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We propose a new similarity theory for the two-dimensional inverse energy cascade and
the coherent vortex population it contains when forced at intermediate scales. Similarity
arguments taking into account enstrophy conservation and a prescribed constant energy
injection rate such that E ∼ t yield three length scales, lω, lE , and lψ, associated with
the vorticity field, energy peak, and streamfunction, and predictions for their temporal
evolutions, t1/2, t, and t3/2, respectively. We thus predict that vortex areas grow linearly
in time, A ∼ l2ω ∼ t, while the spectral peak wavenumber kE ≡ 2πl−1

E ∼ t−1. We
construct a theoretical framework involving a three-part, time-evolving vortex number
density distribution, n(A) ∼ tαiA−ri , i ∈ 1, 2, 3. Just above the forcing scale (i = 1)
there is a forcing-equilibrated scaling range in which the number of vortices at fixed
A is constant and vortex ‘self-energy’ Ecm

v = 1
2D
∫
ω2

vA
2n(A)dA is conserved in A-space

intervals [µA0(t), A0(t)] comoving with the growth in vortex area, A0(t) ∼ t. In this range,
α1 = 0 and n(A) ∼ A−3. At intermediate scales (i = 2) sufficiently far from the forcing
and the largest vortex, there is a range with a scale-invariant vortex size distribution. We
predict that in this range the vortex enstrophy Zcm

v is conserved and n(A) ∼ t−1A−1.
The final range (i = 3), which extends over the largest vortex-containing scales, conserves
σcm

v = 1
2D
∫
ω2

vn(A)dA. If ω2
v is constant in time this is equivalent to conservation of

vortex numberN cm
v =

∫
n(A)dA. This regime represents a ‘front’ of sparse vortices, which

are effectively point-like; in this range we predict n(A) ∼ tr3−1A−r3 . Allowing for time-
varying ω2

v results in a small but significant correction to these temporal dependencies.
High resolution numerical simulations verify the predicted vortex and spectral peak
growth rates, as well as the theoretical picture of the three scaling ranges in the vortex
population. Vortices steepen the energy spectrum E(k) past the classical k−5/3 scaling
in the range k ∈ [kf , kv], where kv is the wavenumber associated with the largest vortex,
while at larger scales the slope approaches −5/3. Though vortices disrupt the classical
scaling, their number density distribution and evolution reveal deeper and more complex
scale invariance, and suggest an effective theory of the inverse cascade in terms of vortex
interactions.
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1. Introduction

Two-dimensional turbulence is fundamentally important to geophysical and astrophys-
ical fluid dynamics. Large-scale planetary and astrophysical flows are frequently quasi-
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two-dimensional, with vertical motions constrained by aspect ratio, stratification, and
rotation. In such flows, the dual conservation of kinetic energy and enstrophy results
in the celebrated inverse energy cascade, in which energy is transferred to large scales,
while enstrophy moves to small scales, one of the most remarkable features of all fluid
dynamics.

A major outstanding problem in two-dimensional turbulence is the degree to which
the inverse energy cascade is quasi-Gaussian and exhibits an energy spectrum satisfying
E(k) ∼ k−5/3, as predicted by Kraichnan (1967). Forcing the flow at strongly dissipated
small scales suppresses nonlinear interactions and inhibits the enstrophy cascade (Smith
& Yakhot 1993), resulting in relatively featureless vorticity fields and inverse cascades
with k−5/3 spectra, as found in a number of studies (Frisch & Sulem 1984; Sommeria
1986; Maltrud & Vallis 1991; Paret & Tabeling 1998; Rutgers 1998; Boffetta et al. 2000;
Dubos et al. 2001; Bruneau & Kellay 2005; Boffetta 2007). Classical theories, on the other
hand, assume infinitely separated forcing and dissipation scales that allow both energy
and enstrophy cascades to be present (Kraichnan 1967; Leith 1968; Batchelor 1969).
To test these theories, one must force at intermediate scales sufficiently far from the
dissipation range that an enstrophy cascade can develop (Boffetta & Musacchio 2010).
In this scenario simulated inverse cascades consistently develop populations of coherent
vortices and exhibit spectra steeper than k−5/3 (Smith & Yakhot 1993; Borue 1994; Scott
2007; Vallgren 2011; Fontane et al. 2013; Burgess et al. 2015). While coherent vortices
have been characterized as spurious hypofriction effects (Boffetta & Ecke 2012) or as
limited to the vicinity of the forcing scale (Boffetta et al. 2000), several recent studies
demonstrate that vortices form under a wide range of conditions, including Laplacian
diffusion and hyperviscosity, in the absence of hypodiffusion (Scott 2007; Vallgren 2011;
Fontane et al. 2013; Burgess et al. 2015). A proper understanding of vortical features
is important because the presence of such vortices in two-dimensional inverse cascades
governs to a large extent the transport and mixing in quasi-two-dimensional geophysical
and astrophysical flows.

