effects via attenuation («) and the dispersion of the propagation
constant, while the terms on the right hand side describe the nonlinear effects.
Let us detail the latter effects: the parentheses on the right of the GNLSE

(1.60)

3This equation remains valid down to the single cycle regime, when the temporal en-
velope contains only one single oscillation of the electromagnetic field.
([ 12a4)"
[1E[*da
The integration is done over the whole plane of the cross-section of the fibre. For a
Gaussian beam with radius w, the effective area is ww? [44].

4The effective mode area is 4., = where E' is the electric field amplitude.
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1.60 describes the temporal envelope Self-Steepening, v conveys the Self-
Phase Modulation (SPM) and Four-Wave Mixing (FWM) effects whilst the
integral describes the Stimulated Raman Scattering (SRS):

e SPM: Self-Phase Modulation is the effect where a polarized field of
light modulates its own phase. This arises from the frequency depen-
dence of the refractive index and results in phase shifts in the electric
field. The frequency of the pulse being time-dependent, one observes
the appearance of chirp (change in the instantaneous frequency across
the pulse) on a ghost image, see Fig.1.2. The temporal profile of the
spectrum (its time-domain envelope) is not affected by this effect, only
the spectrum broadens. One could say that this is the opposite effect to
dispersion: the SPM-induced chirp is similar to that caused by normal
dispersion, such that longer wavelengths propagate faster within the
pulse and are located on the leading edge.

e F'WM: Another consequence of the intensity-dependence of the refrac-
tive index is the so-called Four Wave Mixing process, which consists in
a nonlinear mixing between two optical signals at different frequency
and the resulting generation of signals at the frequency difference and
sum of the frequencies. Diagram 1.3 clearly shows that the frequency
of the four waves involved in the process add up and that energy is thus
conserved. An efficient process where a consequent part of the energy
of the two initial waves is transferred to the newly generated signals
requires the phase of the waves to be matched: all the waves have to
be in phase so that

B(wr) + Bles) = Bles) + Blar) (1.61)

e SRS: The third nonlinear effect encrypted in the GNLSE is Stimulated
Raman Scattering, which stems from the interaction between light and
the vibrational modes of the molecules. This interaction yields a Ra-
man gain to be produced for a wave with a shorter frequency than
the high intensity pump in the case of Stokes scattering®. The Raman
gain profile is very broadband and depends on the material, Figure 1.4
depicts it for silica.

The GNLSE can be made to account for the effects of noise, for the frequency-
dependence of the mode area, and for the wave polarisation. This equation is
extremely powerful and widely used in nonlinear fibre optics [44]. The pulse

5 Anti-Stokes scattering — frequency up-conversion — is also possible, although Stokes
scattering is more frequency [44].
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propagation dynamics strongly depends upon the pump wavelength relative
to the zero dispersion wavelength (ZDW): at low wavelength, in the normal
dispersion region, SPM will be observed while FWM actually takes place at
the ZDW for example. The regime of interest for us is that of anomalous
dispersion which allows, through modulation instability, for the generation
of solitons in the fibre.
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Figure 1.2: Self Phase Modulation: under the Kerr effect, an intense pulse
modifies the refractive index of the fibre material as it propagates. This
results in the pulse experiencing an additional phase shift beside the linear
phase shift. In other words, light modulates its own phase: oy (¢, L) =
vI(t)L, where L is the propagation distance of the pulse and ~ the nonlinear
coefficient of the fibre. The black line corresponds to the pulse envelope and
the grey line the amplitude of the electric field. Figure adapted from [44].
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Figure 1.3: Four Wave Mixing: FWM is the interaction of four waves with
distinct frequencies via a third-order nonlinearity. It describes the annihila-
tion and/or generation of four distinct photons.
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Figure 1.4: Stimulated Raman Scattering: Raman Scattering corresponds
to the energy transfer from photons to phonons by an inelastic collision.
Through collision the photon energy is changed: it thus frequency shifts.
The Raman gain spectrum for fused silica, at A = 1060nm, is plotted after
[44].

Solitons

We will now investigate the different regimes of soliton propagation in order
to understand in what context optical solitons are created in fibres. In that
spirit, we will proceed to deconstruct the dynamics of soliton propagation
step by step and show how the different nonlinear effects we introduced earlier
work together to give rise to a massive spectral broadening.

Four "regimes" of dynamics can be identified as a function of the dispersion
regime. The evolution of a short pulse (of high peak power, of the order of
ten kilowatts) propagating in the anomalous dispersion regime can be divided
into three stages:

e First the higher-order soliton is being compressed, which results in a
spectral broadening,

e The pulse then splits into a range of small pulses, fundamental solitons.
At the same time, the spectrum starts expanding under the effects of
dispersive wave generation.

e Finally, the wavelength of the fundamental solitons shifts to longer
wavelengths under the effect of Raman self-frequency shift. As a con-
sequence of this wavelength shift, the peak shifts and the pulse is no
longer symmetric or well described by a Gaussian envelope.

Now that the soliton propagation dynamics has been carefully decon-
structed, this paragraph will present a thorough description of the three
evolution stages, starting with the fundamental soliton. Fundamental soli-
tons essentially are stable solutions of the nonlinear Schrodinger equation
that appear when the chirp from self-phase modulation balances that of

34



anomalous dispersion. This is described by the following simplified Nou-
linear Schrodinger equation (NLSE):

DA 8] 5?A 9

ZE+TW+7|A‘ A=0 (1.62)
Where the second term accounts for the group velocity dispersion in the
anomalous regime and the last term accounts for the Kerr effect (the non-
linear dependence of the refractive index upon the intensity of the pumping
mechanism). The second order coefficient 3y = 8?3 /0w?|,, is known as the
group velocity dispersion (GVD). It governs the rate of temporal broadening
experienced by the pulse. Eq.(1.62) shows that neither Raman scattering nor
the frequency dependence of the group velocity dispersion play a role in the
formation of the fundamental soliton.

Mathematically, it is possible to show that, in the anomalous dispersion
regime (fy < 0), a certain class of solutions may fulfil Eq.(1.62): these are
called fundamental solitons. Requirements for this are twofold, fundamental
solitons must have [44]:

e a hyper-secant shape, this is mathematically described by

A(z=0,T) =/ Pysech (T/T0), A(z,T)=+/Pysech(T)T0)c=F/2
(1.63)
Ty is the duration of the pulse and F, is the peak power.

e asoliton number N — which determines the maximum energy for which
the interplay between dispersion and nonlinearity allows for a stable
solution — that must be unity:

N = Lo/ Ly = \vRoT3/|6:] = 1 (1.64)

where, Ly = T¢|52| and Lyz = 1/(7P,) the dispersion and nonlinear
lengths, respectively.

Fundamental solitons are not the only solution to the NLSE, it actually
allows for higher order solitons to exist. These have an integer soliton num-
ber higher than fundamental soliton (eg 2,3,4,...). They correspond to the
interference of fundamental solitons, with different amplitudes and phase,
during propagation. In this case, the soliton is periodic upon propagation:

A(z4 Ly, T) = A(2,T), A(z=0,T) = \/Pysech (T/T0).  (1.65)

Here, Ly is the dispersion length, and 5 is the group-velocity dispersion
parameter of the medium at the carrier frequency. Upon propagation, a
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second order soliton, for example, goes through a cycle of expansion and
compression in the time domain (and reciprocally compression and expan-
sion in the spectral domain). Nothing binds fundamental solitons together
to form higher-order solitons: they only have the same velocity and thus
interfere constructively. If the degeneracy of the velocities of the different
constituents of a higher-oder soliton is disturbed, that is if these constituents
start propagating at different velocities in the fibre, the interference between
them will not be constructive any more. A soliton of order N > 1 will
therefore break into N fundamental solitons.

Pulse and probe interaction

The theory developed for this Thesis accounts for the interaction of a soliton
with a weak probe wave, or with waves in the quantum vacuum state (not
populated with photons). We will now proceed to describe such an interac-
tion. For the sake of this Thesis, it is enough to consider cross-phase mod-
ulation only. Consider a fundamental soliton and a continuous-wave probe
of intensity significantly lower than that of the pulse forming the soliton.
Their well-separated central frequencies are denoted w; and w,, respectively.
In practice, the nonlinear interaction between the two fields is unidirectional
with the soliton acting on the probe and the back-reaction being negligible
because of the low intensity of the second field. The nonlinear polarisation,
which is in the same direction as the probe field E,, reads [45, 46|

Pyi = geox(3)\ES|2E 7 (1.66)
where r is 1 if the fields are orthogonally polarized and 3 if the fields are
polarized along the same direction. With such a polarisation, the full wave
equation in real space is [45, 19]°

(92 + 8%(i0,)) B, = 97 (x E,) = 0. (1.67)
Identifying
T .
Y = §X<5>\ES\2 (1.68)

as the nonlinear susceptibility induced by the pulse and writing the propa-
gation constant 5 = wn(w)/c out, we find that this wave equation can be
written as

FcOPE, — 02n*(id,) E, — 02 (xE,) = 0, (1.69)

SNote that in this section, the partial derivative with respect to a variable is denoted
by 0, = é)az (only when greek indices p, v are written do we use the relativistic-covariant
formulation).
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where from it becomes clear that the susceptibility x induced by the pulse
on the probe is a local change of refractive index. We identified this effect
carlier as the Kerr effect (see section 1.2.1).

Let us recall the dynamics of propagation of a wave of low intensity in
a bare fibre. Although the refractive index of the fibre experienced by the
wave depends on its frequency, it is constant along propagation. A weak
probe of constant frequency will therefore propagate with constant group and
phase velocity. The wavepacket propagation is a bit more complex because
of dispersion — the difference of the above mentioned velocities for different
frequencies — but the refractive index profile of the medium is not modified
by the probe. And its frequency is thus unchanged. This is in contrast with
the influence of the soliton on the probe: under the Kerr effect it will modify
the susceptibility and the probe will experience a local change of refractive
index,

ni;p=n’+x. (1.70)

This transient increase in refractive index will have implications on the probe
field: its group and phase velocities will change. And under dispersion, it
will frequency shift. This transient frequency shift, usually almost negligible,
can be significant in the case where the probe and soliton have very small
relative speed.

This change in velocity and frequency of a probe wave interacting with
a pulse — soliton — in an optical fibre are the fundamental ingredients
of optical event horizons. Contrarily to '"dumb holes’ the inhomogeneity of
waves in the medium is not induced by a change in the fluid flow velocity but
by a local change in the index of the medium — hence a change in the waves
velocity with respect to the medium. In the next section, we shall elaborate
upon the first experiment that demonstrated a classical effect of analogue
event horizons in an optical setup: frequency shifting at the group velocity
horizon.

1.2.2 Fibre-Optical analogue of the event horizon

In this section we will examine further the scheme of an intense pulse prop-
agating in an optical fibre, and is effect on weak probe waves. We will see
how, when the group velocity of the probe and pulse are matched, the probe
experiences a group velocity reversal in the co-moving frame, in addition to
a frequency shift. This, as was discussed in the River Model of the black
hole and its implications (see paragraph 1.1.3), is the behaviour of waves at
analogue event horizons. We will show how this analogy for optical waves
was first demonstrated.

37



At the speed of light

The influence of the pulse on the probe wave is best described in a frame
of reference in which the pulse is stationary. For the purpose of the present
discussion, we will adopt the coordinate transformation of [19]:

U U

with u the group velocity of the pulse — and hence the speed of the frame.
Note the peculiar implications of this coordinate transformation: the prop-
agation distance has been normalized with respect to the velocity, which
yields the propagation time. To the exchange of space and time, this trans-
formation is similar to a Galilean transformation. Although ¢ and 7 do not
correspond to space and time coordinates in the moving frame (the trans-
formation is not a Lorentz transformation), they do define a non-inertial
coordinate system in which we can solve the wave equation. As the frame
moves at speed wu, it is clear that the pulse remains centred at 7 = 0. We
assume a pulse whose energy distribution does not vary along propagation
— that is independent of (. This implies that the nonlinear susceptibility is
simply ¥ = x(7). Expressing the optical wave equation in terms of the vector
potential A, related to the electric and magnetic fields via £, = —9; 4, and
B, = 0,A,, and substituting the partial derivatives of the coordinates in the
co-moving frame (9. = (9, — 9;), & = 9;) into the wave equation (1.69),
we find the wave equation for weak probe waves in the presence of an intense
pulse

2
(0 — 0,)2 A, + u23%(i0,) A, — %aﬁ(XaTAp) = 0. (1.72)

Thanks to the exchange of the space and time coordinates, the simple form
of the operator 32(i9;) is maintained. In the historical method, the authors
derived this wave equation from a Lagrangian.

The wave equation will be solved by decomposing a solution into its plane
wave components. The latter behave according to the dispersion relation of
the fibre in the co-moving frame [45, 19]

W A w (1 ¥ g (n(w) + 2n>(<w))> , (1.73)

with w’ the frequency as measured in the comoving frame. We see that the
nonlinearity affects the form of the dispersion profile but not the velocity
— wu is constant in this model. The dispersion relation is a second order
polynomial, it has two branches corresponding to probe waves propagating
forward or backward in the moving frame — co- or counter-propagating,
respectively, with respect to the pulse in the laboratory frame.
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Fibre-optical analogy

Before solving the wave equation (1.72), we explain how a soliton in a fibre
acts as a pair of analogue horizons to probes waves. The propagation of
a short and intense pulse in an optical fibre simulates a flow-velocity profile
that moves with the pulse. Each pulse locally increases the effective refractive
index of the fibre because of the Kerr effect. The speed of light waves in
the fibre being determined by the refractive index, this pulse behaves like a
perturbation in the flow velocity of the fibre. A wave propagating in the same
direction as the pulse attempts to move against this flow, through interaction
with the pulse its velocity decreases. To waves in the fibre, the pulse separates
two regions of flow velocity: the outside of the pulse, where it moves at
subluminal speed, from under the pulse, where it moves superluminal. This
is in complete analogy with a moving fluid. Clearly, both edges of the pulse
act as an event horizon: at the trailing edge of the pulse the flow velocity
decreases in the direction of the pulse, this is a white hole horizon. The
opposite occurs at the leading edge of the pulse, this is the time reverse of a
white hole horizon, a black hole horizon.

Frequency shifting at the white hole event horizon being easier to explain,
we will first focus on the fate of a wavepacket incident upon the trailing
edge of the pulse. This wavepacket will experience an increase in refractive
index and thus be slowed down as it approaches the pulse. The front of
the wavepacket will interact with the pulse before its back does, and will
thus be slowed down earlier — resulting in a compression of its wavefront,
an increase in frequency. In the absence of dispersion, this would continue
indefinitely and the wavepacket would be squashed at the horizon with ever-
increasing frequency. This reminds us of the effect of a white hole on a
wave emitted from its horizon (the time-reverse of the black hole infinite
redshift): an infinite blueshift, and of the Trans-Planckian problem with
Hawking radiation. Fortunately, this shifting will be limited by dispersion.
Indeed, because it depends on dispersion, as its frequency increases the speed
of the wavepacket reduces, until it becomes slower than the pulse. In the
co-moving frame, the wavepacket then appears to turn around and to be
dragged away from the horizon. An analogue white hole event horizon thus
reflects and blueshifts the incoming wavepacket. Owing to the time-reversal
symmetry of the black- and white-hole horizon effects on waves, we can
now simply state that a black hole would redshift and reflect an incoming
wavepacket.

As we will show later (see section 3.3.1) any transient increase in the
refractive index forms an event horizon for optical frequency waves. The value
of the frequency shift of the incoming wavepacket depends on the magnitude
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of this increase, and can be easily determined: the process of frequency
shifting must conserve the co-moving energy hw’ (because the Lagrangian
describing the interaction is time-invariant in the co-moving frame). We
write the dispersion in a form that explicitly illustrates the dependence of «w’
on én (dn == x/2n):

W = (1 ~ Y n(w) + on(w, 7))) . (1.74)

c

Note that the 7 dependent change induced by the pulse has been included
in agreement with ref [45, 19]. According to this equation, w’ = constant is
a condition that determines a family of contours in the w — dn plane (see an
example in Fig.1.5). During the interaction, w’ lies on one of these contours
(determined by w the laboratory frequency of the wavepacket and én). Re-
flection in the co-moving frame, which is accompanied by frequency shifting
in the laboratory frame, is possible when the initial frequency of the wave in
the laboratory frame is close to wy,, the group-velocity-matching frequency
(the frequency which has the same group velocity as the pulse). At w,, the
group velocity in the moving frame vanishes. Around w,,, the &/ = constant
contours form parabolas centred at w,,. An incident wavepacket will thus
see its laboratory frequency be modified by the pulse, as it travels along
a parabolic contour and lands at the shifted frequency — that has moving
frame group velocity opposite to that of the incident frequency. Waves out-
side the event horizon frequency window” will be able to pass through the
pulse.
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Figure 1.5: Frequency shifting contours: each contour corresponds to a single
co-moving frequency, wj, in the dn plane. These contours form parabolas

centred at the group-velocity-matching frequency, w,,. Figure and caption
from [45].

Tef. 2.2.3.
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This geometrical optics description does unfortunately not describe en-
tirely the interaction of the probe and pulse. Indeed, real waves are spatially
extended and do not have well-defined values of both w and 7. A full wave
treatment of the optical field (see refs [45, 19]) reveals that waves are only
partially reflected at the pulse. Some of the wave energy can be transmitted
via the tunnelling effect [47]. The amount of reflection decreases as the in-
cident wave frequency moves away from w,,. We shall elaborate further on
this in sections 2.2 and 4.3.

Frequency shift at the horizon

After the waveguide-based proposal [17], a collaboration between the Quan-
tum Optics groups of Leonhardt and Konig, at the University of St Andrews,
was the first to propose a model for analogue horizons in optical fibres realised
by means of a fundamental soliton propagating in a fibre. They experimen-
tally demonstrated the frequency shifting of waves at a white hole horizon in
a seminal paper published in 2008 [19]. A full quantum treatment of the field
accompanying this publication established that pairs of photons are emitted
from the vacuum at the horizons formed by the edges of a soliton in the fibre.

If the probe is replaced in the fibre by a set of sufficiently weakly excited
modes (even in the state of quantum vacuum), these will experience the cross
Kerr effect of the pulse [19]. These modes coustitute a quantumn field of light,
and light is a real electromagnetic wave so, according to Fourier analysis,
their oscillations at positive angular frequency w will be accompanied by the
complex conjugate amplitude at —w. These positive- and negative-frequency
modes of the field have a positive- and negative-norm, respectively, in the field
theory [19, 48, 49]. At the event horizon in the fibre, these modes will mix,
thus creating observable light quanta (a more detailed analysis supporting
this statement will be the topic of Chapter 3).

The St Andrews team did not observe the spontaneous emission of light
from the vacuum at a horizon but showed that the expected temperature
of emission would be of the order of 10? Kelvin, many orders of magnitude
higher than any other condensed matter analogue system promises. The
scheme they designed benefits from the fact that all the aspects of the physics
of analogue event horizons come together to facilitate the observation of
Hawking Radiation.

An optical wave with negative frequency?

Before we move on to presenting the novel theory of spontaneous emission of
light quanta at a moving horizon, let us dwell upon the idea of negative fre-
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quency waves, as we did in the introduction for the one-dimensional string. A
collaboration inspired by an original idea of Friedrich Konig indeed reported
having observed the transfer of energy from a soliton to a dispersive wave of
negative frequency [1].

All light oscillate with both positive and negative frequencies: the field
A is related to its frequency spectrum A by Fourier transformation, recall
Eq.(0.1) from the introduction —

oo .
A= / A(w)exp “"dw, (1.75)

where the integral extends from negative to positive frequencies. Since A is
a real electric field of light, A* = A, hence A(-w) = A*(w). Accordingly,
the negative part of the spectrum entirely depends upon the positive part,
which makes negative frequencies seem redundant for waves. However, it is
possible to perform an experiment where the positive frequency part couples
to the negative frequency part, thus displaying the full complex nature of the
electromagnetic field [50].
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Figure 1.6: Typical dispersion relation k£ = k(w), e.g., for fused silica glass
with second- and third-order dispersion, (a) in the laboratory reference frame
and (b) in the reference frame comoving at the soliton velocity. Dashed curves
indicate the (laboratory frame) negative frequency branches of the dispersion
relation. Figure and caption from [1].

In quantum physics, the positive- and negative-frequency components of
the field are assigned a positive and a negative pseudo-norm, respectively,
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by (0.12). In the field expansion (see sections 2.1.2 and 2.2.2 for details),
the positive norm mode of the field is attached to its annihilation operator,
and the negative norm mode to its creation operator. In a process where
positive norm modes are coupled to negative norm modes (and vice versa),
the creation and annihilation operators of the field will mix, which results in
the spontaneous creation of photons from the vacuum.

In the experiment [1], a temporal soliton is propagated along an optical
fibre. In the presence of higher order dispersion, the fundamental soliton be-
comes unstable and can, in this case, couple to dispersive waves that have the
same momentum as the soliton. This resonance effect is known as Cerenkov
radiation [51, 52, 53]. The generated wave is normally of positive frequency
(norm), but the momentum conservation also allows for a negative frequency
(norm) solution.

Spect. density (arb. units)
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Figure 1.7: Experimental results for negative RR generation in a photonic-
crystal fiber. (a)—(b) Measured spectra in the visible and UV regions for
three different input energies: 246 pJ (dotted line), 324 pJ (dashed line),
and 366 pJ (solid line). (c) Full fiber dispersion relation: positions of the
predicted RR and negative RR spectral peaks are indicated. The inset is a
25x enlargement of the curve around the RR wavelength. Figure and caption
from [1].

The momentum conservation can be expressed in terms of the Doppler
shifted frequency in the moving frame of the soliton, ' = w — uk, where
u is the velocity of the soliton and k& = nw/c. The resulting condition is

43



w' = Wy, where W' (w]y) is the frequency of the generated light (input soli-
ton). Momentum conservation in the laboratory frame corresponds to energy
(frequency) conservation in the moving frame. For the sake of the present
argument, we consider a simplified two branches (positive and negative opti-
cal laboratory frequency) dispersion relation of light in the comoving frame,
as displaved in Fig.1.6. The figure shows that, under the Doppler effect,
some parts of the laboratory positive and negative frequency branches have
positive co-moving frequency. Thus, there are two further laboratory fre-
quency w that share the same w}, with the input soliton. One is of positive
laboratory-frame frequency and is the above mentioned positive frequency
resonant radiation (RR) — or Cerenkov radiation — and the second is of
distinctly negative laboratory-frame frequency. The authors of [1] call this
wave the negative resonant radiation (NRR). Note that there is no positive
solution at minus the negative frequency, except for the complex conjugate
fields, enforcing that the field is real-v lued (see Appendix A).

For the experiment, a 7-fs nJ-energy pulse was coupled into a few mm-
long fibre. The pulse compresses in the fibre with a very wide spectrum such
that it excites both the RR and NRR modes. In the laboratory frame, the
conjugate field mode to the NRR lies in the UV, around 230nm depending on
the fibre used, very far from the IR-centred pulse. Thus the energy transfer is
less efficient between the pulse and the NRR than it is between the pulse and
the RR. Nevertheless, a clear signal can observed at the expected wavelength
(see Fig.1.7). It is strongest when W)y = Wl jion, that is when energy is
transferred from the central laboratory frequency component of the soliton.
Furthermore, it was established that the generation of NRR light depends
on the pulse compression and fibre parameters: the excitation of the NRR
mode critically depends on the spectral support in the ultraviolet [54].

The generation of NRR, via its quantum field origins and also because
it ought to fulfil the same conditions as light scattering on an optical event
horizon (see section 1.2.2), shed light on the physics of astrophysical particle
creation in optical analogues. It also promises to be an excellent tool to test
the theory developed in Chapter 3.

1.3 Wave equation in an optical medium

Before delving into the details of the quantum field theory used in this thesis,
let us briefly examine the arguments that support the analogy between light
in media and black hole physics. We will here develop a simple, and yet
completely relativistic, theory of light propagation in dispersive media. This
is a novel result of this thesis, and goes beyond works in the literature that
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have solely considered the equations for light in nondispersive media (see,
for example, [19, 55, 56, 57]) or regimes of dispersion without group velocity
dispersion [58] to draw the analogy with the sonic metric found by Unruh
[10] (1.51). Thus, we develop a different formalism from those presented
previously to explain the formation of a soliton in the fibre or to establish
the existence of horizons in dispersionless media: indeed, the present ar-
gument does not depend upon the details of the mechanism that underlies
the existence of the horizon condition. Rather, we seek a phenomenologi-
cal understanding drawn from the mathematics of General Relativity, the
peculiarities of the wave equation we call upon are only a means to this end.

1.3.1 Action in an optical medium as an analogue met-
ric

Recall the Painlevé-Gullstrand metric (1.38), in 141D it is
ds? = — (c2 - 52) dr? 4 d¢? + 28drdC. (1.76)

We wish to establish under which conditions the action of light in an optical
medium can be analogous to that of a massless scalar field in (1.76). To this
end, we now develop a completely relativistic theory of light propagation in
dispersive, inhomogeneous media.

So far in the present chapter, we have always considered that the electro-
magnetic field depended only on the longitudinal and time coordinates, z and
t. This is motivated by the fact that in the experiments that are relevant to
our theory, light (for example the pulse and the probe of section 1.2.2) prop-
agates in the z direction, and the variations of the electromagnetic field in
the transverse directions effectively are negligible. For example, in an optical
fibre, light propagation is based on total internal reflection. If we consider
the set of transverse modes along y, which is discrete, we can see that, for
small y, the energy of the modes with %, > 0 is so large that these transverse
modes can be neglected (A >> Ay). Thus, the electromagnetic field A(z,t)
does not depend on y (the transverse coordinate). That is, the propagation
of the electromagnetic field can be described by an effective action ina 1+ 1
dimensional space.

In a regime of linear dispersion, for frequencies much smaller than the
resonance frequency of a medium (|Jw| < ), the (low-energy) action of the
electromagnetic field A(z,¢) on the medium

= ((1+ g—;”) (@A) + (2,47 (177)
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leads to the dispersion relation®

PR = o (1 4 %") . (1.78)
# can be understood as being related to the coupling strength of light in the
medium. Both 2 and x depend on z and ¢ in the laboratory frame.

We here face a problem: the field equation resulting from (1.77) is confor-
mally invariant, we cannot introduce an analogue effective geometry in 1+ 1
dimensions. To circumvent this, we use the ‘silent’ (extra-)dimension ° to
write an analogue metric [17] of line element!”

ATk
ds® = —2dt® + (1 + W) (dy* + d=?) . (1.79)
Via this equation, we can investigate under which conditions the propagation
of light in dispersive, inhomogeneous media can be analogue to propagation
on a curved background, and when the curvature is such that there is an
event horizon.

1.3.2 A black hole horizon for light

We can find under which conditions the modes of oscillation of the electro-
magnetic field in the medium will experience an event horizon by pushing
the analysis of our General Relativity toy model Eq.(1.79) further. For this
purpose, we rewrite the metric tensor of Eq.(1.79) as

—c? 0 0
g=| 0 1+ 0 (1.80)
0 0 1+%

and express this metric in a stationary form by transforming it via

dt =~ (dT 4 %dg) , dz =y (dC + udr). (1.81)
C

8We shall derive and explain the full version of this equation in Chapter 2. Note that
Eq.(1.78) is an approximation valid when the medium features only one resonance.

9There is no direct relation between the metric and the wave equation for light in
media.

ONote that in this section, the partial derivative with respect to a variable is denoted
by 8, = % — we do not use the relativistic-covariant formulation.

"The line element and metric tensor are related by Eq (1.24)
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with v = 1A/1 — u? the Lorentz factor, to

47k A7k u?
ds® = — ((12 —u? (1 + W)) ~2dr? + ((1 + W) - ﬁ) Y2d¢?

+ 2/11,7'2%—:61@7 + (1 - g—:) dy®  (1.82)
The transformation from (1.79) to (1.82) consisted in a Lorentz boost to an
inertial frame moving at velocity » with respect to that in which the action
was initially considered — the latter will be referred to as the observer’s
frame in the remaining of the section. In the stationary form (1.82), the
metric is similar to (1.76), the Schwarzschild solution to Einstein’s vacuum
equation as expressed by Painlevé [36] and Gullstrand [37]. As we saw in
paragraph 1.1.2; this metric has a horizon when the Newtonian 5 velocity of
space equals the speed of light ¢, for which goo = 0.
In regions of the dispersion relation where w is approximately linear in k,
in which (1.78) is valid, the goo component is

Ak u?
gOQOCC2*U2 (1"‘@) :1*5, (183)
p
where we have identified v, = ¢(1+ 47?/@'/92)71/2 — the phase velocity of

waves in the observer’s frame. Thus, there is a black hole when v, = u, in
total analogy with the black hole metric (1.76)!

Clearly, this can only be achieved if €} and «, the material properties,
are not constant in spacetime. By assumption, the material properties are
independent of time: 9,2 = d,x = 0. So one would necessarily resort
to a mowving spatial disturbance in the medium — a moving change in the
refractive index — to create the conditions such that v, = u. The preferred
frame from which to boost from the observer’s frame is then obviously that
of the moving disturbance (that propagates through the medium at constant
speed u). For the sake of the argument, say we are able to increase the
refractive index of the medium over a finite spatial region, thus creating a
Refractive Index Front (RIF) that propagates at speed u (in the positive z
direction in the observer’s frame). Furthermore, for simplicity, let us assume
that only the resonant frequency 2 is affected (decreased) by this increase
in the refractive index (that is, £ remains constant throughout the medium,
even under the RIF, and €2 depends on (). Then, by studying the dispersion
relation (1.78) one finds that the phase velocity of light decreases as the
refractive index increases. In other words, light is slower under the RIF. The
latter can then act as a black hole event horizon for modes of light that would
have the adequate frequency in the observer’s reference frame.
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In a dispersive medium, the group and phase velocity of light modes are
different. Thus there will also be a condition similar to goo = 0 for the group
velocity: vy = u. This is not well described by the simple toy model (1.78)
and the study of this condition is therefore postponed until the next chapter
of this dissertation.

1.3.3 Conclusion and discussion

In this section of the Thesis, we have presented the theory supporting the
science of optical event horizon realisation. From first principles, Maxwell’s
equations for electromagnetic waves, we have established a wave equation for
light in optical fibre. We have explored under which conditions a few-cycles
and intense light pulse coupled in an fibre could create a soliton, which, via
the Kerr effect, modifies the refractive index of the fibre, thus creating a
flow velocity profile. It was shown how a weak probe co-propagating with
the soliton will experience a transient change in refractive index and how this
bears features of analogue spacetimes — black and white holes. In particular,
we elaborated upon the generation of waves with negative frequencies in
the laboratory at the event horizon, a promising observation that inspired
the work hereafter presented. In the next chapter we will use the tools
of quantum field theory to explain what the, so far mysterious, Hawking
radiation phenomenon is, and how light can be spontaneously emitted from
the vacuum at an event horizon. We will then use a quantum theory based
on a more involved version of the light-matter interaction model (1.78) to
calculate the properties of emission from the quantum vacuum at the group
velocity horizon created by a RIF in a dielectric.
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Chapter 2

Spontaneous emission of light
quanta from the vacuum

2.1 Quantum field theory in curved space-
time

In the previous chapter of this dissertation we used the classical theory of
Physics that rules the dynamics of the Universe on large scales — General
Relativity — to study the behaviour of spacetime around spherical bodies.
We introduced the idea of black holes, regions of spacetime bounded by their
event horizon from which nothing can escape. In this section, we will try to
tie General Relativity with Thermodynamics — broadly speaking, the theory
that rules the organization of the Universe. For this purpose, we will follow
the arguments which scientists of the early 1970s had to contend with, and
see how they found that these theories can be united at the event horizon
of black holes. This will eventually lead us to call upon Quantum Physics
to explain how black holes can be in a state of thermal equilibrium — thus
introducing the concept of spontaneous emission of light quanta from the
vacuum.

The structure of this section is inspired by that of the series of seminars
I gave to PhysSoc, the undergraduate society at the School of Physics and
Astronomy in St Andrews, in the Autumn of 2016. The material presented
here builds on the content of these seminars, although the treatment will be
much more mathematical and more room will be dedicated to considerations
drawn from General Relativity and, ultimately the quantum theory of fields
in curved spacetime. There exists a large body of work that treats this
material in different ways, see for example Carter’s 1973 review [59], Davies’
1978 review [60], Birrell and Davies’ 1982 book [49], or Jacobson’s 1996
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lecture notes [61].

2.1.1 Gravity and thermodynamics: the failure of clas-
sical physics

The difficulty in classically describing the interaction between the conceptu-
ally dissimilar aspects of fundamental physics accounted for by Thermody-
namics and Gravity arises from the apparent absence of true equilibrium in
astrophysics. This is exemplified by the observation that a star is not made
hotter by adding matter to it but by removing matter from it — contrarily
to laboratory thermodynamic systems — they radiate and get hotter! (like
all self-graviting systems [62]). The self-gravitation effects of stars is only
compensated for by their internal pressure (that arises from their internal
kinetic or zero-point quantum pressure) and their temperature (that arises
from thermonuclear fusion). In that regard, stars are a metastable state of
matter in the history of the Universe: would a solar-mass star loose all its
heat energy, it would undergo a dramatic shrinkage to a fraction of its initial
size and, after a period of oscillations, explode in a nova resulting in the
formation of a higher temperature cloud of gas. Heavier stars would undergo
gravitational collapse and become black holes. In any case, a star is a mere,
and timely, interlude of matter organisation between a distended cloud of gas
and imploded matter.

We will begin by defining precisely the meaning of the event horizon and
thus pose the problem with black hole entropy. This will lead us to the anal-
ogy between the laws of Thermodynamics and those ruling the size of black
holes and to the formulation of four laws for black hole mechanics. We will
rely on the concept of information [63] to identify the surface gravity of the
hole with its temperature. In terms of classical physics, this procedure leads
to a paradox: given that the interior of the black hole is hidden and inacces-
sible to us (outside observers) [64], it would imply that it has a high entropy.
Indeed, we cannot tell what has formed the hole — it being characterised
completely by its mass, angular momentum and electric charge, it can be the
result of the gravitational collapse of an infinite number of initial configura-
tions [65]. The information about the internal microstates that the initial
star was composed of is wiped out by the collapse to leave only information
about the macro state (characterised by the three global parameters mass,
angular momentum, and electric charge) to be measured by an external ob-

!The nuclear mass loss associated with fusion results in energy release that heats up
the star.

50



server.? Thus, on physical grounds, it appears that the bigger the hole, the
more information it would have wiped out when collapsing. This seems to
indicate that the size of the hole provides a measure of its entropy. We will
see how this paradox can be ’solved’ by calling on quantum physics to give
a meaning to the temperature attached to this entropy.

Black holes and their event horizon

In the previous chapter, we studied the structure of spacetime around a spher-
ical body in the framework of General Relativity. Stars having exhausted
their nuclear fuel will shrink under their own gravity (because their inner
pressure can no longer compensate their weight). Chandrasekhar calculated
that any object heavier than approximately 1.39 times the mass of the Sun
at the onset of shrinkage [66] could not become a white dwarf — having no
low temperature equilibrium it would become a neutron star and/or undergo
complete gravitational collapse. We have seen that no signal could travel
outwards from singularities which occur in gravitational collapses, the latter
being hidden behind the event horizon — not visible to an outside observer.

Based on the mathematical framework of General Relativity, we saw how
a black hole on a spacelike surface could be referred to as a connected compo-
nent of the region of the surface bounded by the event horizon. Here, we will
begin by summarising the properties needed to study black holes. We will
then discuss the region outside a collapsed body in terms of these properties
and, by studying possible trajectories for photons (null geodesics), establish
where there is an event horizon. We will follow the steps of Hawking [65] and
postulate the existence of stationary black holes and prove that real solutions
to the field equations tend towards these. From there, we will progress to
establishing that the event horizon does indeed have a spherical topology.

A star having exhausted its nuclear fuel will undergo gravitational col-
lapse. If the collapse is exactly spherically symmetric, the metric is that
of the Schwarzschild solution outside the star (1.15). It has the following
properties:

(i) The surface of the star will shrink inside the Schwarzschild radius rg =
2((3—2\/[ When this happens, the spacelike 2-surface at rg will be such
that both the future directed families of null geodesics orthonormal to
it are converging — it will be a closed marginally trapped surface. The
star will be in such a strong gravitational field that even outgoing light
from it will be dragged inwards.

?In that sense, the black hole represents the state of maximal entropy, that is the
equilibrium end state of gravitational collapse.
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(ii) There is a spacetime singularity.

(iii) The singularity is not visible to observers at » > rg. This implies that
one can predict the future in the exterior region from the initial condi-
tions with respect to the time parameter (Cauchy data) on a spacelike
surface.

Work by Penrose [67], Hawking and Ellis [64], and Gibbons [68] in the early
1970s showed that these three properties hold. Elaborating upon these prop-
erties, we will proceed to show that the surface area of the event horizon
cannot decrease with time.

In order to discuss the region outside a collapsed object, one needs a pre-
cise notion of infinity in an asymptotically flat spacetime. This was provided
by Penrose’s concept of a weakly asymptotically simple space [6]. The space-
time manifold M of such a space can be embedded in a larger, Lorentzian,
manifold M with a metric conformal to that of M — G = Q22gus. The func-
tion () is smooth and zero, with non-vanishing gradient, on the boundary
of M in M. This boundary consists of two null hypersurfaces F* and F~
which each have topology S? x R!: these represent the future and past null
infinity respectively?.

Let us define the partial Cauchy surface S, a spacelike surface without
edge which does not intersect any non-spacelike curve more than once, and
DT (S), the set of all points p such that every — extended enough — past
directed non-spacelike curve from p intersects S. DT is called the future
Cauchy development of S.

Proposition (iii) above states that it should be possible to predict events
near F. That is, a weakly asymptotic space is (future) asymptotically
predictable if S is such that F* lies in the closure in M of DT. In other
words, a space is asymptotically predictable if there are no singularities in
JT(S), the future of S, which are naked, i.e. not surrounded by an event
horizon of finite radius. This is mathematically expressed by saying that
there is no singularities which lie in the past of future null infinity J—(S)*.

If we consider an asymptotically predictable space in which there are no
singularities to the past of S, and suppose there is a closed trapped surface®
T in D*(S), then there will be a non-spacelike geodesic in J*(S) which is

3The future of a set is the collection of all spacetime points that can be reached by
future-going timelike or null curves from that set.

