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GNRs are emerging as a new class of probes for theradiagnostic applications thanks to their unique optical prop-
erties. However, the achievement of proper nanoconstructs requires the synthesis of highly pureGNRswithwell-
defined aspect ratio (AR), in addition to extensive surface chemistry modification to provide them with active
targeting and, possibly, multifunctionality.
In this work, we refined the method of the seedmediated growth and developed a robust procedure for the fab-
rication of GNRs with specific AR. We also revealed and characterized unexplored aging phenomena that follow
the synthesis and consistently alter GNRs' final AR. Such advances appreciably improved the feasibility of GNRs
fabrication and offered useful insights on the growth mechanism.
Wenext produced fluorescent, biocompatible, aptamer-conjugatedGNRs by performing ligand exchange follow-
ed by bioconjugation to anti-cancer oligonucleotide AS1411. In vitro studies showed that our nanoconstructs se-
lectively target cancer cells while showing negligible cytotoxicity. As a result, our aptamer-conjugated GNRs
constitute ideal cancer-selective multifunctional probes and promising candidates as photothermal therapy
agents.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The application of nanoparticles in the biomedical field achieved a
position of increasing significance over the last twenty years [1].
Among the range of nanomaterials, gold nanoparticles (GNPs) are suit-
ed to an extensive array ofmedical applications. This versatility is due to
the high modularity of their optical properties. The electrons belonging
to the conduction band of GNPs undergo collective surface oscillations,
called surface plasmon resonance (SPR), which originate high absorp-
tion and scattering cross sections. The resonance frequency and the
ratio between absorption and scattering contributions strongly depend
on the size and the shape of the nanoparticles [2]. Applying different
synthetic strategies can modulate these properties, indeed, in the last
ten years, GNPs' design and composition have been optimized on the
basis of the desired applications. Currently, GNPs are used as contrast
agents in several imaging techniques, including two-photon lumines-
cence microscopy [3,4], optical coherence tomography [5] and photo-
acoustic tomography [6,7]. They are also employed as probes for
).
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cancer diagnosis, optically guided tumour surgery, and lymph node
mapping applications [7–9]. Furthermore, in the past decade, GNPs
have been used as cancer treatment agents [10–12] for diagnostics
and therapeutics at the same time [13–15]. In oncology, one of most ad-
vantageous properties of GNPs is the elevated conversion rate of
absorbed radiations into heat. Hirsch and co-workers showed that the
heat released by irradiated GNPs can been used to ablate tumour sites
[16], paving the way for an innovative type of cancer treatment, today
known as photothermal therapy (PTT). PTT is based on the accumula-
tion of GNPs in the cancer site followed by exposition to electromagnet-
ic emissions such as near infrared laser light. These radiations are
capable of exciting GNPs [16] without being absorbed by nanoparti-
cles-free tissues. The local temperature rise caused by the presence of
GNPs is supposed to damage the membrane of cancer cells promoting
tumour death by apoptosis. Preliminary studies showed that PTT, used
in combinationwith chemo- [12,17] or photodynamic-therapy [11], en-
hances the tumour response, inasmuch that it may also constitute an al-
ternative approach in chemotherapy-resistant cancers [18].

Among the variety of GNPs, the employment of gold nanorods
(GNRs) for PTT presents several advantages: they have small size, nar-
row spectra bandwidths (see Fig. 1a) and high absorption cross sections
[1]. Furthermore, while the transverse surface plasmon resonance
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. a) Optical density spectra of CTAB-coated GNRs synthesizedwith different volumes of AgNO3 0.01M recorded on day 0 after partial CTAB removal by single centrifugation. b)Wave-
length of LSPR maximum after partial CTAB removal as a function of AgNO3 content on day 0 (red dots, orange stars, purple triangles and green pentagons account for different experi-
ments conducted in the same conditions) and day 5 (blue and magenta-edged triangles). Length distributions of GNRs synthesized using 100 μl of AgNO3 0.01 M by TEM analysis on
day 0 (c) and day 5 (d). Red lines represent the best-fitting Gaussian distribution of frequency histograms. Average values are indicated by red dashed lines and correspond to
43 (±1.5) nm at day 0 and 36 (±1.4) nm at day 5. Green dashed lines represent the average lengths plus and minus the corresponding standard deviation. Insets: representative TEM
images of GNRs synthesized with 100 μl of AgNO3 on day 0 (c) and day 5 (d).
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(TSPR) is centred around 520 nm, causing the typical red appearance,
the longitudinal surface plasmon resonance (LSPR) can be finely tuned
in the near infrared region (NIR) by adjusting the aspect ratio (AR)
(length/width) [19].