Much research has been done on vortex populations in decaying two-dimensional
turbulence, and several increasingly comprehensive scaling theories have been proposed.
Benzi et al. (1988, 1992) linked the algebraic scaling of the energy spectrum to a vortex
population with an algebraic number density n(A) ∼ A−p and determined p empirically
from numerical simulations. Carnevale et al. (1991) and Weiss & McWilliams (1993)
proposed a temporal scaling theory for the vortex number density: assuming vortices of a
single size, energy conservation, and conservation of the vorticity extremum, dimensional
arguments yield n ∼ t−ξ, with no prediction for ξ. Dritschel et al. (2008) proposed
a theory that unified the spatial and temporal scalings of Benzi et al. (1988, 1992),
Carnevale et al. (1991), and Weiss & McWilliams (1993) and determined the vortex
number density n(A) ∼ t−2/3A−1 using self-similarity arguments. It must be emphasized
here that two-dimensional decaying turbulence and two-dimensional forced turbulence
are fundamentally different systems, and there is no reason to suppose that details of the
vortex population in decaying two-dimensional turbulence should have any bearing on
the vortex population in forced turbulence. In fact, the very existence of a robust and
well-defined vortex population in the forced inverse cascade has only recently begun to
be appreciated.

In this paper we make the first attempt to develop a temporal and spatial scaling theory
for the vortex population in the forced two-dimensional inverse cascade. We consider the
canonical scenario of two-dimensional turbulence with a narrow-band forcing that injects
kinetic energy E and enstrophy Z at prescribed constant rates. We demonstrate that the
vortex population dominates the flow dynamics over a range of scales that increases in
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time. Similarity arguments and conservation considerations predict the growth rates of
the largest vortex and the spectral peak length scale (section 2), as well as the time
evolution and scaling of a three-part vortex number density (section 3). In section 4 we
provide support for our predictions from high resolution simulations.

2. Similarity theory for the forced inverse cascade

In the spirit of Batchelor’s similarity theory for decaying two-dimensional turbu-
lence (Batchelor 1969), we first construct dimensionless variables appropriate for the
forced inverse cascade. Batchelor’s theory assumes that when Re → ∞ enstrophy dissi-
pation in decaying two-dimensional turbulence remains finite, while energy dissipation
vanishes. Energy is then the only invariant, and a natural choice of similarity variable is
kt
√
E. In contrast, in the forced two-dimensional inverse cascade E grows at a prescribed

rate while Z must remain constant. Possible dimensionless combinations in this case are

k
√

4E/Z, kt
√

2E, (2.1)

where
√

2E = urms is the the rms speed, 1/
√
Z is an eddy turnover time, and we include

constant factors for later convenience.
Taking Z = constant and E ∼ t (as prescribed in our simulations), requiring

k
√

4E/Z ∼ 1, kt
√

2E ∼ 1, (2.2)

and associating wavenumber k and length l through k = 2π/l, we obtain two length
scales and their growth rates,

lω ≡ 2
√

4E/Z ∼ t1/2, (2.3)

lψ ≡ t
√

2E ∼ t3/2. (2.4)

The first of these, lω, is the characteristic length scale of the vorticity field ω, giving a
characteristic eddy or vortex radius a(t) =

√
4E/Z, growing as t1/2. (The factor of 4

comes from relating vorticity to angular velocity.) This yields a vortex area growth rate
A ∼ t, where A is the vortex area. We identify lψ as the relevant length scale for the
streamfunction ψ. It can be thought of as the distance travelled by a vortex moving at
speed urms in unit time.

