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Abstract

We provide an elementary proof that ergodic measures on one-sided shift
spaces are ‘uniformly scaling’ in the following sense: at almost every point
the scenery distributions weakly converge to a common distribution on the
space of measures. Moreover, we show how the limiting distribution can
be expressed in terms of, and derived from, a ‘reverse Jacobian’ function
associated with the corresponding measure on the space of left infinite
sequences. Finally we specialise to the setting of Gibbs measures, discuss
some statistical properties, and prove a Central Limit Theorem for ergodic
Markov measures.
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1 Introduction

Given a set or measure one is often interested in studying the fine structure,
i.e., properties derived from infinitesimal behaviour. As such it is important to
understand ‘tangents’ and what is currently emerging in the literature on geometric
measure theory, ergodic theory and fractal geometry is that understanding the
dynamics of the process of ‘zooming-in’ to the tangents is even more valuable. Some
of these ideas go back a long way, in particular to Furstenberg’s work in the 60s
and 70s, see [F1], but the techniques and philosophies have recently been applied
to great effect, for example see [F2, G, H1, H2, HS1]. First one defines a process of
zooming-in at a point in the support of a given measure. This may not converge
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but one is interested in weak accumulation points of this process in the appropriate
space of measures. One drawback of this approach is that one may obtain too many
‘tangent measures’ and not be able to relate them sensibly back to the original
measure. As such one looks to define a measure on the space of measures (com-
monly referred to as a distribution) which best describes which measures are most
prevalent during the process of zooming-in. We will make this precise in the context
of measures on shift spaces in Section 1.1. Gavish [G] introduced the concept of a
measure on Euclidean space being ‘uniformly scaling’ if at almost every point in the
support of the measure, the (continuous) zooming-in process generates the same
distribution. As such, uniformly scaling measures are very homogeneous and it turns
out that one can make very strong statements about their geometry. In particular,
see [H2, H1, HS1, HS2, KSS] for recent and influential developments in this direction.

In this paper we study the process described above abstractly in the context
of ergodic measures on shift spaces and, in particular, the appropriate analogue of
Gavish’s notion of ‘uniformly scaling’. Our main contributions are an elementary
proof that shift ergodic measures are uniformly scaling and a demonstration of the
relationship between the generated distribution in terms of the ‘reverse Jacobian’
of the naturally associated measure on the space of left infinite sequences. Our
main result will be given in Section 2 and proved in Section 3. We also show that
the stronger form of uniform scaling (which requires convergence of the q-sparse
scenery distributions) also holds for strongly mixing measures, but not for all
ergodic measures. In Section 4 we discuss the simpler setting of Gibbs measures,
where the reverse Jacobian is the classical g-function. We consider some simple
examples and finish by proving a Central Limit Theorem for the scaling scenery of
ergodic Markov measures.

The fact that ergodic measures are uniformly scaling is at least implicit in
other works, in particular [H1, F2], and even explicit in [H2, Section 3] in the
setting of interval maps. The main difficulties in most of these examples are
structural complications corresponding to the geometry of the specific setting. We
consider the problem in symbolic space, where these complications do not occur,
and aim to give a clear exposition of why the necessary convergence occurs relying
only on classical ergodic theory.

1.1 Scaling scenery for measures on shift spaces

Let I = {1, . . . , k} be a finite alphabet, Σ+ =
∏∞

0 I be the space of one-sided
sequences over I and σ denote the usual (left) shift map. Abusing notation slightly
we write x = (x0, . . . , xn−1) ∈

∏n−1
0 I and x = (x0, x1, . . . ) ∈ Σ+. We equip Σ+

with the standard metric defined by

d(x, y) = 2−n(x,y)

where for x 6= y, n(x, y) = max{n ∈ N : xk = yk for all k = 0, . . . , n} or −1 if no
such n exists. Write P(Σ+) for the space of Borel probability measures on Σ+ and
Pσ(Σ+) for the space of shift invariant measures from P(Σ+). Equip both these
spaces of measures with the weak topology, which can be metrised with either the
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Levy-Prokhorov or Wasserstein metric for example, and write spt(µ) for the support
of a measure µ. Let x = (x0, x1, x2, · · · ) ∈ Σ+ and n > 1 and define “blow up” maps
Tn,x : Σ+ → Σ+ by

Tn,x(y0, y1, y2, · · · ) = (x0, · · · , xn−1, y0, y1, y2, · · · )

i.e., inserting the first n terms from the sequence x at the front of y. We define
cylinder sets as

[x0, . . . , xn−1]n−1
0 = Tn,xΣ

+ = {y ∈ Σ+ : yi = xi for 0 6 i 6 n− 1}

and the following definition allows us to blow up µ on the cylinders containing x.