Despite GNRs' outstanding optical properties, their synthesis and
functionalization is not a trivial task. First of all, the mechanism of the
seed-mediated growth [20,21], the most common preparation route of
GNRs, is poorly comprehended [22]. The lack of amolecular level under-
standing of the fabricationmechanism leads tomajor difficulties in con-
trolling the reproducibility and poses questions on the interplay of
different variables determining the shape and the AR. Moreover, the oc-
currence of aging phenomena [23] still needs adequate characterization,
and further compromises thefine control of the size and the structure of
GNRs. Secondly, GNRs obtained by seed-mediated growth are capped
by a double layer of cetyl trimethyl ammonium bromide (CTAB), a sur-
factant that plays a critical role in driving the seeds' growth towards the
cylindrical shape. CTAB is highly cytotoxic and needs to be removed for
biological applications [24], however its complete elimination is difficult
to achieve and can cause irreversible aggregation. Severalmethods have
been proposed for the substitution of CTABwith alkanethiols, polyethyl-
ene glycol (PEG) derivatives or other macromolecules [25–27]. So far,
functionalizationwith thiol-PEG is regarded as one of themost effective
ways to achieve stable, water-soluble GNRs with good biocompatibility
[7]. In vivo studies showed that PEG-functionalized GNPs (PEG-GNPs)
have longer circulation time [28] and can accumulate on cancer sites
by enhanced permeability and retention (EPR) effect [29].

Specificity of tumour accumulation and binding can be improved by
functionalization of PEG-GNRs with cancer targeting agents, such as
antibodies or small peptides [30]. Privileged uptake of GNRs conjugated
to cancer-specific antibodies has beenobserved in vitro [31,32,13], but sta-
tistical difference in vivobetween targeted andnon-targetedGNRshas not
been verified yet. One possible alternative to antibodies was recently
found in the discovery of aptamers: short DNA or RNA single-strands ca-
pable of forming unique three-dimensional structures that bind specific
molecular targets. This new class of recognition system offers significant
advantages: small size, low immunogenicity and higher affinity. They
also provide synthetic accessibility at lower costs, improved chemical sta-
bility, and flexible designwith possibility of further functionalization [33].

In this work, we designed and produced fluorescent, biocompatible,
aptamer-conjugated GNRs. These nanoconstructs can be used as multi-
functional probes for cancer imaging and, possibly, PTT. GNRswith specif-
ic ARwere obtained by refinement of the synthesismethod developed by
Murphy et al. [22]. Aging phenomena that altered the final ARwere char-
acterized by TEM and spectrophotometric analysis. Once GNRswere fully
aged, the extinction coefficient at the LSPR maximum was estimated by
combining spectrophotometric data with optical, microscopy-based con-
centrationmeasurements via nanoparticles tracking.We then successful-
ly developed a facile conjugation method for obtaining PEG-GNRs
covalently bound to a fluorescent version of aptamer AS1411 [34].
AS1411 is an anti-cancer oligonucleotide that can be specifically internal-
ized by cancer cells. The uptake mechanism has been described as
nucleolin-driven endocytosis [35], nucleolin being a receptor
overexpressed in the membrane and the cytoplasm of some tumour
cells. We used fluorescencemicroscopy to verify that only cancer cells in-
ternalized AS1411-GNR conjugates (AC-GNRs). Labelling of cancer cells
by AC-GNRs was also confirmed by flow cytometry experiments.
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Cytotoxicity tests revealed that AC-GNRs have negligible poisonousness
under the conditions used for fluorescence labelling.

Obtained results open the way to the usage of our biocompatible,
fluorescent, aptamer conjugated GNRs as multifunctional, cancer-spe-
cific imaging probes. These novel nanoconstructs are good candidates
for cancer diagnostic, and for potential PTT treatments; our laboratory
is planning to investigate the latter point in future studies.
2. Materials and methods

2.1. Materials

CTAB was purchased from Calbiochem, silver nitrate (AgNO3),
gold(III) chloride trihydrate (HAuCl4· 3H2O), sodium borohydride
(NaBH4), L-ascorbic acid (AA), N-(3-Dimethylaminopropyl)-N′-
ethylcarbodiimide hydrochloride (EDC), N-Hydroxysuccinimide (NHS)
and Potassium Carbonate (K2CO3) were purchased from Sigma Aldrich.
Heterobifunctional thiol carboxyl PEG (HS–(O–CH2–CH2)n–(CH2)2–
COOH, MW = 2 kDa) and Cy5 amine PEG (Cy5–CONH–(O–CH2–
CH2)n–(CH2)2–NH2, MW = 5 kDa) were purchased from Nanocs, and
custom-modified AS1411 (H2N–C6H12–5′-TTT GGT GGTGGTGGT TGT
GGT GGTGGT GG-3′–C3H6–Cy5) was ordered from Integrated DNA Tech-
nologies. Calcein AM (C46H46N2O23) assay was purchased from Trevigen,
while DNAse/RNAse free distilled water, phosphate buffered saline (PBS)
solution, Dulbecco's Modified Eagle Medium (DMEM), fetal bovin serum
(FBS), trypsin and ethylenediamine tetra acetic acid (EDTA) solution
and L-glutamine were obtained from Life Technologies. Purified water
(18.2 MΩ cm) was produced by a Millipore water purification system.
2.2. Synthesis of GNRs via seed-mediated growth