We also define a third length scale,

lE =
√
lψlω =

(
2t
√

8E2/Z
)1/2

∼ t, (2.5)

which we associate with the energy E and an area Aeff = lωurms, the effective area swept
out in unit time by an eddy of diameter lω moving at speed urms. Aeff is the collision cross
section for vortices of area A and is the relevant scale of interaction with the more slowly
evolving streamfunction. Since lE is the characteristic scale of E, kE ≡ 2π/lE should
roughly coincide with the spectral peak wavenumber, kE ≈ kp, yielding a predicted
growth law kp ∼ t−1.

3. Vortex scaling theory

We now develop a vortex scaling theory based on material vorticity conservation and
transport of conserved quantities through scaling ranges. The forcing continuously injects
enstrophy, replenishing a ‘thermal bath’ of small vortices with characteristic area Af and
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vortex mean square vorticity at that scale

ω2
v(Af ) =

1

N

N∑
i=1

1

Ai

∫
Ai

ω2d2x, (3.1)

where N is the total number of such vortices, and Ai ≈ Af , i.e. the vortices start with
approximately the same size, which is set by the forcing. The mean square vorticity
ω2

v(A) of vortices with arbitrary area A is similarly defined. Vortices nucleated at the
forcing scale grow by merging with other like-sign vortices. Since ω2

v(Af ) is set by the
forcing, and since merger cannot change the vorticity of fluid parcels, but only aggregate
them into larger structures, it is reasonable to assume that ω2

v(Af ) = ω2
v(A), i.e. ω2

v is
independent of A. Since the system is continuously forced we leave open the possibility
that ω2

v may grow in time.
We expect the forcing to replace enstrophy lost to filament shedding during merger

such that the total area fraction occupied by coherent vortices,

fv =
1

D

∫ Amax

Af

An(A)dA, (3.2)

is constant, where n(A) is the vortex number density, D is the area of the domain, and
Amax is the area of the largest vortex. This prediction is well supported by our numerical
simulations, as discussed below. In terms of vortex dynamics, enstrophy is protected
within large-scale coherent structures and only lost to the enstrophy cascade through
filamentation during mergers. Loss of coherent enstrophy through a succession of merger
and filamentation events frees up a region, which a newly nucleated vortex will occupy.

Systems far from equilibrium can exhibit multiple regimes with distinct scaling be-
haviour, each associated with transport of a conserved quantity across scales. Canonical
examples in two-dimesional turbulence are the enstrophy cascade, in which classical
theory predicts a k-independent enstrophy flux to small scales, and the inverse energy
cascade, in which a k-independent energy flux to large scales is expected (Kraichnan 1967;
Batchelor 1969). Here we extend these inertial range arguments to the vortex subfield,
with transport across scales in A-space due to interactions between vortices taking the
place of transport through wavenumber space. Three quantities with potentially A-
independent flux through area space are the first three moments of ω2

vn(A), namely, the
vortex self-energy Ev = 1

2D
∫
ω2

vA
2n(A)dA, the vortex enstrophy Zv = 1

2D
∫
ω2

vAn(A)dA,

and an ω2
v-weighted vortex number σv = 1

2D
∫
ω2

vn(A)dA. Since ω2
v is uniform in A it may

be brought outside all integrals and its influence on scaling quantities is limited to their
time evolution. If ω2

v is also independent of t, conservation of σv is then equivalent to
conservation of the total vortex number Nv =

∫
n(A)dA. The simulations analyzed below

indicate that constancy of ω2
v in A holds to a good degree, but suggest a small systematic

dependence on time. For simplicity of presentation, and to facilitate comparison with
previous work, we develop our theory here in terms of Nv rather than σv. The extension
to time-varying ω2

v and conserved σv is trivial. In the following section we explore how
such time dependence may influence the scaling ranges predicted here.

