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Predation pressure shapes brain anatomy in the wild
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Abstract There is remarkable diversity in brain anatomy among vertebrates and evidence is

accumulating that predatory interactions are crucially important for this diversity. To test this

hypothesis, we collected female guppies (Poecilia reticulata) from 16 wild populations and

related their brain anatomy to several aspects of predation pressure in this ecosystem, such as the

biomass of the four major predators of guppies (one prawn and three fish species), and predator

diversity (number of predatory fish species in each site). We found that populations from

localities with higher prawn biomass had relatively larger telencephalon size as well as larger

brains. Optic tectum size was positively associated with one of the fish predator’s biomass and

with overall predator diversity. However, both olfactory bulb and hypothalamus size were

negatively associated with the biomass of another of the fish predators. Hence, while fish

predator occurrence is associated with variation in brain anatomy, prawn occurrence is asso-

ciated with variation in brain size. Our results suggest that cognitive challenges posed by local

differences in predator communities may lead to changes in prey brain anatomy in the wild.

Keywords Brain anatomy � Brain size � Cognitive ability � Guppy � Predation

Introduction

Predation is a major force of natural selection. After all, most species are subject to the risk

of being eaten during at least some part of their life. In response to predation, animals

evolve counter measures including aposematic coloration (Mappes et al. 2005), body
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armour (Walls and Ketola 1989), or changes in life history (Reznick 1982). Most

prominently, predator–prey interactions select for numerous behavioural adaptations (Caro

2005). For instance, increased predation risk prompts chimpanzees (Pan troglodytes) to

build their sleeping nests higher up in trees (Pruetz et al. 2008), larval anurans to reduce

their overall activity levels (Relyea 2001), and fishes to form more synchronized schools

(Pitcher 1995). There is a tight association between behavioural variation and brain

anatomy, as across species, brain size predicts problem-solving abilities in mammalian

carnivores (Benson-Amram et al. 2016) and self-control in homeothermic vertebrates

(MacLean et al. 2014), and within species, brain size is positively associated with learning

ability (Kotrschal et al. 2013a, b, 2014a). Therefore, as predation selects for behavioural

adaptations and those are produced by the brain, predation should be important for brain

evolution (e.g. van der Bijl and Kolm 2016). Indeed, the fossil record suggests that

ungulates evolved larger brains in the presence of carnivores (Jerison 1973). In fishes, a

recent analysis of 623 predator–prey pairs revealed that brains of prey species were rel-

atively larger than those of non-prey species. Moreover, in these predator–prey pairs, the

size of prey and predators’ brains were correlated, suggesting a cognitive arms race

(Kondoh 2010). Here, we adhere to the broad definition of ‘cognition’ as comprising all

mechanisms that animals have for taking in information through the senses, retaining it,

and using it to adjust behaviour to local conditions (Kotrschal and Taborsky 2010; Shet-

tleworth 2010). Recent findings further highlight the link between predation ecology and

cognition (i.e. brain size) at several levels. From the predator side, fishes at higher trophic

positions in a lacustrine food web have larger brains (Edmunds et al. 2016). From the prey

side, the cognitive advantage of a larger brain can lead to increased survival. This was

recently shown in guppies (Poecilia reticulata) that were artificially selected for large and

small brain size where large-brained females survived better under predation in a semi-

natural setting (Kotrschal et al. 2015a). However, Walsh et al. (2016) found that in two

areas where killifish (Rivulus hartii) co-occur with predatory fish species, males tended to

develop smaller brains than in two adjacent areas where the killifish was not under threat

from fish predators. It is clear that additional studies are needed to fully understand the

functional associations between predation and the nervous system. Ideally, such studies

should be conducted on wild populations, include detailed data on all key predator species,

and use well-replicated designs.