CTAB-capped GNRs were fabricated using a modified version of the
seedmediated growthmethod reported byMurphy et al. [22]. High pu-
rity water was used at all steps. The seed solution was produced by
adding 600 μl of ice-cold 0.01 M NaBH4 to 10.0 ml of CTAB aqueous so-
lution 0.1 M containing HAuCl4 2.5 10−4 M for 7 min under slow agita-
tion. Afterwards, the stirring was stopped and the mixture was kept at
30 °C for at least 1 h. The growth solution was prepared by mixing
160 μl of AgNO3 0.01 M to 9.5 ml of CTAB 0.1 M. The addition of 500 μl
of HAuCl4 0.01 M was followed by that of 55 μl of AA 0.1 M. 12 μl of
the seed solution were then added to the mixture at 30 °C. After it
was left in the dark for 1 h, CTAB excess was removed by centrifugation
at 8500 rpm and 30 °C for 15 min.
Scheme 1. Schematic representation of the bioconjugation strateg
2.3. Pegylation and bioconjugation

Pegylation of GNRswas performed once the amount of CTABwas re-
duced to a minimum by two centrifugation steps. Further purification
attempts failed owing to irreversible aggregation of GNRs. After sonica-
tion, 5 ml of concentrated CTAB-capped GNRs/water solution were
mixed with equal volumes of K2CO3 2 mM and HS–(O–CH2–
CH2)n–(CH2)2–COOH aqueous solutions. The mixture was kept in the
dark under sonication for 3 h and left overnight on a rotary shaker. It
was then diluted and centrifuged at 8500 rpm and 30 °C for 15 min;
the precipitate was collected and re-dissolved in PBS. The sample was
dialyzed against PBS for 2 days (MWCO= 8–10 kDa) (Spectrum Labo-
ratories, USA) and kept in the dark at 4 °C. Size and ζ-potentialmeasure-
ments were performed before and after the ligand exchange to confirm
the functionalization of GNRs with thiol carboxyl PEG (COOH–PEG–
GNRs, see Scheme 1). In order to win the competition with CTAB,
large excess (ca. eight times) of thiol carboxyl PEG with respect to the
expected number of PEG chains binding GNRs [36] was applied.

GNRs were conjugated to custom-modified AS1411 (H2N–AS1411–
Cy5, see Scheme 1) by EDC/NHS catalysed reaction between carboxyl-
ate-functionalized GNRs and amine-containing aptamers. 500 μl of
COOH–PEG–GNRs PBS solution with ODmax = 0.3 were mixed with
50 mM solutions of EDC and NHS under vortex. The typical molar
ratio between EDC and NHS was 1:2. The reaction was left to proceed
at ambient temperature for 20 min under continuous agitation; it was
then diluted and centrifuged at 8500 rpm for 15 min. The precipitate
was collected and, once redissolved in 500 μl of DNAse/RNAse free
water, it was mixed with 0.1 mM H2N–AS1411–Cy5 and left reacting
for 4 h in a rotary shaker. After centrifugation, the precipitate was dis-
solved in DNAse/RNAse free water and dialyzed for 2 days (MWCO =
12–14 kDa) (Spectrum Laboratories, USA) in order to purify the product
from unreacted H2N–AS1411–Cy5. Size, ζ-potential and fluorescent
emission were measured to verify GNR-aptamer conjugation (see
Table 1 and Fig. 3). Spectrofluorometric data indicate that the concen-
tration of GNRs is consistently reduced during the bioconjugation lead-
ing to a reaction yield of 4% in optimized condition. Such loss of GNRs
can be probably attributed to extraction of gold atoms to form smaller
clusters during the synthesis. H2N–AS1411–Cy5 conjugation efficiency
was approximately estimated by comparing the fluorescence intensity
of Cy5 in the supernatant collected after the centrifugation and in AC-
GNRs after purification by dialysis. These measurements, conducted in
the same conditions, revealed that ca. 1.4% of H2N–AS1411–Cy5 mole-
cules had reacted with GNRs. Taking into account the copious loss of
GNRs due to stabilization problems and the large excess of aptamer
units applied in this reaction, our findings indicate that H2N–AS1411–
y for the synthesis of fluorescent, aptamer-conjugated GNRs.



Table 1
Hydrodynamic diameter and ζ-potential values of GNRs' equivalent spheres measured by
dynamic light scattering and NanoSight measurementsa. Before purification via dialysisb.

GNRs' functionalization Diameter [nm] ζ-Potential [mV]

CTAB-GNRs 44; 54a +40
COOH–PEG–GNRs 51b; 35 −14b; −24
AC-GNRs 47 −35
Cy5–PEG–GNR 51 −9
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Cy5 detains a conjugation efficiency closed to unity, that is approxi-
mately an average of 104 aptamer units per GNR.