We anticipate three regimes corresponding to the above quantities Ecm
v , Zcm

v , and N cm
v ,

and seek a scaling solution in each with power law form for the vortex number density

n(A, t) = c(t)A−ri ∼ tαiA−ri , i ∈ 1, 2, 3, (3.3)

where c(t) ∼ tαi is dimensionless and αi and ri are to be determined from conservation
laws and scaling arguments. The number density is shown schematically in figure 1 with
ranges (1)-(3) labelled. Also indicated are the characteristic forcing-scale vortex area Af
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Figure 1. Schematic of a three-part number density n(A), with forcing-scale area Af ,
transitional areas A− and A+, and maximum vortex area Amax labelled.

and maximum vortex area Amax, together with the transition regions A− and A+ that
demarcate the intermediate range (2).

Before formulating a theory for the proposed scaling ranges, we introduce the concept
of a ‘comoving’ interval in A-space. In contrast to a fixed interval, [µA0, A0], where
µ < 1 and A0 are constant in time, it is convenient to define the ‘comoving’ interval
[µA0(t), A0(t)] whose endpoints evolve with the vortex growth rate. Individually, vortices
do not progress smoothly toward larger scales; they may jump from scale to scale and
even decrease in size as a result of mergers. However, statistically speaking we picture
an ‘average’ vortex as increasing in size continually at the vortex growth rate. In a
comoving interval one imagines following such a statistical vortex as it grows in size
and moves through A-space toward larger scales. We assume that statistical vortices in
all three ranges grow in area at the same rate, given by the similarity law a(t) ∼ t1/2

following from equation (2.3) above.

In terms of scale invariance, we expect conservation laws to hold in comoving intervals
because the system should be invariant under the length scale dilation associated with the
inverse cascade as manifested through vortex growth. The particular type of invariance,
and hence the conserved quantity, depends on the dynamics of the scaling range.

We now discuss the three proposed scaling regimes obtained by considering conserva-
tion of Ev, Zv and Nv, respectively, in comoving intervals:

(1) We call this regime the ‘thermal bath’. It extends over the range Af < A < A−,
and is ‘pinned’ at one end to the forcing scale Af and equilibrated with the forcing, which

injects energy at a constant rate. Because this range is equilibrated, we expect ω2
v to be

time-invariant, and σv, Nv, Zv, and Ev all to be constant in the fixed interval [µA0, A0].
This sets α1 = 0. We also expect conservation of Ecm

v in an interval [µA0(t), A0(t)]
comoving with the vortex area growth rate, where again µ < 1 is a constant factor.
This requirement is the analogue of k-independent energy flux through energy-cascading
subranges in two-dimensional turbulence, except that here we are not working in k-space,
but in A-space, and the flux is restricted to the vortex subfield. Conservation of Ecm

v then
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implies r1 = 3, so that

Ecm
v =

1

2D

∫ A0(t)

µA0(t)

ω2
vA

2n(A)dA ∼
∫ A0(t)

µA0(t)

A−1dA ∼ − logµ ∼ t0. (3.4)

From equation (3.4), A0(t) ∼ t, and assuming ω2
v is constant, it follows that

Zcm
v ∼ t−1, N cm

v ∼ t−2. (3.5)

(2) In the intermediate scaling regime, which extends over the range A− < A < A+,
we posit a self-similar distribution of vortex sizes, which constrains the number density
n(A). Vortices in a comoving interval occupy an area

Av =

∫ A0(t)

µA0(t)

An(A)dA. (3.6)

Scale invariance requires Av/A0 to be independent of A0, which is satisfied if n(A) =
c(t)/A (Dritschel et al. 2008). Though merger and filament shedding will occur in the
forced scale-invariant range as in the decaying system, crucially in the forced system we
expect enstrophy so lost to be replaced, so that Zcm

v is constant. This gives

Zcm
v =

1

2D

∫ A0(t)

µA0(t)

ω2
vAn(A)dA ∼ c(t)ω2

vA0(t) ∼ t0, (3.7)

and since A0(t) ∼ t for constant energy injection, we obtain

c(t) ∝ t−1, (3.8)

where we have again assumed that ω2
v is constant in time. Equation (3.8) in turn yields

