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Highlights 

• A library of stable [(NHC)H][ZnXY2] species was synthesized 

• The structure of the salts was unambiguously assessed by X-ray diffraction analyses 

• The catalytic activity of the novel species was tested in the methylation of amines with 

CO2 as carbon feedstock 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Abstract 

The synthesis and characterization of imidazol(in)ium-based zinc(II) halide salts are reported. 

These compounds present interesting structural features and exhibit high stability. Their 

catalytic activity was explored in the methylation of amines with CO2 and PhSiH3. 
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1. Introduction 

During the past decades, transition metal complexes bearing NHC ligands (NHC = N-

Heterocyclic Carbene) have gained increasing attention. Indeed, these have shown to be 

efficient catalysts in several reactions as well as enabling interesting synthetic applications 

[1]. In order to develop more cost-effective processes, the use of complexes featuring 

inexpensive and Earth-abundant metals has been widely investigated [2]. In this context, 

Zn(II)-NHC complexes represent a remarkable example. They have shown to be particularly 

active in reactions involving the fixation of CO2, such as the methylation of amines [3], or the 

synthesis of cyclic carbonates from epoxides [4]. In addition, they are employed in the 

synthesis of polyurethanes [5] and in the polymerization of D,L-lactide [6]. To date, the 

synthesis of Zn(II)-NHC complexes involves the addition of a free carbene to a zinc salt. The 

carbene can either be a priori isolated or generated in situ from an appropriate precursor 

(NHC salt or NHC-CO2 adduct) [3-7]. Alternatively, the NHC salt can be directly reacted 

with diethylzinc, affording a mixed halide-ethyl complex [7b]. In spite of their general 

applicability, these procedures involve the use of sensitive and/or pyrophoric precursors and, 

consequently, require strictly anaerobic conditions. The development of a straightforward 

synthetic procedure leading to Zn(II)-NHC complexes would be most useful. Herein we 

report synthetic attempts towards Zn(II)-NHC complexes that led to the isolation of highly 

air- and moisture-stable [(NHC)H][ZnXY2] (X = Cl, Br) species. Such compounds were fully 

characterized and their catalytic activity in the methylation of amines with CO2 was 

investigated. 

2. Experimental 

2.1 General Considerations  

All reactions were carried out in air unless otherwise stated. Chemicals were used as received 

unless otherwise noted. Dry solvents were obtained from a solvent purification system. 1H 

and 13C-{1H} Nuclear Magnetic Resonance (NMR) spectra were recorded on a Bruker-400 

MHz or 300 MHz spectrometers using the residual solvent peak as reference (CDCl3: δH = 

7.26 ppm, δC = 77.16 ppm) at 298K. Elemental analyses were performed by the London 

Metropolitan University. 

2.2 General procedure for the synthesis of the zincates 4-7 



A 20 mL vial was charged with the NHC·HCl (300 mg, 1 equiv.) and the zinc salt (1 equiv.). 

Tetrahydrofuran (5 mL) was added, the vial was sealed with a screw-cap and the reaction was 

stirred at 60 ⁰C for two hours. The mixture was allowed to reach room temperature and the 

solvent was removed under reduced pressure to afford the desired product. 

2.2.1 Synthesis of [IPrH][ZnCl3] (4a) 

Colorless solid (368 mg, 93%). 1H NMR (400 MHz, CDCl3, 298 K): δ = 1.14 (d, 3JH-H = 6.9 

Hz, 12H, CH-CH3), 1.31 (d, 3JH-H = 6.9 Hz, 12H, CH-CH3), 2.53 (sept, 3JH-H = 6.9 Hz, 4H, 

CH-CH3), 7.32 (d, 3JH-H = 7.7 Hz, 4H, CH phenyl), 7.55 (t, 3JH-H = 7.8 Hz, 2H, CH phenyl), 

8.00 (s, 1H, H2), 8.46 (s, 2H, H4 and H5). 13C-{1H} NMR (75 MHz, CDCl3, 298 K): δ = 24.0 

(s, CH-CH3), 25.0 (s, CH-CH3), 29.0 (s, CH-CH3), 124.8 (s, CH Ar), 128.6 (s, CH Ar), 129.9 

(s, CIV), 132.2 (s, CIV), 134.3 (s, C2), 145.6 (s, C4 and C5). Anal. Calcd for C27H37Cl3N2Zn: C, 

57.77; H, 6.64; N, 4.99. Found: C, 57.84; H, 6.61; N, 5.05. 

