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a b s t r a c t

The R package planor enables the user to search for, and construct, factorial designs
satisfying given conditions. The user specifies the factors and their numbers of levels,
the factorial terms which are assumed to be non-zero, and the subset of those which
are to be estimated. Both block and treatment factors can be allowed for, and they may
have either fixed or random effects, as well as hierarchy relationships. The designs are
generalised regular designs, which means that each one is constructed by using a design
key and that the underlying theory is that of finite abelian groups. The main theoretical
results and algorithms on which planor is based are developed and illustrated, with the
emphasis on mathematical rather than programming details. Sections 3–5 are dedicated
to the elementary case, when the numbers of levels of all factors are powers of the same
prime. The ineligible factorial terms associated with users’ specifications are defined and it
is shownhow they can be used to search for a design key by a backtrack algorithm. Then the
results are extended to the case when different primes are involved, by making use of the
Sylow decomposition of finite abelian groups. The proposed approach provides a unified
framework for a wide range of factorial designs.
© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Factorial designs that may include several block and treatment factors date back to the pioneering work of Fisher and
Yates at Rothamsted Experimental Station (Yates, 1933, 1937; Fisher, 1942), followed by Finney (1945) and Bose (1947).
Since then, the construction of fractional designs has been a constantly active field of research in the theory of design of
experiments. It has also been widely applied in many different application areas, including food research, biology, industry,
and – more recently – computer experiments.

The designs we are interested in are known today as regular factorial designs. Their construction, which is based on
algebra and group theory, gives a large class of orthogonal factorial designs, including as special cases block and row–column
designs (Yates, 1937) as well as fractional designs (Finney, 1945). Regular fractional designs became a standard method of
construction very early. Their main principles in standard cases have been explained in numerous text books including
classics (Kempthorne, 1952; Cochran and Cox, 1957) and more recent ones (Ryan, 2007; Bailey, 2008; Morris, 2011; Cheng,
2014).

✩ This paper also includes Supplementary material providing proofs (Appendix A) (and additional information on the algorithms (Appendices B, C).
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Of course, there are situations where non-regular factorial designs are needed. Examples include incomplete-block
designs where the block size does not divide the number of treatments, and orthogonal arrays, such as those obtained from
Hadamard matrices (Hedayat et al., 1999) and by computer intensive algorithms (Kuhfeld and Tobias, 2005) or those given
by Bose and Bush (1952) and Addelman and Kempthorne (1961), whose number of experimental units does not divide the
number of treatments. See Grömping and Hu (2014) and Grömping and Bailey (2016) for further discussion of the definition
of regularity. However, regular designs still have wide applicability, and these are what the software planor deals with.

An important notion in fractional designs is resolution (Box and Hunter, 1961a,b). If R is a positive integer, a fraction of
resolution R allows the estimation of all factorial effects up to interactions of order strictly smaller than R/2, assuming that
all interactions of order strictly larger than R/2 are zero. More discriminating criteria such as minimum aberration (Fries
and Hunter, 1980) or maximum estimation capacity (Cheng and Mukerjee, 1998) have been developed. The construction
of optimal designs with respect to these criteria is still an active field of research, which includes analytical as well as
algorithmic issues. However, resolution and aberration imply that the model of interest be symmetric with respect to all
factors.

Most work in this area thus deals with problems which are highly symmetric with respect to the factors and models of
interest. However, there is also a need to find generic and user-friendly methods of construction adapted to much more
flexible problem specifications, allowing for unconstrained numbers of levels and flexible model assumptions.

The construction of a regular fraction involves two steps: first, finding defining relationships or generators of the fraction
ensuring that factorial effects of interest will be estimable; second, generating the actual design. Despite its apparent
simplicity in standard cases, the first step still represents a major challenge in general situations. It has been applied and
programmed mainly in the case of symmetric designs, which require all factors to have the same number of levels or, at
least, numbers of levels that are powers of the same prime.

Algorithms were developed and studied in the 1970s and 1980s (Patterson, 1965, 1976; Bailey et al., 1977; Franklin
and Bailey, 1977; Patterson and Bailey, 1978; Bailey, 1985; Franklin, 1985) and some of them implemented in statistical
packages (SAS, 2010; Payne, 2012; Grömping, 2014). Lewis (1982) tabulated generators for asymmetric factorial designs
with resolution 3. This paper extends these approaches to a generalised class of regular designs. We follow the theoretical
framework of Kobilinsky (1985) andKobilinsky andMonod (1991, 1995), althoughweoccasionallymodify a termor notation
for simplicity. We also make intensive use of pseudofactors (Monod and Bailey, 1992). The generalised class includes
symmetric as well as asymmetric designs, with estimation planned in one or more strata. For example, our results apply
to the construction of generalised split-plot or criss-cross designs as well as the more usual fractional designs. The method
allows the user to define themodel and specifywhat should be estimated. The approach and results have been implemented
in the R package planor (Kobilinsky et al., 2012; Monod et al., 2012) based on the initial APL version by Kobilinsky (2005).

2. Overview of the design search issue

2.1. Examples

We start with three examples to illustrate the diversity of situations we want to consider, all based on real applications
from our consulting experience.

We follow standard practice in using the same notation A for a factor and for its main effect, and the notation A.B for the
interaction between factors A and B. Hierarchy relationships are denoted as in Bailey (2008, Chapter 10). In particular:

• B 4 A means that factor B is or must be nested in factor A, in other words B must be finer than or equivalent to A and,
reciprocally, Amust be coarser than or equivalent to B, so that each level of B occurs with a single level of A;
• A∧ C denotes the product or infimum of A and C , which is the factor whose levels are the combinations of levels of A and

C .

Note the following two properties:

• A ∧ C 4 A and A ∧ C 4 C;
• if A 4 B and A 4 C , then A 4 B ∧ C .

Example 1. There are four treatment factors F1, F2, F3, F4 with 6, 4, 3, 4 levels respectively. A complete factorial designwould
require 288 experimental units but we assume this is much larger than possible, so that a smaller fractional design is looked
for.

The experimenter intends to analyse the data using amodel that consists of the general mean, the four main effects of F1,
F2, F3, F4 and the interaction F1.F3, all with fixed effects, with good reasons to consider the other interactions as negligible.
The factorial terms he or she wants to estimate are the four main effects only. The factorial terms in the model and those
that must be estimated are listed in the following sets M and E :

M = {µ, F1, F2, F3, F4, F1.F3} and E = {F1, F2, F3, F4} =M \ {µ, F1. F3},

where µ denotes the general mean.
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Example 2. A row-and-column design has to be constructed with two columns (factor C), three rows (factor R) and two
units in each of the six cells defined by a row and a column. There are three treatment factors: two 2-level factors D, E and
one 3-level factor A. The experimenter wants to estimate the interactions D.A, E.A, considering a model that includes the
general mean, row, column and cell effects as well as all main effects of treatment factors and all interactions between two
treatment factors. The sets M and E now are:

M = {µ, C, R, C .R, D, E, A, D.A, E.A, D.E} and E = {D.A, E.A}.

An additional constraint is that, for practical reasons, the factor Amust remain constant on each row.We call this a hierarchy
constraint, imposing that factor R be nested in factor A, and denote it by R 4 A.

Example 3. The experimental units consist of four blocks, each containing two subblocks of four units. This structure can
be described by three factors P , Q , U with four, two and four levels respectively. The levels of P define the blocks, the levels
of the infimum P ∧ Q define the subblocks, and the levels of the infimum P ∧ Q ∧ U determine the units. In addition, there
are four treatment factors A, B, C , D with two levels. There is again a hierarchy constraint: we assume that the levels of A
cannot be varied between the four units of a given subblock, which is denoted by P ∧ Q 4 A.

The experimenter is interested in the main effects and two-factor interactions of A, B, C , D. Thus the set E is

E = {A, B, C, D, A.B, A.C, A.D, B.C, B.D, C .D}.

In addition to E , the model must contain the block and subblock effects and the general mean. However, the hierarchy
constraint means that the main effect of A is necessarily confounded with subblock effects so that it cannot be estimated in
a model with fixed subblock effects.

If a proper randomisation is performed, block and subblock effects can instead be considered as centred random effects
and the analysis can be decomposed into three levels of variability, or strata (Bailey, 2008), associated with P , P ∧ Q and
P∧Q ∧U respectively. The blocks stratum consists of all contrasts between blocks. The between-subblocks stratum consists
of all contrasts between subblocks which are orthogonal to blocks. The bottom stratum, which includes residual variability
only, consists of all contrasts orthogonal to subblocks.

The objective now is to estimate all effects of interest except themain effect A in the bottom stratum, and to estimate the
main effect A in the between-subblocks stratum. These requirements can be described by using two pairs of model-estimate
lists, one for each stratumwhere an effect will be estimated. The first pair deals with the bottom stratum by pretending that
P and P ∧ Q have fixed effects and omitting A from the effects to be estimated. Thus

M1 = {µ, P, Q , P.Q } ∪ E and E1 = E \ {A}.

The second pair deals with the between-subblocks stratum by pretending that block effects, but not subblock effects, are
fixed, and declaring that the only effect to be estimated in this stratum is the main effect A. Thus

M2 = {µ, P} ∪ E and E2 = {A}.

2.2. Factorial terms and model specifications

Let F1, . . . , Fh denote all the genuine block and treatment factors involved in the experiment, that is, those which have
a direct meaning for the experimenter. Denote by T the set of all n combinations of levels of F1, . . . , Fh, with n = n1 · · · nh
where ni is the number of levels of Fi.