Trinidadian guppies have become a model species for studying the interaction between

ecology, especially predation pressure, and the evolution of a range of traits. This is due to

the ‘natural experiment’ that exists in the mountainous regions of Trinidad’s Northern

range (Haskins et al. 1961). Parallel rivers harbouring guppy populations are often inter-

rupted by waterfalls, which prevent larger fish from venturing upstream. For small fish

such as guppies, predation pressure therefore tends to be ‘‘low’’ above waterfalls (where

large fish predators are absent) and ‘‘high’’ below them (where fish predators can be

abundant; Haskins et al. 1961). Indeed, over the last few decades studies have revealed a

great number of differences between guppies from low and high predation sites, such as

coloration (Endler 1980), life history (Reznick et al. 2001), mate choice (Godin and Briggs

1996), and foraging behaviour (Fraser and Gilliam 1987). While this system has proven

incredibly fruitful, it also has limitations. First, it does not facilitate investigation of more

nuanced differences in predation pressure. Second, other habitat traits besides predator

abundance may differ systematically between above- and below-waterfall habitats and

confound the effect of predation. For example, high predation sites can be more productive

(Arendt and Reznick 2005). Third, guppies are also targeted by several species of large

carnivorous and omnivorous prawns (Macrobrachium spp.; Coat et al. 2009; Endler 1978),

Evol Ecol

123



and these negotiate waterfalls with ease. Fish and prawn predators likely differ in their way

of capturing prey and they are known to exert different selective pressures on guppy traits

(Endler 1991; Millar et al. 2006).

Here we take advantage of the recent and most complete investigation of Trinidadian

river biodiversity to date (Deacon et al. 2015) to investigate the effect of predation on brain

anatomy in wild populations. We do this by relating data on predator community com-

position to brain anatomy of guppies from 16 wild populations that are closely matched in

stream characteristics (Deacon et al. 2015). Because a larger brain confers a cognitive

advantage and so improves predator-related performance (Kotrschal et al. 2015a; van der

Bijl et al. 2015), we predict that increased predation pressure selects for larger brains. This

would result in a positive association across populations between brain size and the

abundance of individual predators. Predator species differ in their hunting tactics (Belgrad

and Griffen 1828) and a larger brain may confer the behavioural flexibility necessary in

predator-diverse habitats (Sol and Lefebvre 2000). Hence, predator species richness (i.e.

predator diversity) and brain size may be positively associated. However, some aspects of

cognition may be especially targeted by selection under increased predation risk and such

variation in the strength of selection may result in brain regions evolving differently, i.e. in

a mosaic evolution manner (Finlay et al. 2001; Kotrschal et al. 2012a; Noreikiene et al.

2015; Striedter 2005).

Even though the function of the separate brain regions is still only partly understood and

single regions sometimes have multiple functions, we can make predictions about brain

region sizes based on previous findings from lesion studies and neuro-ecology studies

(Barton and Harvey 2000; Gonda et al. 2009; Gonzalez-Voyer et al. 2009; Kolm et al.

2009; Kotrschal et al. 1998, 2012b; Kotrschal and Palzenberger 1992; Zeng et al. 2016).

For instance, the telencephalon integrates complex information and is vital in learning and

memory (Striedter 2005). Learning about and remembering the location of a predator

should increase a guppy individual’s survival. Predation by species that preferentially hunt

from cover, such as prawns or pike cichlids may therefore select for a larger telencephalon.

Also, camouflaged and crepuscular predators such as wolf fish and prawns may be spotted

more accurately or earlier with a better visual system. Wolf fish and prawn predation may

therefore select for larger optic tectum. Additionally, better motor skills may yield survival

benefits when facing predators that actively pursue prey as the cichlids do. Guppy popu-

lations experiencing high cichlid densities may therefore have larger cerebellum (the

region controlling spatial swimming skills) and/or larger medulla oblongata (where most

efferent motor neurons originate). As explained above, higher predator species richness,

via a greater number of cognitively challenging hunting tactics, may demand higher

behavioural flexibility. We therefore predict a positive association between telencephalon

size and number of predator species.

Materials and methods

Sampling methods

The data on predation pressure was originally collected for a study on temporal patterns of

biodiversity and the impact of human recreational use of rivers on community ecology in

Trinidad’s Northern Range; see Deacon et al. (2015) for detailed sampling protocol. In

brief, 16 sites (50 m stretches), closely matched in terms of stream order, flow rate, size,

Evol Ecol

123



and isolation were sampled over a 5-year period, at 3-monthly intervals. All fish and

prawns were caught from the stretch, the animals were identified to species and weighed

(wet weight to the nearest 0.1 g) using a portable electronic balance, and then returned,

unharmed, to the site at which they were captured. Although the sampling included several

prawn species, the non-indigenous invasive prawn species M. rosenbergii (Mohammed

et al. 2011) was not recorded at any of the sites. On the last day of sampling ten female

guppies were collected per site, euthanized with an overdose of benzocaine, measured their

standard length to the nearest 0.01 mm using digital callipers and placed them in 4%

buffered paraformaldehyde. We chose females because the brains of the much smaller

males are often folded into bony protuberances of the brain cavity in a way that makes

complete extraction impossible (personal observation; Burns and Rodd 2008). Hence, all

following results are applicable to females and whether the same patterns apply to males is

currently unknown.