Definition 1.1. The maps Tn,x induce a sequence of new measures µx,n ∈ P(Σ+),
which are called minimeasures, defined by

µx,n(A) =
µ (Tn,xA)

µ (Tn,xΣ+)

for measurable A ⊂ Σ+, provided µ (Tn,xΣ
+) > 0. This sequence of minimeasures is

called the scaling scenery of µ at x and any weak-∗ accumulation point of the scaling
scenery is called a micromeasure of µ at x.

Recently, there has been considerable interest in understanding the limiting be-
haviour of the scaling scenery and many closely related concepts. It is perhaps
unreasonable to expect the scaling scenery to converge, but one is interested in
which minimeasures are most prevalent in the scaling scenery and to this end we
define a sequence of measures on the space of measures by taking Cesàro averages of
Dirac measures on the minimeasures along the scaling scenery and then hope that
this converges. Let D(Σ+) = P(P(Σ+)) be the space of Borel measures on P(Σ+),
which we call the space of distributions.

Definition 1.2. The Nth scenery distribution of µ at x ∈ spt(µ) is

1

N

N−1∑
n=0

δµx,n ∈ D(Σ+)

and any weak-∗ accumulation point of the sequence of N th scenery distributions is
called a micromeasure distribution.

It is straightforward to see that any micromeasure distribution at x is supported on
the set of micromeasures of µ at x. Motivated by Gavish [G], we define the analogue
of uniformly scaling for shift spaces as follows.

Definition 1.3. A measure µ ∈ P(Σ+) is a uniformly scaling measure if there exists
a distribution Q ∈ D(Σ+) such that at µ almost every x ∈ Σ+

1

N

N−1∑
n=0

δµx,n →w∗ Q.

In this case we say that µ generates the distribution Q.
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One is often interested in a stronger notion of uniform scaling. Motivated by [HS1],
we make the following definitions.

Definition 1.4. Given q ∈ N, the q-sparse Nth scenery distribution of µ at x ∈
spt(µ) is

1

N

N−1∑
n=0

δµx,qn ∈ D(Σ+).

We say that a measure µ ∈ P(Σ+) is a strongly uniformly scaling measure if there
exists a family of distributions {Qq}q∈N from D(Σ+) such that at µ almost every
x ∈ Σ+ and for every q ∈ N

1

N

N−1∑
n=0

δµx,qn →w∗ Qq.

We note that for applications it is not usually important if the Qq vary with q or not.
However, from a philosophical point of view it seems sensible to highlight measures
for which Qq is constant and indeed this will be the case in our Theorem 2.2.

1.2 Ergodic measures and the reverse Jacobian

Let Σ =
∏∞
−∞ I be the space of infinite two-sided sequences where we write x =

(xm, . . . , xn) ∈
∏n

m I (with m < n) and x = (. . . , x−1;x0, x1, . . . ) ∈ Σ. We also
write σ for the (invertible) left shift map on Σ given by

σ(· · · , x−2, x−1;x0, x1, x2, · · · ) = (· · · , x−1, x0;x1, x2, x3, · · · )

and let Pσ(Σ) denote the space of shift invariant Borel probability measures on Σ.

Lemma 1.5. There is a natural bijection between the spaces Pσ(Σ+) and Pσ(Σ).
Moreover, this map is also a bijection between ergodic measures on Σ+ and Σ.

Proof. For the first part we use the (unique) extension of an invariant measure µ
on Σ+ to Σ given by µ([xm, · · · , xn]nm) := µ([xm, · · · , xn]n−m0 ) (with m < n). The
fact that ergodic measures are paired with ergodic measures is straightforward and
omitted.