2.4. Characterization of GNRs' physical properties

Optical density profiles were measured with a Lambda 25 UV–Vis
spectrophotometer (Perkin Elmer, USA), fluorescence spectra were col-
lected using a Fluorolog-3 478 fluorometer (HORIBA JobinYvon, USA).
Estimates of the hydrodynamic diameter and ζ-potential of equivalent
spheres diffusing in the solution were obtained using a Zetasizer Nano
ZS90 dynamic light scattering (DLS) system (Malvern Instruments
Ltd., UK). GNRs' hydrodynamic diameter, together with the concentra-
tion, was also measured by nanoparticle tracking analysis using a
NanoSight LM10 (NanoSight Ltd., UK) placed on a far-field microscope.
In these measurements, a diluted solution of GNRs was placed inside of
a chamber and irradiated by aHe–Ne laser 633nmbeam. Brownianmo-
tions of single nanoparticles were recorded over time, tracked and
analysed by NanoSight NTA 2.2 Nanoparticle Tracking Analysis soft-
ware. Each measurement has been repeated three times to ensure
reproducibility.

Accurate particle size and ARwere determined by transmission elec-
tron microscopy (TEM). TEM samples were prepared placing a small
drop (8 μl) of diluted GNRs aqueous solution onto a holey carbon film
on 300mesh copper grids and allowing it to evaporate at room temper-
ature. TEM images were acquired using a JEOL 2010 high-resolution
transmission electron microscope at an acceleration voltage of 200 kV.
The width and length of examined GNRs were evaluated manually
using ImageJ. The minimum number of nanoparticles measured was
150 for each sample. The samedatawere also analysed by aMatLab pro-
gramme. This routine used the gradient and watershed of TEM images
to identify objects, and then measured their length and width. Objects
identified as noise are rejected assuming that only elliptical objects
should be found. The two analyses gave analogous results. A comparison
of the manual and automatic measurements is seen in the supporting
information S3 and S4, full details of the programme can be found at
https://autoscaleit.wordpress.com/.

2.5. Cell culture and labelling

Human cervical cancer cells HeLa and human oesophageal epithelial
cells Het-1A were grown in DMEM supplemented with 10% foetal bo-
vine serum and 1% penicillin–streptomycin (5000 units/mL penicillin
G, 50 μg/ml streptomycin sulphate in 0.85% NaCl) at 37 °C with 5% CO2

humidified atmosphere. Cells were precultured in T-75 flasks and
allowed to grow for 5–7 days prior to experiments until 80% confluence
was reached. To prepare cell suspensions, adherent cells were quickly
rinsed with PBS and then incubated in 5 ml trypsin-EDTA solution
(0.25%w/v trypsin, 0.25 g/l EDTA) at 37 °C for 5min. The cell suspension
was then centrifuged at 4500 rpm for 5min toprecipitate the cells to the
bottom of the tube. After discarding the upper media, cells were rinsed
and re-suspended in 5 ml of culture media. Approximately 104 cells
were split onto a glass-bottomed culture dishes or 48 well plates and
allowed to grow for 12 h before labelling. The day after, cells were
washedwith 500 μl of PBS and incubated with 200 μl of 0.1 nM solution
of GNRs or H2N–AS1411–Cy5 10 μMdissolved in 2%DMEMat 37 °Cwith
5% CO2 humidified atmosphere. After 4 h, cells were rinsed twice with
PBS to remove any non-specifically bound GNRs on the cell surface,
andwere imaged live immerged in red phenol free media. The labelling
conditions are based on the protocol reported by Yang et al. [38]. Viabil-
ity tests were conducted after GNRs' cellular uptake was confirmed by
fluorescence imaging. Cells, placed in 48 well plates, were washed
with 500 μl of PBS and incubated for 20 min in 500 μl of a freshly pre-
pared of Calcein AM solution (1 μM) prior to fluorescence imaging.
The percentage of live cells was estimated comparing the number of
cells stained by Calcein AM with the total number of cells appearing in
the bright field image within the same field of view. Cell counting was
performed using an open source plugin for ImageJ [37].

In flow cytometry measurements, HeLa cells were incubated with
AC-GNRs for 20 min before washing. Experiments were performed on
fresh samples with 106 cells/0.5 mL. The flow cytometer CyAn ADP
Analyser (Beckman Coulter, Pasadena, CA U.S.A.) was used: cells
flowing in the detection chamber were hit with a 642 nm laser beam,
side- and forward-scattered light and fluorescence emission were col-
lected. The latter was filtered by 680/30 band pass filters. All signals
were detected by PMT arrays. Representative populations of cells were
chosen by selection of an appropriate gate. Detection of cell fluores-
cence was continued until at least 104 events had been collected in
the active gate.

2.6. Cell imaging

Cells were imaged on an Olympus IX71 far-field microscope (Olym-
pus, Japan). A 60× oil-immersion objective (Olympus Uplansapo, NA=
1.35) coupled with 1.6× camera coupling lens and a 20× objective
(Olympus Uplansapo, NA = 0.75) were used. Bright field and fluores-
cence images were obtained using a halogen light lamp (Olympus
TH4-200), and Lumen 200metal arc lamp (Prior Scientific Inc., USA), re-
spectively. All images were recorded using a Peltier-cooled CCD camera
(Olympus DP30BW) and analysed using ImageJ [37].