4The past of future null infinity of S, j = (FT), physically represents the set of all events
from which an observer could escape to the asymptotic region.

5This is a closed, spacelike, 2-surface whose ingoing and outgoing null normal geodesics
are both converging. For example, a sphere at constant r and v in Eddington-Finkelstein
coordinates is a trapped surface if it lies inside the horizon.
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future incomplete and cannot be seen from the end point F*. That is, there
will be a singularity to the future of T; as T is a trapped surface, the null
geodesics orthogonal to T are converging.

The past of future null infinity of S, J(S), thus does not contain 7
in topological terms, its boundary j~(F%) is the event horizon for F* [65].
Jj(FT) is generated by null geodesic segments which have no future end-
point — it is the boundary of the region from which particles or photons
can escape to infinity. Let us call §(2), (¢t > 0) a family of partial Cauchy
surfaces® in D(S). F ly large ¢, S(¢) will intersect the event
horizon: B(t) = S(t) — J(F') will be non-empty. A black hole is then a
region of S(t) from which there is no escape to F*, a connected component
of B(t) [65]”. The study of spacetimes which possess an event horizon reduces
to the study of the event horizon.

If the collapse was strongly asymptotically predictable, one would also ex-
pect the solution of the field equations outside the event horizon to become
stationary at late times. Armed with this intuition, Hawking postulated sta-
tionary solutions to the field equations outside the event horizon and proved
that real solutions do indeed tend towards these [65] — thus placing certain
limits on the possible behaviour of black holes. An immediate consequence of
the definition of the event horizon as the boundary of a past is that through
each point of the horizon surface there passes a maximally extended future-
directed geodesic which remains always in the horizon — it never reaches
F . These null geodesics are called the generators of the horizon j~(F 7).
The convergence of these generators can never be positive (Hawking pro-
vided a proof by contradiction of this statement in [65]). This bears huge
implication in terms of the possible behaviour of black holes: since the null
geodesic segments that generate the event horizon have negative convergence
and have no future end point, the surface area of the boundary of the black
hole cannot decrease with time. Additionally, after Carter, Hawking showed
that the event horizon of a stationary black hole is a sphere — it has the
topology 8% (even if two black holes merge into a bigger black hole, if this
resulting black hole is stationary, topologically, its event horizon will be a
sphere).

6 A partial Cauchy surface is a hypersurface which is intersected by any causal curve at
most once.

TA spacetime in which certain observers can never escape to the asymptotic region,
i.e., for which the past of future null infinity is not the entire spacetime, is a spacetime
that has an event horizon. It is said to possess a black hole.
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Laws of black hole mechanics

As they were studying the interaction between two black holes as defined in
the previous section, Bardeen and Hawking [8] derived the expressions for
the mass of a stationary axisymmetric solution of the Einstein’s equations for
both a black hole surrounded by matter and for the difference in mass between
two neighbouring such solutions. After their results and treatment, we will
see how the area of the event horizon and the surface gravity, two quantities
that appear in their result, are analogous to the thermodynamics concepts of
entropy and temperature respectively. The argument will culminate in the
formulation of four laws of black hole mechanics corresponding to the four
laws of thermodynamics. This shall eventually allow us to progress to the
paradox of thermal equilibrium of black holes.

Already in 1972, Hawking had uncovered the analogy between thermody-
namics and black holes [65]: according to the theory laid out in the previous
section, the surface area of the event horizon of a black hole cannot decrease
with time, i.e. 64 > 0.8 This is analogous to the second law of Thermo-
dynamics, which states that the entropy of a system always increases with
time.?

Let us digress for a moment and consider the behaviour of a particle
outside the event horizon of a black hole. If the particle rigidly corotates with
the black hole, it will have some angular velocity, a 4-velocity vector as well
as an acceleration 4-vector. The (redshifted) amplitude of the acceleration
tends to some constant when the particle is infinitesimally close to the event
horizon.!® This constant can be thought of as the surface gravity s of the
black hole [8].

We can now call on Bardeen’s and Hawking’s finding [8] that any two
neighbouring stationary axisymmetric solutions containing a perfect fluid
with circular flow and a central black hole, whose event horizon has a surface
area A, and of angular momentum .J;;, are related by the differential mass
formula:

SM = A+ Qo + / Q5dJ + / 6dN + / gsds,  (2.1)
T .

where dd.J is the change in the angular momentum of the fluid crossing an
infinitesimal surface element, and ddN and §d.S are the change in the number

85 A is the change in surface area of the event horizon of the black hole.

9Note that it was Hawking who discovered that black hole horizons must grow if there
is only positive energy that falls in, and Bekenstein who later established the link between
this observation and entropy.

OThe acccleration of the particle arbitrarily close to the horizon goces to infinity, but
from afar this is multiplied by the redshit factor. which also tends to infinity in this case,
yielding a finite constant.
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of particles in — and in entropy of — the fluid crossing the same surface
element. /i and 8 are the "red-shifted" chemical potential and temperature of
the fluid. Qp is the angular velocity of a particle outside the event horizon
which corotates rigidly with the black hole. Let us compare this equation
with that of a microscopic non-reversible change in internal energy in terms
of microscopic changes in entropy, and volume for a closed system in thermal
equilibrium — the fundamental thermodynamic relation [69]:

dU = TdS — PdV + Y pdn;, (2.2)

where the p; are the chemical potentials corresponding to particles of type
i, and the usual (reversible and of constant chemical composition) thermo-
dynamic relation has been generalised to account for potential change in the
composition, i.e., the amounts n; of the chemical components in the system.
P and V are the pressure and volume, respectively, of the closed system of
internal energy U. From the first term of (2.1), one can see that the quantity
¢ is analogous to the absolute temperature 7" in the same way that A is
analogous to entropy S in (2.2). This is the first law of black hole mechanics.

Ascribing an effective temperature to the black hole did not shock Bardeen
and Hawking: because time dilation factor tends to zero at the horizon (see
Eq.(1.36)), the redshifted temperature 6 of any matter orbiting the hole must
tend to zero as the horizon is approached.

At the time, however, they opposed the above analogy with Thermody-
namics temperature and entropy by the following argument: a black hole
cannot be in equilibrium with black body radiation at any non zero tem-
perature. Indeed, no radiation can be emitted from the black hole, whereas
some radiation will always cross the horizon into the hole. Furthermore,
they note that if one followed this analogy, any addition of entropy to a
black hole would cause some increase in the area of the event horizon (which
is classically constant).

Nonetheless, continuing the analogy between surface gravity and temper-
ature, one can formulate the remaining two laws of black hole mechanics
[65]. The zeroth law states that the surface gravity is constant over the event
horizon, and the third law stresses that it is impossible to reduce this surface
gravity to absolute zero by any procedure consisting of a finite sequence of
operations.

The paradox of black hole heat

In the previous section, we established an analogy between the surface gravity
of a black hole and the concept of temperature in thermodynamics. But how
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can a black hole have a temperature: it cannot emit anything, it cannot emit
heat. And can thus not be in thermal equilibrium with incoming radiation.
This is a paradox. Calling on Davies’ idea that information can be equated
with negative entropy [60], we will present the argument used by Bekenstein
in 1973 [9] to establish the relationship between temperature and mass and
arrive at the conclusion that classical physics fails to properly describe the
thermodynamics of black holes.

Let us glance back at Eq. (2.1), and remark that it can be interpreted
as an expression of mass-energy conservation (corresponding to the above

fir of black hole mechanics). Now, after Smarr [70] and from (2.1),
we express the total surface area of the horizon as a measure of size, thus
writing:

2 2 2 e? J2\?

in units of G = ¢ = 1, and with e < M? and J? < M* (e the electric
charge, J the angular momentum and M the mass of the black hole). In
his 1972 theorem [65] upon which we dwelt earlier, Hawking showed that
the horizon area cannot decrease (even for black holes having an electric
charge and angular momentum), thus opening the route to the study of
black hole thermodynamics. From (2.3), and for a Schwarzschild black hole
(e =0.J =0), we can write

A= 167M? (2.4)
and oM 1
M

Wherefrom we can evaluate the entropy of the hole: recalling that, by (2.1),
877% = dS, it suffices to integrate!! dM = kdA = TdS to arrive at the
thermodynamic relation:

2 S =25T

84 M (2.6)
M = 25T « energy = 2 entropy x temperature

where the factor 2 entered as a result of the quadratic dependency of A on
M. If we rewrite the thermodynamic relation (2.6) in the form of (2.4), we
can express A and k as the product of two finite quantities M = Ax/4w. As
the energy M is finite, a black hole with zero temperature would seem to
have infinite entropy. This is puzzling.

HThe first law of black hole mechanics states that S < A
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To understand this puzzle, we resort to the relation between entropy and
information [60]: a highly ordered system has a low entropy, the amount
of information needed to describe it is very large (it has a high information
content). The explanation for this seemingly counter-intuitive statement goes
as follows: the information about the microstates that initially composed the
star is destroved by the gravitational field (7.e., the space-time structure) and
it becomes inaccessible to an outside observer because of the event horizon.
Before it had collapsed, the star had an ordered and structured state, that
was characterised by information about all the microstates that composed
the star. Upon collapsing, the system changes from this ordered, structured
state to a few-parameter disordered state — after the collapse, the black hole
is only characterised by the three global parameters (M .J e) — and thus less
information is needed to describe it. As the order of a system decreases,
its entropy increases: less information is thus required to describe its state.
A system in thermodynamic equilibrium — such as the black hole, which
is the state of maximal entropy of the collapse — thus appears to be in
the state of maximum entropy and minimum information content, a small
number of parameters is needed to describe it. As a result, information
seems to correspond to negative entropy. Such considerations of information
are useful in understanding the nature of the event horizon, as defined in
a previous paragraph: the ongoing discussion leads to the conclusion that
black holes possess a large entropy because of all the information they have
wiped out. On the basis of classical physics, the configurations and number
of particles that have produced the black hole is infinite [71]. If we assign
one bit of information to each degree of freedom of these particles, we see
that the information content of the black hole, and hence its entropy, should
indeed be infinite.

This unbounded entropy can be considered as being connected with the
instability of matter against total collapse. Just like one would apply quan-
tum theory to an atom (thereby ascribing it a stable ground state that pre-
vents the electron from spiralling indefinitely close the nucleus), it is fortu-
nately possible to take into account the quantum nature of the matter that
formed a hole. Let us now lay some heuristic arguments on information and
entropy down to arrive at an expression for the temperature of a black hole.
The relation between energy and wavelength of a particle, £ = h/\, states
that particles that produce the hole must have a wavelength shorter than the
size of the hole for their energy to be located within it. For the radius of a
Schwarzschild black hole, this leads to A ~ 2M, and thus a minimum parti-
cle mass of the order of h/M, and hence to a maximum number of particles
that went into forming this hole of about M?/h. The entropy can then be
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estimated to be
M?
S =¢kp - (2.7)
13

where kp is the Boltzmann constant and € is a scaling factor for the entropy of
the hole. It is a dimensionless constant of order unity whose exact magnitude
will be uncovered in the next section. From (2.7), it is clear that S diverges in
the classical limit of A~ — 0 (but is otherwise finite!): one needs to find a full
quantum theory of black holes to set a bound on their entropy. Bekenstein
[9] showed that the entropy is proportional to the area of the event horizon
by rewriting (2.7) in the form of (2.4):

5=y
167h

(2.8)

From (2.6), we finally find the temperature of a Schwarzschild black hole

to be }
3
T— ML 2.
(x5 (2.9
By (2.5), this is
2%
T = K, 2.10
( EA) (210)

that is, T is directly proportional to the surface gravity of the hole. The
latter equation implies that a black hole would have to emit energy at the
same rate as it absorbed it: that a hole has a temperature means that it is in
thermal equilibrium with a surrounding heat bath at the same temperature.
In other words, for the black hole to have a temperature we must associate
with it a thermal equilibrium radiation spectrum. Having stated this, the
immediate question to pose is that of the origin of this radiation — what is
the mechanism behind it and where it originates from. To answer this, we
will proceed to a fully quantum treatment of fields in the vicinity of black
holes, but we can first make a few comments about the localisation of the
radiation upon emission.

The characteristic wavelength of this radiation will be A\g ~ h/kyT ~ 2M.
If we assume £ to be approximately unity, we find that this wavelength is of
the order of the radius of the black hole (as one would have expected from
our choice of entropy). This shows that the notion of location of the origin
of the radiation (eg inside or outside the hole) bears no meaning. That is,
a temperature can be associated with the black hole via Eq.(2.10) without
having to state that radiation flows out of the black hole itself. Nonetheless,
we do have to consider the black hole as being hot — a source of heat
radiation. Classical physics fails at explaining this, we will therefore resort
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to a full quantum treatment to unveil the mystery of black hole radiation
and solve the paradox of black hole heat.

2.1.2 Black hole evaporation

In this section, we will elaborate further on the final result of the ahove
paragraph: that, according to Eq.(2.10), a black hole has a temperature.
We will use the framework of relativistic quantum field theory to incorpo-
rate the effects of h, the Planck constant, in the theory, thus morphing the
heuristic thermodynamic analogy into true thermodynamics. The science
of analogue event horizons being similar in treatment to the historical ap-
proach to quantum gravity: semiclassical considerations of quantum fields in
a fixed (classical) background — in the present case a black hole geometry
— this section will be used to introduce the basic concepts and tools needed
to undertake this venture.

In what follows, we will see how the vacuum fluctuations of a field in
such a background have an effect on the thermodynamics of black holes via
Hawking radiation. We will begin by studying the history of a light mode in a
gravitational collapse. We will then show how distortions in the background
geometry lead to Hawking radiation being emitted by the hole and dwell
upon the physical origin of this flux.

History of a light mode in a gravitational collapse

In 1971, Penrose established that it was possible to extract rotational energy
from a black hole with infalling particles [34]. Zel’dovich [72] and Misner
[73] then showed that similar process for waves existed — super-radiance.
Zel’dovich [74], Starobinsky [75] and Unruh [76] identified this process with
stimulated emission and asked whether a rotating black hole would sponta-
neously radiate. In his efforts in favour of spontaneous emission from rotating
black holes, Hawking first found that a non-rotating black hole would emit
a thermal spectrum of particles [77].

In order to derive this result, it is only necessary to consider the case of a
massless, scalar field in the Schwarzschild spacetime (this can be generalised
to any quantum field in a general black hole spacetime, see for example [49]).
So as to avoid the issue of boundary conditions on the past horizon, we do
not consider the full Schwarzschild spacetime: we imagine that the black hole
was formed at some time in the past — on F . In what follows, we will find
the relationship between waves that propagated from past null infinity J~
through the collapsing body — before the horizon formed — and emerged
from it, thus undergoing a very large redshift to J*. For the outgoing waves
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F on J" to have finite frequency, the incoming waves f must have left J—
with very high frequency [2]: we can thus rely on the geometrical optics
approximation to describe their propagation on the background geometry.

In this scheme, a v = constant ingoing ray, of pure positive frequency on
J ™, propagates through the collapsing body and emerges as a u = constant
outgoing ray, of positive frequency on J*. We relate u and v, the retarded
time coordinates for the modes of the field, by u = g(v), or v = g ' (v) = G(u)
— with v =t+r* and u =t — r* (see section 1.1.2). The two sets of modes
have asymptotic form

ey on .J~ g wu on J*
R ] L F, =~ ) 2.11
f {e—zw(}(u)’ on Jt {e—zwg(u)’ on .J—. ( )

We will adapt the general method provided by Birrell and Davies in their
book [49] to derive Hawking’s result for the explicit case of a symmetric
ball of matter imploding across its event horizon. This is a one-dimensional
analogue of gravitational collapse that will allow us to investigate the physics
of the Hawking emission mechanism close to the black hole. The ball has a
thin shell, and, in its exterior region, is surrounded by empty space. Thus the
unique solution of Einstein’s equation (1.14) is the Schwarschild spacetime
described by the metric (1.15). Following on the treatment presented in
Chapter 2, we express the line element of this metric in the Eddington-
Finkelstein form (1.18) via the tortoise coordinate transformation (1.17) and
write the retarded space coordinate

* 4 T
r*=r+4+2M ln(m 1). (2.12)

Inside of the ball, on the other side of the thin shell, the properties of
spacetime are irrelevant [2, 49]. For simplicity, and contrarily to Birrell and
Davies, we will consider the spacetime to be flat: this will allow us to trace
the history of the ingoing modes as they propagate through the ball and
convert into outgoing modes. Inside the ball, spacetime is thus described by
the Minkowski metric of line element (1.24)

ds* = —dT? + dr?, (2.13)

We define V=T 417 and U =T — r as the null coordinates constant on the
interior region ingoing and outgoing rays, respectively.

We want to establish the relation between the incoming and outgoing rays
on the black hole, therefore we let r = R(t) describe the history of the shell
(that will contract inside of its Schwarzschild radius). In this one-dimensional
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hypersurface, the metric must be the same as seen from both sides of the shell
— this leads to two conditions: the intrinsic geometry must match and the
extrinsic curvatures of each side of this hypersurface must match. The latter
allows for determining R(t) in terms of the stress-energy in the shell, which
is not needed presently. We thus focus on the first condition, which reads:

dT? — dR(t)? = (1 - %) di® — (1 - ;%)1 dR(t)?

(- ) ()

(2.14)

We now use these matching conditions to determine the relation between the
values of the null coordinates from F~ through the shell, v and V', through
the centre of the ball, V and U, and through the shell again to F*, U and u
— see Fig.2.1. In other words, we will find the form of the modes of the field
in the remote future, after incoming waves have converged on the centre of
the ball, have passed through it to become outgoing waves and propagated
to Ft. We denote the limiting value of v for rays which pass through the
ball before it has shrunk to the critical compactness (at r = ) as vy.

Figure 2.1: History of a ray passing through a collapsing ball. An ingoing
ray v enters the collapsing ball, passes through the origin, and exits as an
outgoing ray u.

F 1l rays entering the ball at a radius finitely larger than

N1
2M , both ( — %) and ‘“;{—#) are finite, and approximately constant. Thus

the C‘l]—; derivative is approximately constant, i.e. ¢t o< T. Likewise, in these
condition 7* is linearly proportional to r. Hence the relation between v and
V for v = vg:

V(v) =av+0b, (2.15)

where a and b are constants. At the centre of the shell, » = 0; there, the
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above expressions for the null coordinates in the interior region become
Uuwv)="V. (2.16)

Upon exiting the shell, at a time T, at which R(t) = 2M, R(T) = 2M +
A(Ty — T) (where A is a constant). Inserting in the matching conditions
(2.14) results in

dt\' (RO 0\ (dRM)Y _(2M) (2.17)
ar) ~\ 2M dT | 7 (T —=Ty)? '
implying
Ty —T
t~ —2MIn ( o ) T ST, (2.18)
(B is a constant). Likewise, as T — Ty, r* becomes
T A(To - T)
F~2M — —1)~2M — |, .
7~ 2 1n(2M 1) 2 1n< o ) (2.19)
hence —
u=t—r"~—AMn | — . 2.2
y " " <2M B/A> (2:20)

Furthermore, in this limit, U =T —r =T — R(T), so
Un~(1+A)T —2M — AT, (2.21)

From Eq.(2.20), and identifying that at R = r = 2M, T = t, one gets that
T =vy —r*. Similarly, 7Th = v — v*, and thus

Vg — U
= = — LM e . .
u=g(v) 4 ln<2]w B/A) (2.22)
This is the same result as that obtained by Hawking with his general ray
tracing argument in 1975 [78]: he wrote

2M B ,
v==G(u) =vy— 2 2 /M

(2.23)
which is easily obtained from the above equation (again A and B are con-
stants).

The explicit calculation performed here for the special case of a con-
tracting ball allowed for reproducing the (more general) result obtained by
Hawking when considering the behaviour of modes of a field in the vicinity of
a black hole [2, 78]. In deriving Eq.(2.22), we have used the history of modes
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of the field passing through the gravitational field created by a collapsing
ball of matter. Intuitively, we know that as the incoming waves propagate
towards the shell of this ball, they will suffer a blueshift. Upon re-emerging
from the ball and propagating out to J*, they will be redshifted (this was
anticipated by the earlier derivation of section 1.1.2). Since we consider the
case of a collapsing ball — that shrinks as the waves transit through it —
the relative increase in the surface gravity experienced by the outgoing waves
(with respect to that experienced by the incoming waves) will result in this
redshift to be of exponentially larger amplitude than the blueshift.

From Eq.(2.22), we see that the incoming wave f, = e ¥ is converted by
the collapsing ball to the outgoing wave £, = ¢ “ *M (2 572) | This factor
—4M ln(ﬁ%) represents the experience of an asymptotic observer at late
time u: the outgoing null rays suffer an exponentially increasing redshift.
Birrell and Davies pointed out that this redshift is the same as that of the
surface luminosity of the collapsing ball (see [5, 49] and the derivation of
1.1.2.).

Note that the logarithmic dependence which governs the asymptotic form
of the F modes on J* does not depend on the details of the metric inside
of the ball. Indeed, it appeared in the last step of the matching sequence —
using a flat spacetime metric for the interior of the ball was a mere mathe-
matical trick that allowed for arriving at g(v) (G(u)) without the complicated
calculus presented in [49]. Hawking showed that the result at which we ar-
rived here is more general than considerations of a ball or ball with a thin
shell [2, 78].

Hawking radiation

We will now build on the results of the above paragraph to show how black
holes emit radiation. Essentially, the above considerations resulted in show-
ing that a time-dependent background geometry would redshift waves prop-
agating through a body collapsing to a black hole. In what follows, it will
be shown that modes of a field that would be devoid of particles in a re-
mote past would, after having propagated through the collapse, be sensed as
populated by particles by an inertial detector in a remote future — this is
Hawking radiation and results from the disruption of the modes of the quan-
tum field as they propagate through the collapsing body. We will continue
with the geometrical ray optics argument laid out previously, and follow the
treatment of Hawking [2, 78], Parker [79, 80] and Davies as presented in
Birrell and Davies’ 1981 book [49]; again we shall digress slightly from their
exact derivation but eventually arrive at the historical result. In doing so, we
will introduce the fundamental tools and methods of quantum field theory in
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curved spacetime that will be used throughout this chapter, and to establish
the novel results of this Thesis at a later stage.
We consider the massless scalar field ¢, that obeys the wave equation

g'WApAWé = (_g)—l/Qau [(_.g)l/quyav(/)] (2'24)

in the Schwarzschild spacetime. Mode solutions of this equation are a compli-
cated product of spherical harmonics and radial functions, but their detailed
form is irrelevant to the present considerations — thus for the sake of sim-
plicity we will resort to the f,, and F,, modes as defined in (2.11), as solutions
to (2.24) in the in and out region respectively. We can do so if we remember
that the dependence upon the angular coordinates must be the same for each
term of all equations in this section. Following the general quantum theory
of fields in curved spacetime [49] we decompose ¢ into a complete set of f,
(positive frequency on F ) modes:

6= [ dwlaufs+al ). (2.25)
The f, modes are normalized according to the condition

(pr fwz) = 5(.&«'10}2' (2.26)

We assume that no scalar particles were present before the collapse began —
the f,, modes are in the quantum vacuum state

a,10) =0, V w. (2.27)

We use the Heisenberg picture to study quantum states that span a Hilbert
space — we will henceforth use the Fock representation as a basis in this
space, thus identifying a,, as the annihilation operator and a/ as the creation
operator for quanta in the mode w. See, for example, Chapter 2 in [49] for
details of the quantization method on a curved background.

From Eq.(2.22), we can determine the form of the outgoing modes when
traced back to F~

F, ~ (2.28)

6iw4]\~1 In((vo—v)/(2M B/A))’ v < 1
0, v > 1.

These outgoing modes are a complete orthonormal set of modes of the field
¢, which may also be expanded in this set

6= /dw(awa v alF), (2.29)
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thus defining a new vacuum state |0)
iy,|0) = 0, V w. (2.30)
We expand the out modes in terms of the in modes
PL::‘/}Lﬁ(awwj;/+—ﬁmyjjJ. (2.31)
We can evaluate the oy, , 8. matrices by using Eqgs.(2.31) and (2.26)

Q! = (Fwﬁfw’)v 6 1= *(vaf:’» (232>

These matrices coefficients have the properties

Z(O[wk()[:/kj _ /GWk:/G:)//C) - 5 /.y (233)
k
Z(awkgw’kz - Bwkaw’k) =0. (234)
k

Note that one could also write the converse to (2.31), that is
L:/mmhm+mﬂm. (2.35)

Equating the field expansions (2.25) and (2.29) and using (2.35), (2.31) to-
gether with the orthonormality of the modes (2.26) we can work out the
relation between the annihilation operators attached to the incoming and
outgoing modes — the Bogoljubov transformations [81]

o = D (Ol + Fal), (2.36)

w

and
a, =Y (al,aw — 3500 ). (2.37)

Glancing at (2.36), one remarks that the two Fock spaces based on the
ingoing and outgoing modes are nontrivially different providing that 5., # 0.
Thus the in vacuum state is not annihilated by the out annihilation operator
(and vice versa). In fact the vacuum of the out modes contains a certain
amount of particles in the in mode, as will be derived now.

We now rearrange the linear expansion (2.31) to identify the Bogoljubov
coeflicients, and insert the form of F on F~ (2.28),

® 1 w' fvo iw'v  iwdM In((vo—v)/(2M B/A))
Yoo =5\ dve™ Ve ’ (2.38)
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and

w L= / / d?j@m v ¢w41\[ In((vo—v)/(2M DB/ 1)) (239)

Both integrands are analytlc everywhere except on the negative real axis,
because of the branch cut of the logarithm function. Thus, and posing v/ =
vy — v,

% Ao " giwdM In((v)/(2M B/A) _ (2.40)

around the closed contour ¢ — which is a half-circle. Equivalently to
Egs.(2.38) and (2.39), we could have written in v':

OC::/OJ — i (’i/e—iwvo /C>O dvle—iw’veiw4]\/l In(v'/(2M B/A))7 (241)
2m 0
or
_ 1 w'’ —iwug ood Jyiw'v JiwdM In(v'/(2M B/A)) 2.49
/8 1y = —% Z@ Jo ve [ s ( . )

which are also analytic according to (2.40). Equating (2.38) and (2.41) and
using a change of variables v/ — —¢' yields

/ dv'e 1w’ uu47\/[1n( "/(2M B/A)) / dv'e —iw'v uu41\[1n( v'/(2M BJA)—ic)

47r\[w/ Ao e~ iwAM In(' /(2M B/A))

(2.43)

To arrive at this result, the relation In(—v'/(2M B/A) — ie) = —in+In(v'/(2M B/A))
was used, with € an infinitesimal variation in the phase introduced to clearly

identify the relation between the norm Bogoljubov coefficients.'? This rela-

tion is found by comparing (2.43) with Eqgs.(2.41) and (2.42):

|O¢w w‘ — P47rl\[w|/3w w| (244)

Earlier, the F' modes were constructed as a set of positive frequency
modes. But, as can be seen from Eq.(2.35) they are not a linear combination
of the in f modes only: indeed, they are also expanded over some f* modes.
These have negative frequency with respect to the timelike Killing vector
field in reference to which the F' modes have positive frequency. Thus the
set of in and out modes do not have a common vacuum state: some 3.,
will be non zero and the F' modes will contain a mixture of positive-(f) and

12The calculation (2.38)-(2.43) was historically performed by means of I-functions [49,
78].
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negative-(f*) frequency modes.!® We can find the mean number of particles
created into mode w by calculating the expectation value operator N,, = alay
for the number of f-mode particles in the state |0)

(O|N|0) = 3" [Burl® # 0. (2.46)

That is, the vacuum of the F,, modes contains Y, | 3./,|* particles in the
f.. mode. In the present case this is

1
a Planck spectrum with a temperature of
Ty = ! (2.48)
T 8o '

the Hawking temperature of the black hole.

By Eq.(2.5), the temperature (2.48) is identical to (2.10) (with £ = 872),
which we heuristically arrived at earlier — this demonstrates the thermo-
dynamics basis of black holes. Black holes emit Hawking radiation, quanta
spontaneously created from the vacuum that propagate away from it and can
be observed at late times by an observer sitting away from the hole.

Origin of the flux: black hole evaporation

We have now resolved the paradox of black hole heat: quanta are emitted
from the vacuum because of the disruption caused by the gravitational dis-
turbance of imploding matter. This emission is thermal. Because it emits,
the black hole can be in thermal equilibrium. Yet, this discovery raises a few
questions: where are the particles emitted from, what is the source of this
radiation, how does this process obey causality and conservation of energy,
what would a freely falling observer see as they approach and cross the event
horizon, what would an observer at late time see if looking at the black hole,
how does Hawking radiation fit in the picture of black hole information, etc...

The purpose of this dissertation is not to present a Thesis that would
have contributed to elucidate any of these intriguing concepts. Nonetheless,
for the sake of completeness, this section will summarise some elements of

BParticles will be present because |0) will not be annihilated by a,:

a,]0) =Y 8Ll #0. (2.45)
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answer to these many questions — the curious reader is advised to read the
literature to go beyond the basic arguments that will be laid out below (see
for example [49]).

First, let us recall the argument of section 2.1.2: the wavelength of the
quanta is, upon emission, comparable with the size of the hole. It is, there-
fore, impossible to localise the origin of this emission to within one wave-
length: the particle concept is only useful near F+* — in the vicinity of the
hole, the radiation wavelength being comparable with the spacetime curva-
ture, the concept of locally-defined particles is not valid. In his 1975 paper,
Hawking called upon the concept of continuous spontaneous creation of vir-
tual pairs of particle and antiparticle around the black hole to explain the
origin of the radiation at late times [78]. In this picture, strong tidal forces in
the vicinity of the hole could prevent re-annihilation of the pair that would be
separated by a distance of the same magnitude as their wavelength of emis-
sion (the size of the hole). This would allow for one of the peers to escape to
FT and carry positive energy away from the hole, thus contributing to the
Hawking flux (2.47), whilst the partner would enter the hole on a timelike
path of negative energy relative to J*. Alternatively, Hawking also suggested
that the escaping quanta could have tunnelled through the event horizon out
to FT [82]. These two competing explanations are still being debated by the
community — we shall not lay the arguments of each party down here, for
they are irrelevant to this Thesis, though introducing the concept of partner
particle will prove to be helpful when studying spontaneous emission from
an optical event horizon.

One of the main arguments against the interpretations presented by
Hawking following on his discovery of the radiation is the ill-defined nature of
particles near the horizon. So, although the mechanism of radiation remains
a mystery, one could still try and find out the source of its energy. It was
proposed to do so by calculating the energy and flux density of this radiation
at various positions around the hole — both locally defined quantities. The
mathematical complexity of such an endeavour goes far beyond the scope of
the present work; moreover, people have already dwelt upon it at length (see,
for example [49, 60, 61, 83]). Typically, one would calculate the expectation
value of the stress-energy-momentum in the state of the initial vacuum |0)
— which results in showing that the space curvature around a massive body
induces a static vacuum stress. Unruh, Davies and Fulling were the first who
envisaged this vacuum stress as a cloud of negative energy surrounding the
body [84]. In the near-horizon region, between about r = 3M and the hori-
zon, the density of the cloud would be about the same (and proportional to
1/M?* — it would have the energy of one photon of wavelength of the order
of M emitted per time period of the order of A). The density of the cloud
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would then drastically decrease at larger rs. In studying the stress-energy-
momentum tensor expectation value, they established that the source of the
energy detected at infinity would come from the gravitational field itself: the
negative energy cloud surrounding the hole would have a comparable energy
magnitude to Hawking radiation and would continuously stream towards the
central singularity, thus steadily reducing the mass-energy of the black hole.
So the energy of the thermal Hawking flux does not come from inside the hole
(nothing can cross the event horizon to outer space) but is provided for by
the mass of the hole that depletes, because it receives negative mass-energy
from the incoming vacuum stream. Unruh, Davies and Fulling showed in
their paper that this description of the sourcing of Hawking radiation energy
satisfies both causality and the conservation of energy [84].

Now when it comes to determining what an observer would actually mea-
sure, it is important to define precisely what question is being asked: the
motion of the observer, as well as their localisation, with respect to the hole
must be specified. Thinking along these lines, one would end up asking two
questions: what can an observer who is freely falling on the hole detect? and
what would an observer sitting away from the hole (Wheeler’s bookkeeper)
detect at late times? To answer these questions, we consider an observer
equipped with some apparatus that is able to measure the total stress-tensor
components. A detailed mathematical treatment of the present questions in
a two-dimensional model of a black hole was first provided in [84] and then
explicated further in [49].

A freely-f lling observer, falling from a finite distance from the hole, would
need a finite proper time to reach the event horizon. And yet, as measured
from infinity (in u,v coordinates) the free-fall time is infinite (because of the
effect of gravitational titne dilation, see section 1.1.2). Therefore, from a
distance (say for Wheeler’s bookkeeper), the black hole will emit an infinite
amount of radiation during the (infinite) time that the falling observer needs
to reach the horizon. One would thus think that, to Wheeler’s bookkeeper,
the freely-falling observer should really encounter all the particles emitted
by the black hole. As was demonstrated in paragraph 1.1.2; the free-falling
observer will also appear redder and redder to Wheeler’s bookkeeper as they
approach the event horizon, until they seem to remain frozen there with
infinitely long wavelength (and are thus actually invisible). Wheeler’s book-
keeper cannot see the freely-f lling observer reach the event horizon — and
because the event horizon is only a global construct [82], it will not be ex-
perienced as a physical barrier by the freely-falling observer (they would not
notice that they are reaching and crossing it). As they approach the horizon,
the freely-f lling observer will be surrounded by particles that are “shorter
and shorter” (because their wavelength, size, is “inversely red-shifted” as the
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horizon is approached). Again, the ill-definiteness of the notion of particle
prevents us from assessing what they will detect (how would the observer
make sense of a counter click for a particle of significantly different wave-
length than the apparatus dimensions?). Thus, no operational distinction is
possible between the energy fluxes of Hawking radiation and that due to the
sweeping of the observer’s through the negative energy cloud: an observer
who crosses the event horizon would measure a finite energy density (because
the two divergences cancel out), in rather small amounts [60].

In contrast, as we stated above and as shown by Eq.(2.47), from afar,
Wheeler’s bookkeeper will detect a thermal flux coming from the hole (with-
out being able to trace its exact origin back). In deriving Eq.(2.47), we didn’t
account for the effect of the gravitational potential on the flux at late times.
As it turns out, there will be some backscattering of particle off the spacetime
curvature surrounding the hole: only a fraction of the emitted flux will be
able to reach out to the asymptotically flat regions of spacetime at F*+. This
is expressed by introducing a notion of probability for particles created in a
mode F' to escape to infinity: T' the grey-body factor. Wheeler’s bookkeeper
will thus only detect a flux that is a filtered Planck spectrum (although this
is thermal — see [49]): the further from the black hole the bookkeeper is, the
lower the temperature, and the lower the frequency of the outpropagating
modes the lower their temperature.

In arriving at Hawking’s seminal result, we have used geometrical optics
and assumed that late time, on F7', rays would have a finite frequency.
These late time rays originate from the propagation of vacuum modes from
JF ~ through the collapsing spacetime, that are scattered by the gravitational
potential of the hole. Regardless of the exact event in spacetime at which
Hawking radiation is emitted (i.e., at the horizon or in the vicinity of the
hole), the rays get extremely frequency shifted, according to (1.23), as they
propagate through the collapse and out to F*. In section 1.1.2, we showed
that radiation emitted at the event horizon would be infinitely redshifted as
it propagates out to F. Of course, the argument that allowed us to arrive
at Hawking radiation features aspects of this catastrophic redshift: (2.43)
really means that out modes (of retarded coordinate u) will acquire a phase
of e*™« (with M the mass-energy of the hole) with respect to the in modes
(of retarded coordinate v). For out rays to have finite frequencies, in rays
coming from F~ would have to have TransPlanckian frequencies — infinitely
short wavelength. This is, of course, unphysical. This observation casts some
shadow upon the validity of the derivation itself. To date, this is one of the
main objections to the phenomenon of Hawking radiation, and neither the
theories of General Relativity or Quantum Mechanics have provided a definite
answer to what is infamously known as the Transplanckian problem. This
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hints at some Physics beyond our understanding. Fortunately, in analogue
systems, this TransPlanckian Problem does not arise, thanks to dispersion —
refer back to section 1.1.3 for initial comments on this, and see the conclusion
of the next section (paragraph 2.2.4) for further comments in the scheme of
optical horizon.

Finally, let us examine the effect of Hawking radiation on the black hole
itself: as particles are being radiated away, the hole will loose mass — thus
increasing the flux and accelerating the mass-energy depletion further. Even-
tually, a black hole on which no positive-energy particles would fall would
evaporate (and explode,'* as hinted by the title of Hawking’s foundational
paper — "Black hole explosions?") [2]. The relationship between Hawking
radiation and the information content of the hole, as well as the final fate of
all the information of the hole, remain matters of passionate debate to date.
The present Thesis will not attempt to contribute to these debates. Indeed,
the very ability of analogue horizon systems to answer such questions has
not been clearly established. We will instead focus on shedding light on the
mechanism of Hawking radiation, the spontaneous emission of light from the
vacuum.

2.1.3 Conclusion and discussion

In this part of the dissertation, we have used the tools developed in the
early 1970s to investigate the then paradoxical black hole heat. We have
established that a stationary black hole would disturb modes of a massless
scalar field in such a way that, when propagating from remote past infinity
to remote future infinity through the gravitational collapse, they would be
extensively redshifted. Furthermore, we have shown how this disruption,
caused by the gravitational disturbance of imploding matter, would result in
field quanta to be emitted in a thermal flux propagating from the hole out to
infinity. This, we found, was due to the relationship between incoming and
outgoing modes in our field theory: because they do not span the same vector
space (essentially the gravitational disturbance can be seen as an impedance
mismatch between the in and out regions) positive and negative frequency
in modes mix in forming positive frequency out modes. We then digressed
from our mathematical path to dwell upon considerations that are still under
discussion regarding this thermal flux, Hawking radiation. In particular, we
introduced the concept of pairs of particles and of negative energy falling on
the hole to explain what the source of the Hawking radiation energy flux is.

14Black hole explosion refers to the fact that the emission rate goes as 1/M? so that for
small holes this becomes very large, and the lifetime (which goes as M3) becomes very
small.
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In what follows, we will see how such ideas can be ported to the ex-
perimental scheme of fibre analogue event horizon (as proposed by the St
Andrews collaboration in 2008 [19]). We will use a model for light and mat-
ter interaction in a dispersive medium to establish a wave equation analogous
to the Eddington-Finkelstein metric by following the method laid out by Un-
ruh (see reference [10] and section 1.1.3 for details of the method). This
will reveal how light scatters from negative to positive frequency modes (and
vice-versa) at the horizon — which is the essence of the Hawking emission
mechanism — and leads us to the experimental idea that would allow for
proving the reality of the Hawking emission mechanism.