The column vector τ of block and treatment effects belongs to the vector space Rn. In the standard analysis of variance
(ANOVA), this vector space is decomposed into mutually orthogonal subspaces WI associated with the 2h subsets of factors
{Fi : i ∈ I}, for I ⊆ {1, . . . , h}. These subspaces are given by the recurrence relation

WI = VI ∩


J⊂I

WJ

⊥
,

whereV∅ is the subspace spanned by the all-one vector andVI is the subspace spanned by the indicator vectors of the level-
combinations of all factors in {Fi : i ∈ I} (Bailey, 2008). According to this decomposition, the effects can be decomposed into
factorial effects, as given by the equation

τ =


I⊆{1,...,h}

SI τ,

where SI τ is the orthogonal projection of τ onto WI . By convention, the subsets {Fi : i ∈ I} are called factorial terms
and denoted by F (I). In examples, as in Section 2.1, we follow a more usual practice for writing factorial terms, so that
F1.F2 = F ({1, 2}) and µ = F (∅). The order of a factorial term F (I) is given by the cardinality of the subset I . Factorial
terms of order 1 are called main effects, and factorial terms of order 2 or more are called interactions.
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When constructing a fractional design it is necessary to assume that some factorial termsF (I) are negligible, that is, that
SIτ is zero. In the examples above, the model set M contains the non-negligible effects and its subset E contains the non-
negligible effects that the experimenter wants to estimate. In multi-stratum experiments, such as Example 3, it is necessary
to consider several such pairs of model and estimate sets, one pair for each stratum in which any fixed effect should be
estimated.

2.3. Ingredients of the search

In this paper, generating a factorial designmeans specifying the combination of levels of the factors thatmust be allocated
to each experimental unit. The situations that we consider generalise the examples of Section 2.1, using the generic factorial
decomposition of Section 2.2. Their components consist of

(a) the list of genuine factors F1, . . . , Fh, together with their numbers of levels and any hierarchy constraints;
(b) one or more joint model and estimate specifications (M, E), where M contains the factorial terms in the model and E

contains the terms to estimate (E ⊆M);
(c) the size of the experiment, i.e. the number N of experimental units.

Note that we allow for two ways to handle the case when a factor Fj at ni × nj levels is nested in a factor Fi at ni levels:
either Fj is declared as a nj-level factor and its actual levels are the levels of Fi ∧ Fj, or Fj is declared as a ninj-level factor and
the hierarchy constraint Fj 4 Fi must be specified. We advise using the first option when Fj is a natural refinement of Fi and
the second option when the hierarchy is due to experimental constraints rather than innate relationships between factors.
Thus, in Example 3, we used the first option for the hierarchy between blocks and subblocks, with factors P and Q in the
roles of Fi and Fj respectively. In contrast, we used the second option for the hierarchy between A and the block factors (with
factors A and P ∧Q in the roles of Fi and Fj respectively), because these factors have no relationship except for experimental
constraints.

In regular factorial designs, the number of unitsN is constrained by the other specifications. For a solution to exist,N must
be a multiple of pρ11 · · · p

ρl
l , where p1, . . . , pl are the prime numbers that divide n and ρ1, . . . , ρl are lower bounds on the

exponents which depend on the model and estimate specifications. The algorithm described in this paper assumes that N is
given by the user (or by a higher-level algorithm). So it is up to the user to propose forN a value of the formN = q ·pr11 · · · p

rl
l ,

where q is coprime to p1, . . . , pl and ρ1 ≤ r1, . . . , ρl ≤ rl. In practice, the user may proceed by trial and error by testing
different values of N , provided the computing time is not too long. In Examples 2 and 3, the number of units is imposed by
the problem, with N = 22

· 3 = 12 and N = 25
= 32, respectively. In Example 1, the complete factorial design has size

25
· 32
= 288 but we look for smaller design sizes. We know that ρ1 ≤ 5 and ρ2 ≤ 2 and so we can proceed by trial and

error to find them.

3. Elementary regular factorial designs

In Sections 3–5, the number of units and the numbers of levels of all factors are powers of the same prime p. Thus N = pr
and n = ps for some scalars r and s. This occurs in Example 3 with p = 2, but not in Examples 1 and 2, which both involve
primes 2 and 3. The designs are constructed using elementary abelian groups of exponent p, and so they are called elementary
designswhen they have to be distinguished from those considered in Section 6 and later.

The cyclic group of order p, denoted Cp, is identified with the integers modulo p under addition. The experimental units
are identified with the elements of a product group U ∼= (Cp)

r , and the combinations of factor levels with the elements of a
product group T ∼= (Cp)

s. A design d is a function from U to T , allocating combination d(u) to unit u. From now on, elements
of both U and T are regarded as column vectors and v⊤ denotes the transpose of a vector v.

3.1. Pseudofactors

The canonical projectionsV1, . . . , Vr fromU onto the cyclic group Cp are called the unit pseudofactors. Ifu = (u1, . . . , ur)
⊤

is a unit in U then Vi(u) = ui. The canonical projections A1, . . . , As from T onto the cyclic group Cp are called the treatment
pseudofactors, even though some of the genuine factors involved may be block factors. If t = (t1, . . . , ts)⊤ is in T , then
Aj(t) = tj.

Both kinds of pseudofactor must be viewed as technical intermediates in the design construction. Each genuine factor
considered in Section 2 is the product of one or more treatment pseudofactors. If Fi is the product of a family


Aj

j∈J of

pseudofactors, this family is said to be a decomposition of Fi into pseudofactors. For instance, if Fi = A1 ∧ A2, then Fi is
said to be decomposed into two pseudofactors A1, A2, which means that Fi(t) = (A1(t), A2(t))⊤ for every t ∈ T . The set
of pseudofactors in the decomposition of Fi is denoted by P (Fi). Alternatively, we use P (i) to denote the indices of the
pseudofactors in P (Fi).

The decomposition of factors into pseudofactors induces a decomposition of factorial terms into pseudofactorial terms.
Thus, the factorial term


i∈I Fi is decomposed into the pseudofactorial terms


j∈J Aj such that J ∩ P (i) ≠ ∅ if and only if

i ∈ I . We use the notation P (.) to denote the set of pseudofactorial terms that decompose a given factorial term.
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Example 3 (Continued). There are 32 = 25 units and thus five unit pseudofactors V1, . . . , V5 at two levels. The nine
treatment pseudofactors (A1, . . . , A9) will rather be denoted by P1, P2, Q , U1, U2, A, B, C and D to keep the correspondence
with the genuine factors more explicit. With this notation, we have P (P) = {P1, P2}, P (Q ) = {Q }, P (U) = {U1,U2},
P (A) = {A}, . . . and P (D) = {D}.

For the decomposition of factorial terms, we give the following examples, which include two main effects and three
interactions:P (A) = {A},P (P) = {P1, P2, P1.P2},P (A.B) = {A.B},P (P.Q ) = {P1.Q , P2.Q , P1.P2.Q }, andP (P.U) = {P1.U1, P1.U2, P1.U1.U2, P2.U1, P2.U2, P2.U1.U2, P1.P2.U1, P1.P2.U2, P1.P2.U1.U2}.

3.2. Characters

Our methods are based on the theory of duals of abelian groups, which can be found in Ledermann (1977). The group
homomorphisms from T into Cp are all the linear combinations A = a1A1 + · · · + asAs of the treatment pseudofactors,
with aj ∈ Cp. These homomorphisms are called the characters of T and they make up a group T ∗ called the dual of T . Each
character can be represented by its vector of coefficients a = (a1, . . . , as)⊤ in the product group (Cp)

s, and the group T ∗ can
be consequently identified with this product group. The characters and dual of U are defined and represented similarly. The
elements of T ∗ will be called treatment characters and the elements of U∗ unit characters.

Each character A of T ∗ is associated with a pseudofactorial effect eτ (A). This means a precise linear combination of
treatment effects in Rn or Cn, either the general mean of τ if A = 0 or a contrast if A ≠ 0 (see Kobilinsky, 1985 or Pistone and
Rogantin, 2008 for more details). The important point is that each pseudofactorial effect belongs to a unique pseudofactorial
term in the ANOVA decomposition of the treatment effects, and this term is easy to identify by the non-zero coefficients of A.
For example, if there is only one non-zero coefficient aj, then A = ajAj and eτ (A) belongs to the main effect of pseudofactor
Aj. If aj ≠ 0 and ak ≠ 0 then the effect eτ (ajAj + akAk) belongs to the interaction between Aj and Ak, and so on. When p = 2,
each pseudofactorial term has one degree of freedom, so each includes a single character and a single pseudofactorial effect.
In the general case, a pseudofactorial term of order q includes (p− 1)q characters and the same number of pseudofactorial
effects.

Throughout this paper, additive notation is used for characters and their associated pseudofactorial effects.Multiplicative
notation, in which Aa1

1 · · · A
as
s is used instead of a1A1 + · · · + asAs, is more common. Then A

aj
j belongs to the main effect

of pseudofactor Aj, while A
aj
j A

ak
k belongs to the interaction Aj.Ak, and so on. This has the disadvantage that A1A2 might be

interpreted as an interaction or as one of the characters whose effect is part of that interaction.

3.3. Link between factorial terms and characters

Consider now the genuine factors Fi, for i = 1, . . . , h. Let Ei be the subset of T ∗ consisting of all characters


ajAj involving
pseudofactors inP (Fi) only. LetEi = Ei \{0}, so thatEi consists of all the non-zero elements of Ei. By extension, put E∅ = {0}
and, for each main effect or interaction F (I), put

EI =

i∈I

Ei and EI =
i∈I

Ei,
where E ⊕ E ′ = {A + B : A ∈ E, B ∈ E ′}. The first set EI includes all the characters associated with pseudofactors coming
from the decomposition of the factors Fi, for i ∈ I . Those among them which have at least one non-zero coefficient for each
factor make up the setEI , which is therefore the subset of T ∗ associated with the factorial term F (I).