Predation pressure estimation

The major predators of guppies in Trinidad in general, and in the chosen populations in

particular, are the pike cichlid (Crenicichla frenata), the blue acara cichlid (Andinoacara

pulcher), the wolf fish (Hoplias malabaricus), and several morphologically similar large

species of freshwater prawns (Macrobrachium spp.; Botham et al. 2006; Deacon et al.

2015; Endler 1980; Rodd and Reznick 1991; Seghers 1974). We found several other fish

species at those sites, but they are not believed to consume adult guppies (personal

communication Rajindra Mahabir). The four major predators comprised 33.4% of the total

non-guppy biomass at the sites. These predators differ greatly in hunting strategy, and

should therefore pose highly different cognitive demands on their prey. Pike and acara

cichlids are medium-sized (10–15 cm), diurnal predators while wolf fish can attain a larger

size (up to 50 cm) and usually hunt during dusk, night and dawn (Seghers 1973). Acaras

are considered to pose the lowest threat of the four species (Botham et al. 2006). The

approx. 9 cm large prawns (carapace and abdomen; Chace 1969) are omnivorous and their

role as guppy predators is well established (e.g. Rodd and Reznick 1991); pike cichlids and

wolf fish are strictly carnivorous. Wolf fish and prawns hunt using a sit-and-wait, ambush

strategy, while the two cichlid species show a more active pursuit strategy (Botham et al.

2006; Seghers 1973). We used the mean biomass of each predatory species per site,

computed from 20 censuses, as a proxy for predation pressure. The logic behind this is that

a higher biomass of predators needs more food to support its existence (Endler 1978). As

the sites are of similar size and topography (Deacon et al. 2015), predator biomass should

determine predator pressure. We used only animals[1 g in those calculations, as smaller

individuals are unlikely to consume adult guppies. Repeatability was highly significant

over the 5-year period (Lessells and Boag 1987): Acara cichlid: r = 0.65, prawns:

r = 0.17, pike cichlid: r = 0.43, wolf fish: r = 0.20 (all p\ 0.001; Fig. 1).

Juvenile guppies are small enough to be consumed by all co-occurring fish species

(Seghers 1974, Deacon et al. 2011). A larger diversity of predators should pose a greater

cognitive challenge, as more evading strategies need to be mastered. This may be reflected

in corresponding brain anatomy differences. To investigate whether the predator diversity

indeed impacts brain anatomy we therefore used the mean number of predator species (all

co-occurring fish species) per site as indicator of general predator pressure. Repeatability

(Lessells and Boag 1987) for this measure was also highly significant (r = 0.68,

p\ 0.001).
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Brain measurements

All dissections, digital image analyses and measurements were performed blind with

regards to treatment by one person (AK). We removed the brain from the skull and

weighed it to the nearest 0.001 mg. To quantify brain region volumes, digital images of the

dorsal, ventral, left and right side of the brain were taken through a dissection microscope

(Leica MZFLIII), using a digital camera (Leica DFC 490). For each image, the brain was

placed to ensure that it was symmetrically positioned such that one hemisphere did not

appear larger than the other based on perspective. For paired regions, both sides were

measured and the volumes added to give total region volume. Following Pollen et al.

(2007) the widths W of six key regions (olfactory bulb, telencephalon, optic tectum,

cerebellum, hypothalamus and dorsal medulla) were determined from dorsal and ventral

views, whereas lengths L and heights H were taken from lateral views. The width W was

defined as the maximal extension of a given region perpendicular to the anatomical

midline. The length L of a region was defined as the maximal extension of a structure in

parallel to the estimated projection of the brain, the height H as the maximal extension of

the structure perpendicular to the estimated projection of the brain. The volume of the brain

regions V was determined according to an ellipsoid model (van Staaden et al. 1995).