Ecm
v ∼ t, N cm

v ∼∝ t−1. (3.9)

The vortices grow in area faster than found in Dritschel et al. (2008) for the corresponding
scale-invariant range in decaying two-dimensional turbulence, where A(t) ∼ t1/3. The
faster growth rate reflects a higher merger rate, which arises in the forced situation
because enstrophy is continuously input into the system. The predicted c(t) ∼ t−1 decay
of the vortex density in the case of time-invariant ω2

v is also faster than the c(t) ∼ t−2/3

found for decaying turbulence with constant ω2
v by Dritschel et al. (2008); again, the

difference arises because the vortex merger rate is higher in the forced system.
(3) This is the ‘front’ of the vortex population, in which vortices populate new and

larger scales. In this regime the vortices are large and spaced far apart; we assume
that they move relatively freely of each other, interact little, and merge with other large
vortices only rarely. These considerations suggest that, again for constant ω2

v, the number
of vortices Nv in a range of scales [µA0(t), A0(t)] comoving with the vortex area growth
rate A0 ∼ t should remain constant. It now follows that

Ecm
v ∼ t2, Zcm

v ∼ t. (3.10)

Integrating N cm
v as above gives the condition α3 = r3 − 1. Unlike in ranges (1) and

(2), there is no immediately obvious feature of the large scale flow that provides a
further constraint on α3 and r3. In this range of scales vortices are so sparse that they
are effectively point objects, merging relatively infrequently at just the rate needed to
maintain the front propagation. Because of the lower merger rate we expect vortices
to accumulate at fixed A, resulting in a significantly steeper slope here than in the
intermediate range. The numerical results below suggest that r3 ≈ 6, α3 ≈ 5, consistent
with this argument and the constraint α3 = r3 − 1 obtained above.
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Figure 2. Total (left) and coherent (right) vorticity fields in a 384× 384 region (0.22% of the
domain) at t = 3.1. Black is negative and white positive vorticity.

In summary, we predict a vortex number density of the form

n(A, t) ∼


A−3, Af 6 A < A−,

t−1A−1, A− < A < A+,

tr3−1A−r3 , A+ < A 6 Amax,

(3.11)

where A− and A+ are time evolving transitional vortex areas. Matching the number
densities at A− and A+ yields

A− ∼ t1/2, A+ ∼ tr3/(r3−1). (3.12)

The above predictions are obtained under the assumption that ω2
v is constant in time.

If we instead allow for a more general time evolution of ω2
v, similar scaling arguments

give a modified three part number density of the form

n(A, t) ∼


A−3, Af 6 A < A−,

ω2
v

−1
t−1A−1, A− < A < A+,

ω2
v

−1
tr3−1A−r3 , A+ < A 6 Amax.

(3.13)

Further allowing ω2
v to evolve differently in ranges (2) and (3) gives transitional areas

that evolve as

A− ∼ (ω2
v)

1/2
2 t1/2, A+ ∼

[
(ω2

v)2

(ω2
v)3

]1/(r3−1)

tr3/(r3−1), (3.14)

where the subscripts on (ω2
v)2 and (ω2

v)3 denote the range. We will discuss the case for
time-evolving ω2

v in the following section.

4. Numerical verification

We simulate the dynamics governed by

∂tω + J(ψ, ω) = f + d. (4.1)
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in a doubly periodic domain using a traditional pseudospectral method. Here ω = −∇2ψ,
where ψ is the streamfunction and ω is the vorticity, J(ψ, ω) is the 2D Jacobian, f is
forcing, and d is dissipation. We ran an ensemble of ten simulations at resolution 81922

forced at kf = 1024. The initial condition is a state of no flow. The forcing is δ-correlated
in time, and we use a narrow-band forcing such that

f̂(k) =

{√
εIk

2π∆kdt , |k − kf | 6 ∆k,

0, |k − kf | > ∆k,
(4.2)

where f̂ is the Fourier transform of f , εI is the injected energy, dt is the time step, and
∆k sets the forcing bandwidth. The forcing satisfies 〈f̂(k)f̂(k)∗〉 = εI/πk and yields an
energy injection rate εI . Here we set ∆k = 4 and εI = 1.