2.2.2 Synthesis of [IPrH][ZnClBr2] (4b) 

Colorless solid (414 mg, 90%). 1H NMR (400 MHz, CDCl3, 298 K): δ = 1.16 (d, 3JH-H = 6.9 

Hz, 12H, CH-CH3), 1.30 (d, 3JH-H = 6.9 Hz, 12H, CH-CH3), 2.51 (sept, 3JH-H = 6.9 Hz, 4H, 

CH-CH3), 7.33 (d, 3JH-H = 7.7 Hz, 4H, CH phenyl), 7.56 (t, 3JH-H = 7.8 Hz, 2H, CH phenyl), 

8.19 (s, 1H, H2), 8.37 (s, 2H, H4 and H5). 13C-{1H} NMR (75 MHz, CDCl3, 298 K): δ = 24.1 

(s, CH-CH3), 24.4 (s, CH-CH3), 29.1 (s, CH-CH3), 124.9 (s, CH Ar), 128.3 (s, CH Ar), 129.8 

(s, CIV), 132.3 (s, CIV), 134.9 (s, C2), 145.4 (s, C4 and C5). Anal. Calcd for C27H37Br2ClN2Zn: 

C, 49.87; H, 5.74; N, 4.31. Found: C, 50.04; H, 5.81; N, 4.45.  

2.2.3 Synthesis of [SIPrH][ZnCl3] (5a) 

Colorless solid (363 mg, 92%). 1H NMR (400 MHz, CDCl3, 298 K): δ = 1.18 (d, 3JH-H = 6.8 

Hz, 12H, CH-CH3), 1.40 (d, 3JH-H = 6.8 Hz, 12H, CH-CH3), 3.14 (sept, 3JH-H = 7.3 Hz, 4H, 

CH-CH3), 4.97 (s, 4H, H4 and H5), 7.25 (d, 3JH-H = 7.7 Hz, 4H, CH phenyl), 7.36 (s, 1H, H2), 

7.44 (t, 3JH-H = 7.8 Hz, 2H, CH phenyl). 13C-{1H} NMR (75 MHz, CDCl3, 298 K): δ = 24.0 

(s, CH-CH3), 25.6 (s, CH-CH3), 29.1 (s, CH-CH3), 55.7 (s, C4 and C5), 125.0 (s, CH Ar), 

129.5 (s, CH Ar), 131.5 (s, CIV), 146.8 (s, CIV), 156.6 (s, C2). Anal. Calcd for C27H39Cl3N2Zn: 

C, 57.57; H, 6.98; N, 4.97. Found: C, 57.38; H, 6.83; N, 5.05. 



2.2.4 Synthesis of [SIPrH][ZnClBr2] (5b) 

Colorless solid (408 mg, 89%). 1H NMR (400 MHz, CDCl3, 298 K): δ = 1.18 (d, 3JH-H = 6.8 

Hz, 12H, CH-CH3), 1.40 (d, 3JH-H = 6.8 Hz, 12H, CH-CH3), 3.11 (sept, 3JH-H = 7.3 Hz, 4H, 

CH-CH3), 4.94 (s, 4H, H4 and H5), 7.25 (d, 3JH-H = 7.7 Hz, 4H, CH phenyl), 7.38 (s, 1H, H2), 

7.44 (t, 3JH-H = 7.8 Hz, 2H, CH phenyl). 13C-{1H} NMR (75 MHz, CDCl3, 298 K): δ = 24.1 

(s, CH-CH3), 25.6 (s, CH-CH3), 29.1 (s, CH-CH3), 55.6 (s, C4 and C5), 125.1 (s, CH Ar), 

129.4 (s, CH Ar), 131.6 (s, CIV), 146.7 (s, CIV), 156.8 (s, C2). Anal. Calcd for 

C27H37BrCl2N2Zn: C, 49.72; H, 6.03; N, 4.29. Found: C, 49.60; H, 5.76; N, 4.77. 