V ¼ L �W � Hð Þ p
6

Fig. 1 Mean biomass of guppy predators and guppy brain sizes for 16 study sites. The bars show the means
of 20 censuses over 5 years for pike cichlid (light grey bars), wolf fish (dark grey bars), freshwater prawn
(black bars) and blue acara cichlid (white bars) on a log10 scale. The error bars in the upper part show
relative brain sizes (the residuals of a regression of brain mass controlled for body size)
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This method was recently shown to provide comparable data to more advanced methods

such as CT-scanning (White and Brown 2015).

To determine repeatability (Lessells and Boag 1987) the volume of all regions in 10

randomly chosen specimens were measured twice. Repeatability for structures was very

high (r = 0.87–0.93, all p\ 0.001).

Statistical analysis

We used linear mixed models (LMM) to investigate the effect of predator pressure on the

size of the brain and six brain regions. We log-transformed body size ([mm], standard

length—measured from the tip of the snout to the end of the caudal peduncle), brain

weights [mg] and brain region volumes [mm3] to account for potential allometry effects,

and centred and standardized all variables (Schielzeth 2010). For brain size we used the

mass of the brain as dependent variable, body size as covariate, the mean biomass for each

of the four predators as continuous fixed effects and the 16 different sampling sites as

random effect. The full model included all 2-way interactions. Instead of stepwise model

reduction, which is often prone to subjective bias, we used the program ‘‘glmulti’’ (Cal-

cagno 2013) in R to find the best model fit based on lowest AIC values. For the six brain

regions we used an analogous approach in six separate models with the region of interest as

dependent variables and the mass of the brain as covariate (Gonda et al. 2009; Kotrschal

et al. 2012a, 2014b). To test for the effect of predator diversity on guppy brain anatomy we

used analogous LMMs but instead of predator biomass we used the mean number of fish

species per site as covariate. To facilitate readability of the following text, we simplified

the wording where appropriate: (1) Brain mass is corrected for body size and brain regions

are corrected for brain mass (see above), therefore all results represent relative brain size

and relative brain region sizes. We will omit the ‘relative’ from hereon. (2) For the effects

of predators, the biomass of the respective predators is used in all analyses, but we omit

‘biomass’ in appropriate cases from hereon.

Results

Of the 16 sites, acara cichlids were present at 13, pike cichlids and wolf fish at 12, and

prawns at 11; six sites harboured all four predators simultaneously, while at two sites only

prawn predators were found. Overall, besides guppies we found on average between 3.2

and 10.2 fish species per site. The mean predator biomass and the brain size of guppies

varied considerably among sites (Fig. 1). We found that brain size was significantly

positively correlated with prawn biomass across 16 populations of guppies. This was true

for a model with only prawns as factor (LMMbrain: body size: DF = 160.2, t = 45.4,

p\ 0.001; prawns: DF = 160.5, t = 2.81, p = 0.0125, AIC = -735.6), but glmulti

revealed that brain size was best explained if the effects of blue acara and pike cichlid were

also accounted for. In addition to the significant positive effect of prawns on guppy brain

size (p = 0.0035), this full model (AIC-740) revealed that brain size tends to increase with

pike cichlids (p = 0.0955) and that blue acara cichlids tend to dampen the prawn effect

(acara * pike cichlid, p = 0.0697, Table 1, Figs. 2, 3a). Predator diversity was not asso-

ciated with relative brain size (p = 0.573, Table 2).

For the brain regions, we found that telencephalon size was positively correlated with

prawn biomass (p = 0.0395, Table 1, Figs. 2, 3c). Wolf fish did not influence
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telencephalon size as such (p = 0.1925, Table 1), but they dampened the relationship

between telencephalon size and prawns, as indicated by a significant interaction (prawns *

wolf fish, p = 0.0237, Table 1, Fig. 2). Optic tectum size was strongly positively corre-

lated with wolf fish biomass only (p = 0.0078, Table 1, Figs. 2, 3d), while the size of the

olfactory bulbs correlated negatively with blue acara cichlid biomass (p = 0.0081). The

size of the hypothalamus was negatively correlated with blue acara biomass (p = 0.0415,

Table 1, Figs. 2, 3d), but also showed a non-significant trend towards a positive correlation

with prawn biomass (p = 0.0923). Predator diversity was positively associated to optic

tectum size only (p = 0.038, Table 2).