Example 3 (Continued). For brevity, we give only one example based on the interaction P.Q . The corresponding set of
characters EI is

{0, P1, P2, P1 + P2} ⊕ {0,Q } = {0, P1, P2, P1 + P2,Q , P1 + Q , P2 + Q , P1 + P2 + Q },

whileEI is restricted to

{P1, P2, P1 + P2} ⊕ {Q } = {P1 + Q , P2 + Q , P1 + P2 + Q }.

3.4. Elementary regular design and its key matrix

In a regular factorial design, the treatment pseudofactors are algebraically derived from the unit ones.



316 A. Kobilinsky et al. / Computational Statistics and Data Analysis 113 (2017) 311–329

Definition 3.1 (Regular Design). If U ∼= (Cp)
r and T ∼= (Cp)

s, a design d is Cp-regular if there are coefficients φij and αj in Cp
such that, for j = 1, . . . , s,

Aj ◦ d = φ1jV1 + · · · + φijVi + · · · + φrjVr + αj, (1)

where V1, . . . , Vr are the unit pseudofactors and A1, . . . , As the treatment pseudofactors.

In a Cp-regular factorial design, the combination t allocated to unit u satisfies t = Φ⊤u+ t0, where

Φ =

φ11 · · · φ1s
...

...
φr1 · · · φrs


and t0 = (α1, . . . , αs)

⊤. The definition below follows the definition of the design key K given by Patterson (1976) and Bailey
et al. (1977). As Cheng (2014) does, we have adapted their definition so that the subscripts on the entries inΦ appear in the
usual order; note that Kobilinsky and Monod (1991) use its transpose.

Definition 3.2 (KeyMatrix). Let d be a regular design as specified in Definition 3.1. ThematrixΦ is called the key matrix of d.

Define the mapping ψ:U → T by ψ(u) = d(u) − t0 = Φ⊤u. Then ψ is a group homomorphism, in the sense that if u
and u′ are in U then ψ(u + u′) = ψ(u) + ψ(u′). The dual of the homomorphism ψ , denoted by ϕ, is the homomorphism
from T ∗ to U∗ sending a character A of T to the character ϕ(A) of U defined by

(ϕ(A))(u) = A(ψ(u)) = A(Φ⊤u).

It is clear from (1) that if A = a1A1 + · · · + asAs then ϕ(A) = B = b1V1 + · · · + brVr , where

bi =


j

φijaj for i = 1, . . . , r.

Representing the characters A and B by their column vectors a and b gives b = Φa. The jth column (φ1j, . . . , φrj)
⊤ of Φ is

the unit character ϕ(Aj) in U∗ which is the image of the treatment character Aj in T ∗. We denote it by Ãj.

3.5. Confounding

For a vector c inRn indexed by the genuine combinations, let c(d) denote the vector inRN indexed by the units and defined
by (c(d))u = (c)d(u). Two treatment effects c⊤1 τ and c⊤2 τ are said to be confounded with each other in design d if there is a
constant γ such that c(d)1 = γ c(d)2 . In this case, it is impossible to estimate the effects c⊤1 τ and c⊤2 τ separately. Treatment
effects c⊤1 τ and c⊤2 τ are said to be orthogonal to each other if c(d)⊤1 c(d)2 = 0.

The basic statistical properties of regular factorial designs are given by the following proposition (see e.g. Kobilinsky and
Monod, 1995). Here Ker(ϕ) denotes the kernel of ϕ, which is {A ∈ T ∗ : ϕ(A) = 0}.

Proposition 3.1. Let A and B denote two characters in T ∗. A regular design with keymatrixΦ and corresponding homomorphism
ϕ satisfies the following four properties:

(i) The pseudofactorial effect eτ (A) is confounded with the general mean eτ (0) if and only if A ∈ Ker(ϕ);
(ii) The pseudofactorial effects eτ (A) and eτ (B) are confounded with each other if and only if A− B ∈ Ker(ϕ);
(iii) The sets of mutually confounded pseudofactorial effects are given by the cosets of the subgroup Ker(ϕ);
(iv) The pseudofactorial effects eτ (A) and eτ (B) are orthogonal to each other if A and B are in different cosets of Ker(ϕ).

If A ∈ T ∗, the effect eτ (A), is estimable if and only if it is not confounded with any other non-zero effect. Proposition 3.1
shows that this occurs if and only if all the other characters B in the same coset of Ker(ϕ) as A are assumed to have no effect
on the expectation of the response to be measured (eτ (B) = 0).

4. Conditions on the design key matrix

4.1. Ineligible characters and factorial terms

4.1.1. Ineligible characters due to model specifications
For the experimenter, the model and the effects to estimate consist of factorial terms defined on the genuine factors, as

illustrated by the examples in Section 2. As shown in Section 3.3, each such factorial term F (I) is associated with a setEI of
characters in T ∗. Thus, for each pair of model-estimate sets (M, E) of factorial terms, there is an associated pair (M, E) of
character sets. The model set M is the union of the setsEI , for all factorial terms F (I) in M, while the estimate set E is the
union of the setsEI for all terms F (I) in E . If E and E ′ are any two subsets of T ∗, we write E − E ′ = {A− B : A ∈ E, B ∈ E ′}.
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Table 1
Construction of the ineligible set I by symmetric differences (Example 4).

Estimate set E Model set M

µ A B C A.B B.C

A A µ A.B A.C B A.B.C
B B A.B µ B.C A C
C C A.C B.C µ A.B.C B
A.B A.B B A A.B.C µ A.C

Definition 4.1 (Ineligible Characters). Let (M, E) be model-estimate sets of factorial terms and (M, E) be the associated
model-estimate sets of characters. Put

I = {A− B : A ∈ E, B ∈M, A ≠ B} = (E −M) \ {0}.

Then I is called the set of ineligible characterswith respect to (M, E) or, equivalently, to (M, E).

Proposition 4.1. Consider a regular design with key matrixΦ and corresponding homomorphism ϕ, and the model consisting of
the factorial terms in M, considered as fixed effects. All factorial terms in E are estimable if and only if Ker(ϕ) ∩ I = ∅, where I
is the set of ineligible characters with respect to (M, E).

All proofs are in the Supplementary material (see Appendix A).

4.1.2. Ineligible factorial terms
Not every set of characters of T is a union of the subsetsEI associated with factorial termsF (I). However, Proposition 4.2

shows that, for any given model-estimate pair (M, E), there is a set I of factorial terms such that

I =


F (K)∈I

EK . (2)

Thus it makes sense to say that F (K) is an ineligible factorial term if F (K) ∈ I. Moreover, I can be calculated explicitly, as
the union of the sets I(I, J) \ {F (∅)} for F (I) ∈ E and F (J) ∈ M, where I(I, J) = {F (K) : I △ J ⊆ K ⊆ (I △ J) ∪ L} and
L = {i ∈ I ∩ J : ni > 2}, so that I(I, J) = {F (K) : I △ J ⊆ K ⊆ I ∪ J} if p ≥ 3. Here I △ J denotes the symmetric difference
between I and J , which is (I \ J) ∪ (J \ I). Proposition 4.3 shows that, in three important special cases,

I = {F (I △ J) : F (I) ∈ E, F (J) ∈M, I ≠ J}. (3)

Proposition 4.2. Let I and J be subsets of {1, . . . , h}. ThenEI −EJ = 
F (K)∈I(I,J)

EK .
The model M is usually complete in the sense that, when it contains an effect, it also contains all effects marginal to it.

For instance, if it contains the interaction F .G, it also contains the main effects F and G and the general mean µ.

Proposition 4.3. If the model M is complete, or if the estimate-set E is complete, or if all genuine factors have two levels, then
the set I of ineligible factorial terms is given by Eq. (3).

Thus the first step to determine the set I of ineligible characters is to determine the set I of ineligible factorial terms. If
any of the conditions in Proposition 4.3 is satisfied, this is done by identifying the sets K = I△ J forF (I) in E andF (J) inM.
Otherwise, the sets I(I, J) of ineligible factorial termsmust be used, forF (I) in E andF (J) inM. This step can be performed
before the decomposition into pseudofactors. In a second step, the ineligible characters can be deduced from Eq. (2).

Example 4. For sake of brevity, we give an example simpler than Example 3. Suppose that there are three factors A, B, C ,
that

M = {µ, A, B, C, A.B, B.C} and E = {A, B, C, A.B}.

Table 1 gives for each model term F (I) and each estimate term F (J) the associated ineligible factorial term F (I △ J).
Therefore I includes all non-mean terms in this table, that is {A, B, C, A.B, A.C, B.C, A.B.C}.

Example 5. Suppose that there are two factors A, B andwe chooseM = {µ, B, A.B} and E = {B}. Because it does not contain
A, themodelM is not complete, and, because it does not containµ, E is not complete. Proposition 4.2 implies that I = {A, B}
if factor B has two levels, whereas I = {A, B, A.B} if factor B has three or more levels. Here are some possibilities.
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(a) If factors A and B have two levels, then M = {0, B, A+ B}, E = {B} and I = {A, B}. So the only ineligible factorial terms
are the main effects of A and B. We could construct a design by confounding the character A+ B.

(b) If factor A has four levels and factor B has two levels, then M = {0, B, A1 + B, A2 + B, A1 + A2 + B}, E = {B} and
I = {B, A1, A2, A1 + A2}. We could construct a design confounding any one of A1 + B, A2 + B, A1 + A2 + B.