2.2.5 Synthesis of [IMesH][ZnCl3] (6a) 

Colorless solid (370 mg, 88%). 1H NMR (400 MHz, CDCl3, 298 K): δ = 2.14 (s, 12H, CH3), 

2.34 (s, 6H, CH3), 7.01 (s, 4H, CH phenyl), 7.89 (s, 2H, H4 and H5), 8.71 (s, 1H, H2). 13C-

{ 1H} NMR (75 MHz, CDCl3, 298 K): δ = 17.7 (s, CH3), 21.3 (s, CH3), 126.0 (s, CIV), 129.9 

(s, CH Ar), 130.6 (s, CIV), 134.4 (s, CIV), 136.4 (s, C2), 141.3 (s, C4 and C5). Anal. Calcd for 

C21H25Cl3N2Zn: C, 52.86; H, 5.28; N, 5.87. Found: C, 52.93; H, 5.11; N, 5.93. 

2.2.6 Synthesis of [IMesH][ZnClBr2] (6b) 

Colorless solid (428 mg, 86%). 1H NMR (400 MHz, CDCl3, 298 K): δ = 2.10 (s, 12H, CH3), 

2.30 (s, 6H, CH3), 6.96 (s, 4H, CH phenyl), 7.75 (s, 2H, H4 and H5), 9.01 (s, 1H, H2). 13C-

{ 1H} NMR (75 MHz, CDCl3, 298 K): δ = 17.8 (s, CH3), 21.2 (s, CH3), 125.7 (s, CIV), 129.8 

(s, CH Ar), 130.5 (s, CIV), 134.3 (s, CIV), 136.6 (s, C2), 141.2 (s, C4 and C5). Anal. Calcd for 

C21H25Br2ClN2Zn: C, 44.56; H, 4.45; N, 4.95. Found: C, 44.61; H, 4.44; N, 5.13. 

2.2.7 Synthesis of [IPr*H][ZnCl3] (7a) 

Colorless solid (315 mg, 92%). 1H NMR (400 MHz, CDCl3, 298 K): δ = 2.15 (s, 6H, CH3), 

5.29 (s, 4H, CH-Ph), 5.59 (s, 2H, H4 and H5), 6.80 (m, 12H, CH Ar), 7.12-7.25 (m, 32H, CH 

Ar), 10.76 (s, 1H, H2). 13C-{1H} NMR (75 MHz, CDCl3, 298 K): δ = 21.9 (s, CH3), 51.4 (s, 

CH3-Ph), 123.8 (s, C4 and C5), 125.7 (s, CIV), 127.0 (s, CH Ar), 127.1 (s, CH Ar),128.7 (s, 

CH Ar), 128.8 (s, CH Ar), 129.3 (s, CH Ar), 130.1 (s, CH Ar), 130.3 (s, CH Ar), 131.1 (s, 

CH Ar), 140.5 (s, CIV), 141.5 (s, C2), 141.9 (s, CIV), 142.6 (s, CIV). Anal. Calcd for 

C69H57Cl3N2Zn: C, 76.32; H, 5.29; N, 2.58. Found: C, 76.23; H, 5.17; N, 2.67. 

2.2.8 Synthesis of [IPr*H][ZnClBr2] (7b) 

Colorless solid (331 mg, 89%). 1H NMR (400 MHz, CDCl3, 298 K): δ = 2.19 (s, 6H, CH3), 

5.13 (s, 4H, CH-Ph), 5.71 (s, 2H, H4 and H5), 6.80 (m, 12H, CH Ar), 7.10 (m, 8H, CH Ar), 

7.15-7.20 (m, 16H, CH Ar), 7.26-7.30 (m, 8H, CH Ar), 10.11 (s, 1H, H2). 13C-{1H} NMR (75 



MHz, CDCl3, 298 K): δ = 22.0 (s, CH3), 51.5 (s, CH3-Ph), 124.4 (s, C4 and C5), 127.2 (s, 

CIV), 127.4 (s, CH Ar), 128.9 (s, CH Ar), 128.9 (s, CH Ar), 129.2 (s, CH Ar), 129.7 (s, CH 

Ar), 129.9 (s, CH Ar), 131.1 (s, CH Ar), 138.9 (s, CH Ar), 140.5 (s, CIV), 141.5 (s, C2), 141.9 

(s, CIV), 142.3 (s, CIV). Anal. Calcd for C69H57Br2ClN2Zn: C, 70.54; H, 4.89; N, 2.38. Found: 

C, 70.45; H, 4.75; N, 2.51. 