The viscous term is of the form d = (−1)s+1ν∇2sω, where s is the order of hyperviscos-
ity and ν is the strength, and we set s = 4. Here there is no linear drag or hypoviscosity
at large scales and the vortex formation found is therefore not a hypoviscous effect. This
absence of large-scale dissipation means the cascade is quasisteady: though the spectral
peak moves toward large scales, the energy spectrum varies only slowly in the inertial
range, with the variation due solely to the evolution of the vortex population. Preliminary
analysis indicates that a vortex population also forms under more general forcing and
dissipation conditions, including broadband forcing and Laplacian viscosity.

Vortices are selected with the simplest possible procedure: regions with ω > 2ωrms are
identified, and those with A > Amin, where Amin = πr2

min and rmin = π/(kf), are retained
and classified as coherent, while regions with ω < 2ωrms and/or A < Amin are classified
as part of the background. The restriction on minimum area ensures that vortices are at
or larger than the forcing scale. The addition of an eccentricity criterion had negligible
effect on the extracted coherent field. Though simple, our selection procedure reliably
identifies intense, nearly circular, long-lived vortices, and is sufficient for our focus on
physical space characteristics. The total (left) and coherent (right) vorticity fields on a
384 × 384 subdomain (0.22% of the domain) at t = 3.1 are shown in Fig. 2. Vortices of
various sizes are evident.

Figure 3, left, shows the total flow energy E and the area fraction fv occupied by
coherent vortices. The energy grows like t, as prescribed, and once the vortex population
is established the prediction that the area fraction fv given by (3.2) is constant in time
is well supported. The measured wavenumbers kv and kp corresponding to the largest
vortex diameter (�) and the spectral peak (�), respectively, both averaged over the ten-
member ensemble, are shown in the right panel of Figure 3, together with their predicted
growth laws from (2.3)–(2.5). Also shown is the large-scale wavenumber kψ = 2π/lψ (+)
obtained from the measured value of E. The measured wavenumbers kv and kp follow
the predicted growth rates well over a substantial time interval.

The vortex number density is shown in figure 4. In the main panel we show the rescaled
density tn(A): while not perfect, this scaling collapses the curves to a reasonable degree
thoughout the intermediate range (2), supporting the prediction (3.3). The upper inset
shows the thermal bath range (1), in which the curves collapse with no overall time
scaling, and the density follows an approximate law n(A) ∼ A−3, as predicted. In the
lower inset we show the front of the cascade, range (3), compensated by the temporal
scaling t−5, which again collapses the curves to a reasonable degree, supporting (3.3).
The collapse is not as good as in ranges (1) and (2), but this is not surprising given the
short range of scales available and the relatively low occupation numbers of these bins.
The slope in this range is approximately −6, consistent with the requirement α3 = r3−1
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Figure 3. Left: energy E and percentage 100fv of the domain occupied by inverse-cascade-scale
coherent vortices. Right: wavenumbers associated with the largest vortex kv (�), spectral peak
kp (�), and streamfunction kψ (+) with their predicted growth laws.
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Figure 4. Re-scaled number density tn(A) (main panel) as a function of A at the indicated
times. The bottom inset shows range (3) collapsed by the scaling t−5n(A), and the top inset
shows the thermal bath range with no overall scaling. Thick solid lines proportional to A−3 (top
inset), A−1 (main panel), and A−6 (bottom inset) are shown for comparison.

obtained from conservation of vortex number in this range. Refinements to the temporal
scaling in ranges (2) and (3) are considered further below.

To verify the conservation laws introduced in 3, we integrated Ev, Zv, Nv, and σv

over comoving intervals [µA0(t), A0(t)] in each of the ranges (1), (2), and (3) separately.
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The results are shown in figure 5. Although the data is noisy, it broadly supports the
conservation laws proposed in section 3, particularly in regimes (1) and (2), which
conserve Ecm

v and Zcm
v , respectively, as shown in the top left and top right panels of Fig.

5. These panels also indicate that both Ecm
v and Zcm

v evolve according to the predictions
(3.5), (3.9), and (3.10) derived in the other ranges.