(c) If factors A and B have three levels, then M = {0, B, 2B, A + B, A + 2B, 2A + B, 2A + 2B}, E = {B, 2B} and
I = {A, 2A, B, 2B, A + B, A + 2B, 2A + B, 2A + 2B}. So the ineligible factorial terms are the main effects of A and B
and the interaction A.B. If we confound either part of the A.B interaction then B is confounded with the other part and
so cannot be estimated.

(d) If factor A has two levels and factor B has four levels, then M = {0, B1, B2, B1 + B2, A + B1, A + B2, A + B1 + B2},
E = {B1, B2, B1 + B2} and I = {A, B1, B2, B1 + B2, A+ B1, A+ B2, A+ B1 + B2}. Again, no non-zero character is eligible
for confounding.

As this example shows, if the model and the estimate-set are both incomplete, the ineligible factorial terms may depend on
the numbers of levels of the factors.

4.2. Hierarchy constraints

In practice, besides constraints of ineligibility, it may be necessary to satisfy hierarchy constraints between factors, such
as those shown in Examples 2 and 3. It is assumed that all constraints are of the form Fi1 ∧ · · · ∧ Fik 4 Fi0 or can be deduced
from such constraints. This assumption is satisfied inmost practical cases. Recall thatP (i) denotes the pseudofactors Aj that
decompose the genuine factor Fi, or more precisely the set of indices of these pseudofactors.

Proposition 4.4. Let Fi0 , Fi1 , . . . , Fik be k+ 1 genuine factors. Let J = P (i1)∪ · · · ∪P (ik), which is the set of pseudofactors that
decompose Fi1 , . . . , Fik . For a regular design with design key matrixΦ , the following three conditions are equivalent:

(i) Fi1 ∧ · · · ∧ Fik 4 Fi0 ;
(ii)


j∈J Aj 4 Aj0 , for all j0 ∈ P (i0);

(iii) if j0 ∈ P (i0) then the column Ãj0 of Φ is a linear combination of the columns Ãj, for j ∈ J .

Proposition 4.4 shows that each hierarchy constraint between genuine factors generates one or more hierarchy
constraints


Aj1 ∧ · · · ∧ Ajl 4 Aj0


between pseudofactors, each of which must be satisfied during the design search. In

the sequel, it will be assumed that the pseudofactors are ordered so that, for any such constraint, j0 is greater than j1, . . . , jl.
The set of all coarser pseudofactors Aj0 involved in such constraints, denoted by H+, results from the decomposition of the
coarser factors in the original constraints. The set of all pseudofactors in the finer part of the constraint


Aj1 ∧· · ·∧Ajl 4 Aj0


will be denoted by H≺ z , where, depending on the context, z may refer to the coarser pseudofactor Aj0 or to its index j0.

Example 3 (Continued). Recall that there is a unique hierarchy constraint P ∧ Q 4 A. It follows that H+ = {A} and
H≺ A = {P,Q }.

4.3. Extension to multi-stratum experiments

Multi-stratum experiments provide many examples of mixed models, where some factorial terms are assumed to be
random and centred rather than fixed. For example, the block factors in Examples 2 and 3 are assumed to be random while
the treatment factors are assumed fixed. If the proper randomisation is applied, the block effects can indeed be considered
random and centred.

When the block factors form a poset block structure on the experimental units, each stratum is defined by a suitable
subset of the block factors. In Example 3 these subsets are {P}, {P,Q } and {P,Q ,U}. In Example 2 they are {R}, {C}, {R, C}
and {R, C, Z}, where Z is an implicit two-level factor for the units within each cell.

Let J be the set of indices for such a stratum subset. Then the stratum can also be identified to the subset G(J) of random
block factorial terms F (K), for K ⊆ J and K ⊈ J ′ for all stratum subsets J ′, J ′ ( J . In Example 3 these subsets of factorial
terms are {P}, {Q , P.Q } and {U, P.U,Q .U, P.Q .U}. In Example 2 they are {R}, {C}, {R.C} and {Z, R.Z, C .Z, R.C .Z}. Note that
the factorial terms which include the units factors U or Z correspond to residual error terms and are not considered below.

If the treatment factorial term F (I) is subject to the hierarchy constraint


j∈J Fj ≼


i∈I Fi then F (I) should, if possible,
be estimated in the stratum defined by J . To do this, we define a model-set MJ and estimate-set E J associated with this
stratum, as follows. The model-set MJ is made by removing from M all the block factorial terms in G(J ′) for any stratum
subset J ′ with J ′ ⊇ J . The estimate-set E J contains all treatment factorial terms F (I) in E which are subject to the hierarchy
constraint


j∈J Fj ≼


i∈I Fi but are not subject to any constraint


j∈K Fj ≼


i∈I Fi for which K is a subset of the (indices of

the) block factors defining a stratum and K ( J .
For each stratum, the set IJ is derived from E J and MJ by Eq. (3) if MJ is complete or if E J is complete or if all factors

involved in MJ have two levels, and otherwise is derived from E J and MJ by using Proposition 4.2. The union I of these sets
IJ is the full set of ineligible terms, from which the full set I of ineligible characters must be deduced.
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Example 3 (Continued). For simplicity, we use subscripts 1 and 2 instead of {P,Q ,U} and {P,Q }. We have

I1 = {A, B, C,D, A.B, A.C, A.D, B.C, B.D, C .D,
A.B.C, A.B.D, A.C .D, B.C .D, A.B.C .D,
B.P, C .P,D.P, A.B.P, A.C .P, A.D.P, B.C .P, B.D.P, C .D.P,
B.Q , C .Q ,D.Q , A.B.Q , A.C .Q , A.D.Q , B.C .Q , B.D.Q , C .D.Q ,
B.P.Q , C .P.Q ,D.P.Q , A.B.P.Q , A.C .P.Q , A.D.P.Q , B.C .P.Q , B.D.P.Q , C .D.P.Q }

and

I2 = {A, B, C,D, A.B, A.C, A.D, A.B.C, A.B.D, A.C .D, A.P}.

The set of model-based ineligible factorial terms is given by I1,2 = I1 ∪ I2 = I1 ∪ {A, A.P}. Note that the interactions A.Q
and A.P.Q are absent from I1,2, whereas they would be included among the ineligible terms if the latter were based on M
and E .

4.4. Ineligibility due to combinatorial requirements

In some situations, it is required that all the combinations of levels of some factors are in the experiment, whatever the
model and estimate constraints are. Then all the terms including the corresponding pseudofactors have to be included in
the ineligible set. For instance, in a row-and-column design, all combinations of levels of the row and column factors must
be present. If the rows are defined by a factor R, the columns by a factor C , then I must include the factorial terms R, C and
R.C whatever the model specifications, and I will include the corresponding characters.

Example 3 (Continued). The experimental units consist of all levels combinations of P , Q and U . To ensure that the design
has all these combinations, the set of ineligible terms must become I = I1,2 ∪ {P, Q , P.Q , U, P.U, Q .U, P.Q .U}.

5. Search for key matrices of elementary designs

5.1. Main steps

Section 4 showed that the first step in the search for a key matrix solution is the determination of the set I of ineligible
factorial terms. Further technical details are given in Section 5.2. The next step is to deduce from I a reduced set R of
representative ineligible treatment characters, as described in Section 5.3. The third step is the search for one or more key
matrices Φ satisfying condition (iii) of Proposition 4.4 (hierarchies) and Eq. (5) of Definition 5.1 (ineligibility). This can be
done by the backtrack algorithm described in Section 5.4.

5.2. Determining the ineligible factorial terms

When Eq. (3) holds, the elements of I can be identified by representing each main effect or interaction F (I) by a vector
of dimension h over C2 with ith coordinate equal to 1 if i ∈ I , to 0 otherwise. With this representation, if x represents F (I)
and z represents F (J), then the vector representing F (I △ J) is simply x + z, whose ath coordinate is 1 if xa ≠ za and is 0
otherwise.

Example 4 (Continued). The associated vectors x, z and x+ z for x ≠ z are

• for M (x):


0
0
0


,


1
0
0


,


0
1
0


,


0
0
1


,


1
1
0


,


0
1
1


;

• for E (z):


1
0
0


,


0
1
0


,


0
0
1


,


1
1
0


;

• for I (x+ z):


1
0
0


,


0
1
0


,


0
0
1


,


1
1
0


,


1
0
1


,


0
1
1


,


1
1
1


.

5.3. Reduced set of ineligible characters

Once the full set I of ineligible factorial terms has been determined, the ineligible characters can be deduced as the union
of the setsEI , for I ∈ I. If I is the set of ineligible characters, the homomorphism ϕ must satisfy

ϕ(A) ≠ 0 for every character A ∈ I. (4)
However, if A and B in I are such that A is an integer multiple of B, that is A = kB, then the inequality ϕ(A) ≠ 0 clearly
implies ϕ(B) ≠ 0. In the search for ϕ, the inequality (4) has therefore to be checked only for an adequately chosen subset R
of I called a reduced ineligible set.
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Definition 5.1 (Reduced Set). A reduced ineligible set R is any subset of I such that condition (4) is equivalent to the
apparently weaker condition

ϕ(A) ≠ 0 for every A ∈ R. (5)

We now indicate how such a reduced ineligible set can be selected. Let ⟨A⟩ be the cyclic subgroup generated by A. The
relation

⟨A⟩ = ⟨B⟩ ⇐⇒ ∃δ, δ′ ∈ N such that A = δB and B = δ′A (6)

defines an equivalence relation on I. Clearly it is enough to check inequality (4) for only one representative in each
equivalence class.