 

2.3 General procedure for the Zn-catalyzed N-methylation of amines with CO2 

Under an argon atmosphere, a 3 mL vial was charged with 6b (5 mol%), KOtBu (5 mol%) 

and CPME (2 mL). Substrate 8 (0.28 mmol, 1 equiv.) and PhSiH3 (3 equiv.) were added and 

the vial was sealed with a septum cap. The septum cap was pierced with a syringe needle and 

placed into a six-slot steal autoclave. The autoclave was sealed, purged twice with CO2 and 

heated at 100 ⁰C (oil bath) under CO2 atmosphere (1 bar) for 20 hours. After this time the 

reaction mixture was allowed to cool and the gas was carefully released. The reaction mixture 

was analyzed by gas chromatography (GC). 

3. Results and Discussion 

3.1 Synthetic attempts towards Zn(II)-NHC complexes 

Recently, NHC complexes of gold(I) and copper(I) have been synthesized by reacting the 

corresponding imidazol(in)ium salts with the metal precursors in the presence of K2CO3 in air 

under mild conditions [8,9]. Based on these reports, attempts towards the synthesis of Zn(II)-

NHC complexes were carried out using a similar strategy (Scheme 1) [10]. NHC salts were 

reacted with ZnBr2 or ZnCl2 in the presence of K2CO3 at 60 0C, under inert atmosphere [11]. 

Although full transformation of the starting NHC salt was achieved in all cases, the desired 

Zn(II)-NHC complexes were not obtained. The 1H NMR spectra of the products showed the 

presence of the acidic H signal (N-CH-N) significantly shifted upfield, suggesting the 

formation of new imidazolium-based species [10]. 

Crystals suitable for X-ray analyses were obtained for compounds 1, 2 and 3, isolated from 

the reaction of ZnBr2 with K2CO3 and IPr*·HCl, IPrCl·HCl and IPr·HBr, respectively (IPr* = 



N,N’-bis-[2,6-bis-(diphenylmethyl)-4-methylphenyl]imidazol-2-ylidene, IPrCl = N,N’-bis-

[2,6-(di-iso-propyl)phenyl]-4,5-dichloroimidazol-2-ylidene and IPr = N,N’-bis-[2,6-(di-iso-

propyl)phenyl]imidazol-2-ylidene) [12]. X-ray analyses showed that the obtained compounds 

were the zincate salts and not the expected Zn(II)-NHC complexes. The molecular structure 

of 1 is reported in figure 1. In this species, two NHC moieties surround a tetrahedral [ZnX4]
2- 

unit, which acts as counterion [13]. Interesting short-contacts between imidazolium protons 

and halides of the zinc moieties were observed (e.g. H(1)-Br(1) 2.787 Å), which would 

probably justify the absence of deprotonation when K2CO3 is used. Compound 2 displayed 

structural features similar to 1 [14]. In this case, the anionic dimer [(ZnBr2Cl)-]2
 is in contact 

with two IPrCl moieties. Short-contacts were found between the Cl atoms on the backbone of 

the NHC and the halides of the zinc anion.  

Compound 3 exhibited a peculiar molecular structure (Figure 2). In this species, a tetrahedral 

[ZnBr4]
2- anion is surrounded by four IPr moieties. Short-contacts between the Br atoms and 

the hydrogen atoms on the backbone of the NHC were also observed (e.g. H(33)-Br(2) 2.726 

Å) [15], further highlighting the stability of such species. Bond lengths and angles around the 

imidazole unit of compounds 1-3 are similar to those reported for the corresponding NHC 

salts [16]. 