2.2 Quantum field theory in a condensed mat-
ter system

2.2.1 Quantum vacuum emission from a refractive in-
dex front

Rational for a theory

In the preceding section, we have used Hawking’s semi-classical theory of
fields in curved spacetime background: we have studied the fate of modes of
a quantised fields as they propagate in a classical and evolving medium. We
thus derived his 1974 result [2] that black holes emit a thermal flux, Hawking
radiation (HR). Glancing back at the final result of section 2.1.2, that HR
is characterized by a Planck spectrum (2.48), and expressing it in standard
units, we can understand why it has never been detected:

he? 1227 x 10%kg
STGMky M

Ttimaz = K =6.169 x 108%1(. (2.49)
If we insert the mass of the lightest black hole possible [66], Mgy ~ 1.39 M,
in (2.49) we obtain Thy., = 85.75 nK. This is 8 orders of magnitudes be-
low the colour temperature of decoupled photons that form the Cosmic Mi-
crowave Background (presently of about 2.7260 K [85]). In other words, HR
is hidden from us by the universe’s own glow. It is a euphemism to state
that Hawking radiation is hard to see.

Fortunately, as we saw in Chapter 1, Unruh showed [10] that, in total
analogy with their astrophysical counterparts, dumb holes should emit a
thermal flux. Beyond the realisation that the kinematics were analogous,
Unruh’s crucial insight was that once the analogy has been drawn, it is
possible to repeat Hawking’s 1974 semi-classical argument, only replacing
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light with perturbations in the field under study (eg the acoustic field in
[10]) to arrive at the conclusion that analogue horizons emit quanta from
the vacuum. He predicted that quantum hydrodynamical fluctuations in
a moving fluid would convert into pairs of phonons at the sonic horizon
— thus reviving the hopes to at least shed light on the Hawking emission
mechanism. Note that in this Thesis, we are agnostic about the identity of
quantum vacuum emission from analogues, i.e., we do not claim or disclaim
that it is HR.

Following on the 2008 seminal experimental demonstration of the realisa-
tion of an analogue horizon in optical fibres, in which the authors predicted
that the moving horizons would spontaneously radiate a thermal flux of a
1000K" [19], a handful of groups have assembled optical analogue experi-
ments: Faccio in Heriot-Watt in the UK and previously at Insubria, Como,
Italy [86], Leonhardt at the Weizmenn Institute in Israel [87], Genty and
Murdoch in Tempere, Finland, and in Aukland, New Zealand [88], but none
of them has managed to observe the spontaneous emission of light from the
vacuum. This is partly due to the lack of detailed analytical predictions of
the wavelength and intensity of the radiation for an actual experiment (al-
though a wealth of numerical studies has been carried out by Faccio’s group,
see for example [89, 90, 91], and others [88, 92, 93, 94]). Moreover, the role
and influence of dispersion in the details of the mechanism of spontaneous
emission remains a topic of active study. For example, in recent works, other

authors [57, 27, 95| have calculated the Hawking temperature Ty from the
¢ g0o
go1
Index Front (RIF) profiles (smooth and abrupt variations in the refractive

index) in dispersionless media. In addition, Unruh and collaborators have
discussed the rise of a grey body factor under the breakdown of conformal
invariance in a similar analogue toy model as Eq.(1.79) in [58].

surface gravity |horizon @t the analogue horizon for various Refractive

Of course, the geometry of the RIF is an important factor in the ability
to study the characteristics of the spontaneous emission: for example, in
the case of a pulse in an optical fibre, the length of the pulse front has
to be comparable to the wavelength of radiation [19]. Furthermore, only
smooth variations in the refractive index can be studied if one wishes to
address concepts such as the relation between the temperature of spontaneous
emission and the surface gravity (a step function in the refractive index
formally corresponds to infinite surface gravity'®). And yet, understanding

15 Although a step-like profile models an infinite slope at the horizon, which would
correspond to an infinite surface gravity and temperature, the calculations show a totally
different result. As we will see, the spectral densities we calculate are finite. I think this
is because, ultimately, the amplitude of waves is limited by dispersion.
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the critical conditions needed to observe the spontaneous emission of photons
at an optical horizon can be greatly helped by analytically studying a step-
like RIF geometry'® [27, 95, 96, 97, 98].

In particular, Finazzi and Carusotto developed a fully quantised analytic
141D model based on a sharp step behaviour of the dielectric properties of
a nonlinear medium in [27]. At this moving boundary (RIF) between two
multibranch dispersive media, certain modes may experience either analogue
black- or white-hole or horizonless configurations, leading to mode mixing
and spontaneous emission of radiation. In all configurations, the mismatch
in the medium properties on either side of the boundary leads to the mixing of
modes of opposite norm and thus to spontaneous emission of radiation. They
performed numerical evaluations (based on the material properties of fused
silica) of the pair-production processes involved and discovered that emission
is dominant over optical frequencies. In their studies [27, 97], they focused
only on emission spectra in positive-norm optical modes of light. However,
emission from the vacuum always comes in a pair of positive-and negative-
norm modes. As is exemplified by the existence of a (negative energy- or fre-
quency) partner particle to HR, the negative norm modes of the theory play
the role of the partner mode in the Hawking emission mechanism (at the out-
put, one obtains a two-modes squeezed state). This is relevant, in particular,
because these negative norm modes emit at different laboratory frequencies
than their positive-norm parter modes. Besides, in order to maintain these
different configurations, Finazzi and Carusotto finely adapted the velocity of
the RIF when changing the nonlinearity. However, the nonlinearity in the
experiment typically changes independent of the RIF velocity, leading to a
spectral structure strongly dependent on the nonlinearity strength, as well
as to a scaling of the signal with nonlinearity.

Outline of the theory

The results that will now be presented — that form the theoretical component
of this Thesis — were published in the summer of 2015 in Physical Review
A, see [28]. We use the model [27] to reveal the above-mentioned properties
of quantum vacuum emission by following the steps outlined here:

e we first expand the analytical model to consider emission from all
modes of all norms at any frequency and change of refractive index;

e hence we obtain emission for different refractive index changes in the
frame co-moving with the RIF without tuning the RIF velocity;

16T the experiment only smooth profiles can be realised. Calculations with an infinitely
steep profile only have a suggestive role in understanding the experiment.
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e we convert the spectra to the laboratory frame, including all mode
contributions, inclusive of the important negative-norm ones;

e finally, we find the scaling law for the total photon flux associated with
black-hole emission with increasing noulinearity — RIF height.

These will all be essential in identifying emission in future optical event
horizon experiments. We will also show how these results yielded the intuition
behind the experiment that we performed in 2016-2017 and that will be
presented in the final chapter of this dissertation.

We begin with an introduction of the theoretical model of the scattering
of vacuum modes at the horizon. We detail how the interaction of light and
matter in a uniform dispersive medium is modelled, and identify the eigen-
modes and study their properties. We then extend this model to consider
an inhomogeneous medium composed of two distinct homogeneous regions
(of different optical properties) separated by a moving RIF. We proceed to
constructing eigenmodes of this nonuniform medium and to describing the
scattering of these eigenmodes, that is the mode conversion process at the
RIF, by the Scattering Matrix formalism. Finally, we quantize the field
modes and calculate the photon flux density in the moving and laboratory
frames. Next, in Chapter 3, we consider light-matter interactions in bulk
silica — and compute the spectra of emission in both frames. These spectra
allow us to identify in detail the contributions of the various modes to the
emission, and the role of analogue event horizons. We also integrate the spec-
tra to evaluate the total emission and its dependence on the refractive-index
height.

2.2.2 Light-matter interactions in a dispersive medium
Lagrangian Electrodynamics

In this subsection, we lay out the field theory model that will later support
the theoretical framework of scattering at a Refractive Index Front (RIF). We
begin with considerations drawn from Electrodynamics, that is the classical
description of the dynamics of the total system (in the present case, the
electromagnetic field in a nonrelativistic medium). This will later enable
us to describe the interaction processes between radiation and matter: the
scattering of field modes and emission of photons.
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Figure 2.2: Light-matter interaction in a dispersive medium. A photon, rep-
resented by the green contour line (of gradient the speed of light ¢) interacts
with the exciton of a medium (represented by the dotted red line, set at the
resonant frequency of the medium 2). This interaction results in the ap-
parition of two distinct polaritons. These quasi-particles obey the dispersion
relation. The interaction of one electromagnetic field with one polarisation
field vields a two-branches dispersion relation. The shape of the branches,
and distance between them at the closest point (anticrossing), depend on the
elastic constant ! of the exciton of the medium via the inertia (x2?) . The
lower polariton branch asymptotically tends to {2, whilst the upper polariton
branch asymptotically tends to c.

In order to describe the interactions of light with a homogeneous and
transparent dielectric medium, we employ a microscopic model inspired by
the Hopfield model of Condensend Matter Theory [99], as was first sug-
gested by Schiitzhold and collaborators in [16]. We restrict ourselves to a
one-dimensional geometry and scalar electromagnetic fields and operate at
frequencies sufficiently far from the medium resonarnces to neglect absorption.
Matter, in the model, consists of polarisable molecules, harmonic oscillators
of eigenfrequency (resonant frequency) €, = % and elastic constant ;" L
In the medium, there is one such harmonic oscillator at each point in space,
but since the coupled electromagnetic field has a large wavelength compared
to the molecular scale of the dielectric, we can consider the dielectric in the
continuum limit'” and describe the electric dipole displacement by the mas-
sive scalar field P;. The electromagnetic field (a massless scalar field) in
the medium is described by the vector potential A(x,t) via E = —J;A in
temporal gauge.’® In order to reproduce the refractive index of most mate-

rials, we shall henceforth consider a medium featuring three resonances. In

1"The model does not account for the dispersion changes due to the finiteness of the
intersites distance.

BNote that in this section, the partial derivative with respect to a variable is denoted
by oy = % We do not use the relativistic-covariant formulation.
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the rest frame of the medium — the laboratory frame — the interaction of
the electromagnetic field with the three polarization fields of the medium is
described by the Lagrangian density [27, 99, 100]

(BA)? (0,47 & ((atpi)ag P A ) 2.50)

.= — L —0,P,
Lrr 2 7 + Z + t

=\ 2ki(2mc)? 2%«

where the inertia of the harmonic oscillators P, when subjected to an external
drive is PRCEREE The term linear in A in Eq.(2.50) describes the coupling
between the fields. The Lagrangian density accounts for the free space and
medium contributions to the field through the first two terms and the sum,
respectively. Dispersion enters as a time dependence of the addends of the
summation.

From the strong coupling of light with the polar excitations of the medium
result polaritons — hybrid light and matter quasiparticles [101]. As is illus-
trated on Fig.2.2, the coupling of the photon with the excitons leads to an
energy anticrossing of the bare oscillators, thus giving rise to new normal
modes of the system known as polariton branches. The energy shift de-
pends on the overlaps of the electromagnetic field and polarisation fields;
it is proportional to the coupling constant #;'. In the case of a medium
with three resonances, the dispersion relation resulting from the anticrossing
features four branches arranged around 3 poles: the "top" branch exhibits
gradient larger than the speed of light in the medium whilst the lower (en-
ergy) branches, labelled as "upper', "middle’, and "lower", are characterized
by a non-parabolic energy-momentum dispersion. Hereafter, we will only
study frequencies over which the effects attached to the "top" branch can be
neglected. Then, the non-parabolic behaviour of the remaining 3 dispersion
branches leads to the effective-mass approximation [102] according to which
polaritons have an effective mass and inherit from excitons the capacity to
interact with each other.'® Hence, Eq.(2.50) describes a massive scalar field
whose modes of oscillation can couple to each other — in what follows we
will study such coupling when those modes scatter at a boundary between
two regions of different refractive index.

Action

The step in refractive index (RIF) is propagating in the positive x direction
at speed u. It is convenient to express the Lagrangian density (2.50) in a

YNote that the lowest branch is approximately a massless polariton: it can be fitted
with a dispersion relation of the form |w| = ¢|k| for low wavenumbers (close to k = 0).
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frame co-moving with the RIF by applying a Lorentz boost

-G e

In this moving frame, the system is stationary — the medium properties are
independent of time. The Lagrangian density for light in a homogeneous
medium there reads
(0,42 (@ )
Lyr = — +
M 872 8

L (PP —ud PN P A
Z(/( (194 ) i L—F—’y(aTH—'UB(F)i))-

= 2k;(27mc)? 2k; ¢

(2.52)

See (1.81) for the transformation of the differentials. By the principle of least
action [103], we obtain the Hamiltonian density by varying the Lagrangian
density (2.52) with respect to the canonical momentum densities of light

M, = = 2.
YT 00,4)  Ane? (2.53)
and polarisation fields
22O P — P. A
[, = Dvr _ AOD—udch) Ay (2.54)

T0(0.P) ri(2mc)? c

Thus

1 3
Hr = 5 ((’)TAHA F 140, A+ (. Pllp, + le.afpj)> — L. (2.55)
i=1

From the Hamiltonian density follow the Hamilton equations, the equations
of motion for the fields [103]:

__ OH
{()7—’(/)]‘ = m

‘ - oH OH
O11; = — 50 + 3, 05l

(2.56)

where 1; and II; are any of the field and conjugate momenta A, P, II4 or
Iy, respectively. We complexify the massive field obtained from the action
of (2.52) by demanding plane wave solutions of the form

V = Vet (2.57)
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where V is the eight-dimnensional field operator V.= (A Py Py P3 114 lp, IIp, 11 pS)T,
to the dynamical equations (2.56). In Fourier space, d; = —iw’ and J; = i/,
and (2.56) reads
—iw' A = 4ncPll 4,
—iw' Py = —z—hgi(’)Q (HP,; - %) + uik' P,

. ./ ri(27c)?
i/l = L (S (1, -

—iw'llp, = — L 4wkl p,.

i

C

ﬂ)) | (2.58)

Eliminating the fields in (2.58), simple algebra then leads to the generic
Sellmeier dispersion relation of bulk transparent dielectrics:

3
ATk,
R =w | 14) % (2.59)
=1 G

where the Lorentz transformations from the laboratory frame to the moving
frame was used to identify «' = 7y(w — uk) and &' = vy(k — Sw). This
dispersion relation? is plotted in Fig. 2.3: there are eight branches, four with
positive laboratory frequency, and their four negative laboratory frequency
counterparts, symmetric about the k axis.

“'\-.____________.,.-"

—_—

Figure 2.3: Sellmeier dispersion relation, Eq.(2.59), with three resonances in
the laboratory frame. There are eight branches (black lines). A contour of «’
is shown in blue. Their intersection points indicate the modes of propagation
in the medium (red circles)

20Note that (1.78) is an approximate version of this dispersion relation where we have
assumed that w < |Q| for a medium with only one resonant frequency.
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Noether’s theorem and norm by the scalar product

By construction, the complexified Lagrangian

1 (0.A0;A 0
complex __ — T T i
Lair™ = 2 < 47c? 47 ) *

li 2N (0, Pt —ud Py )(0, P — ud, Py) — Ll
2= ! Ki(2me)? T TS RO T Ky
A oA
TP~ w0 )+ (0. P — udc )
(2.60)

is invariant under any transformation of the global phase of the dynanic fields
(A — ¢?A and P, — €', likewise for the complex conjugate fields)[95, 58].
From the Lagrangian (2.60), one can calculate the charge density (the net
charge per unit volume) [103]

3 3
i=1 i=1

as well as the current density, the rate of change of charge over time per unit

length dI,

- 3 3
j= / dz? = —iu(Il A+ 1 P =Y Py — A'lly). (2.62)
Jv o OT ’

i=1 i=1

According to Noether’s theorem [104], the continuous symmetry of £57*"

(2.60) implies a conserved current d.p + d;j = 0 — this is the continuity
equation. In the moving frame, being the system stationary, d,p = 0. Thus
the continuity equation for Noether's current simplifies to 9.j = 0: the cur-
rent density is a space-time-independent quantity for the plane wave modes
(2.57). Integrating Noether’s charge density (2.61) results in nothing else
than calculating the product of the field operator V with itself, p = iVinV:

/O:O pd¢ = (V, V), (2.63)

0 I
I, 0

identity matrix. Eq.(2.63) is the norm of an eigenmode?! — an orthonormal

n is the symplectic (or selection) matrix —n = ( , with I, the 4 x4

2INote that, by replacing the conjugate momenta of the electromagnetic and polarisation
fields by their expression in terms of derivatives of the fields (Eqs.(2.53) and (2.54)), one
obtains the usual form of the pscudo norm — as in Eq.(0.12), with ¢ a ficld. Because
of dispersion, this expression would of course be slightly more complicated, although as
readily computable.
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plane-wave solution — of the system by the conserved scalar product

Vi, Va) = h/dcvl G T)V(G,7)

(2.64)
/d( (A Iy — A, Ay +Z <PZ*1HP —1p 1 P 2))

i=1

defined on the set of our Hamilton equations generalised to complex values
(2.58). The A~! prefactor was inserted for normalisation purposes.

As a result of our application of Noether’s theorem — the space-time
independence of the charge density —, this Klein-Gordon [49, 103] product
(2.64) is a conserved quantity in 7, and therefore the norm of the state is
conserved. The former can be formally proven by the following algebraic
calculation [46]:

3
I (V1, V) = / d¢o (I, — 10y Ay + > (PrIlp, — HTD,-,JPA,?))
1=1

_ % / d¢ (8, AT, — 04 0, Ay + AJO,TLy, — 0,11 Ay +

3
> (0, Phllp, — 10}, 0Py + P10 1lp,, aTH’;JMPm)>
(2.65)

The computation of the first terms yields

1 term = % / A¢ (4mePTTY T, + 0 AT, — T drcTL, — 1T 0 Ag+

8214 3 192 A
AT 4 AT, + A Y <np 2) _
=1 € ¢

dQA* " 3 IQZQZQ " A¥
L Sy (H}l ;))

=1

: N A
_ ﬁ/dgg = (AT, — T Ay

(2.66)
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and that of the addends of the summation

2 torm — % / Y <h~,ifz§ (H;;M - 71) My, + 0PI, — 1T, OcPry —
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—P, — P
L2 Ll Poy—0 13;2)

A
H;i,1ﬁ'i9? <HP1',2 - 02) + P*

o fas

[ Ry

KQ2

(AT, + 10, As)

(2.67)

Clearly, a9, (V1, V) = 0.22

Note that the scalar product (2.64) is not positive definite, and thus the
norm of all mode solutions — which is inherited from this scalar product —
is not necessarily positive. In fact, modes that have a negative frequency
in the laboratory frame have a negative norm, whilst modes that have a
positive frequency in the laboratory frame have a positive norm: Finazzi and
Carusotto found that the sign of (V, V) depends upon that of

Cul k[, -
Lyat ,_ﬁ,?‘ | (1—%> (2.68)

h v 21 v, c?

where C/ is a moving frame frequency dependent normalisation factor for
the mode solutions [27]. Since u < ¢, the term in brackets in (2.68) is always
positive, thus the sign of the scalar product of V' with itself depends upon

the ratio UL It is easy to find an expression for vy, the group velocity of a
g

mode solution in the laboratory frame from the dispersion relation (2.59) —

by definition, v, = ‘fl‘z, and one calculates
dk  w dk? w AT K;
_— —— = ! . 2.
do  kd? &k ( +Z (1 o2/00) ) (2.69)

Wherefrom, glancing back at (2.68), it is obvious that sign||V|| o sign(w)
[46, 27, 95, 58, 28].

For simplicity, we shall henceforth refer to the pseudo-norm (2.63) as
the norm of the field solution. Taking the complex conjugate of Eq.(2.63),
(V*,V*), yields a result of opposite sign to the inner product of V' with

22 An alternative proof follows from the observation that, given d,p = 0 and (Vi, V3) =
a (W1, V1) + Z?:l a; <V,, VZT> being the second term of the latter equation zero, the as-

sessment of time conservation consists in calculating 8. [« (V1,V1)d( + 9 (Vi,Vy) =
[ 0ra(Vi,Vi)d(. 8-a(V1, V1) =0, and thus 8-a (V1, Va)=0.
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itself. Thus modes belonging to the upper (lower) half plane of the disper-
sion relation in energy momentum space 2.3 have positive (negative) norm.
In the comoving frame, positive-frequency waves with negative norm appear.
Such negative norm modes were recently observed in water wave experiments
[13, 12] and in optics [1, 54, 105]. As we will see in a later section, positive
moving-frame-frequency negative-norm modes are associated with sponta-
neous emission from the quantum vacuum. Due to the conservation of norm,
the generation of negative-norm waves signifies a simultaneous increase in
positive-norm waves, the generation of correlated waves.

2.2.3 Mode configurations at a refractive-index front

In the previous section we presented a canonical model aiming at describing
the phenomenology of light and matter interaction in a dielectric medium.
We found that mode solutions of the complexified fields equations of motion
in a homogeneous medium could have positive or negative norm as a function
of their frequency in the laboratory frame (the rest frame of the medium).
We will now push our classical study of the electrodynamics of the system
further to describe a non-uniform medium.

Phenomenology of the refractive index

In this Thesis, we consider the simple geometry of a RIF as shown in Fig.2.4 in
the comoving frame. The medium is composed of two homogeneous regions,
separated by the RIF at { = 0, creating a step in the refractive index. The
boundary at { = 0 constitutes an infinitely steep RIF which propagates
in a steady and rigid way in the positive ( direction. Phenomenologically,
the refractive index of a homogeneous region is described by the dispersion
relation (2.59), with dispersion parameters x; g (5; ) and A; g (A; ) in the
right (left) region. The change in refractive index between the left and right
regions is modelled by the step height dn, defined by

n(¢) = npf(=¢) + nrb(() = ng + ond(—¢) (2.70)

6(¢) is the Heaviside step function; and illustrated in Fig.2.4. Thus the index
change is described by the scaled Sellmeier coefficients

KRir, = OR4R
2.71
)‘1'2L = U>‘?R~ ( )
where o
nron
~ 1 2.72
o + R ( )
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and ng is the refractive index on the right side [27, 28].

Note that the present microscopic model of the dielectric [99] — a set
of harmonic oscillators (whose properties are described by the r; and A,
position-dependent constants) — cannot possibly account for the reality of
the medium. Instead, it is a simple, phenomenological means to obtain the
dielectric constant of the medium [106]. Indeed, a linear dielectric constant
results in reality from a nontrivial collection of quantum processes. These
would be further complicated when considering a nonlinear dielectric. There-
fore, the modulation (2.72) of both constants of the oscillators by (2.71) is
merely a proposal to describe the change of the dielectric constant within
a self-consistent theory. To me, this means that the details of the change
in the dielectric constant can equally be accounted for by a modulation of
both or either of k; and A;. For the sake of the present work, I have de-
cided to change both (by (2.71)) — others have proceeded likewise (see for
example [27]) or otherwise (see for example [95, 58])%3. A full review of the
various approaches, as well as a thorough verification of the independence
of the change in the dielectric constant on the details of the model, would
be important and shall be the subject of future work (see Appendix B for
additional details).

n(0)

ng+on

ng

Figure 2.4: Sketch of the RIF in the moving frame: there are two homoge-
neous regions of uniform refractive index on the left and right of a dielectric
boundary of height dn.

Modes in an inhomogeneous medium

We saw earlier (see 2.2.2) that, as a consequence of the continuous symmetry
of the complexified Lagrangian (2.60), Noether’s theorem yielded a space-
time independent current density for plane wave modes (2.57) of the field in
a homogeneous region. This implies that energy is conserved in the moving
frame, that is the comoving frame frequency «’ is a conserved quantity —

ZRemark that the change in the refractive index described by (2.71) is frequency-
dependent.
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this translates to the condition
v(w — uk) = const (2.73)

in the laboratory frame (see references [58] or [95, 93] for other ways to arrive
at this condition in different setups). This condition is a straight contour-line
of slope u and w-intercept w = w’ in Fig.2.3. In terms of polariton physics,
this means that we can identify the modes of propagation of the massive
field subject to the dispersion relation in both regions for a given w’. Thus
solutions of fixed «w’ are found at the intersection points between a line of
constant «w’ with the various polariton branches in the dispersion diagram
(red circles in Fig. 2.3).

Combining Eqs. (2.73) and (2.59), the dispersion relation in the labora-
tory frame with the conservation of energy in the moving frame, yields the
condition that mode-solutions to the equation of motion have to obey. The
dispersion relation (2.59) is an eighth order polynomial, thus there exists a
set of eight (w, k) solutions, modes of oscillation of the field V' that have the
same energy in the moving frame. Note that we consider only positive co-
moving frequencies w’ low enough for the contour line (2.73) not to intersect
with the top dispersion branch. On either side of the RIF, we either find
eight propagating modes or six propagating modes and two exponentially
growing and decaying modes, respectively, that take on complex w and k.

Subluminal intervals

We now study the nature and configuration of modes as a function of the
RIF height dn and for all comoving frequencies w’. Emission spectra with
eight propagating modes on only one side of the boundary were calculated
in [27, 97|, where the velocity of the RIF was finely tuned to maintain such
a mode structure when the RIF height was varied. In [28] we addressed the
experimentally relevant case allowing for eight modes to propagate on either
side of small refractive-index changes. Here we present further results for all
configurations and step heights. Following on the above analyses, we focus
our attention on the configurations of modes belonging to the “middle”-
frequency branch in our model (2.59) (where Ay < A < A3) — in the two
materials studied later in this Thesis, this branch corresponds to the optical
frequency interval. We shall henceforth refer to it as the optical branch,
whilst the lower and higher frequency branches will be referred to as IR and
UV branch, respectively. Indeed, for our set of material parameters, we find
that the mode configuration only varies over the optical branch, whilst the
nature of modes belonging to other branches never changes.
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In particular, consider the positive frequency optical branch in the moving
frame, depicted in Fig.2.5. The black (orange) curve is the branch on the
right (left) side of the RIF. The number of mode solutions depends on «’. On
either side of the RIF, there is at least one propagating optical mode for all
w'. There is also a frequency interval over which a line of constant w’ (that
would be horizontal in Fig.2.5) intersects three times with the optical branch
— there, three propagating modes exist: between the two horizontal dashed
black lines and two horizontal dashed orange lines in Fig.2.5, respectively.
Hereafter, these frequency intervals on either side of the RIF are referred to
as the subluminal intervals (SLIS) [w),irs Whiaer) a0d [0 0 n o wl ] On all
other branches, of positive or negative frequency, there always exist only one
mode — i.e., one oscillatory solution to the equation of motion.

Wonaen [ Wonaxn

= )
Wz [

W rinR

Wt £

Wieing
i

Wrning [

K

Figure 2.5: Sellmeier dispersion relation of fused silica in a frame moving at
a velocity u = 0.66¢. Part of the optical branch is shown: branches with pos-
itive (negative) laboratory frequencies are represented by thick (thin) curves.
A curve for zero refractive-index change dn is shown in black, and that for a
large change, dn = 0.12 in a), medium change on = 0.048 in b), small change
dn = 0.02 in ¢), is in orange. Frequency intervals corresponding to black-
and white-hole analogue horizons are shaded in orange ({w;,wr LW R} ), and

!/ / .
blue ( {w,,,m s Wnin R} ), respectively.
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Mode configurations

Since only the optical modes change in nature (complex or oscillatory) as a
function of the comoving frequency w’, studying their configurations allows
to fully characterise the system. Indeed, as will be shown now, the number
of oscillatory optical modes, as well as their direction of propagation with
respect to the RIF, on either side of the RIF determines the essence of the
boundary. That is, whether it acts as an analogue horizon for modes of the
field of a given frequency.

Inside a SLI, one of the three mode solutions has a positive comoving
group velocity %. This unique optical mode allows light on the right of
the RIF to propagate away from it. This middle optical mode (see Fig.2.3)
on the right is called moR in what follows. The other two modes have
negative comoving group velocity; they move into the boundary from the
right. There is a lower (upper) optical mode denoted loR (uoR). On either
side we can order the modes by the comoving wave number k' and obtain

ORI pmeR/E o BRI (gee Fig.2.5). In the laboratory frame, this

translates into w9 < WY < W*E Remark that both moR and
uoR have positive laboratory frame group velocity at all frequency — to an
observer in the rest frame of the medium they propagate in the same direction
as the RIF — whilst loR has positive laboratory frame group velocity for low
w’" and negative laboratory frame group velocity for high comoving frequency.
Note that, except on the positive laboratory optical frequency branch, all
modes always have negative comoving group velocity.

Beyond the SLI — d.e., o' ¢ [W) .., Whae) — only one propagating mode
remains. Two complex-wave-number roots of (2.59) and (2.73) emerge as
pairs of exponentially growing and decaying modes that do not propagate.
For w' < w},;, only mode woR/L remains a propagating mode, whereas for
W' > wl .., only loR/L remains. As stated earlier, and as can also be seen
in Fig.2.5, for all comoving frequencies there is one propagating mode that
belongs to the negative optical-frequency branch. This mode has a negative
norm (2.63) (see 2.2.2) and will hereafter be referred to as noR/ L.

For all magnitudes in the refractive index change én, the subluminal
intervals on either side of the RIF do not fully overlap: the SLI of the left
region is, in general, different from that of the right region. For small**

refractive index changes, the left and right SLIs overlap and there therefore

24The magnitude of the refractive index change giving rise to the various mode configu-
rations depends on the medium properties. For the sake of the argument presented in this
scction it suffices to identify three categories of refractive index change: small, medium,
and large — exact numbers will be provided by the numerical analysis carried in section

(3.3).
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exist five different combinations of modes across the RIF, also shown in

Fig.2.6: in growing order of comoving frequency, we have —

1.

!/
W, < W < W

W > W

w' < wl ... One optical propagating mode (uoL/R) exists, and has

negative group velocity in the moving frame, on either side of the
boundary.

c W < W < whoop. On the left of the boundary, there exist three

optical propagating modes (loL, moL, and woL) whilst only mode uoR
exists on the right. All modes in the inhomogeneous medium have
negative comoving group velocity, except for molL that has positive
comoving group velocity on the left.

cwhoe < W < W . Three propagating modes (loL/R, moL/R, and

uoL/R) exist on either side of the boundary. Mode moL(R) has positive
comoving group velocity on the left (right) of the RIF, and all other
modes have negative comoving group velocity.

/ /

- arr- Only one mode, with negative comoving group
velocity, exists on the left of the boundary, but modes loL/R, moL/R,
and woL/R exist on the right — with negative, positive, and negative
comoving group velocity, respectively.

raer- One propagating mode (loL/R) exists on either side of the
boundary. All propagating modes exhibit negative group velocities.

For medium refractive index change, the SLIs on either side of the RIF do
not overlap at all. There exist five different combinations of modes across

the RIF, also shown in Fig.2.6:

1.

2.

!/

w' < wl.... One optical propagating mode (uoL/R) exists, and has
negative group velocity in the moving frame, on either side of the
boundary.

whor < w < wh . On the left of the boundary, there exist three
optical propagating modes (loL, moL, and woL) whilst only mode uoR
exists on the right. All modes in the inhomogeneous medium have
negative comoving group velocity, except for molL that has positive
comoving group velocity on the left.

!/

Whiwer, < W' < w . n. Only mode loL propagates on the left of the
boundary, whilst only mode uoR exists on the right — all modes in the
inhomogeneous medium have negative comoving group velocity.
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4w op < W < w o Only mode loL, that has negative comoving
group velocity, exists on the left of the boundary, but modes loL/R,
moL/R, and uoL/R exist on the right — with negative, positive, and

negative comoving group velocity, respectively.

5. w' > w! . One propagating mode (loL/R) exists on either side of the
boundary. All propagating modes exhibit negative group velocities.

Finally, for a large RIF height. only three mode configurations exist. Indeed,
the refractive index change is then so high that the positive frequency optical
laboratory branch on the right of the boundary exhibits no pole in the moving

frame (see Fig.2.5) — no SLI exists on the left of the RIF. We then find (as
was studied in [27, 96]) the following configurations:

/

1. o < w One optical propagating mode (loL/uoR) exists, and

mink:
has negative group velocity in the moving frame, on either side of the
boundary.
20w e < W < w e Only mode loL, that has negative comoving

group velocity, exists on the left of the boundary, but modes loL/R,
moL/R, and uoL/R exist on the right — with negative, positive, and
negative comoving group velocity, respectively.

3. w' > w! p. Onepropagating mode (loL/R) exists on either side of the
boundary. All propagating modes exhibit negative group velocities.

In [28], we introduced and studied the physics of low refractive index
changes — that describe a typical experiment optical analogue experiment.
Likewise, the study of a medium change in the refractive index is new.
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Figure 2.6: Diagrammatic explanation of the possible mode configurations
for positive- and negative-norm optical modes for various comoving frequen-
cies in the regime of low refractive index change. Modes are schematically
sketched at the step for comoving frequency wj (blue dashed line in the dis-
persion diagrams). The arrows indicate the comoving group velocity of each
mode. Modes noL and noR are the only negative-norm optical modes, on the
left and right of the step, respectively. All other optical modes have a posi-
tive norm. The step acts as a black-hole-like horizon over the orange-shaded
interval, and as a white-hole-like horizon over the blue-shaded interval.
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Analogy to gravity

In section 1.3 of this dissertation, we laid out the first argument of the present
Thesis: a Refractive Index Front (RIF) in a dispersive medium can act as an
analogue event horizon to modes of the field. We will now build on this find-
ing and use kinematic arguments (after the suggestion [96]) to identify the
mode configurations that reproduce the physics of curved spacetimes. We
thus look back at the mode configurations identified in the previous para-
graph 2.2.3 and begin with the case of the low refractive index change. Our
discussion will take place in the comoving frame, where the RIF is station-
ary. Thus we omit the notation "comoving"' where this leaves no doubt —
for example the direction of propagation of a mode is always considered with
respect to the stationary boundary at ¢ = 0.

In configurations 1 and 5, the increase in the refractive index in the right
region does not modify either the nature nor the direction of propagation
of the sole optical frequency mode that exists on either side of the RIF: no
optical horizon exists. Configuration 2 is more interesting, and its description
is novel: light in mode loL propagates from the left into the boundary, but
cannot enter the right region, because all modes there have negative group
velocity. Over the [w],;, 1. whingl frequency interval, the boundary acts as
a white hole to modes of the field as light can approach but not enter the
right region. Symmetrically, over the frequency interval of configuration 4,
light experiences a black-hole horizon at the RIF as it cannot propagate to
the right from beyond the RIF. Finally, configuration 3 is similar to 1 and
5 in that the step in the refractive index does not affect either the nature
or the direction of propagation of the optical modes. It is, however, slightly
different from them in that modes with negative and positive group velocity
exist on either side of the RIF: although the RIF is not a one-way door
(as in configurations 2 and 4) and thus no horizon exists for waves of this
frequency, the situation is somewhat analogous to gravitational disturbances

such as gravitational waves. The latter comment is an original observation
of this Thesis.

In the case of a large refractive index change, only configurations 1 (with
loL instead of uoL), 4 and 5 remain. For medium dn magnitude, all mode
configurations are identical to the low dn case, except for configuration three
where only one mode can propagate on either side of the RIF, with loL on
the left and uoR on the right. There, the mismatch created by the increase
in the refractive index renders the system horizonless.

91



Optical horizons

In configuration 2 (4), the region on the right (left) of the boundary corre-
sponds to the inner region, whilst that on the left (right) corresponds to the
outer region, respectively, of the analogue horizon. Consider configuration 4:
on the left of the boundary, light can only propagate to the left — in only
one direction, in analogy with the interior region of a black hole described by
the Painlevé-Gullstrand metric (1.38) where the spacetime flow is superlu-
minal. In contrast, on the right of the boundary, light can propagate in both
directions (in analogy with a subluminal flow of spacetime). The symmetri-
cal analogy holds for configuration 2. This analogy to black- or white-hole
physics stems from the disturbance in the refractive index, which plays the
same role as the geometrical disturbance in the vicinity of a black hole.

So, according to our intuition of section 1.3, light in a dispersive medium
can be made to interact with itself so as to create analogue horizons. Note
that we also discovered that a RIF acts simultaneously as a black hole, white
hole, and no horizon boundary (although over different discrete frequency in-
tervals). In the next section of this dissertation, we will proceed to quantising
the field theory, by resorting to the tools of quantum field theory in curved
spacetime presented in 2.1. We will thus quantise for small perturbations (the
plane wave modes of the inhomogeneous medium) on a classical geometrical
background (the refractive index increase at the RIF). This will reveal how,
in total analogy with black hole physics, fluctuations of the quantum vacuum
at the RIF give rise to spontaneous emission of light.

2.2.4 Scattering of the quantum vacuum at the RIF

In the previous section, we have derived solutions on either side of the RIF,
we now construct "global" solutions, 7.e., solutions to the equation of motion
that are valid in both regions. These modes correspond to waves scattering
at the RIF, and they describe the conversion of an incoming field, even in
the quantum vacuum state, to scattered fields in both regions. We follow the
canonical approach introduced in [100], developed in the 1990s in [107, 108,
109, 110, 111, 106], and used in [27] and [58, 95] to construct these modes
and their scattering matrix and then to quantise the solutions to find photon
fluxes due to spontaneous particle creation.

Mode matching across the boundary

We now proceed to match the asymptotic stationary modes (2.57) across the
refractive index boundary at ( = 0. Since they exist in only one of the two
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homogeneous regions separated by the RIF, these modes will henceforth be
denoted local modes (LMs).

On physical grounds, we consider all fields, conjugate momenta and time
derivatives to be finite. By construction of the model, the elastic constant
and inertia of the polarisation fields are, respectively, discontinuous and con-
tinuous at the interface between the two homogeneous media. In the near-
interface region, we gain insight in the behaviour of the fields and conjugate
momenta by integrating the equations of motion (2.56) over time. We begin
with the third equation of (2.58): we integrate with respect to the spatial
coordinate about ( = 0 from —e to +¢, taking the limit ¢ — 0,

/ﬂm’ﬁAdg_ = dC [ Z’“ (2rc)” (}, —7—) ac.  (2.74)

= e

—€

All finite terms integrate to zero for the limit ¢ — 0, thus

2

+e 3L wi(2me)? [ A
——— | lp —y— 2.
.[e ; yeN? ( neT c) dc =0, (2.75)

and (2.74) yields
e [1//
—d¢=0 2.76
—e 4w g ’ ( )
A" is finite. Thus the vector potential A is continuously differentiable: A; =
Ag and A} = Al,. Proceeding similarly with the second equation of (2.58)
leads to the condition

+e
PlA¢C =0
v, hide (2.77)

= P, = Pig.