Given an ergodic measure µ ∈ Pσ(Σ), define a sequence of functions gn : Σ→ [0, 1]
by

gn(x) =
µ
(
[x−n, x−(n−1), · · · , x−1]−1

−n
)

µ
(
[x−n, x−(n−1), · · · , x−2]−2

−n
)

for x = (xl)
∞
l=−∞ ∈ spt(µ) and gn(x) = 0 for x ∈ Σ \ spt(µ) . From this sequence of

functions we are able to define the reverse Jacobian g which we will need to state
our main result, Theorem 2.1.

Lemma 1.6. The limit g(x) := limn→+∞ gn(x) exists for µ almost every x ∈ Σ and,
moreover, g ∈ L1(Σ, µ).
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Proof. Consider the space of left infinite sequences Σ− and let µ− be the push
forward of µ to Σ− via the natural restriction. Let σ−1 be the associated right shift
and note that µ− need not be σ−1 invariant. Observe that gn only depends on past
coordinates, i.e. gn(x) = gn(x′) if x and x′ are such that xn = x′n for all n < 0, and
so for x ∈ spt(µ)

gn(x) =
µ−
(
[x−n, x−(n−1), · · · , x−1]−1

−n
)

µ− ◦ σ−1
(
[x−n, x−(n−1), · · · , x−1]−1

−n
)

which is the reciprocal of the Radon-Nikodym derivative d(µ− ◦ σ−1)/dµ− with re-
spect to the σ-algebra generated by the cylinders of length n in Σ−. Even though
µ− may be singular, the Radon-Nikodym derivative is well-defined because σ−1 is
countable to one, see [P, Section 10-1] and also [PW]. It follows from [Pa, Proposi-
tion 48.1] that gn converges almost surely to an L1 function g, which is the Jacobian
of d(µ− ◦ σ−1)/dµ− with respect to the full Borel σ-algebra.

2 Scaling scenery for ergodic measures

We now wish to make more precise statements about the scaling scenery and to do so
we need to introduce some more notation. Given any word e = (e0, e1, . . . , em−1) ∈∏m−1

0 I, and b > a > 0 the open sets

U e(a, b) :=
{
ν ∈ P(Σ+) : ν([e0 . . . em−1]m−1

0 ) ∈ (a, b)
}

generate the weak-∗ topology on P(Σ+) and so determining the value of a distribu-
tion on these generating sets determines it uniquely.

Theorem 2.1. Every ergodic measure µ ∈ Pσ(Σ+) is a uniformly scaling measure.
Moreover, for a given ergodic µ ∈ Pσ(Σ+) the generated distribution Q ∈ D(Σ+) is
characterised as follows. Also write µ for the associated two-sided ergodic measure
from Lemma 1.5 and let g ∈ L1(Σ, µ) be given by Lemma 1.6. Then

Q
(
U([e0 . . . em−1]m−1

0 , a, b)
)

= µ

({
y ∈ Σ : a <

m∏
k=1

g
(
σk(y−e)

)
< b

})

for any cylinder [e0 · · · em−1]m−1
0 and a < b and where we write y−e =

(· · · , y−2, y−1; e0 · · · em−1, · · · ) observing that since g only depends on past coordi-
nates it does not matter how we complete the sequence to the right.

This can be compared with the result for interval maps which appears in [H2, Propo-
sition 3.6]. The relevance of extensions to bi-infinite sequences in the context of
blowing up a set or measure has also been observed before. In particular, see Sul-
livan’s limit diffeomorphisms [S] and subsequent developments and applications of
these ideas [CJQ, BF, HS1, H2]. One heuristic justification is that the positive co-
ordinates give location and the negative coordinates give distortion as one zooms
in at that location. Recall that a measure µ ∈ Pσ(Σ+) is completely ergodic if it is
σq-ergodic for all q ∈ N and observe that any strongly mixing measure is completely
ergodic.
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Theorem 2.2. Every completely ergodic measure µ ∈ Pσ(Σ+) is a strongly uni-
formly scaling measure. Indeed, for all q ∈ N and almost every x ∈ Σ+, the q-sparse
scenery distributions converge to the distribution Q ∈ D(Σ+) described in Theorem
2.1. In particular, this holds if µ is strongly mixing.

Finally we point out that it is easy to construct invariant measures which are not
uniformly scaling, see Example 4.6. For such examples the scenery distributions
almost surely converge to a common distribution within each ergodic component,
but the distributions can vary between component. Also, it is easy to construct
ergodic measures which are not strongly uniformly scaling, see Example 4.7.