3. Results and discussion

3.1. Synthesis and ageing of GNRs produced via seed-mediated growth

GNRs were synthesized through a slightly modified version of the
methodology established byMurphy and co-workers [22]. In our proce-
dure, the agitationwas constant, while the temperaturewas kept at 30 °
C at each step to guarantee the complete solubilization of CTAB. The du-
ration of the synthesis of seeds and GNRs was determined by verifying
that no appreciable change of optical density (OD) profiles occurred at
longer times. Additionally, the growth solution was kept in the dark to
avoid light induced phenomena. Surprisingly, these small variations
led to a significant improvement of the reproducibility. OD profiles of
GNRs produced with different amount of AgNO3 are reported in Fig.
1a. It can be noticed that the LSPR maximum shifts towards higher
wavelengthswith increasing the concentration of silver ions, as a conse-
quence of the modification of GNRs' AR. This result was confirmed by
TEM images of GNRs synthesized using different amounts of AgNO3, re-
ported in Fig. 2. This trend is fundamental to establish the optimal con-
ditions for the fabrication of GNRs with specific AR and can help
clarifying the specific role of AgNO3 in the growth of GNRs. Fig. 1b de-
picts a sharp increase of the LSPR peak wavelength (and so of the AR)
with the concentration of silver ions up to a threshold value of ca.
140 μl of AgNO3 0.01 M; at higher concentrations this tendency is
inverted, probably owing to the interactions betweenGNRs and thebro-
mide counterions of the surfactant monomers [21]. A plateau is finally
reached at ca. 200 μl, where variations in the amount of AgNO3 no lon-
ger correspond to significant AR changes. Trends reported in previous
investigations [39,21] do not show consistency of the positions of the
LSPR, testifying the high unpredictability of this synthesis. Interestingly,
the presence of a plateau, indicating that the concentration of silver ions
reached the saturation limit, is observed here for the first time. AgNO3 is
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Fig. 2. TEM images of CTAB-coated GNRs produced using different aliquots of AgNO3 0.01 M and aged for 5 days: 10 μl (a), 25 μl (b), 50 μl (c) and 130 μl (d).
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a light-sensitive chemical subject to quick degradation, therefore its ef-
fective concentration in the synthetic mixture is in general difficult to
obtain. This is a major cause of variability in the fabrication of GNRs
with specific AR. In this study, we identified a saturation threshold in
AgNO3 concentration, past which the AR of GNRs is constant. This find-
ing overcomes the need of an accurate control when GNRs with AR =
3.9 (LSPR = 795 nm) [40] are needed and can be of practical utility in
the synthetic procedure. The repeatability of our method can be evalu-
ated by comparing LSPR positions of GNRs obtained for specific amounts
of AgNO3 in different experiments (see Fig. 1b). We believe that the
good reproducibility of the synthesis is tied to the application of accu-
rate temperature control. It was previously demonstrated that a com-
plex formed between CTAB, silver, and bromide ions (C19H42–NAgBr2)
acts as soft template, driving the anisotropic growth of nanoparticles to-
wards the rod shape and influencing their final AR [41,22]. In this re-
spect, the complete solubilization of CTAB at 30 Cͦ helps to stabilize the
capping complex and its micellar configuration.

In order to detect and characterize ageing phenomena, we moni-
tored spectrophotometric changes of GNRs' solutions obtainedwith dif-
ferent amounts of AgNO3 as a function of time after the synthesis. It was
found that, when CTAB was partially removed by filtration or centrifu-
gation, the LSPR band changed over time presenting a blue shift associ-
ated with a slight increase of the OD, as shown in Fig. 1b and S1 of the
Supporting Information (SI). No changes were observed when GNRs
were kept in the mother solution with native CTAB concentration. Re-
cently, analogous spectrophotometric changes following the synthesis
have been reported by da Silva [23]. Interestingly, the authors observed
such variations when CTAB was not removed from the GNRs' solution.
These changes, which find no correspondence in our study, were ex-
plained as a consequence of Ostwald ripening. To assess the origin of
the ageing process, we performed TEM measurements on GNRs' solu-
tions produced with 100 (see insets in Fig. 1c and d) and 160 μl of
AgNO3 immediately after the synthesis and CTAB removal (day 0), and
5 days later. The analysis of TEM data, conducted both manually than
using a MatLab routine (see Fig. S3 in SI), indicate that the average
length of GNRs decreased from day 0 to day 5 in both solutions (Fig.
1c and d), while the width changed only in GNRs synthesized with
160 μl of AgNO3, showing an average increase of 0.9 nm. These results
prove that the AR varied after the synthesis (from 3.9 (±0.1) to 3.1
(±0.1) for 100 μl of AgNO3 and from 4.0 (±0.1) to 3.4 (±0.1) for
160 μl), however they are not consistentwith the occurrence of Ostwald
ripening. This phenomenon is generally accompanied by an increase of
the volume and by narrowing of the size distribution, while none of
these effects was observed in our study. In fact, it is our opinion that
the length reduction is related to the destabilization of the rods' ends
caused by partial CTAB removal, which in turn leads to a re-equilibrium
towards thermodynamically favoured structures. Molecular dynamics
calculations suggest that the energetics of the surface facets govern
GNRs' stability against shape changes, tending to favour shorter struc-
tures [42]. Analogously, a recent study asserted that the surface diffu-
sion of gold atoms is responsible for GNRs reshaping and that this
phenomenon, being dependent on the curvature of GNRs, can occur at
temperatures far below the bulk melting point [43]. Our results are
also compatible with the so called “relaxation stage” of GNRs' growth
mechanism reported by Park and co-workers [44],where the rearrange-
ment of the caps to hemispherical shapes provokes shortening of the
length.