The conservation of N cm
v in range (3) and its time evolution in range (2) are less well

supported (lower left). In fact, N cm
v ∼ t−4/3 in range (2) and N cm

v ∼ t−2/3 in range
(3). As discussed in section 3, the most relevant conserved quantity may not be the raw
vortex number, but rather σv, the vortex number weighted by the vortex mean square
vorticity ω2

v, as defined in section 3. We turn next to the analysis of ω2
v and its temporal

evolution in our simulations.

The left panel of Fig. 6 shows the vortex mean square vorticity ω2
v plotted against

area A at the same three times considered in figure 4. At all times ω2
v shows very weak

dependence on A, in the sense that variations around the mean value are small relative to
that value, supporting the arguments made above for A-independent ω2

v, and additionally
consistent with previous studies of the vortex population in freely decaying turbulence
(Dritschel et al. 2008).

Considering next the temporal dependence, the left panel of figure 6 also indicates a
small but systematic increase of ω2

v in time. This time dependence in fact accounts very
well for the discrepency in the scaling of Nv noted above, and represents a potentially
important refinement to the theory. In the absence of a theoretical prediction, however,
we restrict the discussion here to empirically determining the growth of ω2

v based on
the current data. As a first step, we compensate ω2

v by the factors t−1/3 and t−2/3

(middle and right panels of Fig. 6). The first compensation (t−1/3) collapses the curves
at intermediate scales, while the second (t−2/3) approximately collapses the curves in the
large-scale regime, albeit not as well and over a shorter range, again consistent with the
relative paucity of data at these scales.

Assuming, then, a tentative scaling of ω2
v = (ω2

v)2 ∼ t1/3 in the intermediate range (2)
and a scaling of ω2

v = (ω2
v)3 ∼ t2/3 in the large-scale range (3), we return to the analysis

of the conserved quantities in these ranges and make the following two refinements: (i)
in range (2), conservation of Zv now implies σv ∼ t−1 and Nv ∼ (ω2

v)−1
2 t−1 ∼ t−4/3;

(ii) in range (3), conservation of σv rather than Nv now implies Nv ∼ (ω2
v)−1

3 ∼ t−2/3.
These decay rates are consistent with the empirically observed decay of N cm

v seen in
the bottom left panel of figure 5 and discussed above. All other scaling predictions are
unchanged by this refinement. Returning to figure 5, we show in the bottom right panel
the measured quantity σv in the three ranges, together with these predicted slopes. The
quantity σv follows the temporal scaling laws originally predicted for Nv in the three
ranges noticeably better than the vortex number Nv itself follows these scalings.

The measurements (ω2
v)2 ∼ t1/3 and (ω2

v)3 ∼ t2/3 obtained from the compensated
plots above are very approximate, but are consistent with a number of aspects of the
simulations. For further support of their numerical values, we measured the growth of
ω2

v indirectly by comparing estimates of the transitional areas A± with the prediction
(3.14). Estimates of A± were obtained by computing the intersection of lines of slope
−3 and −1 fit through the thermal bath and intermediate scaling ranges of the number
density and the intersection of lines of slope −1 and −6 fit through the intermediate
and large-scale ranges. This was done at times t = 3.0, 3.5, . . . , 5.5, 6.0, and the
resulting values for A± are shown in figure 7. A nonlinear least-squares fit to the
measured values gives growth laws of A− ∼ t0.659±0.006 and A+ ∼ t1.16±0.02, where the
uncertainty given is the asymptotic standard error of the fit. Although the uncertainty
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Figure 7. Logarithms of the transitional areas A− and A+, together with best fit slope lines.

obtained is an underestimate, as it neglects the error inherent in fitting slope lines to
n(A), comparison with equation (3.14) is supportive of the growth rates (ω2

v)2 ∼ t1/3

and (ω2
v)3 ∼ t2/3 obtained above. In particular, figure 7 provides evidence that the ω2

v

correction is necessary, since there are clear departures from the uncorrected prediction
(3.12).