3 Proof of Theorems 2.1 and 2.2

Throughout this section we will write µ both for the original ergodic measure in
Pσ(Σ+) and for the associated ergodic measure in Pσ(Σ) from Lemma 1.5. Given a
word e = (e0, e1, . . . , em−1) ∈

∏m−1
0 I, let us define a sequence of functions gen : Σ→

[0, 1] by

gen(x) =
µ
(
[x−n, x−(n−1), · · · , x−1; e0, e1, . . . , em−1]m−1

−n
)

µ
(
[x−n, x−(n−1), · · · , x−1]−1

−n
)

for x = (xl)
∞
l=−∞ ∈ spt(µ) and gen(x) = 0 for x ∈ Σ \ spt(µ).

Lemma 3.1. For µ almost every x ∈ Σ, the sequence gen(x) converges and

lim
n→+∞

gen(x) =
m∏
k=1

g
(
σk(x−e)

)
=: ge(x)

where x−e = (. . . , x−n, x−(n−1), · · · , x−1; e0, e1, . . . , em−1, . . . ) recalling that g only
depends on the past coordinates and so it does not matter how x−e is filled in to the
right.

Proof. We assume that µ
(
[x−n, x−(n−1), · · · , x−1; e0, e1, . . . , em−1]m−1

−n
)
> 0 for all

n ∈ N and that x ∈ spt(µ). If this is not the case then the result is trivial and
ge(x) = 0. We have

gen(x) =
µ
(
[x−n, x−(n−1), · · · , x−1; e0, e1, . . . , em−1]m−1

−n
)

µ
(
[x−n, x−(n−1), · · · , x−1]−1

−n
)

=
m∏
k=1

µ
(
[x−n, x−(n−1), · · · , x−1; e0, e1, . . . , ek−1]k−1

−n
)

µ
(
[x−n, x−(n−1), · · · , x−1; e0, e1, . . . , ek−2]k−2

−n
)

=
m∏
k=1

gn+k

(
σk(x−e)

)
→

m∏
k=1

g
(
σk(x−e)

)
for µ almost every x ∈ Σ as n→ +∞ by Lemma 1.6.
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Lemma 3.2. Let e ∈
∏m−1

0 I. Then for any ε, δ > 0 we can choose a measurable
set B ⊂ Σ with µ(B) < δ and n0 such that for n > n0 we have

sup
x∈Σ\B

|gen(x)− ge(x)| < ε.

Proof. This is an immediate consequence of Egorov’s Theorem.

Lemma 3.3. Fix a measurable set B ⊆ Σ and a, b ∈ R with a < b. Then for µ
almost every x ∈ Σ, as N → +∞ we have

1

N
# {0 6 n 6 N − 1 : σnx ∈ B} → µ(B)

and

1

N
# {0 6 n 6 N − 1 : ge(σnx) ∈ (a, b)} → µ({y ∈ Σ : ge(y) ∈ (a, b)}).

Proof. This follows immediately by applying the Birkhoff ergodic theorem for σ :
Σ→ Σ and µ.

Observe that µx,n([e]m−1
0 ) is defined for all x ∈ spt(µ) and so we can extend it to a

function of x = (xl)
∞
l=−∞ ∈ Σ by setting it to zero whenever (xl)

∞
l=0 /∈ spt(µ) ⊆ Σ+.

This has the advantage that

µx,n([e0, . . . , em−1]m−1
0 ) =

µ[x0, x1, · · · , xn−1, e0, . . . , em−1]m+n−1
0

µ[x0, x1, · · · , xn−1]n−1
0

= gen(σnx). (3.1)

In particular, for x ∈ Σ the terms µx,n([e]m−1
0 ) depend only on the future coordinates.

We are now in position to prove Theorem 2.1.

Proof. Fix e = (e0, e1, . . . , em−1) ∈
∏m−1

0 I and a, b ∈ R with a < b. We will
estimate the measure of U e(a, b) for scenery distributions at generic x ∈ Σ+. The
following fact is stated merely for clarity.

Fact 3.4. If
(

1
N

∑N−1
n=0 δµx,n

)
(U e(a, b)) converges for µ almost every x ∈ Σ to a

constant then
(

1
N

∑N−1
n=0 δµx,n

)
(U e(a, b)) converges for µ almost every x ∈ Σ+ to the

same constant.