3.2. Evaluation of the extinction coefficient

The extinction coefficient is a fundamental parameter that defines
the suitability for applications requiring light scattering and absorption.
Knowledge of this property is also necessary to allow facile and reliable
measurement of GNRs' concentration in solutions by simple spectro-
photometric measurements. Theoretical studies predict that the extinc-
tion coefficient of GNRs is orders of magnitude higher than in organic
dyes [45], but, unfortunately, its experimental measurement is not a
trivial task. The variability of nanoparticle dimensions, the distribution
of their shape and size, and the presence of side products with undesir-
able shape strongly impact the feasibility of this determination.
Nonetheless, performing an independent measurement of GNRs' con-
centration is challenging itself, due to the high variability of the fabrica-
tion yield and to the need of relating the average number of gold atoms
present in one nanoparticle to the distribution of shapes andARs. In pre-
vious studies, the concentration of GNRs in solutions of known OD was
calculated on the basis of the gold atoms' content measured by



Fig. 3. a) Normalized optical density profiles of COOH–PEG–GNRs in PBS (black line) be-
fore and after (red line) bioconjugation to our modified version of aptamer AS1411. b)
Fluorescent emission (λexc = 625 nm) of AC-GNRs in water solution after purification
from unreacted fluorescent aptamer and corresponding excitation spectrum (λem =
660 nm).
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inductively coupled plasma atomic emission spectroscopy (ICP-AES)
[46,47]. Extinction coefficients of GNRs were then obtained applying
the Lambert–Beer law. In this work, for the first time, the concentration
of GNRs with AR = 3.9 was obtained by direct determination via
NanoSight analysis, a quick and simple technique with high degree of
accuracy. The corresponding extinction coefficient at 795 nm (themax-
imum of LSPR band) was determined by performing contemporary
spectrophotometric analysis on six solutions of different concentrations
and calculated from linear fitting analysis (R2= 0.987, N= 6) of the re-
sults. We found that ɛ795nm = 6.3 109 (±0.3) M−1 cm−1; this value is
comparable with those obtained by Murphy [47] using ICP-AES
(ɛmax = 4.6 109 (±0.6) M−1 cm−1 for GNRs with LSPR centred at
785 nm) and by Hafner [48], who evaluated the extinction coefficient
in polyethylene glycol-modified GNRs films.

3.3. Surface functionalization and bioconjugation

Our strategy for the functionalization of GNRs was based on the re-
placement of CTAB with carboxyl thiol PEG (Scheme 1), exploiting the
strong affinity between GNRs and thiols. These groups bind covalently
to the gold atoms placed at the surface of the nanoparticles, hence, un-
like physical adsorption, this method allows permanent binding of PEG
and functional groups to the GNRs. The use of this heterobifunctional
polymer includes other advantages linked to the hydrophilic chains,
which ensure good solubility in the aqueous phase and constitute a bio-
compatible shell minimizing non-specific absorption. This shell also
forms a steric obstacle to prevent GNRs' aggregation, whereas the neg-
atively charged terminal carboxyl groups further stabilize the colloidal
dispersion and constitute reactive functional groups useful for the con-
jugation with biomolecules following established cross-linking proce-
dures. Despite the superior properties of carboxyl thiol PEG, the
formation of aggregates during the ligand exchange procedure was
still a possibility. This undesirable phenomenon was addressed by
adding a large excess of the polymer with respect to the number of
PEG chains expected to ensure full coverage of the particles' surface
[36]. Dynamic light scattering size measurements, ζ-potential and OD
profiles determinations were done at every step of the procedure to
monitor the extent of ligand substitution andnanoparticles' aggregation
(see Table 1 and Fig. S2). As shown by the decrease of ζ-potential from
positive to negative values, incubation with carboxyl thiol PEG resulted
in effective substitution of CTAB. Accordingly, the small variation in the
hydrodynamic diameter (see Table 1) and the absence of plasmon cou-
pling inODprofiles proved that aggregation hadnot occurred.However,
absolute ζ values lower than 20mV indicate that the electrostatic repul-
sion between the nanoparticles is low. Not surprisingly, extensive ag-
gregation of COOH–PEG–GNRs was observed after one week. We
hypothesised that residues of desorbed CTAB had formed complexes
with the terminal carboxyl groups of PEG chains, inducing the aggrega-
tion of functionalized GNRs. We then decided to perform further purifi-
cation by dialysis. Dialyzed GNRs displayed a reduction of the
hydrodynamic diameter, probably due to different interactions of
CTAB-free GNRs' surface with the solvent, and more negative ζ-poten-
tial values (see Table 1). Consistently, the change of dielectric constant
experienced by the nanoparticles was accompanied by a further shift
of 12 nm in the LSPR band (see Fig. S2). PBS solutions of dialyzed
COOH–PEG–GNRs were found stable after several months and could
be used for the bioconjugation.