That is, the polarisation fields are continuous across the interface. We apply
the same process to the fourth equation of (2.58): all the terms being finite,
integrating and subsequently taking the limit ¢ — 0 shows that the IIp;s
are continuous as well. Glancing again at the second equation of (2.58) and
noticing that all the terms except P/ are continuous we realise that the spatial
derivatives of the polarisation fields are also continuous: P/, = P/y. Finally,
turning back to the fourth equation of (2.58), in which both P, and TIp,
(k'Tlp,) are continuous, we see that the discontinuity in x; implies that the
term J;(ullp,) must carry a discontinuity. Equating the Hamilton equations

93



for each side of the step by identifying Il P = I p,r yields

(HPZ'L - UJH;DZ-L) = —/ﬁ;L’
(HPZ'R — UH%R) = — iR, (278)
F; 1 1
e ! U \Kigp  KiL

That is, 117, is discontinuous.

To sum up, we have found that the fields and their conjugate momenta
are continuous at the boundary. The spatial derivatives of all fields and con-
jugate momenta are also continuous, with the exception of I, . Furthermore,
looking at the Hamilton equations of motion (2.58), we see that the finiteness
of the temporal derivatives of the fields imply that they are continuous.

Global Modes of the inhomogeneous medium

We now use the S-matrix formalism to relate incoming and outgoing fields at
the RIF. We thus seek bases of in and out modes that live in the two regions of

the inhomogeneous medium and are related by the scattering matrix. These
are called global modes (GMs) We construct the GMs V as

V=> LUVE0(=¢) + > RVe6(0), (2.79)

where L* (R*) describes the strength of mode « on the left (right) side of
the RIF. Half of the coefficients in (2.79) are constrained by the matching
conditions. We consider GMs whose asymptotic decomposition comprises
only a single LM with comoving frame group velocity towards (in) or away
from (out) the RIF [112]. Thus there are as many of these GMs as there
are propagating local modes. Half of the GMs emerge from a defining LM
« that moves towards the RIF, forming global in modes V***. The other
GMs are global out modes V7 if a is a LM now moving away from the
RIF. The LMs are the complete physical (i.e., nondivergent) solutions in the
asymptotic regions, thus the sets of V" and V°** modes are two basis sets of
modes. Hence the scattering matrix S is the transformation of modes from
the out basis to the in basis:

Vot =N 5 sV (2.80)

E

Scattering and spontaneous photon creation occur as the input vacuum state
does not correspond to the vacuum state in the out basis (see section 2.1.2);
that is, the spontaneous emission follows from S, that governs all mode
conversion.
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Quantum field theory

We postulate the equivalent of the standard equal-time commutation rela-
tions on the fields A and F; and thus quantise the local field modes and their
momenta:

[A(¢), ILA(¢)] = ihd (¢ — <), (2.81)
[P(¢). e, ()] = ihdis6 (¢ — (). (2.82)

We expand the field V' on the basis of local frequency eigenmodes
V= / o' 3 (Voag, + voral) (2.83)

that are properly normalised with respect to the scalar product (2.64) under
the condition [27]

‘ @ o N /
(VoL V)| = 0(wh = w)dagan (2.84)

According to our quantumn theory for the field (see section 2.1.2), the opera-
tors a_, and &j,T are the annihilation and creation operators of the field mode
o

Alternatively, we can expand the field over positive frequencies only, in-
cluding negative-norm modes in the expansion:

V= / do’ <Z voas, + > Vﬁﬁ) + H.c., (2.85)
/0 ael aEN

where P(N) is the set of modes of positive (negative) norm. We quantise the
GMs by writing the global field V in the basis of global in modes:

V= / do’ (Z Al £y voj?aaﬁjf“) + He., (2.86)
0 acP aEN
or global out modes:
. :/ dw’ (Z V:,uta&gqll,m + Z VJ/?JtW&Z’ﬁLtCXT) + He., (287)
0 acP aeN

The expansion (2.86) for in and (2.87) for out modes defines the aunihi-
lation and creation operators for the global modes, as well as the transfor-
mation between in and out creation and annihilation operators of the field.
Let A™ be the row vector containing all the annihilation and creation oper-
ators for positive- and negative-norm global in modes, respectively, and A%
be the corresponding variable for the out modes, then the transformation of
operators follows from the definition of S [28]:

Aot = g A™, (2.88)
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Scattering of vacuum states

Having quantised the sets of global in and out modes, we can use scattering
theory to calculate the expectation value in out modes of positive or negative
norm when ¢n modes are in the vacuum state.

Denoting « (@) as a mode of same (opposite) sign in norm as aj, the
incoming state is defined as

|0in) = @ [04) ® &% [04) = 0. (2.89)

This state is in the vacuum state defined by the destruction operators as-
sociated with the in modes of positive and negative norm. The number of
particles operator in an out mode « is Nev = goutertgoutor Tt can be written
out by identifying the annihilation and creation operators of the out mode
from equation (2.87):

Nroq — <Z /304&1*@0fr + Z /3&(11&’6) <Z b)uo,l a + Z /651051*&53[)

o [0

_ Zﬁaal*ﬁa’aldaT&a’ + Z 8&0185/&1*&5/&6/%_*_ (290)

aa’ aa’

Y pae gilagataa’t | N gaa galan paga’

ad! aa

Whence the expectation value for the number of photons in an out mode is
<N“1> = (0| N*1]0;,). We begin with the second term (all the mixed terms
go to zero):

= = NN, s Al
<0m| Z 304(11 A/);04 PP L T |0m> — Z ’D)aozlp)a kg

aa’ aa’

<<0’m‘ &ET&@, ‘0’i7b> + <1‘1>m 5&6’/) (291)

= Y[,
o

because the (1]1), term for any mode is nothing but (0;,|aa'|0;,) and for
the same mode, aa’ — a'a = 6(0), thus

(11),, = (04| @' |05 + (04] 6(0) [0s,) = 5(0). (2.92)

Furthermore, by (2.89), the first term in the parentheses of (2.91) is zero.
Likewise, all the other terms of (2.90) are zero?*® — therefore, <N o‘1> =

2’The commutation of the out modes on the in modes gives zero and all the mixed
terms go to zero.
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Y4 |32 [*. We obtain the flux density of photous I'¢ in mode «, the number
of particles per unit time A7 and bandwidth in the moving frame,

]/QI@ILZ‘S&QP (2 93)
o AT AT < '

Note that this result is different from that obtained by Finazzi and Carusotto
in [27]: they had an unargumented factor 27 in their single-mode calculation
and their result was less general — we present here the correct, general, result
by means of a detailed algebraic calculation that cannot be found elsewhere.

2.2.5 Conclusion and discussion

Before progressing to the numerical computation of the flux (2.93), it is
worth commenting on some aspects of the physics of optical event horizon.
In deriving (2.93), we found that, as a result of the mixing of positive and
negative norm modes of the field at the RIF, light would be spontaneously
emitted from the vacuum. This effect is ruled by the scattering matrix S
that relates in to out modes. In the scheme of optical analogues, the event
at which light is emitted is very well located in space: light is emitted at
the RIF (in the case studied here, at the interface between the two regions
of homogeneous refractive index). This is in contrast with the astrophysical
case for which the exact event at which Hawking radiation is emitted cannot
be easily (or at all) established — see section 2.1.2 for a discussion of this
issue. Interestingly, this is not the only advantage of the optical scheme:
the frequency of the in and out modes is ruled by the dispersion relation of
the medium, and both sets of modes feature ouly finite frequencies (with the
exception of the diverging modes). Thus, dispersion limits the effect of fre-
quency shifting of the potential on the modes (the increase in the refractive
index that effectively is the curvature of spacetime for modes of the inho-
mogeneous medium) — dispersion seems to be the analogue phenomenon to
TransPlanckian physics but here the effect is fully understood. Moreover, in
the present case, the derivation of the out flux density (2.93) clarifies greatly
the phenomenon of spontaneous emission of light from the vacuum: it re-
sults from the mixing of modes of positive and negative norm at the RIF and
yields (quasi-pairwise) emission into modes of positive and negative norm.
The study of the optical analogue thus enables us to cast light on various
aspects of spontaneous emission from the vacuum at the horizon, and to bet-
ter understand the mechanism of Hawking radiation. To this end, the next
Chapter will present the algorithm that we created to implement (2.93) and
calculate spectra of emission for any frequency, in all modes, for all mode
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configurations, and for a variety of refractive index changes on in both the
moving and laboratory frame.
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Chapter 3

Numerics

In this chapter we calculate spectra of emission from the vacuum and study
in particular conditions over which the kinematics of a moving disturbance
in the refractive index of a medium are analogous to the flow of spacetime in
the vicinity of a black hole. As we saw in Chapters 1 and 2 the kinematics
of waves in analogue systems is dominated by dispersion [113]. This phe-
nomenon regularises the phase singularities at the horizon (analogue systems
do not suffer from the Transplanckian Problem) but also renders the wave
equations less amenable to analytical techniques.

On the other hand, numerical techniques such as finite difference time do-
main (FDTD) wave packet simulations [114] or Monte Carlo methods [115]
can handle the complications due to dispersion and straightforwardly evolve
an initial state in time. Such methods are however computationally ex-
pensive and do not yield a spectrum directly. There also exist analytical
methods, that are restricted to a fixed frequency and situations in which the
background varies slowly in comparison with dispersion [116, 117], or some
that can only study dispersion relations that are polynomials of low degree
[112, 118]. The latter provide numerical solutions of the ordinary differential
equation (ODE) in position space provided that no exponentially divergent
waves exist and that the gradient of background change is low. However,
dispersion relations that reproduce the refractive index of materials are usu-
ally more complicated than this, and optical experiments typically rely on a
large gradient in the background. In particular, when the background change
becomes so steep that it can be approximated by a step-like discontinuous
function, the solution can be found analytically by matching the plane wave
solutions on either side of the interface [45, 98, 119, 120, 121, 122].

The algorithm we present here relies on an analytical study of the plane
wave solutions to a complicated dispersion relation that realistically repro-
duces the material properties of fused silica or optical fibres, for example (see
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Chapter 2), in a one-dimensional background. We study the specific case of
a step-like discontinuity in the refractive index of a dispersive medium. The
method directly and efficiently vields a spectrum, unlike the above-mentioned
numerical techniques, and can be generalised to considerations of rapidly
varying background, unlike the above-mentioned analytical methods. Con-
trarily to the direct solution of an ODE in position space, it is not restricted
to a simple polynomial dispersion relation.

Ideally, one would wish to compute spectra for the optical fibre that
will be used in the experiment presented in Chapter 4. Unfortunately, the
dispersion relation of usable Photonic Crystal Fibres (PCF) cannot easily be
cast into a Sellmeier form. This is due to the lack of theoretical knowledge
of the fibres. Indeed, the manufacturer provides data for the zero dispersion
wavelength of the fibres, as well as experimentally measured dispersion curves
— these have then to be experimentally verified in the laboratory. The
result is a discrete set of data points that describe the dispersion of the
fibre, and not an analytical relation like those that the present algorithm can
handle (in other words, one does not obtain the elastic constant or resonant
frequency of the medium by experimental means). It is possible to fit the
experimentally-acquired data with a theoretical Sellmeier dispersion but, in
the case of the PCFs that could be used in the experiment, this yielded
unphysical results over some frequency ranges. Therefore, the development
and usage of the algorithm presented therein will be based on a material for
which the theoretical elastic and resonant frequency constants are known. We
will use fused silica, as in the literature (see, for example, [27]). Incidentally,
this shall allow for checking the present results against the literature.

3.1 Algorithmics of scattering at the RIF

In the previous chapter of this dissertation, we arrived at an expression for
the scattering matrix, that describes the conversion of an incoming field to an
outgoing field. We now want to devise an algorithm that, from the solutions
to the dispersion relation in each homogeneous media, will allow for building
the global solutions used in calculating the scattering coefficients between
incoming and outgoing fields at the interface.

For this purpose, we consider a single interface: a step in the refrac-
tive index separating two homogeneous regions, as schematically depicted in
Fig.2.4. As we saw in section 2.2.4, at each comoving frequency «’, we find
8 mode solutions of the fields equations (2.56) on either side of the interface.
In section 2.2.3 we then found that, for a given height of the step (change in
the refractive index) there were different, and distinct, comoving-frequency
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intervals in which 6 or 8 of the mode solutions in either region would be oscil-
latory modes of the field. When there would be only 6 oscillatory solutions,
the remaining two would have complex w’ and k&' — that is they would be
exponentially growing or decaying waves. Thus, as a function of comoving
frequency, we found 5 mode configurations, depending on the number of os-
cillatory solutions on either side of the interface. In what follows, we shall
refer to all mode-solutions (the oscillatory and non-oscillatory solutions alike)
as “modes” and only specify their nature where necessary. We called these
modes “local modes” (LMs) because they exist in the homogeneous regions
on either side of the boundary.

The electromagnetic and polarisation fields and their derivatives in a ho-
mogeneous regions are related by Eq.(2.58). We also established that the
electromagnetic field and polarisation fields, and their first spatial deriva-
tives, could be matched at the interface by:

i 0 0 0 0 0 0 0
I x o 0 0 0 -0 0 A
I, : o S P
H; z 0 —i 0 0 0 —Zm 0 P;
: w" 2 1 2
g, _ 0 0 "m;zg 0 ) 0 0 ’N:Qf{ Py
A 0 0 0 —igs 0 0 0 dcA
Oy, -2t 0 0 0 €m0 0 b
1, o 1 w2 1 0w 23
oy 0 (£ -2 0 0 0 2L 0 ‘
O p, 2 w2813 ) 2813 9: P
: 0 0 (L <Ly o 0 0 i ‘
ks m3l2 ) w w3812

(3.1)
Henceforth, the last vector of (3.1) (that contains the fields and their first
spatial derivatives) will be called W
In what follows, we will study the relationship, defined by the scattering
matrix, between the incoming and outgoing field for each of the mode config-
urations (found in section 2.2.3), as functions of the comoving frequency. In
doing so, we will detail the algorithm used in [28] to calculate the scattering
matrix from the matching conditions (3.1) i all possible mode configurations.
We will then return to the dispersion relation, and heuristically construct an
algorithm that implements the scattering matrix, to calculate the spectrum
of light spontaneously emitted from the vacuum, as it can be observed in
the laboratory frame — which is the main theoretical and numerical result
of this thesis.

3.1.1 Scattering matrix

In the scattering matrix formalism, the incoming and outgoing fields at the
interface are described in terms of global modes (GMs): there are global in
and global out modes. The algorithm we will develop will allow us to calculate
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the flux of emission into the out GMs. These are modes in which light
propagates away from the interface, in either of the homogeneous regions.

GMs are constructed as linear combinations of LMs: an out GM is com-
posed of one LM that has positive (negative) group-velocity in the high (low)
refractive-index region and a collection of 8 LMs that have negative (posi-
tive) group-velocity in the high (low) refractive-index region. In the presence
of non-oscillatory modes, either the first or one of the later 8 modes may be
a non-oscillatory mode. Let us consider an example: over the black-hole-like
interval (mode configuration 4, see section 2.2.3), there is a unique out GM
that allows for light to propagate away from the interface into the low re-
fractive index region (on the right of the interface in Fig.2.4), moR. Its mode
decomposition is shown as the spacetime diagram in Fig.3.1: it is a linear
combination of 7 oscillatory LMs, in the right region, that have negative
group-velocity, a non-oscillatory LM on the left, and a unique mode that has
positive group-velocity in the right region.

Figure 3.1: Mode decomposition of the Global Out Mode moR. In this space-
time diagram, there is a unique mode that propagates away from the scatterer
to the right (green arrow). In the past, 7 oscillatory-modes propagate toward
the scatterer from the right and there is one non-oscillatory mode on the left
of the scatterer.

The converse to the above delineation leads to constructing in GMs, in
which light propagates toward the interface. Since there exist 8 LMs on either
side of this interface, we find 8 in and 8 out GMs. These must be arranged
in lowering order of laboratory-frame frequency w to allow for a consistent
treatment of the matching conditions. Given the relation between the fields,
their conjugate momenta and their derivatives, see Eq.(3.1), the matching
conditions are entirely determined by the fields and their derivatives only.
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Thus we create a matrix of the eight W LM solutions to the dispersion
relation, which we call W, with

W= (Wor ez i), (3.2)
with a,, n =1, 2, ... 8 the mode number, arranged in decreasing order of

laboratory-frame frequency (i.e., n = u, wo, mo, ... nu). The V and W are
related by

A 1 0 0 0 0 0 0 0
P 0 1 0 0 0 0 0 0
5 0 0 1 0 0 0 0 0
) 5 0 0 0 1 0 0 0 0 )
e T el I = 0 0 0 0 0 0o W,
: ~ NG vy2
My, TiEL 0 0 0 3m 0 0
Ip, . 0 g% 0 0 om0
Ip, 2 0 0 —if% 0 0 -2
g w3803 w3343

(3.3)
for a field at frequency w’. We call the matrix in (3.3) U, and remark that

Det(U) = 0. In matrices, (3.3) reads V = UW, Since W and W are related

by Eq.(2.57), in an identical fashion to V and V, this statement taken at
7=0and ¢ =0 becomes V = UW.

The matrix of normalisation factors of the different fields that are con-
nected to the LMs directed toward the interface W% is constructed from
the amplitudes of the LMs on the left or the right side of the interface that
have negative or positive group-velocity, respectively, as

Ii/toward = ﬂ"L/[{ O-T/R? (34)
with, for example on the left side, W4 @ — 11/, 7" @ the linear combina-

tion of the amplitudes of LMs that have their group-velocity directed toward
the interface. Similarly,

W = Wy g 074, (3.5)
wherefrom ~ R 1
Iﬁ{/rtoward _ O_ZLn/R O.Cil;tHT 1}/ away TJ (36)

where we have used the relation between the IV and W matrices, and called
on the fact that, them being bases sets, the uniqueness of solutions implies
that if they transform at a specific point ({ = 0 in (3.5)), they must do so at
any point. In Eq.(3.6), we have related the amplitude of the incoming field
to that of the outgoing field by means of the scattering matrix S, with

T _inT ouLT—l T ouLT—l
St =0y of =0y of . (3.7)
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It appears that, in order to calculate the scattering matrix, all that needs
being done is to calculate the above ¢ matrices. These are 8 x 8 matrices
whose components are the coefficient of each LM in the linear expansion of
each GM. Thus, they are calculated by using the matching conditions.

3.1.2 Matching local amplitudes to calculate global ones

In terms of the formalism introduced in the previous paragraph, the fields
on the left and on the right of the interface are related by the matching
conditions

I/T/L O'in ¢ = V_VR O'zl a, (38)
for an in field «, and ~ B
Wy o9 = Wg oyt @, (3.9)

for an out field . In Eqs.(3.8) and (3.9), the 0% are 8 x 8 matrices. For
every one of these matrices, there are a further 7 constraints to the 8 matching
conditions (3.1)*:

e when defining an in GM, we set the amplitude of the other LMs that
propagate toward the interface 0;

e under wavepacket normalisation, the defining input LM can be regarded
as having a finite and tiny bandwidth — i.e., for negative times this
LM is the only existing LM and has to be normalised with respect to
itself. Thus the defining LM has unit amplitude.

We now proceed to calculating the ¢ matrices in each mode configuration.
Then, each column in Eq.(3.8) can be written in terms of 8 dimensional
column vectors 6 —

F Y = AF (3.10)

We define the matrix A — that is composed of the product amplitudes of
LMs on either side of the interface — as

A=W Wk (3.11)

It is possible to calculate the ¢ matrices in terms of the elements of the
A matrix for each mode configuration. We will now study two such mode
configurations in detail, which will culminate in explicitly deriving the ¢n and
out ¢ matrices, yielding the S matrix.

'For the unphysical (exponentially growing) mode, this is different: it is defined as the
unphysical mode only on one side. This GM serves as in — and identically as out —
mode. Hence unphysical GMs scatter into themselves, by definition.
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Example 1: mode configuration 3 — disturbance in the gravita-
tional field

We arrange both the global and local modes in decreasing order of comoving
frame wavenumber k: u uo mo lo | nl no nu. We use matrices to relate
GMs (columns) to LMs (rows), whereby the first column (row) of a matrix
describes the GM (LM) u, the second uo and so on. In mode configuration
3, there are 8 oscillating LMs on either side of the interface. Then, (3.10)
reads

10000000

00100000 01000000
_ 400010000

“71 00001000

00000100 (3.12)

00000010

00000001

= 610 + 6, + &6, + EiF, + ...+ 6L =

A(@d" +&d" +ady +ad + .+ ad’)

There are 64 unknowns, materialised as “empty” components of the matrices.
In (3.12) we have rewritten the matrix product of the first line in terms of
the addition of the product of the vectors

&7 =(10000000), & =(01000000), ..., =(00000001) (3.13)
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with the ith row-vectors aiL"j_j = d1,. In order to find the ¢™ matrix in this
mode configuration, we proceed to re-arranging (3.12):

0L Arg Gl A A 0 Ay Ay A A A
ot Aoz OFs Agr Agp 0 Ay Ay Agg Ay Agg
0 Ass G hy Azr Az —1 Az Ass Aszg Aszr Asg
Gl | | Ashs | | An Aw 0 Ay A Ak Ax Ak |
Gls Ass 0y | | Ast Asa 0 Agy Ass Asg Ay Ass |
Gl Ags G hs Agt As2 0 Ass Ags Ass Asr  Ass
ot Azs Ohy An A 0 Ay A A Ay Arg
Gls Ass Ohs Agr Ago 0 Ay Ags Ags Asr Ass
/1 0 0 0 0O0O00O 1 5;1
0O 1.000O0O0O0 5’%12
0O 00 0O0OO0OO0TO 0 5£3
-7
SOl I O B A AR B i
0O 00O0OO0OT1TUO0UO0 5{6
0O 000O0OO0OT1TFP O 5%7
N0 00 O0O0O0O01 5{8
(3.14)

- -5 =5 5 =

with ¢ the matrix we presently seek. To obtain it, we multiply from the
left the 8 x 8 matrix on the right-hand-side of the first line of (3.14) with

1 0 =43 00000

jgg
01 —1—23 00 0O0UO0
0 0 —ﬁ 00 0O0UO0
00 -4 100 0 0
aaaaaaaaa 1_ ‘.1”
(61 €9 €3 €4 €5 €5 €7 68) - 0 0 _%z% 01000 ) (315)
00 4200100
00 =42 00010
00 =42 00001
and obtain
All—mi‘f'l 1412—mﬂ;4'2 ’3—3 4414—%%% - - - -
A Ry Ao — A23Azy Az 4 Aggda
A 33 12133 1f3 24 iﬂA%
o’ = K%ISASI Af:3?13432 ﬁ_zg AfﬁsASzx - :
B
Agz A Ag3z A A Ag3z A
A 8123331 - 8123332 Aig A 8;;3334 -
(3.16)



For the out modes, (3.12) is

O =
)
o O
o O
o O
o O
o O
o O

001 0O0O0O0®O0

o (3.17)

S OO OO
S OO OO
S OO OO
S OO O
o OO~ O
SO = OO
o= O OO
_— o O O O

and similar algebra to the above (exchange A and A ') leads to the conclusion
that

O'%UtT = JZ”T, (3.18)

that is, one can be calculated from the other by using either A or its inverse.
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From the above o™/ matrices, we identify the o r/r Matrices:
Az A Az A A Az A
Uin_
| Aa —|—A4X§§“ A442—|—A4X§§32 T Ay — o D
Agp = A5 Agy - Ao gm Ay - dmiu o o o o
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
Ast _Am L As _Aw A _Aw _ Ass
Ass Azz  Ass Ass Ass Aszs Ass Ass
in 0 0 0 1 0 0 0 0
R 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
CAGY AR oAb A Al A Ay
gout — 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
Al ARAY g AgAd A o agag
H Ai{iﬂ 2 Af/ll%rl 743:31 H A:ql%iﬂ
-1 A-1 —1
v S R v L v S
%ut_ 0 L 0 L 11 0 L 0O 0 0 O
1 AZMAC 1 ARrAZl  An 1 ARrAZ
AR R R S
1 A AT 1 Az AL At 1 AZYAZ
Agt — = As — T 3 Aw - T - - - o
(3.19)
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Thus

10 ~22% 000 00
24
01 -%2 00000 10 Az' 0 0 0
Agg -
00 - 00000 0 1 Ay 000
i 1 0 Az 00 0
O_OUZ‘T 00 _X:}zf 10000 :>O_0utT 1_ 0 0 A§41 1 0 0
g 00 5% 01000 o700 Ag 010
] 00 433 0 0 1
00 -%% 00010 00 A 00 0
Agy
0 0 —j—%r 0000 1
(3.20)
and
A _ AiszAg A A13As2 0 A _ AizAsg _ _ _
11 m i 14 A
A _ AgsAg A _ AoszAso 0 A _ AgzAsq _ _ _ _
T . ﬁASS > @Agg 1 . 43A33 Ass Ass  Arz Ass
me Asg Ass Ass Aszz  Asz  Aszz Ass
, - Ay3A A4z A A4z A
R e AR T
Agz A Aggz A Aggz A
g1 — Ass 1482_4}4?2 0 Agy — A3 - o - (3;1)

Finally, by (3.7), we obtain the scattering matrix when there are 8 oscillatory
mode-solutions on either side of the interface,

A o A1 Asq A Ag Az Azl A4 o A4 Ay

11 33 21 — ﬁ Ass 1 3/,1;
A AzAss 4 AgzAzs  _ Aso Ay AgsAze

12— A Ass 2 y Ass Ass 2 A Ass
Az 23 43 .

— Ass Ass Aszs Ass

S8><8 A14 _ A13A34 A24 _ A23A3q4 Az A44 _ AazAza
| Asg | Ass ,|433 ‘ Ass ‘ | | ‘

A1zA / Aoz A A / A4z A
A18 - 1123338 ‘428 - 2123338 - Azi A48 - 23338 -

(3.22)

In (3.22), we have completed the derivation of the S matrix for mode config-
uration 3, the frequency interval over which there are 8 oscillatory solutions
to the field equations on either side of the interface, in terms of the ampli-
tudes of the LMs on either side of the interface. This derivation followed
from the matching conditions for the fields and their first spatial derivative
at the interface and results in a straightforward expression that can easily be
implemented — in Mathematica for the sake of this Thesis and [28].
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Example 2: mode configuration 4 — the black hole

We will now perform the same steps as those detailed in the above paragraph
for the 4th mode configuration found in section 2.2.3. Over the frequency
interval of interest, the RIF acts as a black hole horizon to modes of the
field: light cannot propagate from the region on the left of the interface to
the region on the right as motion is only possible in one direction in the
left-hand-side region, whilst motion is possible in both ¢ directions in the
right-hand-side region. We found that there are 8 oscillatory solutions in
the RHS region (with a single mode, mo, allowing light to propagate to the
right, away from the interface), and 6 oscillatory and 2 complex solutions in
the LHS region (with all oscillary solutions having negative comoving group
velocity). In this situation, the in-modes define A as

0 10 00 00O
0 01 00 00O
0010O0O0O0®O
0 0 0 1 00 0O
0 =4 0 0 01000 (3.23)
0 0 0 00100
0 0 0 00010
0 0 0 0 00O0T1

in which the global (columns) and local (rows) modes are sorted in decreasing
order moving frame wavenumber k’: u wo gr lo [ nl no nu for the GMs and
LMs on the left of the interface (first matrix in (3.23)), and u wo g, lo I nl
no nu for the GMs and u wo mo lo I nl no nu for the LMs on the right of the
interface (third matrix in (3.23)). Conversely, the out-modes define A as

10 00000
0

01 00000 0 1 00000

00 1 00 00

00 01000 =4 (3:24)
0 0 00100

0 0 00010

0 0 00001

with the GMs and LMs ordered as in (3.24). Similar algebra to that used
in the first example 3.1.2 allows to find the g-matrices for out-modes on the

110



left of the interface:

1 0 0 0 0 0 0 0
Ay 0 1 CAg Ay Ag Ay A
0 1 0 0 0 0 0 0
Fout — 0 0 0 1 0 0 0 0
L
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 (3.25)
1 0 A 00000
00 A, 00 00O
01 0 00O0O0DO
:>O_outT—1_ 0 0 A541 1 0 000
L 100 A7 01000
00 A4 00100
00 A7 00010
00 A 00 0 0 1
For the in-modes on the left of the interface we find
Agy — 2208 Agy — 2R52 () Ay — 2RO — - - —
T 1 0 0 0 0
B e B
(3.26)

Wherefrom the scattering matrix in mode configuration 2 — in which there
are 6 and 8 oscillatory mode-solutions on the left and on the right of the
interface, respectively — is

A —Asdn o _dm 4, Awdw
14%2 1433 143
App —Adsz o _dsz 4 Al
Ass A33 Asg
g 0 1 0 0O 0 0 O 397
6x8 — Ay — AsAse g _Asa 4 AwsAze : ( : )
14 Ass Ay 4 As3
Ag — A13Ass _ Ass Aje — AqzAzs
18 Ass 0 Ass 48 As3

As in the previous example, we have worked from the matching conditions
for the fields and their first spatial derivatives to match the amplitudes of the
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GMs (built from the LMs — solutions to the dispersion relation on either
side of the interface). We thus algebraically derived the scattering matrix
that describes mode mixing over the interval in which the interface acts as a
black hole horizon. Glancing back on Eqs. (3.22) and (3.27), we remark that
S has a block matrix form, with four partitions arranged around the 3rd row
and 3rd column for (3.22) and 2nd column and 3rd row for (3.27). This form,
which is an intrinsic property of the construction (ordering of the GMs and
LMs) of the S-matrix in our algebra, accounts for the non-coupling of the
oscillatory GMs to the non-oscillatory GMs. It is thus a property that one
would test for when checking the numerical calculation of the S-matrix upon
calculating spectra — as we will do in the next section of this dissertation.

Quasi-unitarity of the scattering matrix

In performing the algebra toward the scattering matrix in mode configura-
tions 3 and 4, we have encountered the main and usual steps of our algo-
rithm: first we write the A-matrix that gathers the amplitude of the in- and
out-modes on either side of the interface, second we re-arrange the matrix
equations to clearly identify the components of the o-matrices, we then read
off the elements of these matrices on the left and the right of the interface
and finally use the expression of the scattering matrix as a function of these
o-matrices to explicitly derive it. We found that the scattering matrix is,
by construction, a block matrix arranged around a row and a column that
account for the non-coupling of oscillatory GMs with non-oscillatory GMs.

The “normalised” scattering matrix implemented in the algorithm pre-
sented in this section transforms in GMs into out GMs by Eq.(2.80). The
GMs are normalised by Eq.(2.84) and, as a result of this normalisation, the
scattering matrix is a quasi-unitary matrix. This can be seen by studying
the conservation of the probability current density j (see Eq.(2.62)) across
the interface: the matching conditions across the interface imply that

3 3
—Z'U(A?HA*L + ZAP:LHP;L—HALAL - ZHPiLP'iL) =

i=1 i=1
3 3
—iuw(AR g+ > P pe  —Ta,Ap — > Mg, P
i=1 i=1
— jL = jR7

(3.28)

where the current and fields on the left (right) of the interface have been
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ascribed a subfix L (R). Rearranging (3.28) yields

VoutTg Vout — VznTg Vin
Vint§iy § yin = yintg yin (3.29)
— STy S =g,

where ¢ is the diagonal matrix with N, diagonal elements equal to 1 and N_
equal to —1, with N, and N_ the number of GMs of positive and negative
norm, respectively. In the present case (8 branches dispersion relation), g =
diag(1,1,1,1,1, -1, —1,—1).

Since the scattering matrix is quasi-unitary, its rows obey the normal-
isation condition (2.84), meaning that numerically adding the amplitude
squared of all components of a row (multiplied by sign(w,), where w, is
the laboratory frame frequency and « is the mode — w, wo, mo...) should
yield 1. Indeed, by (3.29), S is a member of the indefinite unitary group

U(N,,N_). Thus the scattering matrix obeys {ST]*QS = g, and hence
S l=g {ST}*Q.

Now that we have learnt the steps toward deriving the scattering matrix,
and understood what are the essential features of this matrix, we can simply
state the scattering matrix one obtains for mode configurations 1 and 5 (6
oscillatory solutions only on either side of the interface), and 2 (8 and 6
oscillatory solutions on the LHS and RHS, respectively, of the interface - the
white hole analogue).

3.2 Algorithmic of laboratory frame emission

We now want to use the scattering matrix calculated in the previous section to
compute the laboratory frame spectral density of emission from a dielectric
step-like boundary separating two homogeneous media. For this purpose,
we will create an algorithm that, for each wavelength (as measured in the
laboratory frame), returns a scalar quantity: the spectral density of emission.
This density might be the result of emission into a collection of any of the
global modes (GMs) defined in section 2.2.4 (see Eq.(2.79)).

We begin our investigation with a close study of the dispersion relation
in the laboratory and comoving frames, and thus identify the modes that
contribute to the emission at each laboratory frame wavelength. Following
on which we calculate the rate of particle production in each contributing
mode at each laboratory frame wavelength, and add them (where necessary)
to compute the laboratory frame spectral density (LSD). This shall allow us,
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in the final section of this chapter, to identify key features of spontaneous
emission of light at the horizon.

3.2.1 Journeying along the optical branch

Our aim is to create a function that, for a certain laboratory frame frequency,
w, calculates the contributions from all modes in which light is emitted from
the boundary in the medium to the spectral density.

Figure 3.2: Sellmeier dispersion relation (2.59) of the left (right) region of
the RIF in orange (black) in the laboratory frame. In each medium there
are three resonances (one is very close to the horizontal axis), and hence
8 branches. An increase in the refractive index distorts the branches by
lowering the resonance frequencies and increasing the inertia of the excitons.

The spectrum that will thus be computed should be observable by some
sort of apparatus at rest with respect to the medium in the laboratory. Thus,
we consider emission as it can be detected from one end of the 1D medium
only — say the right, in reference to the positive x axis direction. On physi-
cal grounds, this implies that light in a mode that would have negative group
velocity in the laboratory frame (that would move to the left) will not be
taken into account in our calculations. In other words, the spectrum will be
made of contributions from modes that allow for light to propagate in the
same direction as the refractive index front (RIF) in the medium. Further-
more, as in earlier calculations, we operate at frequencies for which there
are no contributions from the top branch in the dispersion relation (2.59).
In Fig.3.2, we plot an example of such an 8 branches dispersion relation for
two homogeneous media that differ in their refractive index in the laboratory
frame. Following the convention used so far in this dissertation, the medium
with highest refractive index (orange curves in Fig.(3.2)) is the region on the
left of the interface (as in Fig.3.2). Clearly, the medium with lowest refractive
index (black curves in Fig.3.2) is then the region on the right of the interface.
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Figure 3.3: Optical branches of the the dispersion relation in the moving and
laboratory frame. a) The turning points of the positive laboratory-frame-
optical-frequency branch (as seen from the moving frame) on the left and
right side of the RIF, in orange and black, respectively, define the extrema of
the intervals of emission for the modes loL, moR and uoL. b) When Doppler
shifted to the laboratory frame, and because they are defined on different
sides of the interface (i.e., in regions of different refractive indices), these
emission intervals are not always distinct anymore: the emission interval of
moR overlaps with those of [oL and uoL at low and high w, respectively. For
frequencies higher than the Doppler shifted zero-comoving-frame-frequency
(w" = 0, phase-velocity horizon condition, in blue), only noL contributes to
the laboratory frame spectral density of emission. c¢) For any laboratory-
frame frequency wy, there are always 2 corresponding LMs, of moving-frame
frequencies (w'(wp)1,w (wo)2, w' (wo)s and w'(wp)s, in blue) on the positive
(laboratory-frame) optical-frequency branch on either side of the RIF (black
— right of the interface, orange, left of the interface) — as well as their
4 counterparts on the negative (laboratory-frame) optical-frequency branch
(not shown). If these LMs define out GMs, the latter contribute to the
emission at wy. Because LMs and GMs are defined for positive moving-
frame frequencies only, the w' = 0 contour (in blue) separates the (positive
and negative laboratory-frame frequency) optical branch in two regions, only
modes belonging to the regions highlighted in purple in d) contribute to the
LSD.
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We want to calculate contributions to the laboratory-frame spectral den-
sity of emission (LSD) over optical frequencies. Only oscillatory mode-
solutions may contribute to the emission at a given laboratory frame fre-
quency w. By construction of our field theory (section 2.2.4), monochromatic
solutions to the field equations have positive moving-frame-frequency. These
oscillatory mode solutions are found at the intersection between the w’' = cst
contour line and the (positive- and negative-laboratory-frame) optical branch
on either side of the interface.

We have previously established that the number of oscillatory mode-
solutions is a function of the comoving frequency w’. We found that there
exists up to 5 mode configurations in the three realisable regimes of refrac-
tive index change at the interface between the homogeneous media of the
RIF (as exemplified in Fig.2.6). These mode configurations describe the vari-
ation of positive-optical-frequency oscillatory mode-solutions on either side
of the interface. Indeed, there is always only one oscillatory mode-solution
on all other branches of the dispersion relation. In fig.3.3 a) we show the
positive-optical-frequency branch (for the two homogeneous regions around
the interface) as seen in the frame co-moving with the RIF at u = 0.66¢. The
study of this diagram tells us which modes are out GMs at a given w’. Modes
that may contribute to the LSD are found in the interval [wyninr, Wnazr)-

As illustrated on Fig.3.3 c), for each w, we find 4 intersection points of
positive frequency on either side of the interface. By symmetry. we also find
4 intersection points of negative frequency on either side of the interface, for
a total of 8 intersection points. The modes that contribute to the emission
at w are those that: 1) have positive comoving frequency and 2) define out
GMs. In the left region, local modes (LMs) noL, loL and uoL define out
GMs, whereas in the right region, only moR does.