3.2 Synthesis of a library of [(NHC)H][ZnXY2] salts 

Compounds 1-3 are considered analogues to the metallate intermediates obtained during the 

synthesis of Au(I)- and Cu(I)-NHC complexes via the reaction of NHC salts with gold and 

copper precursors in the absence of a base [8,9]. In order to generate a library of zincate salts 

that we could later use to generate the Zn(II)-complexes, we reacted various imidazol(in)ium 

salts with ZnCl2 and ZnBr2 in the absence of base (Scheme 2). In all cases full conversion to 

the corresponding zincates was observed.  

All species were isolated in micro-analytically pure form and in good to excellent yields. 

Similarly to zincates 1-3, the 1H NMR spectra of these species displayed an upfield shift of 

the signal assigned to the acidic proton (N-CH-N) with respect to their corresponding 

NHC·HX salts [17]. Synthetic attempts towards Zn(II)-NHC complexes by treatment of these 

compounds with bases such as K2CO3 or KOtBu were unsuccessful, further underlining the 

high stability of these salts [18]. Crystals suitable for X-ray analyses of 4a and 5b were 

obtained by slow diffusion of pentane into a saturated solution of the salts in chloroform [12]. 

Their molecular structures are reported in Figure 3 and Figure 4, respectively.  



In both species, two [ZnX3]
- moieties are bound via bridging halides and interacting with two 

[(NHC)H] cations. Similarly to compound 2, the sites of the anion in 5b are partially 

occupied by both Cl and Br atoms. Short-contacts between the hydrogen atoms of the NHC 

backbone and the halides of the counterion have been observed in both structures. Bond 

lengths and angles of the NHC moieties are similar to those found in salts 1-3 [16]. It is clear 

that the structure of the zincates and the nature of the short-contacts are highly dependent on 

the NHC used (steric hindrance) and on the type of halides present on the zinc (mixed 

bromide-chloride, fully brominated or chlorinated). In addition, in the absence of K2CO3, 

only [(ZnX3)2]
- dimers were observed as counter-ions, which indicated that the base was 

probably responsible for the disproportionation of the [(ZnX3)2]
- into the [ZnX4]

2- observed in 

compounds 1 and 3. 

3.3 Zn-catalysed methylation of amines with CO2 as carbon feedstock 

The catalytic activity of these interesting species was tested in the N-methylation of N-

methylaniline (8a) using CO2 (Table 1) [3,19]. Under the optimized conditions reported for 

[Zn(Cl)2(IPr)] [3],  none of the zincates 4a-7a were catalytically active (Table 1, entries 

1-4) [20]. To our delight, in the presence of a catalytic amount of KOtBu (5 mol%), the 

desired product 9a was obtained (Table 1, entry 5). It should also be noted that mixed 

chloride-bromide salts performed better than their fully chlorinated or fully 

brominated analogues (Table 1, entries 5-13). In particular, in the presence of 

[IMesH][ZnClBr2] (6b) 80% conversion towards the desired methylated compound 

was obtained (Table 1, entry 12). Finally, by adding a further equivalent of PhSiH3, full 

conversion of the starting material was observed (Table 1, entry 14). With these optimal 

conditions in hand, an exploration of the substrate scope was undertaken (Scheme 3). While 

full conversion of N-methylaniline 8a into 9a was achieved, substrates 8b and 8c only 

afforded 66% and 64% conversion, respectively, into the corresponding methylated products. 

These results are in line with those reported for the same reaction catalyzed by [Zn(Cl)2(IPr)] 

[3]. 

 

 

 



Thus, these observations clearly indicate that the air- and moisture-stable zincates could be 

considered as viable alternatives to the highly sensitive well-defined Zn(II)-NHC systems. 

Primary amines were also investigated. Under the optimal conditions, 39% conversion 

towards the dimethylated compound 9d was observed when aniline 8d was used, whereas the 

more hindered 2,6-diisopropylaniline 8e only afforded 9% conversion into the dimethylated 

product 9e. Nevertheless, by doubling the amount of catalyst, KOtBu and phenylsilane, in 

both cases, the formation of the dimethylated product drastically increased (48% for 9d and 

70% for 9e).  