Multifunctional GNRswere designed through conjugation of COOH–
PEG–GNRs to a fluorescent version of aptamer AS1411 (Scheme 1).
AS1411 is constituted by a 26-base guanine-rich oligonucleotide with
an unmodified (phosphodiester) DNA backbone. In our strategy,
AS1411 was decorated with the fluorophore unit Cy5 on the 3′ end,
and with a six carbons spacer followed by an amine group on the 5′
end (H2N–AS1411–Cy5, see Scheme 1). This approach exploited the
modularity of this aptamer to provideGNRswith both cancer-specificity
and luminescence, while quenching of the fluorescence emission by
GNRs could be excluded on the basis of the long distance between the
gold surface and Cy5 units. Conjugation to COOH–PEG–GNRs was ob-
tained through carboxyl-amine cross-linking via EDC/NHS chemistry.
Choi and co-workers recently applied an analogous conjugation strate-
gy to produce non-fluorescentGNRs functionalizedwith anti-epidermal
growth factor receptor (EGFR) aptamer [49]. Once the conditions of the
reaction were optimized, the same approach was applied to
functionalize COOH–PEG–GNRs with Cy5 amine PEG (Cy5–PEG–NH2).
Aptamer conjugated GNRs (AC-GNRs) were then purified through dial-
ysis to eliminate residual unreacted H2N–AS1411–Cy5 (or Cy5–PEG–
NH2) and examined by spectrophotometric analysis and dynamic light
scattering. The comparison of OD profiles of COOH–PEG–GNRs and
AC-GNRs, reported in Fig. 3a, pointed out the blue-shift of the LSPR
band in AC-GNRs,which could be attributed, once again, to the variation
of the dielectric constant. More importantly, the absence of plasmon
coupling indicated lack of aggregates, proving that the bioconjugation
did not alter the quality of GNRs. This result was confirmed by the
value of the hydrodynamic diameter (Table 1), showing elongation
due to the cross-linking. ζ-potential values also reflected the effect of
conjugation: ζ was reduced in AC-GNRs with respect to COOH–PEG–
GNRs, owing to the presence of negatively charged DNA strands, while
it increased in Cy5–PEG–GNRs, where part of the carboxyl groups
have been employed to bind neutral ligands. Conclusive evidence of
the conjugation was given by the characteristic Cy5 emission and exci-
tation profiles observed in dialyzed AC-GNRs water solution (see Fig.
3b). AC-GNRs were stable for several weeks when kept in the dark at
4 °C.
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3.4. Specific targeting of AC-GNRs towards cancer cells