When T ∗ and U∗ are elementary abelian p-groups, all non-zero characters have order p, the non-zero equivalence classes
contain p−1 characters, and the representatives are often chosen as thosewhose first non-zero coordinate is 1. In Section 5.4,
the representatives are chosen like this if there is only one non-zero coordinate, but otherwise chosen to have last non-zero
coordinate−1.

Example 3 (Continued). In this example, p = 2 so that each equivalence class has a single element: hence the set of ineligible
characters cannot be reduced.

Example 6. If factors A and B both have three levels and I contains their two-factor interaction then a possible reduced set
R contains the characters A− B (= A+ 2B) and 2A− B (= 2A+ 2B) for this term but neither A+ B nor 2A+ B.

5.4. Elementary backtrack search

Searching for the key matrixΦ is equivalent to searching for its columns Ã1, . . . , Ãs among the set U∗ of unit characters.
For the homomorphism ϕ to satisfy (5), these characters must satisfy:

for every a1A1 + · · · + asAs ∈ R, a1Ã1 + · · · + asÃs ≠ 0. (7)

In addition, because of the hierarchy constraints, some columnsmust be linear combinations of other ones of smaller index,
as shown in Proposition 4.4. More precisely, for the indices j in the subset H+, the columns Ãj must satisfy

Ãj =


k∈H≺ j

akÃk (8)

for some values ak. Note that all indices k in H≺ j are strictly smaller than j.
The columns Ãj can be found successively by the backtrack search presented in Algorithm 1 below. The process may

either end at the first success or continue until there is no more admissible Ã1 to select.
Algorithm 1 involves non-trivial calculations only when determining the set aAj in Step 1. A unit character is considered

admissible for column j if it satisfies the inequalities (7) involving it and the previous columns Ã1, . . . , Ãj−1. Let Rj be the
subset of characters a1A1+· · ·+ajAj in R having aj as the last non-zero coordinate. The inequalities in (7) to consider when
searching for Ãj are all those involving a character in Rj. They can be written:

for every a1A1 + · · · + aj−1Aj−1 − Aj in Rj, Ãj ≠ a1Ã1 + · · · + aj−1Ãj−1, (9)

which includes Ãj ≠ 0 if Aj ∈ R. The admissible characters satisfying (9) are looked for among U∗ unless j belongs to H+.
In that case, the hierarchy constraints (8) allow the search to be restricted to the subgroup of U∗ generated by the columns
in H≺ j.

Optimising the backtrack algorithm is a complex task which is not the subject of this paper. In Appendix B of the
Supplementary material (see Appendix A), however, we describe a few tricks implemented in planor (Kobilinsky, 2005)
to make the backtrack search run faster.

5.5. End of the search

It is sometimes necessary to go beyond a success to find other solutions, for instance if the whole set of solutions is
searched for, or if the backtrack column search is part of a backtrack process among Sylow components as will be described
in Section 7.

When the number of factors involved increases, the time taken by the search may become very long, especially if there
is no solution or only a small number of solutions. So it can be necessary to stop a search which takes too much time. In that
case, which must clearly be distinguished from a true failure, it is useful to know the index of the last column reached as
this indicates the kind of experimental design obtainable in a reasonable time.
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Algorithm 1 Backtrack search
jprev← 0 and j← 1
while j > 0 do

{Step 1: determine or update the admissible set}
if jprev < j then {forward case}

determine the set aAj of currently admissible unit characters for column j ofΦ
else {backward case}

delete the current character in column j from aAj
end if
{Step 2: determine and make the next move}
if aAj is empty then
j← j− 1 {no solution for column j, so move backward}

else
set column j to the first element in aAj
if j < s then
j← j+ 1 {solution for column j, so move forward}

else {j = s so that all columns have been found}
save the current key matrix in the solution set
either stop or continue to find more solutions

end if
end if
jprev← j

end while

Example 3 (Continued). For completeness, we give the first solution forΦ found by the planor algorithm:

Φ =


P̃1 P̃2 Q̃ Ũ1 Ũ2 Ã B̃ C̃ D̃

V1 1 0 0 0 0 0 0 0 1
V2 0 1 0 0 0 0 0 0 0
V3 0 0 1 0 0 1 0 0 0
V4 0 0 0 1 0 0 1 0 1
V5 0 0 0 0 1 0 0 1 1

.
In its current implementation, planor finds 9216 solutions, including solutions obtained from others by permutation of B, C ,
D, or P1 and P2, or U1 and U2.

It took planor 0.073 s to find the first solution and 2.193 s to complete an exhaustive search, using a laptop computer (7.7
Gio RAM, Intel Core i7-5600U CPU@2.60 GHz x 4 processor; Linux Ubuntu operating system; R version 3.3.0; planor version
1.0.1). See Appendix C.3 of the Supplementary material for more details (see Appendix A).

6. Generalised regular factorial designs

This section extends the previous methods to cover designs involving more than one prime. The underlying theory is
given by Bailey (1977, 1985), Kobilinsky (1985), Kobilinsky and Monod (1995) and Pistone and Rogantin (2008).

6.1. Pseudofactors

Let p1, . . . , pl denote distinct prime numbers. The experimental units are now identified with the elements of a product
group U = (Cp1)

r1 × · · · × (Cpl)
rl , and the genuine combinations with the elements of a product group T = (Cp1)

s1 × · · · ×

(Cpl)
sl . Note that the theory extends to prime powers but, for simplicity, we avoid this level of generality here. The number

N of units and the number n of genuine combinations factorise into N = N1×· · ·×Nl and n = n1×· · ·×nl, where Nk = prkk
and nk = pskk .

As in Section 3, the treatment pseudofactors associated with this decomposition of T are a finer decomposition of the
genuine factors Fi.

Let r =


k rk and s =


k sk. In what follows, we denote the r unit pseudofactors by Vi, for i = 1, . . . , r and the s
treatment pseudofactors by Aj, for j = 1, . . . , s. We denote by π(Vi) and π(Aj) the numbers of levels of pseudofactors Vi and
Aj. Occasionally, to stress the structure introduced by the different primes, we denote the unit pseudofactors at pk levels by
V[k,i] and the treatment pseudofactors at pk levels by A[k,j], for k = 1, . . . , l, for i = 1, . . . , rk and for j = 1, . . . , sk. In the
examples, though, we use pk rather than k as the first index between square brackets, because it improves clarity. Unless
specified otherwise, the pseudofactors are ordered in the natural lexicographic order induced by their double index, which
puts together all the pseudofactors associated with the same prime.
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To define the pseudofactors properly, all levels are embedded into the same cyclic group CM where M =
l

k=1 pk. Unit
and treatment pseudofactors are considered as mappings into that cyclic group CM . That is, if u = (u1, . . . , ur)

⊤ is a unit in
U and t = (t1, . . . , ts)⊤ a genuine combination in T , then

Vi(u) =
M
π(Vi)

ui and Aj(t) =
M
π(Aj)

tj. (10)

Example 1 (Continued). The two primes involved in this example are 2 and 3, so that all genuine factors are decomposed
into pseudofactors at two or three levels. We have M = 6, s2 = 5 and s3 = 2, and the pseudofactors are A[2,1], A[2,2],
A[2,3], A[2,4], A[2,5], A[3,1] and A[3,2], where the first index denotes the prime and the second index runs from 1 to s2 or s3. The
association between factors and pseudofactors is given by

F1 = A[2,1] ∧ A[3,1]; F2 = A[2,2] ∧ A[2,3]; F3 = A[3,2] and F4 = A[2,4] ∧ A[2,5].

An equivalent notation keeps the lexicographic order of the pseudofactors but identifies them with a single index. In the
P (.) notation, the association reads

P (F1) = {A1, A6}; P (F2) = {A2, A3}; P (F3) = {A7} and P (F4) = {A4, A5}.

Consider, for example, the combination identifiedwith t = (1, 0, 1, 1, 0, 2, 1)⊤ ∈ (C2)
5
×(C3)

2. Following Eq. (10), we have
A[2,1](t) = 3, A[2,2](t) = 0, A[2,3](t) = 3, A[2,4](t) = 3, A[2,5](t) = 0, A[3,1](t) = 4 and A[3,2](t) = 2.

An option involving prime powers is to decompose the factors as little as possible. Then the pseudofactors are A′
[2,1], A

′

[2,2],
A′
[2,3], A

′

[3,1] and A′
[3,2], at respectively 2, 4, 4, 3 and 3 levels, withM = 12, so that

F1 = A′
[2,1] ∧ A′

[3,1]; F2 = A′
[2,2]; F3 = A′

[3,2] and F4 = A′
[2,3].

This is not implemented in planor but discussed briefly in Section 8.

Example 2 (Continued). The two primes involved are 2 and 3 once again. Using the double index notation, we have:

C = A[2,1]; R = A[3,1]; D = A[2,2]; E = A[2,3] and A = A[3,2].

However, wewill rather use C ,D, E, R and A to denote the pseudofactors, which are confoundedwith factors in this example.