Now that we have identified the modes that could contribute to optical-
frequency emission, we can dwell back upon the dispersion relation plotted
in the moving frame 3.3 a): it is possible to find the moving-frame frequency
intervals over which LMs noL, loL, uoL and moR are oscillatory solutions to
the fields equations. These frequency interval limits can then be boosted back
to the laboratory frame by means of the inverse Lorentz transform (2.51) —
we draw the diagram 3.3 b). In growing order of frequency, we find that over
the interval

° {wmmL, W,y }, loL will be the sole contributor to the LSD;

moR minR

. {w / W, }, both loL and moR will contribute to the LSD;

op) W .
moR minR lol, minl

. {w / w }, only moR contributes to the LSD;

3
Yol mink WyoL manL
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! }, moR and uoL contribute together to the LSD;

{ uoL ma’cL YroR mazR

Wy prH} uoL alone contributes to the LSD;

* W, ¥ } laboratory frame emission will arise from contributions
P\, H Weut

of the negatlve norm mode nolL.

Note that wpy; is the laboratory-frame frequency for which the moving-
frame frequency is w = 0, and w,,, is the maximum moving-frame frequency
for which there are no contributions from the top dispersion relation branch.
All frequencies are shown in Fig.3.3 b). For laboratory frequencies outside of
the above-stated intervals, there is no emission from light in optical modes.
When w' = 0, there is a phase velocity horizon (PVH): the contour-line that
would then be drawn separates two "regions" of the (positive- and negative-)
laboratory-frame frequency branch — one that contribute to the emission
from one that does not, see Fig.3.3 d).

To summarise, we have identified the modes that contribute to the LSD
as a function of the laboratory-frame frequency. We found that emission
stems from contributions of up to two modes over various intervals — and
thus expect the resulting spectrum to be highly structured in those intervals.
This shall later allow us to identify intervals of horizon-like emission. But
first, let us progress further with the writing of our LSD function and see
how to calculate the contribution from each mode.

3.2.2 Rate of particle production in a mode

When computing the laboratory frame spectrum, we will input a laboratory-
frame frequency w to the function we are presently creating, and it will output
the density of emission per unit time and unit bandwidth.

The algorithm created in sections 3.1.1-3.1.2 basically calculates the scat-
tering matrix, i.e., mode conversion in the moving frame. We have previously
explained how to find the moving-frame frequencies w’ for which a GM con-
tributes to the laboratory spectral density (LSD) at frequency w. Thus all
that remains to be done is to implement the calculation of ];‘? (Eq.(2.93)),
with « the out GM that contributes to emission at w, and to calculate the
resulting rate of photon production per unit time and unit frequency in the
laboratory frame. A GM’s contribution to the emission at w of emission in
the laboratory frame is computed by [27]

u ’
g (3.30)
( Ug(w))
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where v, (w) is the laboratory group velocity at w. The total spectral density
at w is then found by adding the contributions of all GMs to the emission
28] —

L=1, (3.31)

yielding the spectral density as a function of frequency. The latter converts
to the spectral density as a function of wavelength by the factor w?/(27c).

In conclusion, in this section we have worked through the algorithm that
would be implemented to calculate the total spectral emission density as it
can be measured in the laboratory. In the following section, we will imple-
ment this function and compute spectra of light spontaneously emitted at
the RIF.

3.3 Emission spectra and photon flux

In the previous two sections of this dissertation, we have devised two algo-
rithms: one to derive the scattering matrix that describes the scattering of
an incoming field into an outgoing field, and one to calculate the emission
spectra as they would be observed in the laboratory frame.

The first algorithm describes the steps to be taken to calculate the ele-
ments of the scattering matrix. It is a generic method, that is valid for any
physical system that can be described by a dispersion relation that would
feature up to three poles. In present Thesis we study the scattering of light at
a step-like refractive index front (RIF), as schematically depicted in Fig.2.4.

In this section of the dissertation, we will present the main numerical re-
sults of this Thesis — as they were published in 2015 in [28]: the scattering
of input modes in the vacuum state (devoid of particle, photon, popula-
tion). This will result in showing how light is spontaneously emitted from
the vacuum at the interface (a result of quantum fluctuations of the vacuum)
according to Eq.(2.93). We will study all the mode configurations found in
section 2.2.3 of this dissertation, and comment on the particular structure of
the emission spectra over specific moving-frame-frequency intervals. Further
to the findings of [28], we will present results for all modes and all refractive-
index-increase magnitudes (that is, low, medium, and large dn increase under
the step).

We will then proceed to computing the spectra of emission as they can
be observed in the laboratory frame for realistic experimental situations.
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3.3.1 Emission in the moving frame

We use the scattering matrix to compute the spectra of emission into all
modes as seen from the moving frame. We consider light in bulk fused silica.
The material resonances are A3 = 9904, 116, and 68.5 nm, respectively,
and the elastic constants are x93 = 0.07142, 0.03246, and 0, 05540, respec-
tively [27]. The velocity of the refractive index front (RIF) is v = 0.66¢c,
corresponding to a group index of 1.5.

We first consider spectra of emission into moR, the unique right-going
mode for all (small, medium and large) magnitudes of refractive index change
on.

Emission into the uniquely escaping mode

Fig.3.4 a) displays the spectrum of emission into moR for a large, medium
and small increase in the refractive index under the RIF. Spectral emission
is constrained to the subluminal interval (SLI) on the right of the interface
({w;m s W R] in Fig.2.5) where the mode moR exists. For large (dn >
0.056) and medium (0.04 < dn < 0.056) increase in the refractive index,
an optical horizon exists over the entire right SLI. However, when dn is
smaller than 0.04 (small refractive index increase), an optical horizon exists
for only part of this interval (i.e., {w;naz LW R} in Fig.2.5) because at
lower frequencies the SLIs of the left and right regions overlap (see Fig.2.5).
We observe that for large and medium dn, the emission spectra are quasi-
thermal, with almost constant flux density over the interval of emission.
In contrast, for small on (see Fig.3.4 d)), it appears that the absence of a
horizon leads to a significant decrease in the emission, ¢.e., mode coupling,
although some emission remains. We observe that the flux density drops at
the extrema of the interval of emission. This decrease in the flux on the
edges of the interval is due to the decrease in group-velocity of moR at these

frequencies. Fig.2.5 shows of the gradient of the optical br{anch in the moving
frame goes to zero: at w' = w, . g Or W = W . g g% = 0. Thus, moR
and the interface are velocity matched, meaning that no light in moR may
propagate away from the interface.
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Figure 3.4: Spectrum of emission into the uniquely right propagating mode
moR on the right side of the RIF. The number of particles per time and
bandwidth, the flux deunsity of emission, is calculated in the moving frame
of velocity u = 0.66¢. a) Emission is displayed for three values of dn, 2 x
1072,4.9 x 1072 and 0.12, corresponding to the regimes of low (orange dot-
dashed line), medium (solid red line) and large (solid magenta line) refractive
index under the step, respectively. b) The flux density is also plotted for
increasing values of dn, the large (dn = 6 x 1072,8 x 1072,0.1, and 0.12
(solid magenta line)), ¢), the medium (én =4 x 1072,4.4 x 1072,4.9 x 1072
(solid red line), 5.2x 1072,5.6 x 1072), and d) the low (dn = 3.6 x 1072,3.2 x
1072,2.8x107%,2.4x1072,2x 102 (orange dot-dashed line), 1.6 x 1072 /1.2 x
1072,8 x 1073,4 x 1073) regime of refractive index change.

In Fig. 3.4 b), we plot the emission into moR for increasing magnitudes of
dn, from 0.06 to 0.12 (large refractive index change). First, we observe that
the shape of the spectrum does not depend on the increase in the refractive
index, only the overall magnitude of the flux increases with dn. Second,
we note that for dn = 0.12 (magenta curve), we obtain exactly the same
spectrum as was calculated in [27]. In Fig.3.4 ¢), we plot the emission for
medium index changes, from 0.04 to 0.056. As in the case of the large
refractive change, we observe that the shape of the spectrum does not depend
on on, only the magnitude does. This is because the mode coupling does not
change over the right SLI for such large increases in the refractive index.
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Indeed, as was noted above, the shape of the spectrum of emission into
moR only changes for small on because the right and left SLIs do not overlap
fully over {uj;nm‘ Ry W R}, and thus the mode coupling evolves: the na-
ture and number of the modes that scatter into each other at the interface
changes across the interval over which there is emission into moR and so
the coupling coefficients (componeunts of the scattering matrix (3.7)) change
in nature and amplitude. In reference to sections 3.1.2 and 3.1.2, the rel-

evant scattering matrix is (3.22) for W' € |w, i & Winas L{, and (3.27) for

! !

W€ | Whine Ly Winaz R}. Remarkably, over the frequency interval in which the
interface acts as a black hole event horizon to modes of the field, the shape of
the spectrum is independent of the refractive index change (as was observed
above for on > 0.01). This can be more clearly seen in Fig. 3.5, in which
the spectra for smaller refractive index changes are scaled up to compensate
the lower single-frequency rate. This is a remarkable result: all traces over
orders of magnitude of index changes line up to the same shape, making it a
universal signature of analogue black-hole emission. Note also that the shape
differs for emission outside the black-hole-frequency interval.
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Figure 3.5: Spectrum of emission as in 3.4 d). To compare the shapes of
the traces, spectral densities are scaled such that all traces line up with the
on = 0.02 (orange dot-dashed line). dn = 5.2 x 10 2,3.7 x 10 2,2 x 10 ?
(orange dot-dashed line), 7 x 1073,1 x 1073,5 x 10~* and then range from
1.2 x 107* to 4 x 1072, in steps of to 1 x 1075.

It is also possible to calculate emission into modes in which light propa-
gates on the other side of the interface (in the high refractive index region)
— the following spectra are original results of this thesis and are, in their
majority, presented for the first time.
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Emission into all modes for all changes of refractive index

The scattering matrix also gives us the comoving flux densities of all other
optical modes, of positive and negative laboratory-frame frequency (loL, uoL
and noL). These modes are outgoing modes in the high refractive index region
of the RIF (i.e. light in these modes propagates from the interface to the
left in the moving frame). The flux density is calculated in the regimes of
large, medium, and low refractive change under the step (dn = 0.3, 4.9 x
1072, 2 x 1072). As in the above study of the spectrum of moR, we observe
that the emission is highly structured in intervals with black- or white-hole
horizon, and no horizon. Remark that in the regime of large refractive index
change, there is no turning point in the optical branch in the moving frame
(merely an inflexion, see Fig.2.5), thus the discrimination between modes loL
and uol in the high refractive index region becomes arbitrary. We chose to
consider that mode [oL would be the oscillatory solution at all moving-frame
frequencies w’ in this case, and thus there is no emission uoL.

Again, the magenta lines in Fig.3.6 reproduce the results of [27], and
the discontinued blue and green, and solid purple, lines reproduce those of
[28], for the large and low refractive index change regimes, respectively. The
solid red lines (medium refractive index change regime) are presented here
for the first time. For mode-intensity comparison purposes, we plotted the
emission into all optical modes of positive and negative norm together in
Fig.3.6 d) for a fixed dn = 0.02. The strongest emission occurs into the
optical mode with negative norm, noL. This emission is due to coupling with
all the other positive-norm modes in the medium and is strongest where this
mode that propagates in the superluminal region couples to a mode that
propagates in the subluminal region (i.e., moR, for w,,,.; < W < W.,.5)-
In other words, the emission in nolL is strongest over the analogue black-
or white-hole intervals, when pair-wise emission with moR dominates — a
phenomenon analogous to Hawking Radiation in black hole physics.

Mode nolL, because it is the mode with strongest emission in the moving
frame, and also because it has a negative norm, draws attention. We thus
compute further emission spectra, for a variety of refractive index changes dn
from the low to the large refractive index change regime (see Fig.3.7 a)), as
well as for the regime of medium refractive index change (see Fig.3.7 b)). As
for all modes, we observe that the emission spectra are highly structured in
intervals of emission with black- or white-hole horizons, as well as intervals
over which there is no horizons. Likewise, the spectral width of these intervals
saturates once the large refractive index regime is reached, and thus the
features of the spectrum are locked in frequency and only the density of
emission increases. Note that emission is increased over intervals where the
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interface acts as a black- or white-hole horizon.

a) b)

1 mint. I Wmink N W maxt B W maxr P @ mint A & minR B W maxt B W maxr
— T T T T T

10

:usl

Flux density I',,
= o
L1

Flux density I',/2"

0.03 0.06 0.09 0.12
hw'(eV)

d)

10I7'wmmLh W minR P 0 et N & xR

Flux density I',;""
Flux density I',,
=
9

o
)
&

10741~

0.03 0.06 0.09 0.12
Pw(eV)

Figure 3.6: Emission spectra of each optical mode in the moving frame. The
flux density in mode loL, a), uoL, b), and noL, c¢), is plotted in the regimes
of large (purple line, dn = 0.3), medium (red line, dn = 4.9 x 1072), and
low (dn = 2 x 1072) refractive index change under the step. In the regime
of large refractive index change, there is no oscillatory mode woL under the
step. d) For intensity comparison, all positive and negative laboratory-frame
frequency modes are plotted together for én = 2 x 1072 (low refractive index
change regime): emission into mode noL, purple solide line; loL, blue dashed
line; uoL, green dotted line; moR, orange dot-dashed line.

The algorithm developed in section 3.1 also allows for calculating emis-
sion into modes that lie on other branches of the dispersion relation, namely
the positive- and negative- low and up laboratory-frame-frequency branches.
There are 4 modes: two with positive frequency, [L and ulL, and two with
negative frequency, nlL and nulL. All define out GMs in which light propa-
gates away from the interface into the high refractive index region. As noted
by Finazzi and Carusotto [27], emission into those non-optical modes is sig-
nificantly lower than that in optical modes. They illustrated their statement
with computations of emission into the positive norm modes (IL and ul)
in the large refractive index change regime — here we will present the first
results for all non-optical modes of positive and negative norm in all regimes
of refractive index change.

123



d : ¢ 5x107"
B, 107 g, 5x102E
= =
= 2
€ @
52 =
5 qp 5 sa107?
e T

1072 I 3} i i 10~ L L L L
0.03 0.06 0.09 0.12 0.03 0.06 0.09 0.12

R (V) fies'(ev)

L
oy
=]

|
da
T
‘
l’
f
.
’
]

Flux density I',"™

0.03 0.06 0.09 012
Ru'(eV)

Figure 3.7: Spectrum of emission into the optical mode of negative norm
nolL, in which light propagates away from the interface into the high refractive
index region of the RIF. Emission is calculated in the moving frame of velocity
u = 0.66¢. a) The flux density is displayed for increasing values of dn (4.9 x
1072 (magenta line), 3.6 x 1072, 3x 10722 x 10~2 (purple line), 1 x 10724 x
1073,2 x 1073, and 1 x 1073). b) The flux is plotted for decreasing values
of refractive index changes in the medium regime (én = 5.8 x 1072,5.6 x
1072,5.4%x1072,52x1072,5x 102,48 x 1072,4.6 x 1072,4.4 x 1072,4.2 x
1072,4%x1072,3.8x1072,3.6x107%,3.4x 1072). ¢) The contributions iS"Om‘Q
of in GMs to the flux in noL are calculated for én = 2 x 1072, The five

positive norm in GMs contribute to emission into nolL: uR (black), uoR
(green dotted), moL (orange dot-dashed), loR (blue dashed), and IR (brown).
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Figure 3.8: Spectrum of emission into all non-optical modes, of positive
and negative norm. Emission is calculated in the moving frame of velocity
u = 0.66¢ for a low (én = 0.02, black line), medium (dn = 0.049, red line),
and high (dn = 0.3, magenta line) change in the refractive index: emission
into mode a) IL, b) uL, ¢) nlL, and d) nulL.

In Fig.3.8, we observe that emission in non-optical modes of all norm is at
least an order of magnitude weaker than in any optical mode, for all comoving
frequency ' (see Fig.3.6). This corroborates our earlier intuition that the
study of optical modes only would reveal the essentials of horizon physics in a
dispersive medium such as fused silica. Remark that, although the emission
in all non-optical modes is structured into intervals with black- or white-hole
horizon, and no horizon, the spectrum features vary most in the regime of
low refractive index change. We note that, of all the non-optical modes, niL
(Fig.3.8 ¢)) has the highest emission rate. This mode has a negative norm,
and it would be interesting to understand why its flux density is so much
higher than that in other non-optical modes (and actually relatively close to
that in the weakest optical modes).

I foresee this is due to its relative "closeness" with positive-norm optical
modes in the moving frame dispersion diagram (that is, it has a &', moving
frame wavenumber, close to that of loL, for example). Further work should
be dedicated to this question, as one might learn more about the physics
of event horizon in dispersive media by shedding light upon the coupling of
negative and positive norm modes across — and on the same side of — the
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Figure 3.9: Total emission into moR over the subluminal interval
{w;nmR,w;nm R}. a) estimated photon number for different velocities u and
b) size of the interval in the frame moving at « = 0.66¢ as a function of index
change dn

Total black hole emission

To conclude with our considerations of emission in the moving frame, it is
interesting to calculate the total photon flux over the SLI {w,’mn}%, W R} by
integrating over the spectrum of Fig.3.4 d). In order to convert the flux to
a realistic, although very approximate, photon nomber, we assume that the
RIF propagates over a distance of Imm. The resulting photon number as a
function of index change dn is given in Fig.3.9 a). The number of photons
excited from the vacuum first grows with power = 2.5 of on until én = 0.04.
The emission spectrum becomes wider in a linear way, as shown in Fig.3.9
b). Thus the emission rate for a single mode increases with dn3/2. This
scaling factor is unexplained and would deserve to be investigated further.
As we explained earlier, in the regime of medium and large refractive index
change, i.e., for on > 0.04, the spectral width saturates, and the emission
rate grows slower accordingly. However, these index steps are difficult to
reach experimentally by nonlinear pulses. The rate of increase as a function
of dn calculated here shall be an essential guide in forthcoming experimental
investigations of the spontaneous emission of light from a RIF — such a
scaling will be a signature that the observed effect indeed arises from vacuum
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fluctuations at the horizon.

3.3.2 Emission in the laboratory frame

Finally, we arrive at the main theoretical result of this Thesis: we will com-
pute spectra of emission from the refractive index front (RIF) moving in a
dispersive medium as they can be observed from the laboratory frame. This
is a new result, which was calculated for the first time in [28]. Here, we will
take more space to comment further on the spectra of [28] — in particular
we will study the characteristics of the emission peak in the negative-norm
optical-mode, noL, which will be the subject of the experimental efforts pre-
sented in the last chapter of this dissertation.

The spectra calculated in section 3.3.1 would be observable in the moving
frame. In other words, one would need stationary photon counters in the
frame moving (with the RIF, at velocity u = 0.66¢) in the medium to observe
the flux density in various modes. Of course, in an actual experiment, the
detectors are located on an optical table in the laboratory, and are thus at rest
in the laboratory frame. And thus, the spectrum observed is different from
those of section 3.3.1. In [27], Finazzi and Carusotto calculated a laboratory
frame spectrum for only one mode, which is not the strongest mode. However,
this spectrum is not observable for the following reasons: first the refractive
index change on they consider cannot be reached experimentally; second, on
either side of the RIF, each moving frame frequency w’ corresponds to up to
eight different laboratory frequencies for the 8 modes involved, as in Fig.2.3.
In this section, we will make use of the algorithm we created in section 3.2
to calculate emission from 200 nm to 7000 nm in the laboratory frame. As
we explained when detailing the algorithm, we calculate emission with only
positive laboratory group velocity. and we found that emission at a fixed
laboratory frequency may arise from several optical modes.

Laboratory frame spectral density in fused silica

Figure 3.10 shows laboratory spectra in bulk fused silica for three index
changes in the low refractive index change regime (dn < 0.04). As the
spectrum is composed of contributions from different modes for different
mode configurations, it exhibits a number of sharp features that we will now
proceed to describe. Note that we choose to limit the range of optical wave-
lengths such that no modes in the top branch of the dispersion relation (2.59)
are excited, resulting in a cut-off at 230 nm (this will of course be material
dependent). Starting from this cut-off wavelength, we first encounter a peak
around 250 nm — which is actually the largest spectral density obtained, and
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corresponds to emission from the negative-norm mode noL. We shall come
back to this peak and comment on its features later, but we can already
dwell upon its existence: emission is generated by the pairwise coupling of
two modes of opposite norm. Mode nolL is the only negative-norm mode on
the optical branch, and because of the shape of the dispersion in the UV, it
covers a rather small laboratory spectral interval (between the solid violet
and red vertical lines in Fig.3.10). Therefore, all emission due to the coupling
of two optical modes leaves a contribution within this emission peak in the
UV spectral range. The optical emission being by far the strongest, this UV
interval contains emitted photons almost every time a photon is emitted at
all.
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Figure 3.10: Emission spectral density in the laboratory frame. At each
wavelength the total spectral flux density, the number of photons emitted per
unit time and unit bandwidth (in photon per nm and per ps), is the sum of
contributions from all modes. Emission is concentrated in the UV in a narrow
spectral peak generated from mode noL. Emission is also strong over spectral
horizon-type intervals. Spectra are calculated for wavelengths above the
violet line, beyond which there are no contributions from the top dispersion
branch. The red line corresponds to «w' = 0 (phase velocity horizon). The
black and orange dashed lines indicate the interval of the black-hole (white-
hole) mode configuration for the moR (loL) mode at short (long) free-space
wavelengths.

The coupled positive-norm mode (i.e., the partner photon), if optical, can
be found at the remaining optical frequencies. Not all coupled mode pairs
are separated by a black- or white-hole-type horizon. For example, intervals
with horizons, as schematically sketched in Fig.2.6, are found between the
two sets of black and orange dashed lines in Fig.3.10 but not in the adjacent
spectral regions. The short (long) wavelength interval (indicated by arrows in
Fig.3.10) corresponds to a black-hole (white-hole) configuration. We observe
that the presence of optical horizons leads to an enhancement of the emission.
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Modes moR and loL exhibit clear horizon emission profiles? between the
black and orange dashed lines, and their intervals of emission are indicated
by arrows. Over the visible range, emission from moR dominates.

Figure 3.10 also shows traces for lower nonlinearities. As expected, the
spectral density decreases, and the intervals of optical horizons, associated
with strong emission, narrow. The red line at 286 nm corresponds to zero
moving-frame frequency (w’' = 0, phase velocity horizon condition); no major
spectral features seem to be associated with this position. This is more clearly
seen when taking a closer look at the emission peak in the UV.

Emission peak into the negative-norm optical-mode

We now focus on this peak in the UV: in Fig.3.11, we plot an excerpt of
Fig.3.10 that shows the interval over which the highest density of emission
can be observed. For wavelengths between 230 nm and 286 nm, emission is
due to contributions from light in mode nol only. For longer wavelengths
(beyond the red line), only mode uoL contributes to the emission. We see
very clearly that the transition from emission from nolL to uoL is smooth and
that no spectral feature is associated with this position. So it seems that the
existence of a phase velocity horizon at this wavelength does not influence
the rate of emission. Note that this wavelength lies outside of the horizon-
type intervals, that are delimited by dotted orange and black vertical lines in
Fig.3.11. Evidently, emission is increased over these horizon-type intervals,
and the spectral shapes observed in the moving frame (refer to Fig.3.11)
feature in the laboratory frame spectral density — they are merely mirrored
by the effect of the boost: in the moving frame, mode nolL has negative
group velocity, whilst in the laboratory frame it has positive group velocity.
As a result, the UV peak is highly structured in intervals with horizon-type
and no horizon emission, with the largest spectral density obtained at 251
nm (corresponding to the onset of the frequency-interval over which the RIF
acts as a black hole horizon).

As can be seen from the dispersion relation in the moving frame (see
Fig.2.5), and from the spectra computed in Fig.3.10, as the height of the
RIF (the change in refractive index dn) decreases, the intervals with horizon
emission narrow. So the peak at 251 nm in Fig.3.11 would move to shorter
and shorter wavelengths as dn is lowered, and its spectral density would
decrease. Referring to the experimental data of [19], in which a fundamental
soliton of height dn = 8 x 1077 was propagated in an optical fibre, we can

2In section 3.3.1 we saw that emission over the (white- and black-hole) horizon intervals
is characterised by a "shark fin" shape. We identified this as a signature of horizon physics,
as illustrated in Figs. 3.5 and 3.7.
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compute the spectrum of light spontaneously emitted from the vacuum of
a RIF of height of the order of 107% in bulk fused silica. This is shown in
Fig.3.12: the high spectral density feature is now extremely narrow, with a
bandwidth of 1.5 x 10 ™% nm, and a strength of about 2 x 10'® photons per
unit time and unit bandwidth. The peak remains significantly strong with
respect to emission at other wavelengths, which should make it an adequate
target for an experiment.
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Figure 3.11: UV peak of the laboratory frame spectral density of emission
from a RIF. The RIF (of height 6n = 0.02) in fused silica moves at velocity
u = 0.66¢, and this temporally varying medium excites photon pairs out of
the vacuum. For each photon pair created on the optical branch of the dis-
persive medium, one photon will lie in the interval [230nm, 286nm] because
that is the interval over which the unique optical mode with negative norm
mode contributes to emission as measured in the laboratory frame. The spec-
trum is structured in intervals of emission with black-hole, white-hole and
no horizons.

The quantum state at the output is expected to be a two-mode squeezed
vacuum state if only two modes were involved (see the argument of section
2.1.2; and in particular the derivation leading to Eq.(2.46)). However, the
present study makes clear (via Fig.3.7 d) for example, or Eq.(2.93)) that, for
each moving-frame frequency. each mode can couple to up to five positive-
norm and three negative-norm modes. Thus we expect the final quantum
state on the optical branch to be in a mixed state across the optical modes.
Yet, coupling between particular mode pairs seems to dominate in parts of
the spectrum — over intervals in which there are horizons —, in particular
within the optical branch (see Fig.3.6 d) and the almost-equal flux density
in moR and noL). Further characterization of the exact state emerging is
needed — and one might want to compute a correlation map between the
modes in the moving and in the laboratory frame to scrutinise it.
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Figure 3.12: Laboratory frame emission for én = 2x 107% from a RIF moving
at u = 0.66¢ in bulk fused silica. Only the negative-norm optical-optical
frequency mode noL contributes to the emission between the purple and red
lines, and only the positive-norm optical-frequency mode uoL contributes to
the emission beyond the red line. In b), we have zoomed in around the 209
nm region to display the clear black-hole-horizon-type emission feature of the
UV peak.

3.3.3 Conclusion and discussion

It would be interesting to compute such a spectrum as 3.11 for a different
geometry of the RIF, for example a more realistic pulse shape such as a
hyperbolic secant squared, to assess which of the numerous features displayed
in Fig.3.11 are conserved. Efforts in this direction have been pursued in recent
publications, see for example [95, 58, 98], in which analytical or numerical
calculations in the moving frame were carried for smooth RIF geometries
— but no spectrum in the laboratory frame, or even pulse-like geometries
(with asymptotically-flat, low-refractive-index, regions on either side of a
symmetric bell-shaped RIF) were considered.

In the search for spontaneous emission from an optical setup, the study
of the simple geometry of the step-like RIF has proven extremely informative
in that it allowed for:

1. clearly establishing the matching conditions between the fields on either
side of the interface;

2. clearly identifying the various contributors to emission in positive and
negative norm modes — for example, Figures 3.6 d) and 3.7 d) make
clear which mode takes part in the quasi-pair-wise emission;

3. creating algorithms to describe the scattering of an incoming field into
outgoing fields without approximations — indeed, in contrast with the
above-mentioned publications, we consider exact solutions to the fields
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equations in asymptotically flat regions around the interface, and do
not resort to the JWKB approximation, for example;

4. discovering signature features of event horizon physics in dispersive
media, such as the increase in the photon flux and the shape of this
increase;

5. computing the first spectrum of light spontaneously emitted from the
vacuum as it can be observed in the laboratory frame.

Such an algorithm as that presented in the first part of this chapter
(section 3.1) can be used to parse a pulse into discrete regions, and to thus
calculate a scattering matrix for incoming fields on the right and on the left
of the (now spatially symmetric) RIF into outgoing fields (on the right and
on the left of the RIF). This original idea of Konig’s has not yielded any
result yet, but is under investigation by others in the Quantum Optics group
at St Andrews.

In [87], the authors make use of the algorithm developed in [119] to calcu-
late spectra for a smooth hyperbolic secant squared profile in the refractive
index of a fibre. Their findings and methods will be compared to these of
this Thesis in a later paragraph — see section 4.5.

For the sake of this Thesis, we content ourselves with a step-like RIF
geometry and the spectra computed in this chapter®. The most interesting
feature of these spectra, for what follows, is certainly the high spectral density
UV peak. Indeed, as we discussed above, this peak stems from contributions
of light in the unique negative-norm optical-frequency mode in the medium.
In the mechanism of photon pair creation from the vacuum at an interface,
one of the two peers will have a negative norm (like the Hawking partner
does in the theory of Chapter 2), so any positive norm photon emitted at
a wavelength beyond the UV peak will be correlated to a photon within
the peak interval. In particular, photons in this UV peak (more precisely
those within the black-hole horizon feature of the peak) will be entangled
with photons in the unique mode that allows for light to escape from the
boundary (like the Hawking radiation, again).

In an experiment, one cannot realise a step-like but a smooth RIF. Never-
theless, because of its pair-wise emission origin and of the refractive index of

3As was discussed in the introduction of this Chapter, the dispersion relation used to
compute the spectra is not that of the medium used in the experiment of Chapter 4: it is
that of bulk fused silica (BFS) and differs from that of the photonic crystal fibre (PCF).
Considering BFS allowed for checking our results against the literature. In contrast, it
is not possible to use a physically meaningful analytical relation for the dispersion of the
PCF. This examination is the subject of ongoing work at St Andrews.
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materials in the UV, the negative-norm optical peak will always have a large
spectral density and narrow bandwidth relative to the rest of the spectrum
of spontaneous emission. For most materials that can be used in an optics
experiment nowadays (eg bulk fused silica, diamond or fused silica PCFs),
this peak will lie in the UV. It thus appears as an observable of choice in
any experiment that would aim at detecting photons emitted by an optical
black-hole horizon.

In the next chapter of this dissertation, we will present the experimental
efforts that were conducted in this direction: we will, in particular, see how
positive-norm light, in a non-vacuum state, incoming on the RIF would scat-
ter into the negative-norm mode, yielding parametric amplification of the
emission in this mode.

133



Chapter 4

Experimental observation of
scattering at a moving RIF

4.1 Stimulated scattering

Looking back to the previous chapters of this dissertation, we see that we have
successfully explained how an analogue to the horizon of a black-hole could
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be created by means of a light-induced disturbance in the refractive index of
a dispersive dielectric (see section 1.3); and how the study of the conditions
under which this happens can shed light on various aspects of black-hole
physics. In particular, in section 2.2, we expanded and used a quantum
theory for light in a dispersive medium to calculate the rate of spontaneous
emission from the vacuum at a moving front in the refractive index (RIF).
This study shed some new light on the effect of particle pair creation at the
(analogue) horizon: on the one hand, we showed that spontaneous emission
— that results from the mixing of a variety of positive and negative norm
modes at the RIF — takes place at all frequencies, even at frequencies at
which the conditions for the RIF to act as an analogue horizon are not met.
On the other hand, we found that emission was stronger around the horizon-
like frequency-intervals with a characteristic spectral shape.

Furthermore, over the horizon intervals, quasi pairwise particle produc-
tion seems to dominate - with strong emission in a unique (positive norm,
optical) mode allowing for light to "escape from the horizon" and a negative
norm (optical) mode in which light "falls behind the horizon', in a process d
la Hawking. Interestingly, we also found that contributions from this latter
mode (called nolL) yielded the highest spectral density as it can be mea-
sured in the laboratory, in particular over the analogue-black-hole frequency
interval.

The findings summarised above stem from the study of the scattering of
incoming field modes in the vacuum state, and help understand the condi-
tions that an experiment aimed at observing spontaneous emission of light
from the vacuum would have to meet. To date, no such optical experiment
has been successfully conducted, but the classical effects of the horizon on
waves has been extensively studied and demonstrated — see for example the
experiments of [19] and [47]. In these experiments, a mode of light in a coher-
ent state was sent on the RIF and the resulting reflection and frequency shift
were observed. This phenomenon, in the framework described in section 2.2
of this dissertation, is nothing else than the scattering of an incoming mode
of positive norm (populated with photons, since it is a coherent state) in an
outgoing mode, of positive norm as well, that allows for light to propagate
away from the RIF into the analogue-outside region (the low refractive index
region, for ¢ > 0, of Fig.2.4).

Let us cast this statement in a derivation: we can use the scattering
theory outlined in section 2.2.4 to calculate the expectation value of out
modes when an in mode is in a coherent state. Denoting « (&) as a mode of
same (opposite) sign in norm as ag, the incoming state is defined as |p,,) =
Ma0) @ artag |0a) @35 [0a). This state is populated with photons in a unique
mode of positive norm «q that is in a coherent state, whilst all other positive
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and negative norm modes are in the vacuum vacuum state.
The number operator in an out mode «; is given by Eq.(2.90). Whence
the expectation value for the number of photons in the out mode is <N ‘“> =

(Nag | N |10y ). For clarity, we will perform the algebra term by term, begin-
ning with the first term: by a* |pa,) = 1 110),

(pagl D2 8275440 [ poy) = D 7" 3% [ SaragBaag
ao! aa! (41)
= [m Pl

The second term was calculated in section 2.2.4 by Eq.(2.91) and yields
S 13%1%. Now, calling on a¥a~t |nx) = <?7X> Inx) + |nx), and recalling
that the incoming modes of negative norm are in the vacuum state, |05),

which implies that the first term goes to zero, it follows that a¥ a4t = 11) -
Wherefrom the third term of (2.90) goes to zero:

(Pagl D BB 5165 | poe) = 11 Gagay (Mag|lar) = 0, (4.2)

ad!

and so does the fourth one -

<pao| Z Bdalga/m&&&a/ |pa0> = <16¢‘ 5110&177 |77a0> = 0. (43)

ao’

Therefore, the expectation value in an out mode when one of the positive-
norm 7n modes is in a coherent state is

(o) = |geect Pl + 30 1% 2 (44)

The second term is the expected contribution from the vacuum (an incoming
mode of opposite sign in norm to the considered out mode will scatter into it
and the action of its creation operator on the vacuum will result in a photon
being emitted). The first term is due to, in quantum optics, parametric
amplification: an in state comprising photons in one positive norm mode
only will stimulate emission into any out state, irrespective of the sign of
the norm of the latter. Indeed, upon introducing the out mode «y, we have
made no assumption regarding the sign of its norm — the above derivation
actually holds for both positive- and negative-norm out modes. To the best
of my knowledge, this is an original finding of this Thesis: it is the first time
that the stimulation of outgoing states of negative norm by monochromatic
coherent input states of positive norm is introduced in the field of optical
analogues.
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Two experiments performed by Rousseaux et al. [12] and Weinfurtner
et al. [13] already demonstrated the phenomenon of stimulated scattering
from a positive to a negative norm wave at the group velocity horizon in
a water-based setup. Note that there is a debate in the community as to
whether these water wave experiments were performed in the linear or non-
linear regime [23, 123]. In that regard, the 2016 experiment by Rousseaux and
collaborators [21] more clearly demonstrates physics belonging to the linear
regime. Likewise, the first experimental observation of negative-norm light
in optics, by Konig, Faccio and collaborators in 2012, was performed in the
nonlinear regime [1]. In that experiment (see section 1.2.2 for a more detailed
discussion), the pulse sent in the dielectrics was well above the power-level
for fundamental solitons. Thus it is a nonlinear eftect, whereby photons from
the pulse were scattered to different frequencies — including the Negative
Resonant, Radiation (NRR) in the UV — that was observed.! Although the
observation [1] was a convincing evidence of negative-norm light created by
parametric generation, this experiment did not provide well-defined input
mode frequencies as the stimulation resulted from the broad spectrum of a
collapsing pulse. Furthermore, because of the high intensity, and the induced
nonlinear propagation of the pulse, it is unclear whether the scattering of the
incoming modes (from the pulse itself) into outgoing modes can be described
by the (linear) physics of event horizons.

In terms of the optics experiments [19] and [47], this means that the
observed (positive norm) frequency shifts were accompanied by transfer of
energy from the probe to a wave of negative norm. This effect was not ob-
served at the time, though, and we here propose to do so. For this purpose,
we assemble an experiment allowing for an incoming laser beam to impinge
on a fundamental soliton propagating in an optical fibre, to probe the effect
of energy transfer to a negative norm wave at the analogue horizon. This
chapter is the experimental component of the Thesis, and shall culminate in
commnients on the observation of the above-mentioned effect in fibre optics. In
the next section, we will present the setup assembled to preform the experi-
ment. We will explain the choice of the laser used to create the soliton in the
optical fibre, and that of the frequency filtering and measurement techniques
used to observe frequency shifting at the horizon. We will then dedicate a

!The experiment that was realised for this Thesis relies on the propagation of a funda-
mental soliton in the fibre. This modifies the refractive index by the Kerr effect — which
is a nonlinear effect — and the photons that are scattered at the pulse edges come from
a different light field, a probe. The latter scatters linearly on the refractive index front:
although this front is created by nonlinear means, the scattering described by Eq.(4.4)
and implemented in the experiment is a linear process, unlike the generation of NRR from
higher-order soliton pulses.
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section to the observation of positive-norm to positive-norm frequency shifts,
and comment on the various theories that can describe this effect. Following
on which, the chapter will conclude with the presentation of the efforts made
towards the detection of light scattered from the positive-norm in mode to
the negative-norm out mode — that lies in the UV in the present case. Fi-
nally, we shall make some remarks on the present endeavour and look out to
the future of this experiment.