Initially, we verified that our modified, fluorescent version of
AS1411 could be internalized by cancer cells via endocytosis. HeLa
cells, our cancermodel, were incubatedwith H2N–AS1411–Cy5 and im-
aged live through far-field fluorescence microscopy (FFM). Representa-
tive bright field, FFM images and corresponding superposition are
reported in Fig. 4a–c. Cy5 fluorescent emission from HeLa cells proved
that AS1411 affinity to nucleolin was not compromised by the
functionalization of 3′- and 5′-ends. In addition,we successfully demon-
strated that fluorescent AC-GNRs were uptaken by HeLa cells (see Fig.
4d–f). To corroborate this statement, we also performed flow cytometry
experiments on HeLa cells incubated with AC-GNRs. Comparison of
fluorescence intensity distributions with untreated cells is reported in
Fig. 5a. In order to exclude the possibility that AC-GNRs' internalization
could be due to non-specific interactions, we incubated HeLa cells in
identical conditionswith fluorescent GNRs not providedwith any active
targeting agent: Cy5–PEG–GNRs. The negligible fluorescence signal re-
ported in Fig. 4i confirmed that the uptake of AC-GNRs is an aptamer-
mediated process. These findings establish that the activity of AS1411
was not impaired by the heavy cargo constituted by GNRs, and that
non-specific absorption was effectively prevented in PEG-functional-
ized GNRs. Finally, control of the selectivity of AC-GNRs towards cancer
cells was effectuated by applying the labelling procedure on human
normal cells Het-1A. Obtained results shown that AC-GNRs were not
uptaken by Het-1A cells (see Fig. 4j–l) and confirmed the cancer
Fig. 4. From left to right: representative bright field, FFM images and their superposition of He
HeT-1A cells incubated with AC-GNRs (j–l). Scale bar = 12.0 μm.
specificity of AC-GNRs' internalization mechanism. On the basis of
these results, we infer that AC-GNRs can be used as cancer-specificmul-
tifunctional probes. Indeed, besides the fluorescence signal from Cy5
units, AC-GNRs can also be detected exploiting GNRs' optical properties,
for example using darkfieldmicroscopy [50], two-photon luminescence
[51], photoacoustic imaging [6], or surface enhanced Raman scattering
[52]. In order to verify AC-GNRs suitability as multifunctional probes
for biological imaging, we tested their cytotoxicity at twice the concen-
tration and after the same incubation time used for fluorescence label-
ling. We conducted a viability study on HeLa cells via Calcein AM
assay, whose results are reported in Fig. 5b. This analysis pointed out
that cells incubated for 4 h in 2% DMEM, the solution used for the label-
ling procedure, displayed reduced viability with respect to cells left in
complete DMEM, owing to the low amount of nutrients. However, no
toxicity effects due to the incubation with H2N–AS1411–Cy5, Cy5–
PEG–GNRs and AC-GNRs were observed. The absence of toxicity effects
against cancer cells by AS1411 can probably be explained considering
that, after 4 h of incubation, our labels have not reached the nuclear re-
gion yet [53] where the arrest of DNA repair processes and the destabi-
lization of bcl-2 mRNA occur. We predict that migration towards the
nucleus could be expedite by increasing the loading density of AS1411
on GNRs, analogously to recent findings on overloaded AS1411-gold
nanostars conjugates [54].

In summary, in vitro studies corroborate the potential of AC-GNRs as
biocompatible, selective probes for cancer detection and possibly treat-
ment based on PTT, thanks to the delivery of the therapeutic cargo
La cells incubated with H2N–AS1411–Cy5 (a–c) AC-GNRs (d–f), Cy5–PEG–GNRs (g–i) and



Fig. 5. (a) Flow cytometryfluorescence intensity distributions of HeLa cells incubatedwith (red curve) andwithout (light blue curve) AC-GNRs. (b) Viability study onHeLa cells viaCalcein
AM assay. From left to right: percentage of live cells after 4 h of incubation with complete DMEM (positive control), 2% DMEM, 0.2 nM AC-GNRs, 10 μMH2N–AS1411–Cy5 (Apt-Cy5) and
0.2 nM Cy5–PEG–GNRs in 2% DMEM.
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inside of the cytosol of cancer cells. This cancer-treatment application is
currently under investigations by our group and will be the object of a
future work.

4. Conclusion

In this work, we presented developments on the seed-mediated fab-
rication of GNRs and on the characterization of obtained CTAB-coated
GNRs. Secondly, we extensively modified the native surface
functionalization of GNRs to provide multifunctional cancer selective
nanoconstructs. In vitro studies confirmed the biocompatibility and
high specificity of our nanoprobes.

Specifically, the fabricationmethod of GNRs [22] was refined to pro-
viding a robust and reproducible procedure, which showed a new de-
pendence of LSPR position (and GNRs' AR) on the amount of AgNO3.
This result detains practical utility in the synthesis practise of GNRs
with AR= 3.9, but it also helps to clarify the role of AgNO3 in themech-
anism of GNRs' formation. We also brought to light the occurrence of
aging phenomena that follow the GNRs' most common synthetic meth-
od and significantly alter their optical properties in the NIR. Changes of
the OD profiles have been attributed tomutations of GNRs' structure re-
vealed by TEM measurements. Possible explanations have been found
in the destabilization of GNRs' caps due to the partial removal of the sur-
factant, followed by reorganization towards thermodynamically
favoured, shorter structures. Further characterization of GNRs with
AR = 3.9 has been done with the determination of the extinction coef-
ficient at the LSPR maximum, obtained for the first time using optical
concentration measurements based on nanoparticles tracking.

CTAB-coated GNRs were successfully modified to obtain non-toxic,
multifunctional nanosystems. Good biocompatibility and stability in
water solutions were achieved by exchanging CTAB double-layer with
PEG chains. Bioconjugation with a fluorescent, active targeting agent,
H2N–AS1411–Cy5, was secured using a versatile cross-linking method
based on the exploitation of aptamers' modularity. Flow cytometry ex-
periments and FFM studies evidenced the efficiency of AC-GNRs' uptake
by cancer cells. We also demonstrated that it is a cancer selective,
aptamer-mediated process, while GNRs' absorption due to non-specific
interactions is negligible. These nanoconstructs have also been proved
not to exert cytotoxic effects at double concentrations with respect to
the amount needed for detection via fluorescence microscopy. These
findings allowed us to classify AC-GNRs as promising cancer-selective,
multifunctional probes. AC-GNRs also represent good candidates for
theradiagnostic applications based on the use of PTT, this possible
application is currently under investigations and will be presented in a
future work.
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