Discussion

Female guppies from areas with higher prawn biomass had a larger brain and larger

telencephalon. Individuals from areas with higher wolf fish biomass had a larger optic

tectum, and those from areas with higher acara cichlid biomass had smaller olfactory bulbs

Table 1 The effect of predator biomass on whole brain and brain region size of guppy females from 16
populations

Estimate SE df t value p

Whole Brain

Body size 0.127692 0.002638 119.33 48.41 \0.001

Prawn 0.013547 0.004008 16.85 3.38 0.0035

Blue acara cichlid -0.00469 0.006372 14.71 -0.74 0.4731

Pike cichlid 0.007495 0.004220 15.35 1.78 0.0955

Acara * pike -0.009879 0.005050 14.71 -1.96 0.0697

Telencephalon

Brain size 0.130635 0.002895 179 45.13 \0.001

Prawn 0.006873 0.003314 179 2.07 0.0395

Wolf fish 0.004017 0.003070 179 1.31 0.1925

Prawn * wolf fish -0.010813 0.004741 179 -2.28 0.0237

Optic tectum

Brain size 0.119568 0.002194 94.78 54.49 \0.001

Wolf fish 0.007805 0.002571 16.16 3.04 0.0078

Olfactory bulbs

Brain size 0.120231 0.007028 157.78 17.11 \0.001

Blue acara cichlid -0.036563 0.012056 15.52 -0.033 0.0081

Hypothalamus

Brain size 0.136334 0.003908 95.02 34.88 \0.001

Prawn 0.008325 0.004697 19.07 1.77 0.0923

Blue acara cichlid -0.010185 0.004532 13.80 -2.247 0.0415

Cerebellum

Brain size 0.1569 0.004746 111.00 33.07 \0.001

Medulla oblongata

Brain size 0.1534 0.004444 143.20 34.52 \0.001

Shown are the results of the best general linear mixed effect models according to lowest AIC
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and a smaller hypothalamus. Animals in areas with greater fish species number also

showed larger optic lobes. Because we chose sites that are similar in important ecological

and abiotic factors, we suggest that the varied cognitive challenges posed by the different

predators exert divergent selection pressures that underlie the observed differences in brain

anatomy. Below we discuss how our results support the hypothesis that predation ecology

is an important selective force in the evolution of brain anatomy and the general impli-

cations of this finding.

In line with our predictions, one of our most salient findings was that specific aspects of

predation pressure and larger brains are positively associated in the wild. Combined with

laboratory-based findings showing that a larger brain is advantageous in evading predation

(Kotrschal et al. 2015a; van der Bijl et al. 2015), this corroborates the hypothesis that by

consuming smaller-brained individuals some predators can inadvertently select for large

brain size. Based on this we hypothesize that in settings where prey is evolving larger

brains in response to predation, this should exert selective pressure on the predators.

Evidence for such a cognitive arms race between prey and predator comes from a large-

scale comparison of 623 prey-predator species pairs in fishes (Kondoh 2010), which

showed that larger-brained predators tend to target larger-brained prey. Consequently, a

larger brain size may lead to greater behavioural flexibility (Lefebvre et al. 2004; Sol et al.

2005) and allow predators to feed on additional prey species. This is exactly what has

Fig. 2 Schematic representation of the impact of the abundance of the four major guppy predators on
female guppy brain anatomy. The four predators, blue acara cichlid (Andinoacara pulcher), pike cichlid
(Crenicichla frenata), wolf fish (Hoplias malabaricus), and freshwater prawn (Macrobrachium spp.) on the
left are to scale with an adult guppy female. Orientation of the arrows indicates positive/negative
associations; thickness indicates the strength of the association
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recently been shown in a Canadian lake; that species tend to evolve larger brains with

increasing relative trophic position in the food web (Edmunds et al. 2016). However, the

costs of developing a large brain and the general complexity of food webs likely place

limits on such relationships. The costs of large brains include a decreased reproductive

output (Kotrschal et al. 2013a) and longer juvenile period (Hawkes et al. 1998; Kotrschal

et al. 2015b), both of which are important factors when it comes to the impact of predation