4.2 A journey, at the speed of light, on an
optical table

In this section of the dissertation, we will look at all the apparatus and
optical elements used in the setup that was created to observe the frequency
shifting of light at the optical horizon. The optical elements fall into two
categories: the optics used to prepare the state of light sent in the fibre,
and the optics used to collect the output and distribute it to the various
measurement devices. Likewise, the apparatus can be separated between the
lasers used to create the input, and the measurement devices we chose to
probe the output. All are arranged around the optical fibre in which the
phenomena of interest take place. This section presents all of these in the
order one would encounter them in when journeying on the optical table,
from the lasers through the fibre and to the measurement devices - as shown
on the bird-eye view schematic of the setup in Fig.4.1.
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Figure 4.1: Schematic of the experimental setup. The Verdi V6 laser delivers
a single frequency CW beam at 532nm that is used to pump the DelMar
cavity and coupled in the fibre (PCF) and used as a probe wave. The DelMar
cavity outputs ultrashort, pJ-energy, pulses of central wavelength 750 to
890nm that are propagated through a pair of dispersion compensation prisms
(DCP1 and DCP2) twice to create negative group velocity dispersion (GVD)
and compensate for the broadening of the pulses upon interaction with all
other optics. HWP1 and PBC are used to control the amount of IR light
that reaches the tip of the fibre. HWPIR and HWPG are used to align
the polarization of the pulse that generates the fundamental soliton in the
fibre and that of the probe wave. Visible-IR reflectors, MG1 and MG2 for
the green, MIR and the dichroic filter for the IR, are used to aim the co-
polarised input beams through the input coupler IC on the tip of the PCF.
The UV component in the output beam is collimated by the output coupler
OC (UV-condenser triplet). The spectral characteristics of the visible and
IR components of the light can be measured by inserting VISI in the output
beam, and further inserting a dichroic and notch filters before the CCD
spectrometer. The UV component of the beam is isolated from all other
light by spatially and frequency filtering the output beam by means of iris
and the cascaded reflection filter CRF (composed of 2 UV mirrors) and UV
mirrors, respectively. UV light is then probed with sub nm precision by the
single photon counter SPC installed behind the monochromator.
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4.2.1 Pulse and probe sources

In the experiment, the front in the refractive index (RIF) of the fibre is
realised by means of an intense few-cycle pulse that creates a soliton (see
section 1.2.1 for the theoretical description of this effect). The RIF is probed
with a continuous wave (CW) laser beam of wavelength 532nm.

Probe laser

The probe wave is provided by a CW laser at 532nm wavelength (Verdi V6,
Coherent Inc.), that delivers 6W of output power in the TEM, transverse
mode. The output spectrum of this laser is actually an extremely narrow line
at 532nm, of width less than 5MHz?. This single-frequency (single longitudi-
nal mode) operation makes it ideal to probe the effect of frequency-shifting
at the RIF: the coherent state that will be scattered at the RIF will be of a
single, monochromatic, comoving frequency «’, as in the calculations (4.4).
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Figure 4.2: Schematic of the Trestles 100 folded cavity, DelMar Photonics.

Pulse laser

A 3W, 532nm beam provided by the Verdi laser is coupled to the cavity of a
Titanium:Sapphire laser (Trestles100, Del Mar Photonics, Inc.) and used to
pump it to create pulses shorter than 100fs, with a repetition rate of 81MHz,
in the IR.

This laser is based on a folded cavity design (see Fig.4.2, composed of 10
mirrors (including M1, M2, HR and the output coupler (OC)), a Titanium-

2Manufacturer data, measured over 50ms with a thermally stabilized reference etalon
at maximum specified output power.
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Sapphire crystal (TiS), a lens for the focusing of the pump radiation (L), two
prisms (P1 and P2), and a slit (S). This folded design results, in particular,
in a virtually astigmatism-free output beam. It also enables the tuning of
the central wavelength of the IR pulses — in the experiments described in
this thesis, I could create pulses of central wavelength, A., 749-887nm (the
Ti:Sapphire gain range extends from 710 to 950nm) of duration between 50
and 85fs. These pulses are created by means of the Kerr lens mode-locking
(KLM) principle of operation [124].

As we will see later, the experiment solely requires the propagation of a
fundamental soliton in the fibre, thus the IR power impinging on the tip of
the fibre ought to be much lower than the maximal output power attainable.
I obtained average powers above 200mW for pulses of central wavelength .
between 790 and 870nm. For output pulses of central wavelength beyond this
range, I obtained lower average powers, typically below 190mW. I observed
that the pulses at the output of the laser all had a spectral density that could
be fitted with a hyperbolic secant function, as in Fig.4.3. This is a signature
of cavity solitons, i.e., the pulses propagating inside the cavity are discrete
solitons.
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Figure 4.3: Output spectra of the pulse laser (Trestles100, Delmar Photonics
Inc.). The central wavelength of the pulses is tuned from 750nm to 890nm.
The (normalised) spectral density of the pulse at all wavelengths is charac-
teristic of a cavity soliton — it can be fitted with hyperbolic secant shape. as
exemplified for the A\, = 840nm pulse (AX = 8.8nm, Ty = 48fs, Ep = 8.94pJ).

Keeping the pulses short

As can be seen in Fig.4.3, the pulse emitted by the pulse laser are relatively
broadband, with a bandwidth (measured at the full width at half maxi-
mum) AX = 8.8nm at 840nm, corresponding, by the time-bandwidth product
ANAE > 0.315A3/c [124], to a pulse length 7w gy = 84fs. Upon reflection
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on surfaces, or transmission through the material of the various optical ele-
ments on the way to the tip of the optical fibre, such short-broadband pulses
experience positive group velocity dispersion (GVD) and thus broaden. To
compensate for this broadening, which is detrimental to the control of the
soliton ultimately generated in the fibre, the beam is passed twice through
a pair of dispersion compensation prisms (DCP1 and DCP2) by means of a
reflection on a mirror positioned after the second prism (as can be seen on
Fig.4.1). Careful alignment of the beam path through the pair allows to cre-
ate negative (or anomalous) dispersion: high frequency components are made
to travel faster than the lower ones, thus negatively chirping the pulse (see
the Ph.D. dissertation of J. McLenhagan [54] for the various GVD and GDD
techniques developed by the St Andrews group). Two passages through the
pair result in a negative GVD that compensate for the interaction with other
optical elements further in the beam path down to the fibre tip, and ensures
that the pulse used to create the soliton is indeed an unchirped hyperbolic
secant one.

4.2.2 Polarisation and coupling of input light

Continuing our journey on the optical table towards the tip of the fibre,
alongside the TR pulse, we first encounter some polarisation optics. As was
mentioned earlier, and will be calculated later, the realisation of a RIF in the
optical fibre does not require the full average power available at the output
of the Trestles100.

Polarising the input light

In order to control the power impinging on the tip of the fibre, we use a
combination of polarisation optics, a half-wave plate (WPH05M 808, Thor-
labs Inc.) and a polarising beam cube (PBS052, Thorlabs Inc.), labelled as
HWP1 and PBC, respectively, in Fig.4.1. Both intended for use over the
spectral range 620 — 1000nm, which, as can be seen on Fig.4.3, covers the
full pulse bandwidth for all central wavelengths. The IR beam is linearly
polarised, along an axis that can be rotated, by HWP1. As a function of
the polarisation state sent on the PBC, none, a fraction, or all of the power
(up to Fresnel reflection) will be transmitted through it. Behind the PBC,
and before the IR beam encounters the coupling optics, it goes through a
second half-wave plate, HWPIR (WPH05M 808, Thorlabs Inc.) on Fig.4.1.
HWPIR is used to rotate the linear polarisation of the IR beam and to align
it to either the polarisation axes of the fibre, or in parallel with the green
beam.
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Figure 4.4: Measurement of half-wave plates axes alignment by Brewster re-
flection. The incoming polarisation of the IR and green beam is controlled
via rotation of HWPIR and HWPG, respectively. P-polarised light (after
reflection on, for the IR, or transmission through, for the green, a dichroic
filter) is reflected on the microscope slide (inserted at 104 degrees, the Brew-
ster angle, in the beams), and the resulting power is collected on the power
meter head. The power in the Brewster reflection is a Sin function of the

HWP angle.

The green probe consists of the, undepleted, remains of the 3W of 532nm
light used to pump the pulse laser: mirrors M1 and M2 (that constitute
the telescope around the Ti:Sapphire crystal in the Trestles100 cavity) are
transparent at 532nm, and let 300mW of the pump beam escape the cavity
via an aperture (as can be seen on Fig.4.2). This Gaussian beam is directed
towards the coupling optics by reflection on 4 mirrors — in particular MG1
and MG2 (see Fig.4.1) are used to aim the beam through the coupling lens
onto the tip of the fibre. After MG2, a half-wave plate (HWPG, WPH0O5M-
532) specified for 532nm is used to rotate the linear polarisation of the green
beam. In the experiment, the input IR and green beams are co-polarised.
The two half-wave plates, HWPG and HWPIR, are not exactly aligned in
their respective mounts, as can be seen on Fig.4.4. This was gauged by
measuring the power in the light reflected on a glass slide set at the Brewster
angle in the linearly polarised beam as is diagrammatically illustrated in
Fig.4.4: a microscope slide is placed at 104 degrees in the IR (green) beam
reflected (transmitted) through a dichroic filter — the role of which will be
explained later — and the power meter head collects light reflected (in a p-
polarisation state) from the slide. The amount of light in this reflected beam
varies as HWPIR, or HWPG, is rotated, and the result is shown in Fig.4.4.
We see that there is a difference of 60 degrees between the, eg, horizontal
axis of the two waveplates.
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Figure 4.5: Transmission curves (at normal and 45 degree incidence) of the
dichroie filter (660IK25, Comar Optics Ltd) — Manufacturer data.

Coupling light in the fibre

Input light, from the IR and green beams, has to be focused on the tip of the
fibre, to a waist of less than 2pm (to match the surface area of the core of the
fibre, which dimensions will be detailed later) along the direction of the fibre
axis. This implies that the two beams have to be made collinear and then
focused by the same optical element. To achieve collinearity, the IR light
is reflected onto the coupling optics by means of a dichroic filter (6601K25,
Comar Optics Ltd), whilst the green beam is transmitted through it towards
the fibre. As can be seen from the manufacturer data in Fig.4.5, the dichroic
filter has a high reflectivity, of almost 100 %, over the wavelength range of
the IR laser beam, and a transmission of close to 95 % at 532nm — at 45
degree incidence.

The collinear IR and green beam are then focused on the tip of the fibre
by a (f=3.1mm) aspheric lens (C330TMD-A, Thorlabs Inc.), whose coating
reflectivity is plotted in Fig.4.6. This lens transmits close to a 100 % of the
light in the IR and green beam, in particular, at 532nm, the reflectance is of
only 0.5 %, making it suitable to focus the green beam onto the tip of the
fibre.® Unfortunately, this lens suffers from chromatic aberrations: the green
and IR foci are not found at the same point along the lens-fibre axis. To
compensate this, the green light is focused by a (f=300mm) lens before the
filter, at the point at which light propagated from the back end of the fibre,
and back through the coupling lens was focused. In doing so, I was able to

3 Again, although only 90 to 98 % of the incoming IR is transmitted through the lens,
and thus focused on the tip of the fibre, this does not matter in this experiment: indeed,
the laser delivers an output power sufficient to accommodatce for the losses at the lens, and
all the optics on the way to the fibre, and nevertheless generate a fundamental soliton in

the fibre.
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couple up to 60mW of green light into the fibre - for a coupling efficiency of
20 %. As a function of the central wavelength of the IR pulse, I could achieve
an IR-coupling efficiency of 21 to 39 %.
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Figure 4.6: Reflectance curve of type "A" broadband anti-reflection coating
of the C330TMD-A aspheric lens by Thorlabs, Inc. — Manufacturer data.

4.2.3 Optical fibre

Now we arrive at the central element of the setup, the medium in which
the pulses generate the RIF that scatters the green probe to other, positive-
and negative-norm modes of oscillation of the electromagnetic field. Our
theoretical study of section 1.2.1 will now seem less fortuitous: the medium
of choice for the optical study of analogue horizons is a photonic crystal fibre
(PCF). PCFs are a particular type of optical fibres engineered to efficiently
confine high intensity, ultrashort. pulses of short-IR wavelength in their core.
In particular, the dispersion of PCFs can be tailored to generate a regime
of anomalous dispersion for such short-IR wavelengths as those delivered by
the Trestles100 (in the 800nm regime, see Fig.4.3).

Characteristics of the fibre

Recalling the Nonlinear Schrodinger equation stated in section 1.2.1, Eq.(1.62),
we identified 3, as the second order dispersion parameter, or GVD parameter,
Py = %n(w)w /e with n(w) the effective (frequency-dependent) refractive in-
dex. For bulk fused silica, of which conventional fibres are made, it can be
calculated that £y is zero at A = 1270nm [54]. We called this wavelength
the zero dispersion wavelength (ZDW). The region of anomalous dispersion
lies at wavelengths longer than the ZDW. In fibres, there is a waveguide con-
tribution to the dispersion that shifts the ZDW. This contribution can be
made large enough by engineering PCFs, to move the region of anomalous
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dispersion to wavelengths as short as that of the Trestles100, or even the into
visible. There exists many PCFs design, and they all have in common the
main idea of surrounding the wavelength-size core of the fibre with a pattern
of wavelength-size air holes running the length of the PCF. The two main
core designs are a "missing" hole, or solid-core, or a hollow core.
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Figure 4.7: Dispersion curve of NL-1.5-670. Data courtesy of Blaze Photon-
ics.

The fibre used in this experiment is the NL-1.5-670 (Blaze Photonics),
that has a solid core of diameter 1.5um surrounded by a microstructure of
~2pm holes (the cladding), as can be seen in Fig.4.8. Its ZDW is 670nm,
thus pulses of central wavelength 790-870nm propagate in the anomalous
dispersion region of the fibre and can thus generate solitons. With the fibre
parameters communicated by the manufacturer, a nonlinear coefficient, ~,
of 250/W/km and a group velocity dispersion, D, of 145 ps/nm/km (see
Fig.4.7), we can use Eq.(1.64) to calculate the peak power of fundamental
solitons generated at all wavelengths on Fig.4.3: we obtain peak powers on
the order of Pp = 200W, see Fig.4.9 a). The average power necessary to
generate such solitons is calculated by[124]

P avy — Vrep Pp Tewi, (4-5)

with Tpw par = 1.763Ty, for a hyperbolic secant pulse, and the pulse duration
specified above: 50fs (yielding a T, of 28.4fs for a repetition rate of 81 MHz).
The average power depends on the central wavelength Ay of the pulse, as in
Fig.4.9 b), and is on the order of 1mW for an N=1 (fundamental) soliton.
As was repeatedly stated in the preceding argument, the average power de-
livered by the Trestles100 is in large excess of what is needed to generate
a fundamental soliton in the fibre. Indeed, even with a coupling efficiency

146



of only 20 % (lowest efficiency achieved in this experiment), a beam of only
5mW would suffice. This figure also comes as a confirmation of the adequacy
of the experiment design so far: few optical elements (6 mirrors, two HWP,
a PBC, a dichroic filter and a lens) induce positive GVD in the pulse (for
a total of ~ +375fs?), that is compensated for by the two passages through
the pair of dispersion compensation prisins and the fibre (that has a GVD
of —41.1fs?/cm [54]). This design enables control over the three input pulse
parameters of importance in this experiment: the input energy, the input
polarisation, and the duration (and chirp) of the pulse upon impinging on
the tip of the fibre and generating a fundamental soliton.

Figure 4.8: SEM image of the tip of PCF NL-1.5-670. Data acquired by
Andrea Di Falco - University of St Andrews.

In addition to their short-wavelength anomalous-dispersion region, and
their ability to confine high-intensity IR light in their core via mode sieving,
4 PCFs also allow for long-distance undisturbed propagation of the funda-
mental soliton by minimising pulse broadening through propagation — thus
allowing for nonlinear interactions over long distances. And, thus, for long
distances soliton-probe interactions — in the experiments presented in this
thesis, the probe scattered on the edge of the soliton over the total length of
the fibre, 1.2m. The output of the fibre falls in two categories: strong output
(the green and IR components of the beam) and weak output (the UV com-
ponent of the beam). These have to be measured with different apparatus
and have to be isolated from each other, as will be detailed in the coming
two sections.

4The lower order modes, that have a large cross section, cannot escape from the core
of the fibre because the "wires" between the cladding holes are too narrow. [125]
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Figure 4.9: Fundamental (N=1) soliton in the fibre (PCF NL-1.5-670). a)
Peak power of a fundamental soliton generated in the fibre for increasing
central wavelength from 750 to 900nm. The peak power is calculated by
Eq.1.64. b) Average power necessary to generate a fundamental soliton in
the fibre for increasing central wavelength from 750 to 900nm. The average
power is calculated by Eq.(4.5).

Fundamental and higher order solitons in the fibre

The experiments presented in this Thesis rely on the fine control of the order
(fundamental, N=1, or higher order) of the soliton that is propagated in the
fibre. This order can be determined by comparing the spectrum at the output
of the fibre with that of the input pulse for varying output powers. The pulse
propagating in the fibre generates a fundamental soliton when the two traces
overlap: up to a redshift of the central wavelength due to Raman scattering,
the spectrum of the fundamental soliton will be identical in wavelength and
energy (surface area in temporal space) to that of the incoming pulse.

I acquired spectra of the IR pulses in the fibre for increasing output power
from 0.25 to 16mW at all wavelengths from 749 to 887nm. An example of the
study of the soliton number is shown on Fig.4.10 for a input pulse of 840nm
central wavelength (as on Fig.4.3): the average output power necessary to the
formation of a fundamental, N=1, soliton is 1.25mW. A 7 = 93fs, A, = 842nm
soliton, of bandwidth 8nm and energy 8.3pJ then forms in the fibre. Note
that this average power is larger than what can be calculated by (4.5) and is
shown in Fig.4.9. This is due to the coupling efficiency at this wavelength: it
being low, the mode must overlap with the cladding and only a fraction of its
energy is propagated in the core of the PCF, where fundamental soliton are
generated and propagate. The spectral shape of the soliton slightly differs
from that of the input pulse because of the rotation of the polarisation axes
of the fibre over the full length of the fibre (and possibly as a result of the
overlap of the input mode with the cladding and core of the PCF).

For higher average output power, the propagation of the IR pulse results
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in the formation of two pulses that move away from each other in frequency
because of Raman scattering. Input pulses that have a shorter wavelength,
closer to the ZDW of the fibre will also generate a dispersive wave whose
wavelength will shorten as the average power in the fibre is increased.
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Figure 4.10: Soliton order as a function of the average output power. An
input pulse of central wavelength 840nm (black) is propagated in the PCF.
The input and output spectra are normalised to the N=1 soliton energy.
Output spectra for increasing average power P,y from 0.25 to 16mW are
measured, corresponding to soliton numbers of a), 0.63, b), 0.89, c¢), 1 (P =
1.25mW and E,. = 8.3mJ), d), 1.18, e), 1.41, f), 2, g), 2.53, and h) 3.58.
Note the change in the scale of the spectra. The spectra are plotted against
wavelength, from A = 800nm to A = 1100nm.
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4.2.4 Strong output measurements setup

Both ends of the fibre are set on two three-dimensional micrometer piezo
stages, that allow for further refinement of the tip-(in/out)coupling-optics
alignment. Light from the end tip of the fibre is collected by a 15mm UV-
condenser triplet (NT 49-693 aspheric UV lens, 0.5 NA, Edmund Optics)
chosen for its Numerical aperture (NA) that matches the NA of the fibre
in the UV, and its coating and focal length that are specified in the UV —
where the signal ultimately lies. Because of the strong chromatic aberration
of these optics, "visible" light (at 532nm and the (red or blue) frequency
shifted light) are not collimated when light in the UV is. Because the final
aim was to measure an extremely weak (few photons) signal in the UV,
I chose to collimate the UV beam and to use a diverging visible beam to
measure the positive-norm-to-positive-norm frequency shifts. This choice
will be commented further in paragraph 4.4.1. Visible light from the fibre
is directed to the CCD spectrometer (AvaSpec-ULS2048-EVO, Avantes BV)
by a reflector (BB5-EO2, Thorlabs Inc.) inserted in the beam (VISI) —
thus simultaneous measurements of the positive-norm-to-positive-norm and
positive-norm-to-negative-norm scattering processes is not possible with this
setup. This is a drawback only in terms of the duration of the measurement
procedure and does not impact the final result. On the contrary, a setup
allowing for simultaneous measurements had initially been designed but was
found to be too lossy in the UV.

Frequency filtering in the visible

As will be calculated in the following section of this dissertation (see section
4.3.1), only a certain amount of the probe energy actually scatters off the
edges of the pulse. Thus there is a strong beam exiting the fibre at 532nm
wavelength, that has to be filtered out to allow for measuring the (approx-
imate) spectral density in, and wavelength of, the frequency shifted light.
The dielectric mirror VISI will reflect over 99 % of the incoming light for
any polarisation state of the visible light. In order to avoid saturation by the
green or IR output in the spectrum regions of the red or blue shifted light,
two dichroic filters are inserted in the beam after the mirror: another short-
pass filter (660IK25) to filter out the infrared light, and a notch filter centred
at 532nm (NF03-532E-25, Laser2000 Ltd.) to suppress the strong 532nm
component left-over from the probe-pulse interaction. The notch filter has a
suppression bandwidth of 17 nm centred around 533 nm, where it effectively
acts as a 63dB attenuator, see Fig.4.11. Additionally, I found that, contrarily
to what Fig.4.11 suggests, the notch filter actually heavily blocks light in the
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UV, with an attenuation of over 30dB over the range 220 —280nm. Incoming
light is focused on the entrance slit of the CCD spectrometer by means of a
15mm lens.
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Figure 4.11: Transmittance curve of the notch filter (NF03-532E-25, Laser
2000 Ltd.). Manufacturer data.

4.2.5 Probing the invisible

As was said earlier, the output light is collected by a 15mm UV-triplet
lens that allows for collimating the UV component of the beam. This UV
beam is directed at the UV-measurement apparatus, that consists of an
avalanche photomultiplier tube (single photon counter, SPC) placed behind
a monochromator. In the experiment, we measure the signal rate in photons
per second (Hz) down to the single photon regime. To direct the beam to
the measurement apparatus, UV reflectors have to be used. Indeed, optics
that do not have a coating specifically made for the UV will strongly ab-
sorb over this wavelength range — this is, for example, the case with the
above-mentioned visible reflector.

Improving the SNR by filtering out contaminating light

As we will see in a following section of this dissertation, we expect a signal of
very few photons per second, so each of those that come out of the fibre are
a precious and scarce resource that has to be carefully handled on the way
to the measurement apparatus. At the same time, the visible and IR compo-
nents of the output beam are much stronger, by many orders of magnitude:
the average IR output power for the fundamental soliton regime is on the or-
der of ImW (see section 4.3.3) whilst the output power of the green is of about
60mW — these would create rates of about 4.2 x 10Hz and 1.6 x 10'"Hz,
respectively, on the SPC. I observed that, if unfiltered, the green and IR com-
ponents of the output beam would smear out in the monochromator: green
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and IR photons scatter off the grating and yield background counts at all
wavelengths. This "smearing effect” is not well understood and is not linear
in wavelength. I measured that the green component of the beam creates a
background of 2,000Hz, whilst the IR component creates a background of
only 100Hz over the range Thus, the green and IR have to be filtered out of
the beam that will eventually reach the monochromator to reach a regime of
signal to noise ration (SNR) allowing for detection of a few-Hz UV-signal. In
this section, I will discuss the various filtering techniques that were developed
and implemented in the experiment to isolate the UV signal from light that
contaminates the SNR — the green and IR components of the beam and the
background light of the laboratory. These are: the use of UV-coated optics
(mirrors and lenses) that absorb long-wavelength (green and IR) light, the
insertion of a UV-bandpass filter, and the spatial isolation from the (diverg-
ing) long-wavelength components of the beam and background light of the
laboratory.
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Figure 4.12: Spectrum of the bare, collimated, beam of the DHS lamp
(AvaLight-DH-S, Avantes Ltd.). Data measured with the SPC and monochro-
mator.

All the optics used in the experiment are standard, off-the-shelf, compo-
nents that are not well specified in the 220 — 240nm wavelength-range (for
example, the reflectivity of UV-coated mirrors over this range is not given by
the manufacturer) — thus we had to measure these properties. In all the ex-
periments aimed at gauging the UV abilities and characteristics of our setup,
we used a DHS lamp (AvaLight-DH-S, Avantes Ltd.), that emits a relatively
structured spectrum over the interval 220-260 nm, see Fig.4.12. We measured
the reflectivity of our UV-coated mirrors, "UV mirrors" (11-1620, Optarius
Ltd.), in the region 220-240nm by measuring the power a UV-bandpass filter
(228fs 25-25, Andover Corp.) would let through before the collimated beam
from the DHS lamp had been reflected on the mirrors, and after reflection.
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The reflectivity of the UV mirrors at near-normal incidence was measured to
be of about 92%.

A wusual isolation technique in optics consists in inserting interference
filters in the beam, that ouly transmit light over a narrow wavelength interval.
The UV-bandpass filter is very efficient at filtering out light, even over its
transmission bandwidth, as can be seen on Fig.4.13. For example, the above
mentioned background counts detected at all UV wavelengths as a result
of the smearing of the strong green and IR components of the beam are
totally suppressed by this filter. However, its peak transmittance is only
25% at 228nm, with a narrow 20nm bandwidth. Thus, any experimental
setup featuring this filter and the UV mirrors would discard so much UV
light on the way to the entrance slit of the monochromator that it would not
be a sustainable option (further arguments supporting this statement will be
given in a following paragraph, see 4.4.1). Thus, we could not include it in
our setup and had to resort to other filtering techniques to filter the green
component out of the beam.
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Figure 4.13: Transmission curve of the UV-bandpass filter (228fs 25-25, An-
dover Corp.). This filter has a 20nm FWHM transmission bandwidth. Man-
ufacturer data.

As can be seen in Fig.4.1, we used an arrangement of three double bounces
on a pair of UV mirrors to filter the green and IR components of the beam out.
We coupled the green laser only in the fibre, and measured an output power of
60mW, and found that only 2;:W of these remained after the beam had passed
through the "cascaded reflection filter" (CRF). So the beam was attenuated
by a factor 3x10* — 4 orders of magnitude or (40dB). CRF transmits 62%
of the (220 — 240nm) UV light provided that the collimated component of
the beam has a diameter < 4mm. Despite the strong attenuation of the
green and IR component of the beams, the smearing effect still creates a
background of the order of 100Hz and 10Hz, respectively. In order to further
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reduce this background, we installed an aperture (iris’ in Fig.4.1) to spatially
filter the green (and diverging) component of the fibre-output beam. Further
comments will be made on this when the measurements are presented.

The decontaminated beam is directed toward the entrance slit of the
monochromator, on which it is focused by a 100mm UV lens (PC UV 248-
400nm AR, Comar Ltd.). The UV detection apparatus consists of a single
photon counter (SPC) positioned behind a Czerny-Turner monochromator.
The latter is made of a pair of curved mirrors arranged around a grating. The
first mirror spreads the light on the grating,® and the second one refocuses the
diffracted light outo the exit slit of the box, behind which the single photon
counter sits. As we will see shortly, this monochromator (Acton SpectraPro
2500i, Princeton Instruments Inc.) allows for the number of photons in the

beam to be measured for a single wavelength with sub-nanometer precision
by the SPC.

4.2.6 Spectral sensitivity of the setup in the UV

In this section, I present the investigation of the spectral sensitivity of the
detection apparatus in the UV. In particular, the edge of the spectral sensi-
tivity of the monochromator and its coupling optics lies close to the wave-
length region at which the signal is expected to be observed. At this edge
the spectral response becomes highly non-uniform and therefore a calibra-
tion procedure is required.® This spectral sensitivity will be uniquely set
by the monochromator box: indeed, the single photon counters are based
on avalanche photomultiplier tubes (PMA 182, PicoQuant) that have a set
quantum efficiency in the relevant UV region of 15 to 20 %, see Fig.4.14.
The monochromator, on the other hand, will have a varying sensitivity as a
function of the wavelength — this is what we need to measure.”

SUV holographic grating 1800g/mm, 360 degrees turret, ARC-1-36HUV, Princeton
Instruments Inc.

6This had already been investigated by Dr McLenaghan for her Thesis (see [54]) but
I found that the setup that was designed at the time was based on mirrors that had a
low reflectivity in the UV. Moreover, no reliable data regarding the quantum efficiency
of the setup over the required spectral region was available, thus making the present
measurements necessary. It is worth noting that the procedure described here represents
unique advancements made by the Quantum Optics Group at St Andrews toward using
such apparatus to probe low intensity UV signals.

"Where the CCD spectrometer allows for measurements of the whole spectrum, the
data acquisition system for the monochromator allows either the monitoring of the signal
at a fixed wavelength in real time or scans to be taken over a wider range of wavelengths.
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Figure 4.14: Quantum efficiency of the PMA series single photon counters.
Relevant curve is in red (PMA 182, PicoQuant GmbH). Manufacturer data.

Spectral resolution in the UV

In order to measure the spectral resolution and bandwidth of the monochro-
mators, we used a commercial UV lamp provided to us by the Organic Semi-
conductors Centre (OSC) at St Andrews in their explosive-detection exper-
iments: the '"Tiramisu" lamp — the spectrum of which was measured when
they lent it to us and is shown on Fig.4.15. This spectrum has many features,
and we decided to focus on three of these that have a very narrow bandwidth:
the falling ramp at 192nm, and the peaks at 250 and 365nm. The lack of
information on the chemical content of the radiating plasma implies that
it was impossible to determine whether these features were characteristic
of emission lines or other emission processes, but this did not prevent the
study from being carried out because they appeared to be very stable in
their spectral and density properties. In what follows, we assess how well
the monochromator can resolve these features. To do so, we set the width
of the entrance and exit slits of the monochromators to equal aperture. The
former is based on the Czerny-T — see Fig.4.16: a broadband
illumination source (eg, the light of the Tiramisu lamp, Fig.4.12) is aimed
at the entrance slit (A), which is placed at the focus of a curved mirror (C)
that collimates the light and reflects it upon the grating (D). The collimated
light is diffracted from the grating and collected by another curved mirror
(E) which refocuses the light, now dispersed, on the exit slit (F). At the exit
slit, the wavelength components of the broadband light are spread out —
each wavelength arrives at a separate point in the exit-slit plane. The range
of bandwidth transmitted through the exit slit is a function of the width of
the slits.
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Figure 4.15: Spectrum of the Tiramisu lamp from the OSC at St Andrews.
Measured data.

Figure 4.16: Photograph of the Czerny-Turner monochromator (Acton Spec-
traPro 2500i, Princeton Instruments Inc.). The main components of the
monochromator are identified as A, entrance slit, B, plane mirror, C, colli-
mator (curved mirror), D, grating (1800 g/mm grating), E, focuser (curved
mirror), and F, exit slit.

We wish to determine the wavelength resolution of the monochromator.
The spectral resolution, in nm, that is a function of the entrance and exit slits
width (these are equally set). it the minimal resolvable wavelength difference.
Because the width of the entrance and exit slits is always set equal, these
will indifferently be referred to as the "slit width".

The measured spectra for increasing slit width inform us about the reso-
lution of the monochromator over the wavelength range. The procedure to
determine the spectral resolution of the monochromator is as follows: spectra
acquired for large slit widths are fitted with a reference spectrum acquired for
the narrowest slit width. The larger the slit width, the more light will enter
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the monochromator, thus the amplitude of the feature being scanned will
increase. Furthermore, as was said earlier, the larger the slit width, the more
details of all features become coarser and, ultimately, disappear. Therefore,
the reference spectrum is fitted to the data by adjusting its amplitude and
resolution — this is achieved by smoothing the reference spectrum with a
Gaussian distribution of amplitude h and standard deviation o

2742
es/a

N

g(s) =h (4.6)

Spectral density (Hz)

1925

T oaxoif

Figure 4.17: Gaussian fitting of spectral features of the Tiramisu lamp. Raw
data for a slit width of 0.05mm is shown in dotted blue, and the smoothed
high resolution spectra are shown in solid red for the 192nm ramp and the
250 and 365nm peaks.

The reference spectrum was taken with a slit width of 0.01lnm, smaller
than the specified instrument resolution. The parameter o for each slits width
is the resolution of the monochromator for this slit width and wavelength (or
wavelength range). T automated this fitting procedure in Mathematica, thus
allowing for fast and reliable fitting and o calculation. I varied the slit width
between 0.01lmm and 0.5mm, and could fit the 250 and 365nm peaks with a
Gaussian distribution (4.6) up to a slit width of 0.1mm. For apertures wider
than 0.1mm, the spectrum was clearly distorted and spread with no recog-
nizable features of the peak left. Likewise, the smoothing procedure failed
to yield a reasonable resolution for the ramp measured with a 0.25mm slit
width — although the spectral features of it were still recognisable. Exam-
ples of the fit for each spectral feature is plotted in Fig.4.17, for slits width
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of 0.05mm. I also measured the spectral resolution of the monochromator at
532nm by using light from the probe laser sent through the fibre (without
an IR pulse).

— 192 nm ramp
1 — 250 nm peak

resolution (nn)

— 365 nm peak
532 nm line

I . I I I I
0.01 0.02 0.05 0.10 0.20 0.50
slits width (mm)

Figure 4.18: Resolving power 0! of the monochromator (in nm™!) for vary-
ing (equal) entrance and exit slit width (in mm). No data is shown for slit
widths larger than 0.05mm for the 250 and 365nm peaks (in blue and red,
respectively) because the feature shape and counts saturated for such large
slits.

The resolution decreases with slit width and levels for very small widths.
The spectral resolution for the three features of the Tiramisu lamp and the
532nm line are shown in Fig.4.18. There is a difference between the resolution
measured for the 192nm ramp and the 250 and 365nm peaks (those two are
similar), as well as with the resolution at 532nm. The latter difference may
be because the grating is not designed to work identically at such dissimilar
wavelengths. Princeton Instruments specifies a spectral resolution of 0.05nm
for the 1800g/mm grating at 435.8nm and a 0.01mm slit width — note that
the value obtained at 532nm, 0.04nm, is close to these specifications. The
spectral resolution is clearly sub-nanometre for most slits opening.

Quantum efficiency in the UV

In the previous paragraph, we established that narrow-linewidth UV signals
can be resolved with a sub-nm resolution by the monochromator for narrow
slit widths. In order to fully characterise the spectral sensitivity of the de-
tection apparatus, we now need to estimate the quantum efficiency of the
apparatus in detecting photons in this spectral feature. Any finite exit slit
width s corresponds to a bandwidth A),. If the signal of wavelength A to
be detected has a bandwidth AX < AJ,, it is possible to formulate an es-
timation of the quantum efficiency from the reflectivity of the optics of the
monochromator and detection efficiency of the SPC at the signal wavelength,
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as specified by the manufacturer. This can be easily confirmed experimen-
tally by measuring the power of a narrow-linewidth signal on a power meter,
and comparing it with the signal measured by the monochromator and SPC.
If, however, the signal has a bandwidth such that AX > AA,, there will be
losses at the exit slit.

When carrying out the experitnental assessiment of the quantum efficiency
of the detection apparatus, we did not have a quasi-monochromatic, narrow-
linewidth, source that emits in the UV range over which we expect to observe
the signal. Actually, the only source that emits at short-enough wavelengths
was the DHS lamp. Light from the lamp transmitted through the UV filter
has the appropriate wavelength, but is very broadband (218 —238nm FWHM,
see Fig.4.13). Only a fraction of the (broadband) light incident on the exit slit
will enter the SPC. For a broadband source, these losses make the quantum
efficiency artificially smaller. Thus, it is necessary to measure the losses at
the exit slit to estimate the quantum efficiency of the detection apparatus.

Measuring a narrow-bandwidth feature of the spectrum for increasing slit
width reveals an apparent broadening in the bandwidth of this feature. The
broadening, in nm, is related to the change in slit width s by the dispersion
of the grating and a convolution with a top-hat distribution — the trans-
mission of the monochromator for this wavelength. In the previous section,
we determined the spectral resolution of the monochromator, i.e., the band-
width of the exit slit, for very narrow (equal) entrance and exit slit widths.
Unfortunately, the signal is expected to have a very low intensity, and wider
slit widths will have to be used to detect it. For example, in section 4.4.1 we
will present spectra of a peak at 260nm that is expected to be much more
intense than the signal: this peak was sufficiently strong to be observed for
(equal) entrance and exit slit widths of 0.25mm or larger, for which our earlier
investigation in paragraph 4.2.6 did not yield conclusive spectral resolution.
Thus, we now proceed to measuring the smearing of features of the (filtered)
DHS lamp spectrum for very large slit widths, from 0.25 to 3mm in order to
infer the spectral resolution.

To that aim, one may calculate the transmission bandwidth of the exit
slit, Ay = as, that depends on the slit width s and the dimensionless scaling
parameter « (of order 107%), that relates the slit width to the bandwidth of

the slit. Smoothed or smeared spectra for large slit width s® are given by
RO\ =— [ ° Ry(N)dX. (4.7)

Qs - 7%

where Ry(A) is a reference spectrum acquired for a narrow slit width sq =

8In (4.7), the spectrum is smoothed with a top-hat distribution of width A\, the
transmission function of the slit.
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0.25mm. We remark that
Ro(N) = S(A)AN, = S(N)aso, (4.8)

with S(A) being the instrument limited spectral density”. From (4.7) and

(4.8) we obtain « as
5

R()\) = S_ < Ro()\) > Axq (49)

50
where < Ry(A) >an, is the average of the spectrum Ry()\) taken over the
bandwidth as = A),. The transmission of the slit is then found by the ratio
of the energy in the spectrum over A\;, i.e., the integral over AX; of the

large-slit spectrum (4.7), with the energy of the full spectrum

2 Ro(A)dA

Texit slit()\) = m

(4.10)

As in section 4.2.6, the above procedure was automated in Mathematica. We
find an optimal fitting parameter o ~ 1.8 x 10~ for slit widths s > 0.25mm.
Thus a slit of width s = 3mm (widest opening of the entrance and exit slits)
covers a bandwidth of 5.25nm. This yields Tey st (229nm) = 11.1 %: this is
the fraction of the light from the broadband source that arrived at the exit slit
that will reach the sensitive surface of the SPC. Finally, the reduced quantum
efficiency of the setup with losses at the slit is calculated by multiplying the
quantum efficiency of the SPC, nspc(A), with the transmission of the slit
and the reflection efficiency of the monochromator:

Tlreduced (A) = Nspc (A) Texit slit ()\) TImonochromator (/\) . (4 1 1)

Let us estimate the reduced quantum efliciency. The three mirrors of the
monochromator are specified to have a reflectance of Rpior = 92 % around
229nm, whilst the grating is specified to have Rgrating = 66 % reflectance at
225nm. Thus, under the assumption that the incoming light is focused at
the entrance slit and does not clip, the efficiency of the monochromator at

229nm is

92\ 66
ﬁ) X 2 = 50.6 %. (4.12)

nmonochromator(k) - Rmirmr(A)g Rgrating(>\) = < 100

So only 50.6% of the (filtered) DHS light that enters the monochromator will
reach the exit slit. When a measurement at 229nm is performed, the exit slit

9The spectral density is limited in amplitude and bandwidth by the width of the slit,
which sets the spectral resolution of the monochromator. See section 4.2.6.
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will transmit 11.1% of this light through to the SPC: in total, only 5.62% of
the input light will reach the SPC. Given the quantum efficiency of the SPC,
15% (see Fig.4.14), this gives a reduced quantum efficiency, from entrance
aperture to detection, of 0.84% at 229nm when the entrance and exit slits of
the monochromator are fully open to s = 3mm.