Let B ⊆ Σ and n0 be taken from Lemma 3.2 and observe that for N > n0 and for
all x ∈ Σ we have(

1

N

N−1∑
n=0

δµx,n

)
(U e(a, b)) =

1

N
#
{

0 6 n 6 N − 1 : µx,n([e0, . . . , em−1]m−1
0 ) ∈ (a, b)

}
=

1

N
# {0 6 n 6 N − 1 : gen(σnx) ∈ (a, b)} by (3.1)

6
n0

N
+

1

N
# {0 6 n 6 N − 1 : ge(σnx) ∈ (a− ε, b+ ε)}

+
1

N
# {0 6 n 6 N − 1 : σnx ∈ B} .
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Letting N → +∞ we can apply Lemma 3.3 and deduce that for µ almost every
x ∈ Σ+ if Q ∈ D(Σ+) is an accumulation point of the scenery distributions at x,
then

Q (U e(a, b)) 6 µ({y ∈ Σ : ge(y) ∈ (a− ε, b+ ε)}) + δ.

A similar argument shows that

Q (U e(a, b)) > µ({y ∈ Σ : ge(y) ∈ (a+ ε, b− ε)})− δ.

Since ε, δ > 0 are arbitrary and D(Σ+) is sequentially compact by Prokhorov’s
Theorem, we deduce that for µ almost every x ∈ Σ+ the scenery distributions at x
converge to a common distribution Q ∈ D(Σ+) satisfying

Q (U e(a, b)) = µ({y ∈ Σ : ge(y) ∈ (a, b)})

= µ

({
y ∈ Σ : a <

m∏
k=1

g
(
σk(y−e)

)
< b

})
which completes the proof.

Theorem 2.2 follows by an almost identical argument to that used to prove Theorem
2.1 and so we omit the details. Observe that(

1

N

N−1∑
n=0

δµx,qn

)
(U e(a, b)) =

1

N
#
{

0 6 n 6 N − 1 : geqn
(
(σq)nx

)
∈ (a, b)

}
and then apply the Birkhoff ergodic theorem for σq : Σ → Σ in the same way as
before. We use the fact that if µ ∈ Pσ(Σ+) is completely ergodic, then the associated
measure µ ∈ Pσ(Σ) from Lemma 1.5 is also completely ergodic.

4 Scaling scenery for Gibbs measures

In this section we specialise to the setting of Gibbs measures and consider some
simple examples. Let φ : Σ+

A → R be a Hölder continuous potential for a subshift of
finite type Σ+

A. A measure µ ∈ P(Σ+) supported on Σ+
A is called a Gibbs measure

for φ if there exists constants C1, C2 > 0 such that

C1 6
µ
(
[x0, . . . , xn−1]n−1

0

)
exp

(∑n−1
k=0 φ(σkx)− nP (φ)

) 6 C2 (4.1)

for all x ∈ Σ+
A and all n ∈ N and where P (φ) is the pressure of φ, see [B]. If

Σ+
A is topologically mixing, then there is a unique shift invariant Gibbs measure

µ = µφ ∈ Pσ(Σ+) and this Gibbs measure is strongly mixing and thus completely
ergodic. Two very simple examples of shift invariant Gibbs measures are Bernoulli
measures and Markov measures. We will use these as examples and so briefly recall
their definitions. Let (pi)i∈I be a strictly positive probability vector associated to
I. Given the potential φ(x) = log px0 for the full shift, the unique invariant Gibbs
measure satisfies

µ
(
[x0, . . . , xn−1]n−1

0

)
= px0 · · · pxn−1
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and is called a Bernoulli measure. One more level of complexity yields Markov
measures. Given a right stochastic matrix P = {pi,j}i,j∈I and a left invariant (sta-
tionary) probability vector (πi)i∈I , the associated Markov measure is defined by

µ
(
[x0, . . . , xn−1]n−1

0

)
= πx0px0,x1 · · · pxn−2,xn−1 .