 

Insights into the mechanism of this transformation can be obtained by analyzing the 

composition of the reaction mixtures for substrates 8d and 8e (Table 2). Under the standard 

conditions, the reaction mixture was composed of mono- and dimethylated amines (I  and III ) 

and by the carbamate II , with the latter being the major product in both cases (Table 2, 

entries 1 and 2). 

When the amounts of catalyst, silane and base were doubled, the conversion of the substrate 

into III  improved and the formation of carbamate IV  was also observed (Table 2, entries 3 

and 4).  

A possible mechanism for this transformation, based on our observations and those of 

previous reports, is depicted in Scheme 4 [3,19]. The first step involves the incorporation of 

CO2 into the primary aniline 8 affording carbamate II . The reduction of the latter under 

hydrosilylation conditions leads to the formation of the corresponding methylated aniline I . 

Similarly, the insertion of CO2 into the methylated aniline I  generates amide IV , whose 

reduction liberates the corresponding dimethylated compound III . Previous reports have also 

identified species II  and IV  as possible intermediates of this transformation. Moreover, the 

reduction of such carbonyl compounds under hydrosilylation conditions have also been 

shown to yield the desired methylated products I  and III  [3,19]. Considering this pathway, 

KOtBu could have two roles: 1) assist the in situ formation of Zn(II)-NHC and 2) accelerate 

the hydrosilylation step. In fact, it has been shown that the use of a catalytic amount of an 

alkoxide salt has a positive effect on the rate of reduction of carbonyl compounds via 

hydrosilylation [21]. Both synthetic and computational works are ongoing in our laboratories 

in order to identify the actual catalytically active species and to obtain a better understanding 

of the mechanism of this transformation. 



4. Conclusions 

In conclusion, we have described the synthesis of [(NHC)H][ZnXY2] species. These 

compounds present interesting structural and spectroscopic features. Their stability could be 

explained by taking into account the short-distance interactions between the imidazol(in)ium 

moieties and the central anion. In addition, these species were shown to be catalytically active 

in the methylation of amines with CO2 and phenylsilane, proving to be stable alternatives to 

the highly air- and moisture-sensitive well-defined Zn(II)-NHC complexes. The mechanism 

of the methylation and other possible catalytic applications of these novel compounds are 

being investigated in our laboratories. 
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Figure Captions 

 

 

Scheme 1. Initial attempts towards Zn(II)-NHC complexes via the K2CO3 route.  

 

 
Scheme 2 Synthesis of [(NHC)H][ZnClX2] species. 

 



Scheme 3. Zn-catalyzed N-methylation of amines with CO2 and PhSiH3.
a 

 

 

 

Scheme 4. Proposed mechanism for the Zn-catalyzed N-methylation of amines with CO2 and PhSiH3 [3,19]. 

 

 

 



 

Fig. 1. Molecular structure of [IPr*H]2[ZnX4] (1) (X = Br, Cl). Ellipsoids are represented at the 50% probability 
level. Hydrogen atoms (except for N-CH-N) are omitted for clarity. Selected bond lengths (Å) and angles (°) 
(esd): C(1)-N(2) 1.331(5), N(2)-C(3) 1.393(6), C(3)-C(4) 1.334(6), Zn(1)-Cl(1) 2.30(2), Zn(1)-Br(1) 2.397(3), 
N(2)-C(1)-N(5) 108.0(5), C(1)-N(2)-C(3) 108.9(4), N(2)-C(3)-C(4)-107.1(4), Cl(1)-Zn(1)-Cl(1) 111.8(7), Br(1)-
Zn(1)-Br(1) 111.76(12). 

 

 

Fig. 2. Molecular structure of [IPrH]4[ZnBr4][ZnBr3]2 (3). Ellipsoids are represented at the 50% probability 
level. Hydrogen atoms (except for N-CH-CH-N), N-aryl substituents and two [ZnBr3]

- counter-ions are omitted 
for clarity. Selected bond lengths (Å) and angles (°) (esd): C(31)-N(32) 1.312(10), N(32)-C(33) 1.391(11), 
C(33)-C(34) 1.352(13), Zn(1)-Br(1) 2.4297(13), N(32)-C(31)-N(35) 107.7(7), C(31)-N(32)-C(33) 110.4(7), 
N(32)-C(33)-C(34) 105.5(8), Br(1)-Zn(1)-Br(2) 107.94(5), Br(1)-Zn(1)-Br(4) 108.78(5). 