Experimentally, we measure the amount of light from the DHS lamp
transmitted through the UV-filter with a power meter, and get 52.3nW+5nW.
With the monochromator (s = 3mm) and SPC, we observe 5.24 x 10® counts
per second at 229nm, that is a power of 0.448nW — yielding a quantum
efficiency of 0.86%. This value is, within the error of the measurements'®
equal to that estimated in the previous paragraph. This study demonstrates
that the quantum efliciency of detection for a broadband spectrum will be
reduced by the monochromator spectral resolution (which is a function of
the width of the entrance and exit slits). It also confirms that the reflection
efficiency of the monochromator and the quantum efficiency of the SPC are
close to those specified by the manufacturer — 50.6 and 15 %, respectively.

Fortunately, we do expect the UV signal, of wavelength ~ 220nm, to have
a very narrow linewidth. In this case, there will be virtually no loss at the
exit slit, even for wide slit widths. In this case, the signal will be detected
with a quantum efficiency of Nguantum(A) = Rmonochromator(A) X Nspc(A) =
7.6 % for A = 220nm. Given this low quantum efficiency of the detection
apparatus, it is clear that we cannot afford to lose light in the UV by other
filtering techniques than the CRF introduced in section 4.2.5. In particular,
resorting to the 228nm bandpass filter is significantly worse, for it transmits
a maximum of 25 % of the incident light across its bandwidth.

To conclude, in this section of the dissertation, we have presented the
investigation of the spectral resolution of the detection apparatus, and found
that we could measure spectral features of incident light with sub-nm pre-
cision for very narrow slit widths, and a quantum efficiency of 7.6 % (for
wide slit widths) in the deep UV region, where parametric amplification in
the negative-norm mode occurs. This brings our journey on the optical table
to an end: we now know all the details of the experimental setup assembled
for this thesis and can proceed to looking into the results of the experimen-
tal observation of the scattering of a positive-norm mode on the sides of a
fundamental soliton in the fibre.

ONote that these measurements fluctuate in time, thus their precision is not better than
5%, and the counts are collected over a wide, 5.25nm, bandwidth
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4.3 Scattering to a positive-norm mode

In this section of the dissertation, we discuss the phenomenon of scattering
from a in mode aq of positive norm to and out mode a; of positive norm, and
present the original experimental results that demonstrate this effect. The
main two experiments relevant to the present considerations were carried out
in St Andrews and presented in [19] and [47], for the scattering of an IR and
a visible probe, respectively, on a soliton generated by an IR pulse.

4.3.1 Positive-norm scattering efficiency

In this Thesis, a visible, CW, probe is scattered on a soliton in the PCF. The
efficiency of this scattering process is ruled by Eq.(4.4), where the amount of
of light in the in coherent mode depends on two parameters: the magnitude
of the refractive index change under the soliton and the velocity difference
between the in mode and the soliton. As for the former, as we already
discussed in section 1.2.2 of this dissertation, in the scattering process, the
comoving frequency w’ is a conserved quantity, and so the probe frequency
w follows a contour line of w' as a function of the nonlinear index induced
by the pulse - see Fig.1.5. The nonlinear susceptibility experienced by the
soliton pulse at the carrier wavelength A is [45, 19]

C)\Q DQ

on =
(woThp)?

(4.13)

where D denotes the dispersion parameter at Ay, and wq is the carrier fre-
quency. As was shown in section 3.3, any increase dn in the refractive index of
a dispersive medium leads to mode mixing at the interfaces between regions
of low and high refractive index — and thus to parametric amplification,
transfer of energy to the out mode.!'* However, all of the light in the probe
wave might not be able to scatter at the interface. Indeed, because the group
velocities of the probe vg(wprepe) and of the pulse u are similar, only a small
fraction of the total probe light can be converted within the finite length of
the fibre. Thus, the amount of energy available for the scattering process,
that is, the fraction of the probe power that can be scattered into outgoing
modes (of positive and negative norm alike) is dependent on the repetition
rate, the length of the fibre and the inverse of the difference between u and

'Note that in this dissertation, we sometimes adopt the expression "frequency shift" to
describe parametric amplification of an out mode of positive-norm. This is inherited from
the language of the community (see for example [19]).
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'Ug(wprobrf,) [19]:
1 1
Nint = Z/repL (_ - —> . (414)

u Ug(Wprobe)

For our experimental setup, 1, is maximally on the order of 10~* [47].

The effect of frequency shifting is also described by the theory presented
in this thesis. Consider a RIF, as schematised in Fig.2.4, that models the
leading edge of a soliton in the fibre. As we saw in section 2.2.3, there exists
a frequency interval over which a mode in which light propagates towards the
RIF scatters into a mode in which light propagates away from the RIF (the
uniquely escaping mode moR). A symmetrical configuration exists if the RIF
models the falling edge of the soliton. However, when considering the process
of scattering to a single positive-norm mode, it is actually possible to use a
simple, dispersion-less, tunnelling model that implements the NLSE (1.62) to
determine the efficiency of the probe-pulse interaction [47]. The model [47]
has the advantage of readily allowing for the study of smooth pulse profiles.
A derivation of the quantum tunnelling of a wave at a smooth interface in a
dispersion-less medium is provided in appendix C of this dissertation, for the
sake of conciseness only the main results and phenomenological arguments
will be presented here.

4.3.2 Tunnelling model for probe-pulse interaction

Here I present the analytical theory of scattering of light at solitons in fibres,
including frequency shifts and wave tunnelling. In the frame moving with the
soliton, that is assumed to be unaffected by the probe and has an amplitude

of the form Py sech?®(7/Ty), the NLSE (1.62) can be written as [47]

0%A 2 ;o
2 () R e T A =0 (415

where A; is the amplitude of the probe wave, 7 is the retarded time (see
(1.71)), 1 and 5y are the first and second derivatives of the propagation
constant 3(w),'? v is the fibre nonlinearity and r is a factor accounting for
the reduction in cross-phase modulation due to conditions such as the rela-
tive polarization orientation or mode size mismatch. The analogy of (4.15)
with the Schrédinger equation in quantum mechanics allows to investigate
quantum mechanical problems with classical fibre optics.

To the probe wave, the soliton is a constant one-dimensional potential,
for which the transmission and reflection coeflicients, T and R, can be found.

1213, is the inverse of the group-velocity of the probe and 35 is the GVD parameter at
the probe wavelength, see section 4.2.3.
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For a step-like potential these are the g coefficients of section 2.2.4. F
hyperbolic secant squared potential they are (see appendix C):

1
ro 1 gt
1+¢ 1+¢
cos?(n/2/T-B) . B<1 (416)
f:

sinhg(ﬂ'(w—wm)TO) :
cosh?(n/3/B-1) . B>1.

sinhZ (7 (w —wn )To) °

The transmission through the soliton — the potential barrier — is there-
fore determined by only two parameters: the ratio of detuning to the soliton
bandwidth (w — w,,)7Ty, and the normalized barrier height B = 8y PyT /5.
In [47], F. Konig found that effective reflection ou the barrier can be achieved
for very large detuning, and is not limited by the spectral width of the soliton-
pulse (provided that B is sufficiently large). Contrarily to the photon picture
of Four Wave Mixing (FWM), the mode conversion at stake here is a col-
lective effect of the modes of the soliton and the probe, and not a phase
matched mixing of only four modes. Indeed, the barrier height required for
frequency shifting was found to increase quadratically, and not exponentially
as FWM would require.'® This is a remarkable result: frequency shifting at
the soliton-edge is a feature of horizon physics for which no simple alternative
explanation (such as FWM) can be provided by nonlinear optics. Consider-
ing the efficiency of reflection of a CW probe at the soliton, the conversion
efficiency R (eq.(4.16)) is reduced by ., the fraction of the probe light that
interacts with the soliton, to the total efficiency n;,;. Phenomenologically,
one sees that: the larger the detuning of the probe from the group velocity
of the soliton, the more light collides with the soliton with higher relative
speed. For small detunings there is negligible tunnelling and the probe is
nearly perfectly reflected. For larger detunings, all the probe light tunnels
through the soliton and B, the height of the barrier required for efficient
frequency shifting, decreases quadratically.

4.3.3 Visible frequency shifts at the horizon

The findings of the dispersion-less tunnelling model shed light on the physics
of frequency shifting at the horizon. In this process, an in mode of posi-
tive norm scatters at the refractive index front (RIF), into an out mode of
positive norm and positive group velocity in the moving frame. Because of

BTn particular, the edges of the curve of cfficieney of the frequency shifting cffect as a
function of the soliton-probe detuning are different from the exponential fall one would

obtain for FWM [47].
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the Doppler shift, this out mode does not have the same laboratory frame
frequency w as the in mode, although they share the same moving frame
frequency w’ — energy is conserved in the moving frame. Since the in and
out modes have a different laboratory frame frequency, it is commonly said
that the in mode was frequency shifted by the RIF — and, indeed, if all of
its light were made to scatter on the RIF, for appropriate RIF height, light
coming out of the fibre would only be in the out mode. And, actually, in
the experiment, the output light is measured after remaining light of the in-
mode-frequency has been filtered. From the theory presented in the previous
section, it is possible to calculate both the efficiency of this frequency shifting
effect and the wavelength at which light in the out mode will be observable
in the laboratory.

Because of the nature of the setup used in the experiments presented here,
a large fraction of the frequency shifted light could not be measured. Thus,
measurement of the efficiency of the scattering of positive-norm to positive-
norm light at the soliton was not made. However, the experimental results
presented here allow for extending the mapping of the frequency shifting as
a function of detuning. This frequency detuning is achieved by tuning the
central wavelength of the pulse (see Fig.4.3), i.e. the soliton velocity. The
wavelength that the probe will shift to is determined by the fibre dispersion
and the conservation of w’, by

IN=Lv  o(w—wn). (4.17)

oA depends on the relative velocity of the probe and soliton, according to
dispersion, as well as on the interaction length. The dispersion relation for
the PCF is based on an approximate calculation of the group index obtained
from a silica strand model [47] which reproduced the group velocity matching
condition in [54]. The dispersion relation was then fitted to a Sellmeier model
for dispersion. We found that the best fit was obtained for a material with
two resonances in the IR. We checked that the Sellmeier equation (2.59)
thus enforced allowed for reproducing the theoretical predictions of [1, 54] -
and indeed, we find a central wavelength for the NRR of 224nm, where J.
McLenaghan observed it at 222 & Inm!#4. Furthermore, the prediction of the
wavelength of light shifted from 532nm matches that of [47]: we obtain a
shifted wavelength that depends approximately hyperbolically on the central
wavelength of the soliton, as shown by the (calculated) red curve on Fig.4.19.

HSee section 1.2.2 for a presentation of the underlying theory.
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Figure 4.19: Location of shifted probe spectra for different soliton wave-
lengths. The red curve is the prediction from the dispersion curve of the
PCEF. The wavelength of the shifted probe spectra was measured with a pre-
cision that depends on reflection on the various optics, and the complicated
features that depend on Raman interaction and higher order dispersion [126].

In the experiment, the group velocity of the soliton is set by its centre
wavelength in the dispersive fibre. I tuned this wavelength to realise situa-
tions where the probe wave (at A = 532nm) is slower than the soliton and
is overtaken by it, and wvice versa. Fig.4.20 displays two epitome spectra of
the frequency shifted probe light. These spectra correspond to a —9 and
+13nm spectral shift of the probe. The spectral width and structure depend
on parameters such as the detailed pulse shape — which is affected by Ra-
man interaction and higher order dispersion [126] — and remains to be fully
explained.

I repeated this experiment with various pulse wavelengths, from 749 to
887nm (see Fig.4.3) to map out the frequency shifting as a function of detun-
ing. Fig.4.19 shows the measured centre wavelength of the shifted probe wave
as a function of soliton wavelength. These results further those presented in
[47] and are the most extensive map to date. Note that the centre wave-
length of the shifted light follows the condition set by the dispersion of the
fibre, thus the soliton had approximately constant group velocity, unaffected
by higher order dispersion. The spectra presented here are remarkable: as
stated previously (see the argument following Eq.(4.16)) the input light at
532nm was red- and blue-shifted to up to 560nm and down to 505nm, re-
spectively — that is, over a maximum of 28 and 27nm, which is 1.8 times the
bandwidth of the soliton! This comes as an experimental confirmation of the
understanding we drew from the theory: frequency shifting at the soliton is
not a mere manifestation of four wave mixing but a genuine and signature
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Figure 4.20: Two spectra of the blue and the red shifted probe light. The
input light initially was centred at A = 532nm, but filtered in the output by
means of a notch filter (see Fig.4.11 for its transmittance). The soliton was
tuned to 845 and 825nm, respectively. Spectral shifts of —9nm (blue) and
+13nm (red) are observed. The relative spectral density are not representa-
tive of the efficiency of the frequency shifting process for they are distorted
by clipping of the beam on the optics and the filtering effect of the notch
filter.

feature of horizon physics.

4.4 Scattering to a negative-norm mode

It is possible to carry out a similar analysis to that presented in the previous
section to calculate the wavelength at which light in the negative norm mode
will be observed: for a given carrier frequency, the group velocity of the pulse
that generates the soliton in the fibre will depend upon the dispersion of the
fibre. After a Lorentz boost, the frequency shifts to ' = y(wprope — uk) in
the moving frame, with u the velocity of the frame (taken to be u = vgpuise)-
Energy transfer from in to out modes occurs for constant comoving frequency
w’. The conservation of energy in the moving frame translates to a contour
line of slope u and ordinate at origin w = w’ (as exemplified on Fig.2.3 by the
blue contour line). Considering scattering at the front (back) of the soliton,
light in the positive-norm, coherent, in mode uoR (molL) will be red-(blue-
) shifted to the positive-norm out mode moR (uoL) that is an oscillatory
mode in the same refractive index region as the in mode — that is on the
low refractive index side of the interface — as diagrammatically depicted on
Fig.4.21. In addition, Eq.(4.4) states that some energy will be transferred
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to an out mode of negative norm, nolL, by parametric amplification. This
negative-norm out mode allows for light to propagate away from the soliton
in the low-refractive-index region on the left of the soliton, as in Fig.4.21.

Figure 4.21: Diagrammatic phenomenology of scattering at the soliton edge
(black sech? profile) in the comoving frame. Energy in the positive-norm in
mode moL (uoR) scatters at the soliton into an out mode of positive norm,
uoL (moR), and an out mode of negative norm noL.

Scattering into nolL is allowed because the contour line of constant «w’ that
passes through the point of frequency wprone (the frequency of the 532nm cw
probe wave in the laboratory frame) intersects with the dispersion branch
of negative-laboratory-frame optical frequency, as is exemplified in Fig.2.3.
More precisely, Fig.4.22 c) shows the negative-laboratory-frequency optical
branch, and two such «w’ contour lines, for the extremal central pulse wave-
lengths attained in the experiment, 800nm in a) and 865nm in b). A the-
oretical prediction, the purple curve on Fig.4.22 d), shows the calculated
wavelength of mode no over the whole range. The wavelength at which light
in the negative-norm mode will be observed, in the neighbourhood of 220nm,
varies by less than 7nm for the full range of soliton wavelengths. Note that
this wavelength range is independent of the change in refractive index under
the soliton, for the out mode of negative-norm allows for light to propagate
away from the soliton in the low refractive index region. This is in contrast
with the study of the soliton edge, modelled as a step, presented in Chap-
ter 3, according to which the out mode of negative norm allows for light to
propagate away from the refractive index front (RIF) in the high refractive
index region. Thus, although it is possible to calculate the expected output
wavelength (see Fig.4.22 d)), the efficiency of the parametric amplification
process described by Eq.(4.4) cannot be calculated by using a step in the
refractive index — a more complex and realistic profile is needed and this
was not at all considered for this Thesis.
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Figure 4.22: (a-d): Determination of the wavelength of light in the optical
negative-norm mode nolL as a function of the wavelength of the soliton. The
branch of negative optical-laboratory-frequency w is shown in blue. Contour
lines of constant comoving frequency w' = wy, ;. are shown for the extremal
central wavelengths of the soliton generated in the experiment: a), A\, =
800nm, and b), A. = 865nm. An excerpt of the branch of negative optical-
laboratory-frequency is shown in ¢) to illustrate the bandwidth across which
the w’ = c¢st line sweeps along the branch. The wavelength at which light
in noL should be observed is plotted against the central wavelength of the
pulse in d).

In the moving frame of the soliton, a nonliinear refractive index region is
surrounded by two asymptotic regions of linear index. This setting is typical
for pulses propagating in dielectric media. Such a configuration is illustrated
in Fig.4.21: mode woR transfers energy to mode nolL that allows for light
to propagate on the other side of the soliton. Thus, one would intuitively
expect the efficiency of the scattering to depend upon the change in refrac-
tive index induced by the soliton, as well as on the soliton pulse-length. A
more quantitative prediction is difficult to make without careful study of the
dispersion relation and thorough implementation of the algorithm presented
in chapter 3 for a parsed profile. For example, one would expect that reflec-
tion upon the interior edges of the soliton would yield an etaloning effect in
the spectrum of modes transmitted through the high refractive index region
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under the soliton to the low refractive index region on the opposite side of the

2
soliton.'® Thus, in what follows, a scattering coefficient |3pr°be’”"| ~ 10719,
a preliminary calculation with a soliton is used as a quantitative guide in the
search for the negative-norm signal.

4.4.1 Signal to noise ratio in the UV

As in all experiments, the measurements we perform are limited by the signal
to noise ratio (SNR), where the signal is the detectable rate and the noise
presently is the dark counts and the background (light from the laboratory
and from the green and IR components of the beam). In this section, we use
the techniques presented in section 4.2.5 to improve the SNR by filtering the
noise strengther than the signal.

UV signal strength

Let us first estimate the signal strength. As in section 4.3, we assume a pulse-
probe interaction efficiency 7;,, = 10 4. This is combined with Eq.(4.4) to
calculate the power scattered from the in mode to the out mode:

2 B
Prrv = Ty | 877" Prope| = 1074 x 10719 x 60 x 107°W = 0.6fW, (4.18)

where we assumed that 60mW of green light propagate in the fibre. This
power is limited by the coupling efficiency of 532nm light in the fibre, and
ultimately by the amount of input power available (< 300mW with the cur-
rent setup). Assuming negligible fibre losses in the UV, the expected photon
rate at the output of the fibre is

P 60 x1077)s7! x 220 x 10 °m
he  6.626 x 1034J.s x 3 x 108m.s~1

Mo = = 664 Hz, (4.19)
with A the Planck constant and ¢ the speed of light in vacuum.

The total quantum efficiency of the setup over the emission range of no is
set by the product of: the transmission efficiency of the UV-condenser triplet,
the transmission efficiency of CRF, the reflection efficiency of the corner-UvV
mirror, the transmission efficiency of the focusing lens and the quantum

5L jkewise, it would not be surprising if the scattering efficiency depended upon the
edge of the soliton profile with which the probe would interact: energy transfer might be
more efficient if the probe interacts with the back than with the front of the soliton, for
scattering into no would then resemble a reflection process (whercas it would resemble a
transmission process, through the ’etalon’, if the probe would scatter on the leading edge
of the soliton).
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Optical element T (%) R (%)
UV-condenser triplet 89 -
UV mirror - 92.3
UV mirror (45 degrees incidence) - 95
CRF (6 bounces) 62 -
UV lens 84 -
Monochromator mirrors - 92
Monochromator grating (at 225nm) - 65
Monochromator (3mm slits width) 50.6 -
UV-filter 20 -
T 1: Transmission and reflection efficiency of the optical elements in

the UV. Except where stated otherwise, the efficiencies are specified for A =
229nm at normal incidence.

efficiency of the detection apparatus, see section 4.2.5. These quantities are
summarised in Table 4.1. Recalling that the SPC has a quantum efliciency
of = 15% at 229nm, we obtain a total detection efficiency nNgetection = 3.4%
for our setup. According to the output power calculated in Eq.(4.18), this
means that the signal strength, i.e. the registered count rate of the signal, is

Sno = Tlno "ldetection = 20Hz. (420>

With this signal strength, care has to be taken in the eperimental layout
to avoid filters with a low signal transmission. The probe being essentially a
single frequency mode, we expect light in no to be concentrated in a relatively
narrow peak in the spectrum, which should allow for isolating this very weak
signal from the noise.

Background counts in the UV

We now seek the best SNR for the signal strength calculated in the previous
paragraph. As was discussed in section 4.2.5, we have tested a number of
filtering techniques to reduce the background counts in the UV. In addition to
direct filtering of the beam, the detection apparatus was physically isolated
from the rest of the laboratory by means of a light-tight box that lets only
the beam in. As a result of this physical "boxing", the laboratory background
is Ny < 1Hz over the UV range, see Fig.4.23. This background is measured
by coupling the IR pulse and 532nm probe into the fibre and blocking the
end of the fibre so that no light escapes from it for slit width of 3mm —
thus only light scattered on the various surfaces of interaction with the input
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beams can possibly reach the detector. With this background alone, the SNR
would be

Sno
Ny

SNRbackground = > 20. (421)

Unfortunately, as was mentioned earlier, the remnant of the green light scat-
ters off the grating and increases the background in the UV-measurement.

The 532nm probe light is not fully filtered between the fibre and the en-
trance slit of the monochromator. In the monochromator, this uncollimated
light scatters off the grating and creates counts at all wavelengths in the
UV, as can be seen in Fig.4.24. It shows the evolution of this "green back-
ground" as a function of the diameter of the iris set before CRF. The green
background decreases as the iris is closed, as we would expect from spatial
filtering. The green background is attenuated by about one order of magni-
tude from an iris diameter of 15mm to 2.5mm. Note that as the background
decreases, a peak at 266nm emerges — corresponding to second harmonic
generation from the strong CW light at 532nm. This is remarkable: this
weak SHG, although not phase-matched, has a rate Ssye = 20Hz in all four
data sets. This shows that the iris does only filter out the green light an lets
the UV components unattenuated. So, due to this filtering process, the SNR
has increased by one order of magnitude. The TH peak is at wavelengths
much longer than the emission range of no and does not affect observations
at shorter wavelengths. The green background never disappears at shorter
wavelengths, and can be higher than the expected signal strength for large
iris diameters — thus we shall use small iris diameters in order to improve

the SNR.

In contrast to the green light, the IR light in the beam does not create
any increase in the background counts, as can be seen in Fig.4.25. According
to the theory of section 4.3.2, an increase in the soliton energy reduces the

tunnelling probability and increases the coefficient of scattering to a nega-
Sprobe,no } 2
|

tive norm mode, . Although section 4.4.1 was using fundamental
solitons, we also use N > 1 solitons, with average powers of 2mW (N=1.26),
4mW (N=1.79) and 8mW (N=2.53) to increase the signal strength. As shown
in Fig.4.25, we observe a narrow peak at 262+ 1nm wavelength. This peak is
the third harmonic (TH) generated from the soliton. For Ayy = 262 + 1nm,
the fundamental lies at 796 & 3nm. We consistently observe TH at this wave-
length, which implies that its generation relies on the bandwidth of the pulse
(which is ~ 10nm, see Fig.4.3). The TH is generated at wavelengths longer

than the range of emission of no and does not affect the SNR for no detection:
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considering the IR background only, N;g = 1Hz —

S _ g, (4.22)

SNR i = N =
IR

To summarise, background from the laboratory is negligible (with an aver-
age rate below 1Hz at all wavelengths). Likewise, the IR does not deteriorate
the SNR in the UV. We note, however, the presence of a peak, due to THG
from the IR pulse, at a wavelength far from the region of interest. Only the
green probe creates counts in the UV, which can be limited to rates below
20Hz by closing the iris down to 5mm, without loosing genuine UV counts
(such as the very well defined second harmonic generation peak). This yields

a SNR of

Sno
Irb—F;]\f[R—FAYG—Nd—Nd -

SNRyy = 1 (4.23)

where we have subtracted the dark counts twice. Over the range 218 —223nm
a signal of 20Hz would be observed with a signal to noise ratio of 1. Closing
the iris further, to 2.5mm, yields SNR;;,y = 3.3. The emergence of the SHG
peak from the CW probe, as shown in Fig.4.24, seems to indicate that the
UV beam is not significantly attenuated by such the small iris — we may
readily use this spatial filter to better the SNR.

N w
T T

Spectral density (Hz)

N

AT )

h 17
200 210 220 230 240 250 260 270
A (nm)

Figure 4.23: Minimal background counts in the UV. These counts are due to
the glow of the laboratory itself - that is, to light that reaches the detector
after reflection /refraction of the intense TR and green input beams on various
surfaces in the laboratory and the dark counts.
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Figure 4.24: Green background — Background in the UV due to the scat-
tering of the green light off the grating in the monochromator. Spectra are
shown for varying iris diameters: a) 15mm, b) 10mm, ¢) 5mm and d) 2.5mm
for a 532nm CW power of 50mW in the fibre. The minimal background
counts without incident light on the monochromator and SPC are shown
in Fig.4.23. Note the change of scale from a) to d): the green background
decreases and lets a 20Hz peak at 266nm emerge
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Figure 4.25: IR background — background in the UV due to the propagation
of IR light alone in the fibre. Average power of 8mW for a central wavelength
of 806nm. Iris diameter of 15mm. The background between 200nm and
258nm is indistinguishable from detector dark counts(cf Fig.4.23).
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4.4.2 UV spectra

In this section, I will present the results of the experimental investigation
of pulse-probe interactions. As was shown earlier, the propagation of the
IR pulse in the fibre does not create a background in the UV would lower
the SNR at the signal wavelength, even when the average IR power is such
that a N>1 soliton is generated in the fibre. Generating a high order soliton
might be an interesting path to a higher signal to noise ratio (SNR). Indeed,
as was said earlier, the increase in the refractive index under the soliton is
larger than for N=1 solitons, which effectively increases the height of the
potential barrier (yielding a larger scattering coefficient). However, I also
observe that the propagation of a higher order soliton in the fibre may lead
to third harmonic generation (THG), resulting in the appearance of a narrow
peak at large UV wavelengths (beyond 260nm). It is necessary to assess the
effect that the scattering of the probe on the IR pulse may have on THG, to
rule out any contamination of the SNR at the signal wavelength.

Third harmonic generation

Let us first study the power dependence of third harmonic generation (THG):
the evolution of the third harmonic (TH) peak as the average power of a pulse
centred at A, = 806nm is increased is shown in Fig.4.26. For this central
wavelength, the N=1 soliton has a bandwidth AA. = 10nm. For N= 1,
in b), there is a very narrow spectral feature (SNR=6) at Ayy = 266nm,
that broadens and increases in amplitude as the IR power increases. Note
that the peak shifts to longer wavelengths as the soliton order increases:
eg, for P,y = 4mW (e)), N& 2, THG occurs at Apy = 275nm. This clearly
demonstrates the extreme dependence of THG on phase-matching and group-
velocity matching.
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Figure 4.26: Evolution of the third harmonic (TH) peak as the average power
of a pulse centred at A, = 806nm is increased. Spectra for power a), 0.5mW,
b), 1mW, ¢), 2mW, d), 3mW, e), 4mW, f), 5mW, g), 6mW, h), 7mW, and i),
8mW are shown. Note the change in the scale of the spectra. The minimal
background counts without incident light on the monochromator and SPC
are shown in Fig.4.23. The background created by the IR in the UV is of
maximum 2Hz.

Considering, Fig.4.26 c¢), the THG pulse generated at Ary = 266nm has a
bandwidth of AAry = 5nm, that is actually the bandwidth of the slit open at
3mm. Thus we cannot determine the pulse duration from this data. However,
we can assume that the generated THG pulse width is comparable to the
pump pulse [127], but, because of dispersion, the two move at different speeds
through the fibre. Because of this group-velocity mismatch, the spectrum of
third harmonic may not be located at exactly A./3. To understand this,
let us study the phase-matching condition for THG: for a quasi-CW pump
launched at frequency w,, this takes the form [127]

AJ = Bri(3w.) — 38(w.) = (Bw./c) (N1 (3w,) — n(w,)) =0, (4.24)

where 3(w) and n(w) are the (frequency-dependent) propagation constant
and effective mode index, respectively. The phase-matching of Eq.(4.24) im-
plies that firy(3w.) has to match 7(w.). This is only possible if the TH
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propagates in a higher-order transverse mode, which only occurs if the dif-
ference between the refractive index at w, and that at wry is less than the
core-cladding index difference - a quantity which is of the order of 0.1 for
most PCFs [125]. If, now, we consider an ultrashort pump which is rather
broadband, like the pulses in the experiment, we should expand the propa-
gation constants of Eq.(4.24) for the pulse carrier frequency, 5(wrr), and the
central frequency of the THG pulse, Srp(wry), in Taylor series around those
frequencies. Retaining terms up to first order in these expansions only, we

find that [127]
AB = Bri(3we) = 33(we) + 3 (w — we) ABy, (4.25)

where 3 (w — w,) is the frequency shift of third harmonic and A5 = U;%H —
vg’llR is the GDD between the pump and the TH frequencies. The condi-
tion AS = 0 is satisfied when TH is shifted from 3w, by —(8ru(3w.) —
38(w.))/ApB;. This shift depends on the group-velocity mismatch. In Fig.4.26
we see that TH is shifted to longer wavelengths (shorter frequencies). We also
observe that the THG spectrum exhibits two distinct peaks for high average
IR power. This is because the N>1 soliton fissions into two pulses (as in
Fig.4.10), one of which moves to longer wavelengths than the fundamental,
to which the longer-UV TH is phase-matched.

Eq.(4.25) shows how broad the spectrum of the fundamental has to be
to contain phase-matched fundamentals. However, although both the prop-
agation constants of the pulse and the TH were developed in Taylor series
to arrive at this result, thus keeping wr;; = 3w,, it can also be interpreted
as follows: for low pulse energies, (3ry(3w.) — 38(w.)) = 0 and the process
is phase-matched. Increasing the power, however, creates different nounlin-
ear contributions in Sy and 8. Thus (8rp(3w.) — 33(w.)) is no longer 0
and (4.25) shows that a slightly different frequency becomes phase-matched,
namely w = w. — (O (3w.) — 33 (w.))/3A3;. This might account for slight
discrepancies between the theoretical phase-matched wavelengths of either of
the TH peaks and the measured wavelengths.

Note that these spectra exhibit no feature at short UV wavelengths, where
the noise (due to the laboratory background and IR background, see section
4.4.1) is of maximum 2Hz, as can be seen on Fig.4.26 a). Thus, although it
may shift in wavelength as a function of the fibre mode in which it propagates.
TH will not affect the SNR at the signal wavelength. I also verified that
TH exponentially disappears for longer pulse wavelengths: for A, > 820nm,
no TH peak was observed, even for high average IR powers of the order
of 8mW. Beyond these observations, I established that THG also depends
on the coupling efficiency of the input IR beam in the fibre. Indeed, for
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the pulse central-wavelength regime at which TH was normally observed
(790 — 820nm), if the coupling efficiency was decreased to only 10% (by
misaligning the input beam on the tip of the fibre), no TH peak was observed.
This is because the IR mode then mostly overlaps with the cladding and not
with the core, and the phase-matching condition (4.25) cannot be fulfilled
because n(3w,) — n(w.:) < 0.1. This comes as a complement to the argument
drawn in section 4.2.3, in which the average IR power necessary to generate
a fundamental soliton was found to be higher than in the calculations that
assume that all the IR power was confined to the core. Thus, lowering the
coupling efficiency of the IR beam in the fibre might be another means to
better the SNR at the signal wavelength if we find that the interaction of the
probe with higher-order solitons lowers the SNR.

Pulse-probe interactions

[t is finally time to scan the UV when the 532nm CW light is made to interact
with a fundamental soliton in the IR. In the experiment, I scanned a four-
dimensional parameter range: the central wavelength and average power of
the IR pulse could be varied independently, the probe power could be varied,
and the diameter of the iris in front of CRF could be varied. In Fig.4.27, a UV
spectrum for a Py, = 8mW pulse at A, = 865nm interacting with a 33mW,
532nm, CW probe is shown. Above the background created by the green
beam (b, = 30HZ) we clearly see a Syq7 = 15Hz peak of bandwidth AXyyr =
bnm at A = 247nm. The signal to noise ratio (SNR) in this configuration
is only SN Rggs = 2, but the peak is clearly visible. The SNR could be
improved by subtracting the green background from the spectrum. However,
we note that the level of this green background is lower than that recorded
for an iris of 15mm diameter. Moreover, the SHG peak from the green probe
is not observed in this spectrum. This is because the probe power is lower
for this measurement - down from 50mW in Fig.4.24 to 33mW. Thus the
energy available for SHG is lower and the peak remains hidden in the 15Hz
background.

No signal at the expected wavelength (A\; &~ 220nm) can be seen in
Fig.4.27. Furthermore, the peak at 247nm ("mid-UV-wavelength peak') is
intriguing: no obvious phase-matched process yields a peak at this wave-
length. Note that its spectral shape is likely given by the transmission of the
monochromator slits: it is characteristic of a top-hat function. Recalling the
signal strength calculated in section 4.4.1, S,,,, we note that it is similar to
the amplitude of this mid-UV-wavelength peak. For A, = 865nm, the 532nm
probe is slower than the pulse and thus interacts with its leading edge. Un-
fortunately, the interaction of the probe with the leading edge of other long-
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wavelength pulses did not yield a similar peak across the parameter range,
i.e., I did not observe the mid-UV-wavelength peak for 835nm < A\, < 887nm,
except at A\, = 865nm, for P,,, = 8mW and an iris diameter of 15mm."°

35F
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Figure 4.27: UV spectrum for a P,,, = 8mW pulse at A, = 865nm interacting
with a 33mW, 532nm, CW probe. Because the iris is open to a diameter of
15mm, the green beam creates background counts b, = 15HZ in the UV.

On the other hand, the peak was consistently observed for short-wavelength
pulses, such that the probe interacts with their trailing edge. In Fig.4.28,
we study the evolution of the spectral properties of the mid-UV-wavelength
peak for pulses of central wavelength increasing from 800nm to 825nm and
average IR power 8mW. The spectrum is peaked at 246+ 1nm, with maximal
rates Sose max = 130Hz. Although the shape of the peak does vary across
the range, its central wavelength seems to be locked at 246 £+ 1nm, except for
A, = 800nm (in 4.28 a)) and A\, = 825nm (in 4.28 f)), for which the mid-UV-
wavelength peak is centred at 243nm +1nm, and for which the maximal rate
is much lower (about 40Hz). Note that the iris is closed to 8mm and the noise
level (created by the green, IR and laboratory backgrounds) is Nyy ~ 10Hz.
Thus the SNR for this peak is very good:

~ 13. (4.26)

From the spectra in Fig.4.28 and Fig.4.27, it seems that the peak is rela-
tively insensitive to the central wavelength of the IR pulse. It would be in-
teresting to determine the set of parameters which this mid-UV-wavelength
peak depends on such as the probe and pulse powers, relative polarisation

16The repeatability of the measurements and scans of the parameter range depends on
the modclocking of the laser and the temporal evolution of the coupling cfficiency of the
input beams (IR and green) in the fibre. The measurements were barely reproducible at
intervals of one hour, and not reproducible from one day to the other.
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of the pulse and probe. interaction length or coupling efficiency of the pulse
or probe beams. First, we investigate the dependence on the probe power:
the latter is adjusted by controlling the coupling efficiency of the input green
beam in the fibre — that is, by lowering this efficiency by means of overlap-
ping more or less the green mode with the cladding (where it is less guided
than in the core). In Fig.4.29, spectra for varying probe power are shown:
the peak intensity decreases dramatically with the probe power, and the SNR
drops from 13 (for P, = 65 and 60mW, as in Fig.4.28 and Fig.4.29, respec-
tively) to 4 for 1>, = 50mW (Fig.4.29 b)). The peak can barely be seen in
Fig.4.29 c), for P, = 45, at which point the SNR is just above 1.
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Figure 4.28: UV spectrum for a 65mW, 532nm, CW probe interacting with
short-wavelength pulses, for average IR powers of 8SmW. The central wave-
length of the pulse is shifted by increments of 5nm from A, = 800nm in a) to
Ae = 825nm in f). No THG at longer UV wavelengths was observed in any
of the 6 configurations. Iris open to 8mm diameter.

Note that no mid-UV-wavelength TH (at 266nm) was observed on any of
the spectra for which the mid-UV-wavelength peak (246nm) was detected,
as exemplified on Fig.4.29 a). We see that, beyond the mid-UV-wavelength
peak, there is only one other notable spectral feature: a peak at 303nm,
which corresponds to the long-UV-wavelength TH seen on Fig.4.26. This
indicates that the regime of IR coupling efficiency is such that the 266nm
TH is not phase matched with the IR pulse. The coupling efficiency of the
[R might be influenced by the strong green power impinging on the tip of the
fibre via thermal effects which would vield a physical deformation of the tip
of the fibre such that the IR mode overlaps more or less with the cladding.
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Figure 4.29: Evolution of the mid-UV-wavelength peak for varying 532nm
probe power and constant, 8mW, A\, = 806nm, pulse power. a) Two con-
secutive measurements for %, = 60mW are shown in blue and orange (they
mostly overlap). The probe power is then lowered to, b), 50mW and c),
45mW. Note the change in scale of the spectra.

Considering the spectra of the 266nm TH peak for Pjg = 8mW on
Fig.4.26, the appearance of the mid-UV-wavelength peak at 246nm cannot
be interpreted as a blueshift of the TH. Indeed, the relative amplitudes are
too dissimilar. Furthermore, Eq.(4.25) only allows for red- or blue-shifting
of the TH as a function of the fibre dispersion, which is a material property
that can most likely not be significantly modified by the CW probe power.
Remember that we observed that two TH peaks could be phase-matched
with the pulse, and that both of them shifted to longer wavelength, thus
a blueshift of more than 20nm appears extreme, if not impossible. So we
cannot explain the generation of the 246nm peak by means of an obvious
nonlinear interaction between the probe and the pulse. Moreover, in [1] the
negative-norm signal generated from the soliton was observed around 220nm,
and we predicted similar wavelengths for mode no, thus it would be rather
surprising if the signal were observed at 246nm. One could of course wonder
whether this peak could be the signal we seek. No conclusive study could be
carried to assess this question.