6.2. Characters

The characters from T into CM are all the linear combinations A = a1A1+ · · ·+ asAs of the treatment pseudofactors, with
aj ∈ Cπ(Aj). They belong to the group T ∗ which is the dual of T , so that T ∗ ∼= (Cp1)

s1 × · · · × (Cpl)
sl . The characters and dual

of U are defined and represented in the same way.
As in Section 3, each character A of T ∗ is associated with a pseudofactorial effect, denoted by eτ (A), which belongs to a

unique pseudofactorial term in the ANOVA decomposition of the genuine effects. This term is identified by the non-zero
coefficients of the character A. We use the same definitions and interpretations as before for the character subsets Ei,Ei, EI
andEI .
6.3. Generalised regular factorial designs and key matrices

Definition 3.1 can be generalised to themore general setting of the present section (Kobilinsky andMonod, 1995; Pistone
and Rogantin, 2008). The design d should satisfy an appropriate generalisation of Eq. (1). If u ∈ U then π(Aj)Aj(d(u)) =
0 (mod M), by (10), for j = 1, . . . , s. When u = 0 then Aj(d(u)) = αj, and soM must divideπ(Aj)αj. Now consider the unit u
defined by ui = 1 and uk = 0 if k ≠ i. Then Aj(d(u)) = φijM/π(Vi) + αj, from (10). Hence π(Aj)φijM/π(Vi) = 0 (mod M)
and so π(Vi) divides π(Aj)φij. If π(Vi) ≠ π(Aj) then π(Vi) divides φij and so φijM/π(Vi) = 0 (mod M).

Definition 6.1 (Regular Design). A factorial design d with U and T as sets of units and genuine combinations respectively is
called regular if there are coefficients φij and αj in CM such that, for j = 1, . . . , s,

Aj ◦ d = φ1jV1 + · · · + φijVi + · · · + φrjVr + αj, (11)

where V1, . . . , Vr are the unit pseudofactors, A1, . . . , As are the treatment pseudofactors, and the following two conditions
are satisfied:

M divides π(Aj)αj for all j = 1, . . . , s, (12)

π(Vi) divides π(Aj)φij for all i = 1, . . . , r and j = 1, . . . , s. (13)
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Fix j, and put p = π(Aj). If t = d(u) and (11)–(13) hold then

tj =
p
M

Aj(t) =
r

i=1

p
M
φij

M
π(Vi)

+
p
M
αj =


i

′

φij + βj (mod p),

where βj = pαj/M (mod p) and the summation in

′ is restricted to those i for which π(Vi) = p, and φij is interpreted

modulo p if π(Vi) = p.

Proposition 6.1. A factorial design d is regular if and only if the combination t = (t1, . . . , ts)⊤ allocated to unit u =
(u1, . . . , ur)

⊤ satisfies t = Φ⊤u+ t0, where the calculation of tj is performed modulo π(Aj),

Φ =

φ11 · · · φ1s
...

. . .
...

φr1 · · · φrs

 ,
t0 = (β1, . . . , βs)

⊤, φij = 0 if π(Vi) ≠ π(Aj), and, for j = 1, . . . , s, βj ∈ Cπ(Aj) and φij ∈ Cπ(Aj). In particular, Φ is block
diagonal:

Φ = diag(Φ̆1, . . . , Φ̆l), (14)

where the block Φ̆k corresponds to the prime pk.

Definition 6.2 (Key Matrix). The matrixΦ is called the key matrix of d.

Concerning the characters, we have the same relationships as in Section 3.4. The mapping ψ:U → T defined by
u → t = Φ⊤u is a group homomorphism from U into T . If the dual of the homomorphism ψ is denoted by ϕ and if
ϕ(A) = B (with A ∈ T ⋆ and B ∈ U⋆), then we have b = Φa, where a and b are the vectors of coefficients of A and B.

6.4. Decomposition into Sylow subgroups

For k = 1, . . . , l, the elements of U of order pk or 1 form a subgroup Ŭk isomorphic to (Cpk)
rk . These subgroups are called

the Sylow subgroups of U . By the fundamental theorem of abelian groups, U is the direct sum Ŭ1 ⊕ · · · ⊕ Ŭl. If rk = 0 then
Ŭk = {0}. Similarly, T has Sylow subgroups T̆k isomorphic to (Cpk)

sk for k = 1, . . . , l, and T = T̆1 ⊕ · · · ⊕ T̆l.
Likewise, the duals are direct sums of their Sylow subgroups, which are the duals of those of U and T : that is, U∗ =

Ŭ∗1 ⊕ · · · ⊕ Ŭ∗l and T ∗ = T̆ ∗1 ⊕ · · · ⊕ T̆ ∗l . For instance, the character A in T ∗ associated with the element (Ă1, . . . , Ăl) of
T̆1⊕· · ·⊕ T̆l is the mapping (t̆1, . . . , t̆l) → Ă1(t̆1)+· · ·+ Ăl(t̆l), provided all the characters take their values in the common
cyclic group CM . We can write A = (Ă1, . . . , Ăl) or A = Ă1 + · · · + Ăl.

The decomposition into Sylow subgroups corresponds to the block diagonal decomposition ofΦ in Eq. (14), because Φ̆k

is the restriction ofΦ to Ŭk and T̆k.

Definition 6.3 (Primary Components). The character Ăk is called the pk-primary component of the character A.

Definition 6.4 (Sylow Components). The diagonal blocks Φ̆1, . . . , Φ̆l of the matrix Φ associated with the distinct primes
p1, . . . , pl, are called the Sylow components ofΦ .

For the homomorphism ϕ, we have ϕ(A) = ϕ(Ă1)+ · · · + ϕ(Ăl), and Proposition 6.1 implies that

ϕ(A) = ϕ̆1(Ă1)+ · · · + ϕ̆l(Ăl), (15)

where each ϕ̆k is the homomorphism from T̆ ∗k to Ŭ∗k associated with the matrix Φ̆k. The search for a matrix Φ meeting the
requirements can thus be decomposed into the search for its Sylow components. The Sylow component Φ̆k does not appear
explicitly in Φ if there is no treatment pseudofactor with pk levels (rk ≠ 0 and sk = 0) or if no unit pseudofactor has pk
levels (rk = 0 and sk ≠ 0). In the latter case, the regular designs associated withΦ give a constant value to genuine factors
having pk levels, and this is usually prohibited unless the design is part of a larger one.

Section 7.5.1 shows that the Sylow components can often be searched for independently. Section 7.5.3 provides a
backtrack search method otherwise.

7. Search for key matrices of generalised regular designs

7.1. Main steps

The search for a key matrix follows the same main steps as those in Section 5.1. The first step is to determine the set I
of ineligible factorial terms. Let I and J be different subsets of {1, . . . , h}. If i ∈ I ∩ J and ni is not prime then P (i) contains
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Table 2
Terms in the ineligible set (Example 2), obtained by Proposition 4.3 (redundant terms and the mean are crossed out).

Set E Model M
µ C R C .R A D E D.A E.A D.E

D.A D.A C .D.A D.R.A C .D.R.A D A D.E.A D.E E.A
E.A C .E.A E.R.A C .E.R.A E

at least two indices, and soEI −EJ contains some characters with at least one non-zero coefficient aj for some j in P (i), and
also some characters for which aj = 0 for all j in P (i). As in Proposition 4.2,EI −EJ = 

F (K)∈I(I,J)

EK .
Hence Proposition 4.3 remains true in this more general setting, and so I can be determined as in Section 4.1.

Concerning the second step, a reduced ineligible set of characters R can be deduced from I by the following steps.

(a) Deduce from I a set IP of ineligible pseudofactorial terms when decomposing the factors into pseudofactors. This set
can be reduced as explained in Section 7.3.

(b) Deduce from IP the equivalence classes to be considered for R.
(c) Select one representative character in each class and eliminate representatives having a proper multiple in I.

In Examples 1 and 2, the models are complete and so the first main step is based on Proposition 4.3.

Example 1 (Continued). Proceeding as in Example 4 (Section 4.1.2), we find the ineligible set

I = {F1, F2, F3, F4, F1.F2, F1.F3, F1.F4, F2.F3, F2.F4, F3.F4, F1.F2.F3, F1.F3.F4}.

Example 2 (Continued). The set M is complete, so Proposition 4.3 shows that the terms in the ineligible set specified by M
and E are those given in Table 2. Furthermore, the designmust contain all the level combinations of factors C (columns) and
R (rows), so the factorial terms C , R and C .R are also ineligible (see Section 4.4). Therefore

I = {C, D, E, R, A, C .R, D.E, D.A, E.A,

D.E.A, C .D.A, C .E.A, D.R.A, E.R.A, C .D.R.A, C .E.R.A}. (16)

7.2. Main principle of the reduction

Section 5.3 explained how the set I of ineligible characters can be reduced for elementary regular designs. The basic
principle is that, if characters A and B are ineligible and there is a δ ∈ N such that A = δB, then it is sufficient to check that
ϕ(A) ≠ 0. Thus the character B can be omitted from the set of ineligible characters. It follows that, to be parsimonious, a
reduced ineligible set R must include only one representative per equivalence class defined by (6).

The same principle applies to generalised regular designs, but it is possible to go further. Indeed the relation

⟨A⟩ ⊆ ⟨B⟩ ⇐⇒ ∃δ ∈ N such that A = δB (17)

defines a partial order on equivalence classes and it is clear that (4) has to be checked only for representatives of minimal
classes. The class of A is minimal if and only if ⟨A⟩ contains no proper subgroup ⟨B⟩ with B ∈ I. A reduced ineligible set R
can thus be obtained by picking one representative in each equivalence class and avoiding representatives having a proper
multiple in I.

7.3. Reduction of the set of ineligible pseudofactorial terms

Suppose that the interaction F1.F2 is ineligible and that F1 = A1∧A2, F2 = B1∧B2. The character setE{1,2} of the interaction
F1.F2 is the union of the character sets of the nine pseudofactor interactions in P (F1.F2), whereP (F1.F2) = {A1.B1, A2.B1, A1.A2.B1, A1.B2, A2.B2, A1.A2.B2, A1.B1.B2, A2.B1.B2, A1.A2.B1.B2.}.