(Sogard 1997). As predators usually prey on several different species, it is possible that

they simply stop feeding on one species if it evolves large-enough brains to ‘‘outsmart’’

them. Additionally, and non-mutually exclusively, prey species may evolve other forms of

anti-predator strategies such as group living (Pulliam and Caraco 1984), which has been

suggested to be associated with increased brain size (Dunbar 1998; but see van der Bijl and

Kolm 2016 for discussion of this topic). In the case of the guppy it is apparent that it is

Fig. 3 The relationship between the biomass of predators in 16 sites and the relative brain and brain region
sizes of female guppies from those sites. Whole brain size (a) and telencephalon size (c) are positively
associated with prawn biomass, optic tectum size (d) is positively associated with wolf fish biomass, while
olfactory bulbs (e) and hypothalamus size (f) are negatively associated with blue acara cichlid biomass.
Whole brain size and pike cichlid biomass (b) are not associated. The y-axes show the mean relative brain
anatomy measures (residuals ± S.E.; brain size corrected for body size, brain region sizes corrected for
brain size), the x-axes show the mean of 20 samplings per site (±S.E.)
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primarily prawn predation that impacts brain mass, while the fish predators seem to play a

less prominent role. We found a very similar result for the telencephalon, which likely

drives this whole brain size effect (see below). We found only a non-significant trend

linking pike cichlid biomass and guppy brain size. This is somewhat surprising, as pike

cichlids are generally regarded as the most important guppy predator and the model

predator species when it comes to experiments on guppy ecology (Endler 1980; Kotrschal

et al. 2015a). Our findings indicate that prawns deserve greater consideration in such

studies. We found no support for the idea that a predator species rich community would

select for larger brains.

For brain regions we found two major effects of predation pressure, which are both in

line with our predictions: the positive associations between telencephalon size and prawn

biomass, and between optic tectum size and wolf fish biomass. The telencephalon in teleost

fish, like that of mammals, is, important in learning and memory (reviewed in Overmier

and Hollis 1983). We therefore suggest that the challenges of prawn predation can be met

by increasing those learning aspects of cognition. More specifically, in contrast to all the

fish species that prey on guppies, prawns cannot consume their prey in one go; their mouth

apparatus allows only for piecewise consumption. By observing this process, bystanders

have the opportunity to learn about the dangers of prawn predation via associative learning

(Brosnan et al. 2003). This means that an increased learning ability should confer a

survival benefit, which may underlie the effect of prawn biomass on telencephalon size as

well as on overall brain size as suggested above. Intriguingly, we also found an interaction

between prawn and wolf fish biomass that negatively affected telencephalon size. Wolf fish

presence hence dampens and/or removes the positive effect of prawn predation on

Table 2 The effect of predator
diversity on whole brain and
brain region size of guppy
females from 16 populations

Shown are the results of linear
mixed effect models

Estimate SE DF t value p

Whole brain

Body size 1.6016 0.0364 173.2 44.03 \0.001

Predator diversity -0.0016 0.0029 14.6 0.57 0.573

Telencephalon

Brain size 1.0106 0.0219 122.5 45.98 \0.001

Predator diversity 0.0009 0.0019 13.6 0.64 0.635

Optic tectum

Brain size 0.9071 0.0177 116.8 51.18 \0.001

Predator diversity 0.0032 0.0014 16.2 2.26 0.038

Olfactory bulbs

Brain size 0.9136 0.563 175.0 16.23 \0.001

Predator diversity -0.0013 0.0074 15.0 -0.17 0.865

Hypothalamus

Brain size 1.0464 0.0324 132.3 32.31 \0.001

Predator diversity -0.0025 0.0028 15.5 -0.89 0.388

Cerebellum

Brain size 1.1749 0.0376 128.7 31.2 \0.001

Predator diversity -0.0025 0.0032 14.7 -0.78 0.448

Medulla oblongata

Brain size 1.1552 0.0349 156.3 33.11 \0.001

Predator diversity -0.0006 0.0035 14.7 -0.17 0.871
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telencephalon size. Potentially because a higher wolf fish density decreases the cognitive

advantage that a larger telencephalon confers when guppies learn about the dangers of

prawn predation; observing the consumption of conspecifics may be too dangerous in

habitats with high wolf fish presence. This however needs to be investigated further, as a

study on anti-predator behaviours of guppies presented with wolf fish as well as pike and

acara cichlids found no qualitative differences in guppy responses towards wolf fish versus

cichlids (Botham et al. 2006).