 



Fig. 3 Molecular structure of [IPrH][ZnCl3] (4a). Ellipsoids are represented at the 50% probability level. 
Hydrogen atoms (except for N-CH-N) are omitted for clarity. Selected bond lengths (Å) and angles (°) (esd): 
C(31)-N(32) 1.334(3), N(32)-C(33) 1.381(2), C(33)-C(34) 1.340(4), Zn(31)-Cl(31) 2.2299(6), Zn(31)-Cl(32) 
2.3316(8), N(32)-C(31)-N(35) 107.95(15), C(31)-N(32)-C(33) 108.87(18), N(32)-C(33)-C(34)-107.1(2), 
Cl(31)-Zn(31)-Cl(32) 114.45(3), Zn(31)-Cl(32)-Zn(31) 88.20(2). 

 

 

Fig. 4 Molecular structure of [SIPrH][ZnClBr2] (5b). Ellipsoids are represented at the 50% probability level. 
Hydrogen atoms (except for N-CH2-CH2-N) are omitted for clarity. Selected bond lengths (Å) and angles (°) 
(esd): C(1)-N(2) 1.304(3), N(2)-C(3) 1.483(3), C(3)-C(4) 1.533(3), Zn(1)-Br(1) 2.442(7), Zn(1)-Cl(1) 
2.381(10), N(2)-C(1)-N(5) 115.13(19), C(1)-N(2)-C(3) 109.56(17), N(2)-C(3)-C(4)-102.89(17), Br(1)-Zn(1)-
Br(2) 109.9(2), Cl(1)-Zn(1)-Cl(2) 103.3(4), Zn(1)-Br(1)-Zn(1) 85.0(2), Zn(1)-Cl(1)-Zn(1) 86.7(3). 

 

 

Table 

Table 1 Optimization of the reaction conditions for the Zn-catalyzed N-methylation of 8a with CO2 and 
PhSiH3.

a 

 
Entry [Zn] Conversion (%)

a 

1 [IPrH][ZnCl3] (4a) - 

2 [SIPrH][ZnCl3] (5a) - 

3 [IMesH][ZnCl3] (6a) - 

4 [IPr*H][ZnCl3] (7a) - 

5
b
 [IPrH][ZnCl3] (4a) 51 

6
b
 [SIPrH][ZnCl3] (5a) - 

7
b
 [IMesH][ZnCl3] (6a) 65 

8
b
 [IPr*H][ZnCl3] (7a) 44 

9
b 

[IPrH][ZnClBr2] (4b) 58 

10
b 

[IPrH][ZnBr3] (3) 50 

11
b 

[SIPrH][ZnClBr2] (5b) 6 

12
b 

[IMesH][ZnClBr2] (6b) 80 



13
b 

[IPr*H][ZnClBr2] (7b) 50 

14
b,c 

[IMesH][ZnClBr2] (6b) >99 (78) 

Reaction conditions: 8a (1 equiv.), PhSiH3 (2 equiv.), [Zn] (5 mol%), 
CO2 (1 bar), CPME (2 mL), 100 

o
C, 20 h. 

a
Conversions determined by 

GC based on 8a, average of two runs. Isolated yield in parentheses. 
b
KO

t
Bu (5 mol%). 

c
PhSiH3 (3 equiv.). 

 

Table 2. Composition of the reaction mixtures for the methylation of primary amines with CO2 catalyzed by 
6b.a 

 

  Conversion
a 

Entry Substrate I II III IV 

1 8d 10% 58% 32% - 

2 8e 2% 62% 9% - 

3
b 

8d 6% 14% 48% 14% 

4
b 

8e 18% 4% 70% 6% 

a
Determined by GC based on the substrate, average of two runs. 

b
6b (10 mol%), KO

t
Bu (10 

mol%), PhSiH3 (6 equiv.). 

 

 

 