Digging in the unseen

The results presented in the previous section do not allow for the formulation
of a firm interpretation of the mid-UV-wavelength peak at 246nm. Further
investigations looking into the effects of the variation of parameters such
as the IR power or relative polarisation of the pulse and probe would be
necessary to this end. In such investigations, additional optics in the input
green beam should be used to allow for its input power to be varied to control
the output power, in place of the method used in the present experiments.
Indeed, changing the coupling efliciency appears to be a poor method of
power management: it is clear that the efficiency of interaction with the IR
pulse changes as a function of the overlap of the green mode with the core
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and the cladding. Likewise, the influence of the coupling of the green beam
on the coupling efficiency of the IR beam should be mitigated, for, at present,
it clearly has an influence on the higher-order modes in which IR light may
propagate, and UV light may be generated.

Now, turning to the sought UV signal, theoretically generated by energy
transfer from the positive-norm probe into a negative-norm mode, it is un-
clear why it has not been detected. Looking back at Eq.(4.23), we found that
the various spatial- and frequency-filtering techniques implemented should al-
low for a signal around 220nm to be detected with a SNR of at least 1, with
a noise of 20Hz due to the background created (iris diameter: 5mm). Closing
the iris down to 2.5mm even seems to improve this SNR by a factor 4 at the
desired wavelength (see Fig.4.24 d)). It might however be that although the
SNR for second harmonic generated at 266nm is increased by closing the slit,
it would not be the case for a signal at 220nm - the short-UV-wavelength
component of the beam might diverge strongly at the iris and be filtered
out of the beam that reaches the monochromator and single photon counter
(SPC), thus reducing the SNR at 220nm. Indeed it is not a surprise that
the SNR is good at 266nm, for the alignment of the UV beam-path was
performed by optimising the rate measured by the SPC at this wavelength
(generated by third-harmonic from the IR pulse in the fibre). Actually, one
could think of using the 247nm peak to bring the alignment closer to its
optimal settings for short UV-wavelengths. The 220nm signal in the output
of the fibre (with a rate of production of 663Hz, as in Eq.(4.19)) would ul-
timately need to be focused down at the iris, so as to allow for closing the
latter down to 2.5mm. Then, according to the calculation (4.20), a rate of
20Hz should be detected by the SPC. At which point, a SN Rys = 4 would
enable for unequivocal detection of the signal.

It might also be that the signal production rate by the interaction of the
probe and the pulse in the fibre is lower than in our calculations. In which
case, Eq.(4.19) would yield a lower rate. This could be due, for example,
to fibre losses (by absorption) in the UV. Let us assume, for the sake of
the argument, that an SNR of 1 is the limit of detection. In section 4.4.1,
we have established that the minimal rate at 220nm that would allow for
detection with a SNR of 1 is & 5Hz. This is a factor 4 below the rate
estimated with no fibre losses. In other words, if less than 25% of the light
calculated in Eq.(4.19) would be exiting the fibre, this signal could not be
detected. Thus, losses in the UV larger than 5dB per meter of fibre would
suffice to reduce the SNR beyvond the limit of detection. If we continue along
this line of thought, we arrive at the conclusion that a shorter piece of fibre
should be used in order to counter the effects of absorption in the UV. Of
course, this would imply reducing the efficiency of the interaction between
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the probe and the pulse, which linearly depend upon the interaction length
Lini = Ly, by (4.14), with L = 1.2m the fibre length and v,., = 81MHz the
repetition rate of the laser [19]. Clearly, a compromise between a very short
piece of fibre that would not reduce the UV rate by absorption excessively
and a minimal interaction length for #;,, to not reduce 7,, extremely would
have to be found.

Bevond the modification of the fibre length and the filtering of the output,
the SNR may be improved by increasing the height of the potential barrier on
which the probe scatters. In section 4.4.1 we suggested to do so by generating
higher order solitons. This could also be achieved by propagating a shorter
pulse, down to the few-cycle regime, in the fibre. The change in the refractive
index experienced by the probe at the soliton edge would then be extreme
even for a fundamental soliton, for few-cycle pulses are extremely steep (with
the refractive index varying significantly over a cycle of light). One could
also think of using a pulse as the probe to be scattered at the soliton. This
circumvents the issue of interaction length, for all the energy in the probe
pulse can be made to scatter at the soliton over a very short distance, of the
order of a few wavelengths, for adequate group-velocity mismatches.

In conclusion, efforts still have to be put in to dig in the unseen and
observe the scattering of a probe of positive-norm to a negative-norm signal
at the horizon.

4.5 Conclusion and discussion

In this section we look back on the experiment presented in this Chapter,
and discuss its importance. This discussion basically falls under two main
considerations: the intrinsic value of the experiment and its contribution to
the field of analogue horizons. We begin with the former by looking out at the
route toward the observation of spontaneous emission at an optical horizon,
which leads us to comparing the results of the Thesis with investigations of
others in the community.

Stimulated and spontaneous scattering at the horizon

The study of the scattering of a probe pulse on a soliton was already suggested
in [90]. In this numerical study, the authors interpreted the transfer of energy
to the negative-norm mode as a resonant process similar to the generation
of NRR, as described in paragraph 1.2.2. However, in the beginning of this
section, see paragraph 4.1, we clearly established that the energy transfer is
actually due to parametric amplification by means of the scattering of a wave

183



at the horizon and is not a manifestation of ordinary nounlinear fibre optics
but a signature effect of analogue horizon physics. In observing this effect,
we thus hope to shed some light on the physics of scattering at the horizon.
Most importantly, the modes involved in the effect of stimulated scattering
also play a role in the effect of spontaneous emission at the horizon: they
are in and out modes of the scattering process, regardless of their incoming
state (that is, whether or not they are populated with photons). Therefore,
observing the stimulated effect of positive-to-negative-norm scattering will
yield essential information about the characteristics of emission from the
vacuum.

For example, given the dispersion relation of the fibre in the UV, and the
narrow size of the frequency interval over which a front in the refractive index
acts as an analogue horizon, the wavelength at which light in the negative-
norm mode (the partner in a pair-emission process a la Hawking) will be
observed should be very similar, if not identical, to that at which the signal
in the present experiment would be detected. As in the stimulated case,
this negative-norm mode will allow for light to propagate away from the
soliton in the left-hand-side region of low refractive index (as in Fig.4.21).
And, in a similar fashion to the stimulated regime, spontaneous emission in
the other mode of the pair (light in the mode that allows for it to "escape"
the horizon) will be emitted on both sides of the soliton simultaneously,
but over two distinct wavelength intervals. These two intervals of emission
correspond to those over which light from the coherent probe would be red-
or blue-shifted, as in Fig.4.21. Thus these intervals lie on either side of the
wavelength at which the probe and pulse would have the same laboratory-
frame group-velocity, the velocity-matched wavelength. For the PCF used in
the experiment, the central wavelength of the IR pulse that propagates (at
vy = %c) in the medium at the same group-velocity as the 532nm probe is
Ae = 835nm - see Fig.4.19: this is the pulse wavelength for which the probe
energy does not shift.

Calculation of spontaneous emission around the group-velocity-
matched wavelength

In order to articulate the argument of the previous section, it is necessary to
know the wavelength and density of emission of light spontaneously emitted
from the vacuum. At this point, I refer back to my study of the dispersion
relation and emission spectra of bulk fused silica, presented in Chapter 3.
For a RIF of height én =2 x 107° (as is created in the experiment) moving
at vy = %c in the dispersive medium, the velocity-matched wavelength is
Am = 396nm, and the spectrum of spontaneous emission in the positive-
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norm modes is as in Fig.4.30 (the spectrum of emission in the negative-
norm mode is shown in Fig.3.12). The group-velocity-matched wavelength is
indicated by a vertical red line and we see that emission into the modes that
allow for light to propagate away from the interface is almost symmetrical
around A,,, with short wavelength emission being slightly weaker than long
wavelength emission. The discrepancy between the densities at short and
long wavelengths are due to the difference in refractive index between the
two regions of emission. Indeed, in this calculation, a step geometry for
the RIF is considered (as in Fig.2.4), and thus light at short wavelengths is
emitted in mode woL in the high refractive index region. In a real experiment,
light at short wavelengths would be emitted in mode wol as well, but this
would allow for light to propagate away from the symmetric refractive index
profile (as in Fig.4.21) in the low refractive index region. I expect that the
density of emission of light in woL and moR would then be strictly identical
— this deserves to be thoroughly investigated.

1x10'?
5x10'}

1x10"}
5x10'°}

Spectral density

1x10'%;

5x10° : : :
350 375 400 425 450

W length A {(nm)

Figure 4.30: Spectral density of spontaneous emission in the laboratory
around the group-velocity-matched wavelength. The spectrum is calcu-
lated for a RIF as in Fig.2.4, of height én = 2 x 10 ¢, moving at speed
vgs3s = 1.9992439 x 10°m.s™' in bulk fused silica. The group-velocity-
matched wavelength,)\,, = 396.328 x 10 °nm, is indicated by the vertical
red line.

Bermudez and Leonhardt calculated a similar spectrum in [87] in 2016,
but did not compare their results with those we had obtained in [28]. They
found that the spectrum of emission is indeed symmetrical around \,,. They
studied a simple quadratic dispersion relation, and described the refractive
index of the medium by means of a Taylor expansion (as introduced in [19]
and developed in [45, 98]). They calculate spectra of spontaneous emission
from an extremely short pulse, of Ty = 2fs, that is a 1.25 cycle-long pulse (for
Ae = 800nm) in the laboratory frame. Such a short pulse can probably not
be created in an actual experiment, propagate through a dispersive medium
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or not contaminate the signal frequencies with its own bandwidth. Yet, it
is interesting to see that in this limit of pulse-length, the step-like potential
provides results close to those obtained with a more complicated refractive
index profile.

Resorting to a Taylor expansion of the propagation constant fS(w) to
model the refractive index is common in nonlinear optics but cannot provide
an accurate perspective on horizon physics. Indeed, our study (based on
a Sellmeier model for the refractive index of a dispersive medium) clearly
demonstrated that energy transfer between various branches of the disper-
sion relation may occur (and not only between negative- and positive-optical-
frequency branches). This cannot be grasped by the common Taylor-expansion-
approach that is restricted to the study of one branch only. Furthermore,
the Sellmeier model can be straightforwardly generalised to account for near
medium-resonances absorption, which would be helpful in studying the scat-
tering of waves incoming with very high frequencies on the horizon - which
is one of the main theoretical unknowns of Hawking’s seminal calculation [2]
(see also the discussion in section 2.1.2). Thus the present Thesis opens un-
precedented opportunities to further investigate (analogue and astrophysical)
horizon physics.

The case for optical horizons

The experiment performed in this Thesis is an important step forward in the
development of the science of optical horizons. F
this experiment, the phase-matched wavelength is A,, = 566nm, and inter-
vals of spontaneous emission in the positive-norm mode of the pair will lay
symmetrically around this wavelength. The emission peaks are expected to
be comparatively as narrow and well-defined as those in Fig.4.30. As was in-
troduced in paragraph 4.5, emission in the UV due to contributions from the
negative-norm partner will be concentrated in a very narrow interval similar
to the interval over which the signal sought in the experiment should be de-
tected (218 —223um). Thus, observing the stimulated effect of scattering into
this negative-norm mode paves the way to the detection of the spontaneous
emission partner, and thus of photon pairs. Indeed, the advantage of the opti-
cal setup over other analogue systems (such as water waves [12, 13]) is that it
allows for direct, unambiguous, observation of single quanta. Measuring the
state of entanglement of the output boils down to measuring correlations in
photon-numbers between the negative-norm and positive-norm modes, which
are directly accessible quantities, down to the single-photon regime and is not
limited to ensemble averages, in optical experiments.

The ability provided by optical experiments to observe single quanta is
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very important in the case of analogue physics: as we have seen in the pre-
vious paragraph, spontaneous emission into the positive-norm mode of the
pair will take place over two distinct intervals in the visible simultaneously.
In contrast, emission into the negative-norm mode of the pair will be ob-
served over a single, narrow bandwidth, interval in the UV. Thus, quantum
correlations between two sets of intervals will have to be measured: the UV-
short-wavelength intervals for emission from the analogue white hole horizon,
and the UV-long-wavelength intervals for emission from the analogue black
hole interval. In both case, knowledge of the interval of emission of the
negative-norm partner is key, and the theory and experiment presented in
this Thesis is the important step towards identifying it.

In fluid experiments, such as Bose-Einstein Condensates [14, 20, 128] or
water waves [12, 13], only one of the two analogue horizon configurations can
be realised at once!”: one may only create the analogue to a black- or a white-
hole horizon. In optics, we may create both simultaneously, for modes in the
vacuum state scatter at both edges of the soliton continuously. Furthermore,
although the detection of the pair emitted at the horizon is destructive in
both fluids and optical experiments (for example, to be detected on a single
photon counter, the photon has to be absorbed by the material and cannot
be used for anything else subsequently), in the optical case, the quantum
state at the output can be used as a resource for other experiments. Indeed,
photons are a resource easily handled, even stored, in the laboratory, and can
be transferred (or their state teleported [129]) over great distances: provided
that one does not perform a destructive measurement (that would be aimed
at characterising the quantum state), photons emitted at the horizon can be
redirected to other setups. Light spontaneously emitted from the vacuum at
the optical horizon thus appears as a new and attractive source of entangled
light, for it will be created in a strongly entangled state — very close to a
pure state, as we saw in sections 2.2.4 and 3.3.2.

1 [20], a black-hole horizon
only is created. An extra potential barrier would have to be set in the fluid flow to create
a white-hole horizon as well.
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Conclusion

This Thesis consists of the study of the scattering of light at the horizon.
Particular emphasis is put on the optical scheme, whereby light in an op-
tical fibre is made to interact with itself to create an effective curvature of
spacetime. A theoretical investigation of the motion of light on such a curved
background, and of the resulting mixing of waves of positive and negative
frequency, is conducted. This mode mixing yields spontaneous emission from
the vacuum. An experiment in which an incoming, positive-frequency, wave
is populated with photons is assembled to observe the transfer of energy
from this wave to an outgoing wave of negative frequency at the horizon.
This is a classical, stimulated version of the quantum experiment that aims
at validating the mechanism of Hawking radiation.

Universality of the Hawking radiation mecha-
nism

Hawking radiation is the late-time thermal flux originating from the vicinity
of the event horizon of black holes [2, 78]. Any light that propagates through
the region of gravitational collapse will experience an exponential gravita-
tional redshift, which implies that the outgoing particles of which black hole
radiation is made must be taken to correspond to extremely high frequency
radiation at the horizon. Such a Trans-Planckian regime is not described
by General Relativity or Quantum Physics — it might be the dominion of
Quantuin Gravity — and is thus not properly described by the semi-classical
approach of Hawking’s. This raises questions about the validity of the deriva-
tion and the existence of the effect itself.

The fate of Hawking radiation, which is widely seen as a test-bench
for future theories of Quantum Gravitation, is however not sealed: some
laboratory-based systems mimic the kinematics of fields in the vicinity of
black holes, and in particular at the event horizon [10]. In total analogy with
their astrophysical counterparts, these "dumb holes" will emit a thermal flux.
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This discovery of Unruh’s ushered-in the field of analogue horizons.

Most analogue systems are based on the analogy between the motion
of waves in fluids and the motion of waves on a curved background. The
problem with Trans-Planckian waves has a direct analogue in fluid systems
in terms of the failure of the hydrodynamic limit: it cannot be assumed
that perturbations have a wavelength much longer than the healing wave-
length and, just like there is no theory for the microphysics of spacetime,
there is not one for fluids either. Jacobson suggested modelling the effect of
the underlying microphysics on linear fluctuations by considering a modified
dispersion relation [113]: he postulated that a modified dispersion relation
could be used to understand the breakdown of continuous fluid models due
to atomic effects. Unruh then performed numerical simulations in which he
demonstrated that, in the presence of dispersion, late-time radiation is not
caused by exponentially large quantum fluctuations [114]. This was also ap-
plied by Corley to the gravitational case [116]. More recently, Unruh and
Schiitzhold proposed to factor Trans-Planckian effects into the calculation of
Hawking radiation via a non-trivial dispersion relation and thus established
the universality of the Hawking radiation mechanism [130].

Epistemology of analogue systems

These studies have inspired a number of people who created a large body of
theoretical studies of analogue systems, and assembled a handful of exper-
iments to investigate various aspects of analogue horizon physics. Of par-
ticular importance is the experiment of Steinhauer who announced having
observed correlated emission of phonons at the horizon created in a Bose-
Einstein Condensate (BEC) in 2016 [20].

However, further arguments have to be gathered to validate the statement
that the observed radiation is of the same class as Hawking radiation. At
present, it being the only experiment in which the effect of spontaneous emis-
sion has been observed, a BEC with sonic horizon cannot be unequivocally
linked to astrophysical black holes. Thus the available evidence is not of the
appropriate epistemic type to confirm that black holes do radiate [131]. Tt
lacks external validation.

Other analogue experiments, by means of Unruh and Schiitzhold uni-
versality argument, may rescue the situation: would spontaneous emission
he observed in some other setting, confidence in the universality principle
would increase and the claim that Hawking radiation is emitted at analogue
horizons would be brought closer to validation.

A good candidate scheme is light in an optical fibre. As was mentioned in
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the beginning of the Conclusion, and demonstrated throughout the disserta-
tion, light in dispersive media can be made to interact with itself and create
an analogue event horizon at which spontaneous emission from the vacuum
occurs.

Contributions to the field

Spontaneous emission from the vacuum in various systems, and the kinemat-
ics and mathematical arguments that support the analogy between labora-
tory systems and astrophysical black holes are the central problem around
which this Thesis has revolved. The contributions of the present work to the
endeavours of the community are both theoretical and experimental. They
may be deconstructed in the following 5 themes:

e an analytical study of the scattering of light at an interface between
two media homogeneous in their refractive index;

e the development of an algorithm to calculate the spectra of spontaneous
emission at the interface in all regimes of refractive index change and
frequency at the interface, in both the moving and laboratory frame;

e the computation of the first analytical spectra of spontaneous emission
as it can be observed in the laboratory frame — including emission in
mode-solutions of negative frequency;

e an analytical demonstration that emission into a negative-frequency
mode-solution is parametrically amplified when a monochromatic, positive-
frequency, coherent wave scatters at the interface in the refractive in-
dex;

e tlie experimental investigation of the effect of energy transfer from a
monochromatic, positive-frequency, continuous wave to positive- and
negative-frequency waves upon scattering at the horizon created by a
soliton in an optical fibre.

The collection of these themes, alongside more general considerations
drawn from the state-of-the-art in the field of analogue horizons was presented
in this dissertation. For example, the theoretical study!'® yielded the discov-
ery that an interface in the refractive index of an inhomogeneous medium

8Which included a proof that, in regimes over which the dispersion is linear, the wave
equation is analogous to the Painlevé-Gullstrand metric — that is, the interface is an
q g )
analogue horizon;
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would simultaneously act as a black- and white-hole emitter, as well as a
horizonless emitter, as a function of the frequency and the magnitude of the
refractive index change. This is in contrast with the common thought that
an interface is either a black- or white-hole emitter. The implementation of
the algorithm allows for direct and fast calculation of spectra, and can be
generalised to simulate a variety of refractive index profiles. It thus appears
to be a good advance in a field that has been relying on purely numerical
studies until recently (see Robertson’s work for a similar study to this Thesis
[98, 119]). The computation of the spectral density of emission in the labora-
tory frame, as a result of contributions from all optical modes of positive- and
negative-frequency, yielded the observation that emission was strongest into
the negative-frequency mode, in the UV. This mode has a negative norm and
is the partner in all pair-wise emission process a la Hawking. Thus it shall be
a target of choice in any optical investigation of the spontaneous emission of
light from the vacuum. Furthermore, the existence of this UV peak inspired
the design of the experiment, that was aimed at detecting energy transferred
to this peak from a positive-frequency wave upon scattering at the horizon.

Similar experiments have already been carried out in water waves, in
which the generation of negative-norm waves from the horizon was observed
[12, 13]. Moreover, this experiment will yield crucial information toward
the observation of correlated photon-pairs emitted at the horizon, which is
the ultimate signature of spontaneous emission. Observing this emission
would contribute to the validation of analogue systems as appropriate source
systems to probe the physics of astrophysical black holes.
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Appendix

A Positive and negative frequency

In this appendix, we will discuss further arguments in favour of the consid-
eration of the sign of frequency of a mode of a field. The discussion will be
based on the study of sinusoidal functions.

Sinusoidal functions
A sinusoid is a function of the form
z(t) = Asin(wt + ¢), (A.1)

where ¢ is an independent (real) variable, and the fixed parameters A (the
amplitude), w (the radian frequency), and ¢ (the initial phase) are all real
constants. The argument of the sine function, wt + ¢ is referred to as the
instantaneous phase. Since the sine function is periodic with period 27, the
range of the initial phase is usually restricted to any values between 0 and
27. The radian frequency w is the time derivative of the instantaneous phase
—w=L(wt+9).

A sinusoid’s frequency content may be graphed in the frequency domain
by representing its spectral magnitude by (unit-amplitude, and ¢=0 case)
: 1 WUt 1 —iwgt

sin(wyt) = 5;¢ 5;¢ . (A.2)

That is, the spectrum of a unit-amplitude sinusoid of radian frequency w,
(and phase 7/2) consists of two components with amplitude 1/2, one at
frequency w, /27 and the other at frequency —w, /2.

Complex sinusoids
We define the complex sinusoid from Euler’s Identity

e @) — cos(wt + ¢) + isin(wt + ), (A.3)
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by multiplying it with an amplitude 4 > 0
A = A cos(wt + ¢) + iAsin(wt + ¢). (A.4)

From this equation, we see that a complex sinusoid consists of a real part and
an imaginary part — its in-phase and phase-quadrature components, respec-
tively. A complex sinusoid has a constant modulus — a constant complex
magnitude.

Given its constant modulus, a complex sinusoid must lie on a circle in
the complex plane: a positive-frequency sinusoid (e*!, w > 0) traces out
counter-clockwise circular motion along the unit circle as ¢ increases, while
a negative-frequency sinusoid (e~™*, w > 0) traces out a clockwise circular
motion!?.

Positive-and negative-frequencies components of a real
field

By Euler’s Identity, all real sinusoids consist of a sum of opposite circular
motion: this is best seen by writing out

ciwi+d) _ p—i(wite)

21

sin(wt + ¢) = (A.5)
It is obvious that every real sinusoid consists of an equal contribution of
positive- and negative-frequency components®’. Spectrum analysis [132] tells
us that every real signal contains equal amounts of positive and negative
frequencies. If we denote the spectrum of the real signal x(t) by X (w), we
have

(X (—w)| = [X(w)]. (A.6)

So why do we usually not consider the negative frequency component of
real signals? Well, it is because complex sinusoids have a constant modulus:
amplitude envelope detectors (typically, power meters) "compute’ the square
root of the sum of the squares of the real and imaginary part of the signal
to obtain the instantaneous peak amplitude. In other words, we usually
convert real sinusoids into complex ones, by removing the negative-frequency
component, before processing them.

9Note that both positive- and negative-frequency sinusoids are necessarily complex.
20A real sinusoid is the sum of a positive-frequency and a negative-frequency complex
sinusoid.
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B Modelling of a change in the dielectric con-
stant

In this section of the appendix, we will comment further on the modelling of
the dielectric constant in the Sellmeier model, and the modification of this
dielectric constant when the refractive index is increased (eg by the Kerr
effect in the fibre optical experiment of Chapter 4 of this dissertation).

Sellmeier coefficients in the Hopfield model

In paragraph 2.2.3, I explained how the Sellmeier coefficients (the resonance
2rc

frequency w; = 5¢ and elastic constant ;) of the medium (a set of polarisa-
tion fields modelled by harmonic oscillators) were modified by the frequency-
dependent change in the refractive index under the step of height dn (as
illustrated in Fig. 2.4) by Eq.(2.71). T argued that, in the light of the present
lack of theoretical description of the collection of quantum processes from
which the dielectric constant of a material arises, the Hopfield model of the
dielectric [99] was only an approximation of physical reality. In a scheme
based on this approximation, the modulation by (2.71) of the Sellmeier coef-
ficients is a usual description of the change in the dielectric constant within
a self-consistent theory.

The question then arises of which of the two coefficients. the resonant
frequency or the elastic constant, should be modified to best account for the
change in the dielectric constant. I argued that we do not, at present, have
at our disposal a good theoretical argument that would discriminate between
the two effects — or indeed a combination of both, as proposed in [96, 27|
and used in this Thesis and [28].

At the onset of their study, one thus has to make a choice as to which
modification to make: either x; or w;, or both x; and w;, are modified by
the change in the refractive index (of amplitude én) — note that, in any
case, this change has to be frequency dependent. From this choice stem the
matching conditions. As I demonstrated in paragraph 2.2.4, if k; is to be
modified by dn (independently of the modification of w;), then there is a dis-
continuity in the elastic constant at the interface. On the other hand, even if
w; is modified by én (independently of the modification of k;), this does not
create a discontinuity at the interface (the resonant frequency is continuous
at the interface for any amplitude of dn). So the choice mentioned above
influences the matching conditions, and thus it influences the scattering ma-
trix (because the elements of the matrix stem from the matching conditions
and the amplitude of the modes at the interface).

XXII



Dispersion relation

I think that this Thesis demonstrated how the structure and shape of the
dispersion relation influence the spectra of emission at the refractive index
front (RIF). With this in mind, I would argue that looking at the dispersion
relation, which can be readily calculated for any of the three cases we are
interested in, may shed somie light on the impact of the modification of the
Sellmeier coeflicients on the spectra of spontaneous emission. For simplicity.
we will here focus on the optical branch, and the modes of optical frequency
(of positive and negative norm).

Fig.31 displays the positive-norm optical branch of the dispersion relation
in the laboratory frame, and the positive- and negative-norm optical branch
in the moving frame (the frame co-moving with the RIF at velocity u =
0.66¢). The branches are shown in the low- and high-refractive-index region,
for dn = 0.048 at the step. We see that, as only the resonant frequency w; is
changed by the increase in the refractive index, the distance in the laboratory
frame (Fig.31 a)) between the optical branch in the low- and high-refractive-
index regions is largest around k& = 0 and at large |k|. In the moving frame
(Fig.31 d)), the positive- and negative-norm branches in the high-refractive-
index region are very close to their low-refractive-index region counterparts.
Thus we expect the moving frame frequency intervals over which the RIF acts
as a black-hole and a white-hole to be very narrow. The situation is almost
exactly opposite in the case in which only the elastic constant x; is changed
by the increase in the refractive index (Fig.31 b)), the branch in the high
refractive index region overlaps with that in the low refractive index region
around k£ = 0 and at large |k|, and is furthest away in the medium |k| regime.
In the moving frame (Fig.31 e)), the high-refractive-index region branches (of
positive- and negative-norm) are far from overlapping with the low-refractive-
index region one. Thus we expect the moving frame frequency intervals
over which the RIF acts as a black-hole and a white-hole to be relatively
large — comparably to the case in which both the Sellmeier coefficients are
modified, as discussed in Chapters 2 and 3 and plotted in Fig.31 ¢) and f)
for comparison.

Note that the overall curvature of the dispersion relation does not seem to
be affected by the independent change in the Sellmeier coefficients. Thus it
is reasonable to assume that the shape of the spontaneous emission spectra
will not drastically change either. That is, they should exhibit the same
horizon-like features (such as the “shark fin”) as those presented in Chapter

3.
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Figure 31: Change of elasticity and/or resonance frequency by refractive in-
dex increase. Left column: positive-norm optical branch in the laboratory
frame; right column: positive- and negative-norm optical branch in the mov-
ing frame. The branches are shown in the low refractive index region (black)
and high refractive index region (orange), with on = 0.048 in bulk fused
silica. In a) and d), only the resonant frequencies w; and ws are changed;
in b) and e), only the elastic constants x; and ke are changed; in ¢) and e),
both the resonant frequencies w; and wy and elastic constants x; and k9 are
changed (as in Chapters 2 and 3). A contour line of constant moving frame
frequency w’ is shown on the laboratory frame dispersion plots (a), b) and
¢)) to aid the visualisation of the change in the Sellmeier coefficients.
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Spectra of emission

The algorithm presented in Chapter 3 is based on the matching conditions
found in paragraph 2.2.4: it allows for calculating the scattering matrix if the
elasticity k; is discontinuous, and if the resonant frequency w; is continuous,
at the interface only. This means that, unfortunately, the case of continuous
(unchanged) x; cannot be investigated without modifying the algorithm, af-
ter having found out about the new analytical expression for the matching
conditions and relations between Global Modes (GM) in the inhomogeneous
medium. Thus, spectra in the case of unchanged «; and changed w; cannot
be computed presently. On the other hand, it is possible to compute spectra
in the case of changed &; and unchanged w; can be — and the case in which
both are affected by the increase in the refractive index was the subject of
section 3.3.

I here present new numerical results that allow for comparing the impact
of changing both ; and w;, or changing solely ;. The moving-frame pho-
tonic flux in the negative-norm optical mode noL and the uniquely escaping
mode moR (that has a positive norm) are shown in Fig.32 when both Sell-
meier coefficients are modified in a), and when only ; is modified in b). As
anticipated in the above paragraph, the overall shape of the spectra is not
significantly affected by the fact that the resonant frequency is not changed
in Fig.32 b). Horizontal lines indicating the limits of the subluminal inter-
vals (see paragraph 2.2.3) when both Sellmeier coefficients are modified are
shown for reference. When only the elastic constant is modified, the char-
acteristic features of the spectra ("shark fin") are slightly shifted to higher
frequencies, and it seems that the emission is overall weaker. Moreover, the
emission in nolL is stronger than in moR over the black-hole interval (be-
tween hw!,..; and hw,,,. ), which is a departure from the equality of the
fluxes observed when both Sellmeier coefficients are modified to model the
frequency-dependent change in the refractive index.

From these spectra, it is sound to assume that the spectrum of emission
when only the resonant frequency of the medium would be modified would
feature the same shark fin features (and possibly lower flux amplitudes),
although over narrower intervals. The spectrum would then be appreciably
different from those presented on Fig.32. Such numerical calculations should
definitely be carried to check those predictions.
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Figure 32: Emission spectra of optical modes of positive- and negative-norm
in the moving frame in bulk fused silica. The flux density in mode nolL
(purple curve) and moR (orange-dashed curve) is shown for a step height
on = 0.048. In a) both the Sellmeier coefficients are modified (as in Fig.3.6
d)) and in b) only the elastic constants k; and ko are modified. The vertical
dotted lines in both a) and b) indicate the limits of the subluminal intervals
when both Sellmeier coefficients are modified by a dn = 0.048 (Fig.3.6 d))

I also calculated the density of spectral emission in the laboratory frame in
the case in which only &; is modified to account for the frequency-dependent
change in the refractive index under the step of height dn = 0.048. The LSD
is shwon in blue in Fig.33: we see that it is mostly similar to the reference
spectrum obtained in section3.3.2, shown here in black. As for the moving
frame spectra, the emission is mostly lower when only the elastic constant
is modified, and the horizon features are blue-shifted with respect to the
reference spectrum.
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Figure 33: Laboratory Spectral Density with modified Sellmeier coefficients.
Spectra are calculated for a step of height on = 0.048 in bulk fused silica.
Dashed-blue: spectrum when x; and ko only are modified; black: spectrum
when both Sellmeier coefficients are modified.

From these spectra, it is unclear that an optical experiment in glass would
allow for clearly distinguishing the best theoretical model (modification of
either or both of the Sellmeier coefficients). As I already said in the body of
the dissertation, the present theory of the dielectric constant by means of the
Hopfield model, and of its modification by an increase in the refractive index
by modification of the Sellmeier coefficients has not to be taken too literally:
modifying either or both of the elastic constant and resonance frequency
is merely a means to account for the frequency dependent change in the
refractive index. Unfortunately, the present theory does not account for the
collection of quantum processes that would accurately describe the dielectric
constant. Further study could be dedicated to extensively studying this
puzzle, but for the sake of the present Thesis, modifying both x; and w; is
good enough.
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C Scattering at a smooth profile in a nondis-
persive medium

In this appendix, I demonstrate how to calculate the wave equation for the
one dimensional motion of a particle in the field of potential U (),
Us

cosh? ax

U(x) = (C.7)

[ then shown how to calculate the coefficients of scattering (reflection and

transmission) at such a smooth profile.

Exact solution

The one dimensional motion of a quantum particle in the field of potential
U(x) is described by the Schrodinger equation

d*U 2m
— E - U =0. .
ety (B U() ¥ =0 (C3)
In the present case, this reads
>0 Uy
— 4+ 2m{ - ——— |V =0. C.9
dz? * m( cosh? a:z:) (G9)
If we take
¢ = tanh(z), (C.10)

where we have implicitly rescaled the problem so that z — ax, then

_ sinh(z) cosh®(z) — 1

~ cosh(z)  cosh(x) (C.11)
and p
d_i = ¢ = tanh'(z) = 1 — &€ = cosh *(x). (C.12)
Thus we get
d\?2 d d __d¢ d B ) A
<E> v drdqu@ dﬂf[< €> 51_(1—5)“1—5)(&]
(C.13)
and equation (C.9) can be written as a function of ¢:
0 (1-¢) 2 [(1—5 ) dﬂ +2m (E-Uo(1-€))T=0
d - dI . omE 1 9 (C.14)
N m m
d—[( df]+<h2a21—£2_h20z2U0)‘11:0'
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Using the replacements k = —”,;’”l, and s = 3 (wl — % — 1), and noting
that s(s+1) = —2;’217[{20, the Schrodinger equation (C.14) can be expressed as

i0-e)%] (G )i o

This equation can also be ertten under a hyper-geometric form by making
the substitution ¥ = (1 — £2)~ 3 w(€). Eq.(C.15) becomes

tla-ergfa-e Fu©||+ (B +si+0) (-8 Fu©) =0
(C.16)

The computation of the first term of the above equation yields

1% term = d% [(1 - &) (g% (1- 52)7%71 w©) +(1- 52)*5_@ w'(f)ﬂ

:%[f% (1-&) Fw@+(1-¢) w’(é)]
R G S (R R

+ 5%‘ (1-&) * e+

+(-2¢) (1—1'—]‘”’) (1-¢) O+ (1-¢) ™w(©)

(C.17)

Substituting back into equation (C.16) and dividing by (1 — 52)—% yields

ik 2 k2 ik / 2 9
—w(———s —S—Q—E>—25<1—E>W+(l—£>w =0. (018)

07

N | =

Finally, momentarily changing the variable to u = = (1 — &), and expressing w
as a function of v - w' = —2w'(u) and w” = 4w”(u) - leads to the Schrodinger
equation in its hyper-geometric form

u(l - u)w”(u)+<1 - %) (1 - 2u) ' (u)— (—ﬁ - s> (—% +s+ 1) w(u) = 0.

o o)
(C.19)
The exact solution of the problem is the wave function

U= (1—52)‘%1?[—&—5 —%—I—s—l—l 1—% %(1—5)1 (C.20)
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finite for ¢ = 1 (i.e. for # — 00). This solution satisfies the condition that,
as © — 00, 1 — & — 2e72°% Indeed,

(1-€) = (1 - tanh(az)) = cosh(az) — sinh(az) 2e 207 (21)

cosh(ax) eor | p—az’

so for & — o0,
2 —2ax
(1 =€) =limy oo (6—> = 2¢ 20 (C.22)

Physically, this means that as x tends towards infinity, the wave function
should only include the transmitted wave (which is proportional to exp(ikz)).
The asymptotic form of the wave function as x — 0o (¢ — 1) (i.e., the wave
function before the barrier) is found by transforming the hyper-geometric
function [eq:exact solution] with the aid of formula e7 in appendix e of
Landau and Lifshitz’ book [133].

) (L oy ik 1

—— —5,5+1—
Q % e} a2

(1- f)) +

- 5))}
(C.23)

vk

1 ¥ r(1-#)r(-%)
+{—(1—§)} F(%S)F(SH%)F(SH —s5, 1+ =

) ik
whenzr — —00,& - —1qnd FF — 1. As (1 — 52)7£ = (1 — tanh(:voe)2) =
cosh(a:[)é = (ﬂ> ", and

2

1 P B4R 1 [146\F (&)
po-o) = (T =

When &+ —o0, (1-¢) %  (57)7 = 5 and [11-9)]" - 27

I = 1 —ir<1_%)r(%> 1 F<1—%)F(—%)
ToEC TTT (s nT(s) 2% D% 5T (s+1- %)

(C.25)

The wave function is composed of the reflected and transmitted waves which
are, respectively, the first and second term of equation (C.25).
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Reflection and transmission coeflicients

From equation (C.25) it is possible to calculate the reflection coefficient of
the potential barrier: it is enough to take the squared modulus of the ration
of coefficients in this function -

_ D(E) P (2 ) P (s+1 - 2) 2
D (s + 1) 2| (s) 0 () |2

_miht <>) = EH ks (:20)
sin(ws) ssin(ws % h

N

Here can be recognised

rR=" (Zm)r(—z——s>r Z——S>F<s+1—Z—>F(s+1+Z—>
w 07 (0% a3 8%
r

as I'(z) (2" r'(1-2" (1~ 2)
—sin®(7s)
R =
Sin 7w ( + S) sin 7 (ﬁ — 9)
R— | —sin? (s)
<sin (7s) cos (W%) + cos (7s) sin ( ’i)) (— sin (7s) cos ( ) + cos (7s) sin ( lf’:))
o —sin? (7s)

cos? (s) sin? (W%) — sin? (7s) cos? (W%) '

(C.27)
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Finally, the transmission coefficient is D =1— IR

cos? (ms) sin? (7?%) — sin? (7s) cos? (77%) + sin? (7s)
a cos? (7s) sin? (77%) — sin? (7s) cos? (W%)
~ cos® (s) sin? (W%) — sin? (7s) {cos2 (W%) — 1}
 cos? (ws) sinh? (Wé) — sin? (7s) cosh? (77%)
B sin? (77%) [cos? (78) + sin? (7s)]
sinh? (77%) — sin? (7s) sinh? (WS) + sin? (7s) cosh® (W%)
sinh® (77%) sinh? <7r§)
~ sinh? (ﬂ'%) + sin? (7s) ~ sinh® (7‘(’%) + cos? (7? (s + %))
sinh” (ﬂ%)

(C.28)

f 8mUo

2.2 < 1, or, in the opposite case,

sinh? (WE
(87

b= sinh? (71'%) + cos? <%’/T 8ml _ 1).

(C.29)

Useful gamma-functions properties

['(s+1)=sl(s)

(C.30)

M6 = e

[(s)" =I'(s")
it s € R.
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