The optic tectum receives and integrates visual information and even though its integrity

is not necessary for many basic aspects of visual perception, such as phototaxis (Ullén et al.

1997), optomotor response (Roeser and Baier 2003), or detection of stationary barriers (Ingle

1973), its crucial role in motion detection is vital for predator detection and fleeing response

(reviewed in Roeser and Baier 2003). We therefore attribute the strong positive association

between optic tectum size and wolf fish biomass to the ambush hunting behaviour of wolf

fish. While better visual acuity is unlikely to confer a benefit when being chased by a

predator (e.g. a cichlid), it is likely that a larger optic tectum facilitates early detection of the

sudden movements of a predator that sits in ambush. This should lead to a faster initiation of

a C-start escape and more efficient evasion. Future experiments should test whether a

relatively larger optic tectum indeed confers survival benefits when faced with such

predators. The fact that we found an association between predator diversity and optic tectum

size further highlights its potential role in predator evasion. Guppies adopt individual eva-

sion strategies for some predators such as increased schooling or predator inspection

(Botham et al. 2006). Potentially, if the diversity of predators gets too large, species-specific

strategies may no longer be cognitively beneficial and animals resort to a general ‘‘flee

early’’ evasion strategy. This may explain larger optic tectumwith greater predator diversity.

Blue acara cichlids are considered the least serious predators to guppies and it is

intriguing that their biomass seems to be negatively associated with both olfactory bulb and

hypothalamus size. Those results seem to be driven by a single site where blue acara

cichlids are very common and both the olfactory bulbs and the hypothalamus are excep-

tionally small. Indeed, if this site is removed from the data set, olfactory bulb and

hypothalamus size are not significantly related to acara cichlid biomass (both p[ 0.1). It is

therefore too early to speculate whether there is an overall relationship between those brain

regions and acara biomass, and on the potential mechanism that may underlie such a

relationship.

As in all correlative studies, we cannot infer causality from our results as some

unknown third factor may underlie both variation in predator community and variation in

brain anatomy. However, at least two aspects argue for causality in our case. Firstly,

experiments have shown that guppy females artificially selected for large and small brain

size differ markedly in both antipredator behaviour (van der Bijl et al. 2015) and survival

under predation (Kotrschal et al. 2015a). Secondly, the sites in our study were carefully

chosen to be as similar as possible to each other and consequently the abiotic factors that

were assessed were highly comparable (Deacon et al. 2015).

If we accept that population differences in female guppy brain anatomy are likely to be

causally linked to differences in predation ecology, what is the underlying mechanism? Is

it the result of predator-driven local adaptations (i.e. evolution), or of experience-depen-

dent plasticity, or a combination of the two? The literature provides examples in support of

both scenarios. For instance, local adaptation for large hippocampus size in chickadees

(Parus rufescens) is thought to be the basis for enhanced food caching (Croston et al.

2015), while hippocampus size in London taxi drivers increases with job experience

(Maguire et al. 2006; Woollett and Maguire 2011). And nine-spine sticklebacks
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(Gasterosteus aculeatus) show plastic responses in brain region size in relation to per-

ceived predation pressure (Gonda et al. 2012). Although guppy brains show phenotypic

plasticity (Burns et al. 2009b; Kotrschal et al. 2012a), Trinidadian guppies are a textbook

example of local adaptations in multiple traits (Bassar et al. 2010). If reared in a common

garden setting, guppies from different populations often keep their differences in body

morphology (Burns et al. 2009a), behaviour (O’Steen et al. 2002; Seghers 1974) and most

importantly brain anatomy (Burns and Rodd 2008). Further common garden experiments

are needed to determine the degree to which local adaptation and phenotypic plasticity

underlie the observed differences in brain anatomy. Meanwhile, it is parsimonious to

attribute a considerable proportion of the site-specific brain anatomy differences to the

evolutionary history of the populations.

In conclusion, we show that predation is associated with brain anatomy variation in wild

populations. Our study thus provides support for the longstanding hypothesis that in

challenging situations, natural selection favours individuals with larger brains. We suggest

that a change in brain anatomy may facilitate anti-predator strategies via changes in

specific aspects of cognitive ability and our study identifies predation pressure as a key

selective pressure in brain evolution in natural populations.
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