We call a term such as A1 or A1.B1 a pseudofactorial term. Note that a pseudofactorial term is ineligible if and only if it is part
of an ineligible factorial term.

In some cases, only a fewof the pseudofactor interactions such as the nine above need to be consideredwhen determining
R. This property is related to the Sylow decomposition of T and was not relevant for the elementary regular designs. It
motivates the construction of a reduced setIP of ineligible pseudofactorial terms, intermediate between the setI of ineligible
factorial terms and the reduced set R of ineligible characters.
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In the pseudofactor notation A[k,j] introduced in Section 6.1, each pseudofactorial term can be expressed as a product
k∈K


j∈Jk

A[k,j], where the index k varies over a subset K of {1, . . . , l} and, for each k, Jk is a non-empty subset of {1, . . . , sk}.
The associated characters in T ∗ are the linear combinations


k∈K


j∈Jk

a[k,j]A[k,j] forwhich every coefficient a[k,j] is non-zero.
The set of these characters is the sum


k∈K Ek of the pseudofactorial sets Ek of characters associatedwith the pseudofactorial

terms


j∈Jk
A[k,j].

Definition 7.1 (Support). The support of the character (Ă1, . . . , Ăl) is the set {k : 1 ≤ k ≤ l and Ăk ≠ 0}. The support of the
pseudofactorial term


k∈K


j∈Jk

A[k,j] is the set K .

Proposition 7.1. Let


k∈K


j∈Jk
A[k,j] be an ineligible pseudofactorial term. If L is any proper subset of K then the

pseudofactorial term


k∈L


j∈Jk
A[k,j] is different from µ and different from


k∈K


j∈Jk

A[k,j]. If there is any such subset L such
that


k∈L


j∈Jk
A[k,j] is ineligible, then the ineligible set of characters can be reduced by removing all characters associated with

k∈K


j∈Jk
A[k,j].

Corollary 7.1. Consider any two pseudofactors that decompose the same factor Fi and have different prime numbers of levels.
Any pseudofactorial term that includes both pseudofactors can be omitted from IP .

A more thorough elimination can proceed according to Algorithm 2 below, where iptI is the initial set IP deduced
directly from I, iptR denotes the reduced set under construction, and iptq, iptK are temporary subsets of iptI.

Algorithm 2 Reduction of ineligible pseudofactorial terms
iptI←− complete set of ineligible pseudofactorial terms
iptR←− ∅
for q = 1, . . . , l− 1 do
iptq←− subset of elements in iptIwith support of size q
iptR←− iptR ∪ iptq
iptI←− iptI \ iptq
for each pseudofactorial term pft in iptq do

determine the support L of pft
iptK←− subset of elements in iptIwhose restriction to the support L equals pft
iptI←− iptI \ iptK

end for
end for
return iptR

Example 1 (Continued). The factorial terms in I are expanded as functions of the pseudofactors. In this process,

• F1 gives A[2,1], A[3,1], (A[2,1].A[3,1]),
• F2 gives A[2,2], A[2,3], A[2,2].A[2,3],
• F1.F2 gives A[2,1].A[2,2], A[3,1].A[2,2], (A[2,1].A[3,1].A[2,2]), A[2,1].A[2,3], A[3,1].A[2,3], (A[2,1].A[3,1].A[2,3]), A[2,1].A[2,2].A[2,3],

A[3,1].A[2,2].A[2,3], (A[2,1].A[3,1].A[2,2].A[2,3]),

and so on,where the terms between parentheses involve different primes for the same genuine factor and somay be omitted
immediately, by Corollary 7.1.

Then the algorithm starts with the ineligible pseudofactorial termswith only one non-zero primary component (support
size q = 1). Here only 22 of the 31 pseudofactorial terms with support {2} are ineligible:

A[2,1], A[2,2], A[2,3], A[2,4], A[2,5], A[2,1].A[2,2], A[2,1].A[2,3], A[2,1].A[2,4],
A[2,1].A[2,5], A[2,2].A[2,3], A[2,2].A[2,4], A[2,2].A[2,5], A[2,3].A[2,4], A[2,3].A[2,5],

A[2,4].A[2,5], A[2,1].A[2,2].A[2,3], A[2,1].A[2,4].A[2,5], A[2,2].A[2,3].A[2,4],
A[2,2].A[2,3].A[2,5], A[2,2].A[2,4].A[2,5], A[2,3].A[2,4].A[2,5]

and A[2,2].A[2,3].A[2,4].A[2,5].

However, all three of the pseudofactorial terms with support {3}, namely A[3,1], A[3,2] and A[3,1].A[3,2], are ineligible.
When considered as subsets of pseudofactors, all pseudofactorial terms with support {2, 3} include one or more of these
pseudofactorial terms with support {3}. Proposition 7.1 shows that they can be eliminated.

Since this first reduced set of ineligible elements includes only elements with one non-zero primary component, the
same is true of any reduced ineligible set deduced from it. Section 7.5.1 shows that this very often occurs in practice and
that it allows us to make the search separately for each prime. But it is not always true, as shown by Example 2.
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Table 3
Representatives of equivalence classes in the ineligible set IP in Example 2.

Support Representative characters

{2} C , D, E, D+ E
{3} R, A
{2, 3} C +D+ R+ 2A, C +D+ 2R+ 2A,

C + E + R+ 2A, C + E + 2R+ 2A

Example 2 (Continued). The pseudofactorial terms are confounded with the factorial ones in this example so they are given
in (16). Those with support of size one may include C , D or E for p1 = 2, or R or A for p2 = 3, which yields D, E, C , D.E, R
and A. Among the other pseudofactorial terms, we can eliminate D.A, D.R.A, D.E.A, E.A, E.R.A and C .R, which have D, E, C or
D.E as 2-primary component, and C .D.A and C .E.A, which have A as 3-primary component. The remaining terms are C .D.R.A
and C .E.R.A. So the reduction of pseudofactorial terms leads to the set

IP = {C,D, E, D.E, R, A, C .D.R.A, C .E.R.A}.

Section 3.3 shows that the subsets of characters associated with the factorial terms C .D.R.A and C .E.R.A are

{C + D+ R+ A, C + D+ 2R+ A, C + D+ R+ 2A, C + D+ 2R+ 2A}
and {C + E + R+ A, C + E + 2R+ A, C + E + R+ 2A, C + E + 2R+ 2A}

respectively. Picking one representative in each equivalence class gives the ten elements in Table 3, four of which have two
non-zero primary components. Each equivalence class has one element if the coefficients of the three-level factors R and A
are both 0, or two otherwise. If factors R and A are both involved, the representative selected is the one whose coefficient of
A is−1 = 2 (mod 3).

7.4. Reduction of the set of ineligible characters

The first step in getting the reduced ineligible set is to select one representative in each equivalence class for the
relation (6). This is easy if there is some canonical way of selecting unambiguously the representative in each class. The
following proposition shows that a canonical representative can be formed by picking the canonical representative of each
primary component.

Proposition 7.2. If A = (Ă1, . . . , Ăl) then the equivalence class A of A is the product of the equivalence classes A1, . . . ,Al of
its primary components Ă1, . . . , Ăl: that is, A = A1 × · · · ×Al.

When looking for representatives of minimal classes, the following proposition is useful.

Proposition 7.3. Let A = (Ă1, . . . , Ăl) and B = (B̆1, . . . , B̆l) be the Sylow decompositions of elements A and B of T ∗. Then
⟨A⟩ ⊆ ⟨B⟩ if and only if ⟨Ăk⟩ ⊆ ⟨B̆k⟩ for k = 1, . . . , l.

In other words, the class of A is contained in the class of B in the sense defined by (17) if and only if, for each k ≤ l, the
class of Ăk is contained in that of B̆k; that is, there exists an integer δk such that Ăk = δkB̆k.

Given an ineligible pseudofactorial term


k∈K


j∈Jk
A[k,j], we seek a set of representatives of the equivalence classes in

the corresponding set E of characters, by which we mean a set containing exactly one element in each equivalence class. As
in Section 7.3, E =


k∈K Ek, where Ek is the set of characters associated with


j∈Jk

A[k,j].

Proposition 7.4. For each k in K , let Ck be a set of representatives of the equivalence classes in Ĕk. Put C =


k∈K Ck. Then C is
a set of representatives of the equivalence classes in


k∈K Ĕk.

Thus the search for ϕ is reduced to the search for the primary homomorphisms ϕ̆k for each prime pk. Denote by Ik the
set of ineligible characters A whose support is {k}. Then ϕ̆k must satisfy

ϕ̆k(A) ≠ 0 for all A in Ik,

for k = 1, . . . , l. Sometimes this necessary condition is also sufficient for condition (4) to be satisfied; sometimes it is not.
We discuss the two cases in Section 7.5.

7.5. Dependencies between Sylow components of the key matrix

7.5.1. A condition leading to independent searches for each Sylow component
For k = 1, . . . , l, denote by R̆k the set of all non-zero pk-primary components Ăk of the characters in R.
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Definition 7.2. A subset of characters in T ∗ is thin if all of its elements have support of size one.

Proposition 7.5. If R is thin then condition (5) on ϕ is equivalent to the conjunction of the l conditions

ϕ̆k(Ăk) ≠ 0 for every Ăk ∈ R̆k, (18)

for k = 1, . . . , l.

Hence if R is thin then searching for ϕ satisfying (5) is equivalent to searching separately (and independently) for the
primary homomorphisms ϕ̆k satisfying (18). In practice it is easy to check directlywhetherR is thin. But a question naturally
arises: is this often satisfied in practice? Proposition 7.6 gives a positive answer by giving a mild condition under which R
is thin. On the contrary, Example 7 illustrates a practical situation in which it is not.