The ensemble-averaged energy spectrum (Fig. 8, left) for t = 3.0 is steeper than
k−5/3 over the vortex-containing range, with a slope of approximately −2.7. In the
range [kf , kv], where kv is the wavenumber associated with the diameter of the largest
vortex, we expect E(k) to be dominated by the vortex cores, while at larger scales
vortex configurations will become important. The scaling clearly changes at the transition
wavenumber kv, and for k < kv the spectrum shallows to approximately k−5/3. Slopes
computed over equal intervals in log(k) (Fig. 8, right) show the detailed behaviour over
the range k < 900. There is a short −5/3 plateau at k ≈ 100, and the slope at low k
is approximately 3, providing verification that domain effects are unimportant (Lowe &
Davidson 2005; Tran & Dritschel 2006). Later in the simulation at t = 6.0 (not shown) the
energy spectrum in the range k > kp has much the same shape and scaling – the vortex-
containing and −5/3 ranges have extended, but the slopes are unchanged, indicating that
domain-scale effects still have yet to influence the inertial range.

5. Conclusion

We propose a new similarity theory for the forced two-dimensional inverse cascade
based on a population of coherent vortices that dominates the vorticity field at scales
larger than the forcing scale. Similarity arguments predict growth rates for the largest
vortex in physical space and for the peak of the energy spectrum in wavenumber space. A
key part of the theory is the existence of a three-part number density, whose scaling and
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Figure 8. Energy spectrum E(k) with k−2.7 (dash-dot), k−5/3 (large dotted), and k3 (small
dotted) lines for comparison (left), and local slope averaged over equal intervals in log(k) (right).
The wavenumber kv corresponding to the largest vortex is indicated.

evolution are derived by considering the transport, mediated by vortex merger within the
vortex population, of conserved quantities between the forcing scale and the scale of the
largest vortex. Our theory may be considered as an extended forced counterpart of the
freely-decaying vortex theory of Dritschel et al. (2008). Although, by the introduction
of a scale associated with the largest vortex, the presence of coherent vortices breaks
traditional assumptions of scale invariance in the inverse energy cascade, the population
itself retains elements of that scale invariance in a physical-space context. The scaling and
statistics of the vortex population is robust and the derivation of its evolution from time-
honoured principles of material vorticity conservation and scale invariance is in keeping
with traditional turbulence research.

The physical-space phenomenology and predicted scaling exponents of the theory are
supported by high resolution numerical simulations, which confirm that, far from being
artefacts or peculiarities of forcing or diffusion, coherent vortices are an integral part
of the two-dimensional inverse cascade. The simulations also support the key assertions
behind the theory, namely independence of mean square vorticity across area, and the
conservation of vortex energy, enstrophy and number through vortex area space. Details
of the simulations also point toward an important potential modification to the theory,
which should take into account a small but systematic temporal variation of mean square
vorticity to correctly predict the evolution of the vortex number density and transitional
areas A− and A+ between scaling ranges. Current work is underway to understand
whether such a modification is an intrinsic part of the theory, or arises here due to
inherent limitations of the numerical simulations.

Finally, we note that the scale of the largest vortex is always less than the scale of
the peak of the energy spectrum in physical space. This suggests the possibility of a
two-part structure of the inverse cascade, in which scales below that of the largest vortex
are described most naturally in terms of the vortex population, while scales larger than
that of the largest vortex may be described in terms of traditional phenomenology. The
two-part nature of the spectrum shown in Fig. 8 supports this to the extent permitted by
the numerical constraints. However, an intriguing possibility is that the inverse energy
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cascade at scales larger than the largest vortex may nonetheless be influenced by the
dynamics of the vortex population, in particular by the tendency of vortices to cluster
into groups of like sign. An effective theory of the entire inverse cascade based on vortex
interactions in the three number density scaling ranges may thus be possible. Further
research will explore this possibility and examine how clustering of the coherent vortex
population influences flow dynamics at scales between the largest vortex and the spectral
peak.

Simulations were run on the St Andrews MHD Cluster. The authors thank David
Dritschel for useful discussions and The Fields Institute for funding to attend the
Workshop on Extreme Events and Criticality in Fluid Mechanics, where part of this
work was completed.
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