A subset S of a group is said to be closed under integer multiplication if

A ∈ S H⇒ δA ∈ S for every integer δ.

It is easy to show that the subsets closed under integer multiplication are unions of subgroups.
In practice, a set like M defining the model is often a union of subgroups of T ∗ and is thus closed under integer

multiplication. This is always true when M is complete. As to the set E of effects to estimate, it is usual that, if it contains an
interaction, it also contains all effects marginal to it except for themean. For instance, if it contains A.B.C , it also contains the
main effects A, B, C and the two-factor interactions A.B, A.C , B.C . Under these assumptions, E ∪ {0} and M are both closed
under integer multiplication, and so is the difference E −M, which is I ∪ {0}.

Proposition 7.6. If I ∪ {0} is closed under integer multiplication then there exists a thin reduced ineligible set R. In particular,
this holds if E ∪ {0} and M are both closed under integer multiplication.

This result can be generalised easily to ineligible sets of characters derived from one ormore sets of the form IJ described
in Section 4.3: if, for every subset J defining a stratum, the subsets EJ ∪ {0} and MJ are closed under integer multiplication,
then the reduced set R is thin.

Proposition 7.6 gives as a particular case the following classical result (Bailey, 1985): the design is of resolution R if all its
Sylow components are.

7.5.2. Counter-examples
There are, however, situations, like in some criss-cross experiments, when E includes an interaction but not the main

effects of the corresponding factors and when R is not thin. Examples 2 and 7 were constructed to illustrate this situation
and its different consequences.

Example 2 (Continued). As shown in Section 7.3, the reduced set contains characters of support size 2 and so R is not thin.
However, this example still allows for separate solutions of the Sylow components ofΦ , as we now explain.

The unit pseudofactors areV[2,1],V[2,2], andV[3,1]. There is no loss of generality in putting ϕ̆2(C) = V[2,1] and ϕ̆3(R) = V[3,1].
For example, one possibility forΦ is


C̃ D̃ Ẽ R̃ Ã

V[2,1] 1 0 1 0 0
V[2,2] 0 1 1 0 0
V[3,1] 0 0 0 1 1

.
It is clear that ϕ̆2(D) and ϕ̆2(E)must be two of V[2,1], V[2,2] and V[2,1] + V[2,2]. Since the character A is in R, ϕ̆3(A)must be

V[3,1] or 2V[3,1], whatever ϕ̆2 is. If ϕ̆3(A) is V[3,1] then ϕ(C + D+ R+ 2A) = ϕ(C + D) and ϕ(C + E + R+ 2A) = ϕ(C + E), so
ϕ̆2(D) and ϕ̆2(E)must both be different from ϕ̆2(C). If ϕ̆3(A) is 2V[3,1] then exactly the same is true due to ϕ(C + D+ R+ A)
and ϕ(C + E + R+ A).

In Example 2, the solutions for ϕ̆2 do not depend on the solution for ϕ̆3 or vice versa. Here is a similar example with 36
units where the choice for the two-level factors depends on the choice previously made for the three-level ones.

Example 7. This is a small modification of Example 2. Now there are six units in each of the six cells, and the factor A is no
longer constrained to be coarser than R. The sets M, E and I are unchanged, and M is complete.

The unit pseudofactors are V[2,1], V[2,2], V[3,1] and V[3,2]. There is no loss of generality in putting ϕ̆2(C) = V[2,1] and
ϕ̆3(R) = V[3,1]. Then ϕ̆2(D) and ϕ̆2(E) must be two of V[2,1], V[2,2] and V[2,1] + V[2,2], while ϕ̆3(A) can be any non-zero
combination of V[3,1] and V[3,2]. If ϕ̆3(A) is V[3,1] then ϕ(C + D+ R+ 2A) = ϕ(C + D) and ϕ(C + E + R+ 2A) = ϕ(C + E),
so ϕ̆2(D) and ϕ̆2(E)must both be different from ϕ̆2(C). If ϕ̆3(A) is not a multiple of V[3,1] then there is no such constraint on
ϕ̆2(D) and ϕ̆2(E).
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In this case, the search cannot be made independently in the Sylow components. There are the following three
fundamentally different possibilities forΦ .


C̃ D̃ Ẽ R̃ Ã

V[2,1] 1 0 1 0 0
V[2,2] 0 1 1 0 0
V[3,1] 0 0 0 1 1
V[3,2] 0 0 0 0 0




C̃ D̃ Ẽ R̃ Ã

V[2,1] 1 0 1 0 0
V[2,2] 0 1 1 0 0
V[3,1] 0 0 0 1 0
V[3,2] 0 0 0 0 1




C̃ D̃ Ẽ R̃ Ã

V[2,1] 1 1 1 0 0
V[2,2] 0 0 1 0 0
V[3,1] 0 0 0 1 0
V[3,2] 0 0 0 0 1

.
More generally, counter-examples arisewhen, say, A = Ă1+Ă2 belongs toR but neither Ă1 nor Ă2 does. Thismay happen

if an interaction has to be estimated but not the associated main effects. In that case, it may well be necessary and sufficient
that either ϕ̆1(Ă1) ≠ 0 or ϕ̆2(Ă2) ≠ 0. So there may be solutions with ϕ̆1(Ă1) ≠ 0 and solutions with ϕ̆1(Ă1) = 0. Thus the
equivalence in Proposition 7.5 is not satisfied.

7.5.3. Backtrack search in the non-independent case
When R is not thin, as in Example 7, the Sylow components of ϕ and Φ can be found by backtrack search. Assume that

ϕ̆j has already been defined for j = 1, . . . , k− 1. Let R[k] be the subset of elements A = (Ă1, . . . , Ăk, 0, . . . , 0) in R having
Ăk as last non-zero primary component. If A ∈ R[k] then ϕ(A) = (ϕ̆1(Ă1), . . . , ϕ̆k(Ăk), 0, . . . , 0) and the choice of ϕ̆k must
ensure that ϕ(A) ≠ 0. If there is any index j between 1 and k− 1 such that ϕ̆j(Ăj) ≠ 0, then ϕ(A) ≠ 0 whatever the choice
of ϕ̆k. Such elements therefore need not be considered in the search for ϕ̆k, which can proceed with reduced ineligible set
R[[k]] consisting of those elements A in R[k] for which ϕ̆j(Ăj) = 0 for j = 1, . . . , k− 1. If it succeeds and k < l, it goes on to
find ϕ̆k+1. If it fails and 1 < k, it goes back and tries to find another choice for ϕ̆k−1. The search finally fails if it goes back to
k = 1 and fails to find another ϕ̆1. It finally succeeds if it reaches k = l and finds an admissible ϕ̆l.

In any case, the elementary step in the search for ϕ is the search for the primary homomorphisms ϕ̆k for each prime pk.

8. Discussion

Quite apart from the computational aspects, this paper shows great unity between different types of factorial design:
fractional or not; one prime or many; blocked, split-plot, row–column, criss-cross, and so on. The approach using one or
more model-estimate pairs (M, E) gives a unified framework. The set of ineligible factorial terms is at the centre of this
framework, since it synthesises all the constraints associated with the users’ specifications. The other central component
is the design key, which determines the combinatorial and statistical properties of the design. Indeed the design problem
essentially consists of finding a design key adapted to the set of ineligible factorial terms.

A few remarks must be made from a statistical point of view. Of course, once an initial design has been generated, it then
needs to be randomised. Since the two steps are quite independent, we only focused on the first one in this paper. Another
point is that we made no distinction between the key matrices, provided they are solutions to the design specifications of
Section 2. To cope with finer criteria such as minimum aberration or maximum estimation capacity (see e.g. Mukerjee and
Wu, 2006), the approach developed here gives the possibility (up to computational constraints) to get all solutions and then
select the best ones either according to such a criterion or by looking in detail at properties of the designs more relevant to
the application at hand. An efficient alternative for a user of R is to use the FrF2 R package (Grömping, 2014), which makes
better use of such considerations but is restricted to factors at two levels.

The framework could be even more general. For example, if a factor has four levels, it is possible to associate it with
the cyclic group C4 rather than using two pseudofactors with two levels each; similarly for other primes and other powers.
Several authors have extended the theory to thismore general setting, and itwas implemented in the initial version of planor.
However, the work of Voss (1988, 1993) suggests that there is no practical benefit from the more general framework.

The algorithmic approach presented here to generate designs is based on backtracking, which aims at a complete
exploration of the possible solutions. The drawback is that the computational burden becomes too hard when the number
of factors or the degree of fractionating becomes too high. So there is clearly a need to improve the speed of the algorithm.
There are many directions to do so, but we want to stress two of them.

Cheng and Tsai (2013) have shown how templates may be used for the design key in certain situations. Such a template
enables us to fix one or more columns in the matrixΦ . For instance, in the matrix given for Example 3 in Appendix B of the
Supplementary material (see Appendix A) we lose nothing by making the columns for Ã, B̃ and C̃ the same as those for Q ,
U1 and U2 respectively.

The search could also be accelerated by making use of symmetries between factors or pseudofactors, with respect to the
design specifications. To do so efficiently, it might be better to implement the search in a language like GAP (2016), which
is expressly designed to cut down searches in this way.

The R package planor is available on the CRAN (Monod et al., 2012). It deals with the whole class of generalised regular
factorial designs presented here. In addition to generating such designs, it can randomise them appropriately if the block
factors and their hierarchy relationships define an orthogonal block structure. Application to the main three examples of
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the paper and to one higher dimensional one is presented in Appendix C of the Supplementary material (see Appendix A).
A more detailed presentation will be the subject of another paper.
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