Markov measures are invariant Gibbs measures for the potential φ(x) = log px0,x1
and are supported on the subshift of finite type given by the transition matrix formed
by replacing all non-zero entries in P with 1s. If P is irreducible, then there is a
unique stationary probability vector and thus a unique associated Markov measure
and this measure is ergodic. Furthermore, if P is aperiodic, then the associated
subshift of finite type is topologically mixing and the Markov measure is strongly
mixing. We will also utilise the theory of Gibbs measures on the two-sided shift
space Σ which are defined similarly, see [B].

Lemma 4.1. If µ is an invariant Gibbs measure for a Hölder potential, then
ψ := log g is a Hölder potential for the corresponding invariant Gibbs measure on Σ
given by Lemma 1.5 where g : Σ→ [0, 1] is the (almost everywhere defined) reverse
Jacobian function given by Lemma 1.6.

Proof. This is a standard result in the general theory of g-measures, beginning with
Keane in the 70s [K]. The fact that ψ is a potential for the two-sided Gibbs measure
µ is due to Ledrappier [L], see also [W, Theorem 2.1].

Theorem 2.1 and Lemma 4.1 combine to yield the following result for Gibbs mea-
sures.

Corollary 4.2. Let µ ∈ Pσ(Σ+) be an ergodic Gibbs measure for a Hölder continu-
ous potential φ defined on a subshift of finite type Σ+

A. Then µ is uniformly scaling
generating a distribution Q ∈ D(Σ+). Moreover, there exists a Hölder potential
ψ : ΣA → R for the associated two-sided Gibbs measure from Lemma 1.5 (which is
supported on the corresponding two-sided subshift of finite type ΣA) such that

Q
(
U([e0 . . . em−1]m−1

0 , a, b)
)

= µ

({
y ∈ Σ : a < exp

(
m∑
k=1

ψ
(
σk(y−e)

))
< b

})
for any cylinder [e0 · · · em−1]m−1

0 and a < b and where we write y−e =
(· · · , y−2, y−1; e0 · · · em−1, · · · ) observing that since ψ depends only on past coordi-
nates it does not matter how we complete the sequence to the right. Moreover, if Σ+

A

is topologically mixing, then µ is strongly uniformly scaling and generates distribu-
tions Qq which are all equal to Q above.

The following proposition shows that for an ergodic Gibbs measure the support
of the distribution Q is very homogeneous in that all measures in the support are
uniformly equivalent to some first level blow up. A similar observation was made in
[FP], where the uniform equivalence was needed to pursue geometric applications.
For i ∈ I, let µi ∈ P(Σ+) be defined by

µi(A) =
µ (iA)

µ ([i]00)

for a measurable set A ⊆ Σ+.
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Proposition 4.3. Let µ ∈ P(Σ+) be a Gibbs measure for a Hölder continuous
potential φ defined on a subshift of finite type Σ+

A. Then there exists a uniform
constant C > 1 depending only on the potential such that for all measurable A ⊆ Σ+

and all mini- or micromeasures ν, for some i ∈ I we have

C−1 µi(A) 6 ν(A) 6 C µi(A).

Proof. It suffices to prove the result for minimeasures because the bounds are clearly
preserved under weak convergence to any micromeasure. Let ν = µx,n be a min-
imeasure of µ at x ∈ Σ+

A and depth n ∈ N and let i = xn−1. It suffices to estimate
the measure only for cylinders, so let y ∈ Σ+ and m ∈ N define an arbitrary cylinder
[y0, . . . , ym−1]m−1

0 ⊆ Σ+. Let the kth variation of the potential φ be defined by

vark(φ) = sup
x,y∈Σ+

{
|φ(x)− φ(y)| : x0 = y0, . . . , xk−1 = yk−1

}
.

A simple consequence of φ being Hölder is that it has summable variations, i.e.

V (φ) :=
∞∑
k=0

vark(φ) <∞.

The choice of i implies that µi
(
[y0, . . . , ym−1]m−1

0

)
= 0 if and only if

ν
(
[y0, . . . , ym−1]m−1

0

)
= 0 and so assume without loss of generality that these mea-

sures are not zero. We have

ν
(
[y0, . . . , ym−1]m−1

0

)
µi
(
[y0, . . . , ym−1]m−1

0

)
=

µ
(
[x0, . . . , xn−1, y0, . . . , ym−1]m+n−1

0

)
µ
(
[xn−1]00

)
µ
(
[x0, . . . , xn−1]n−1

0

)
µ
(
[xn−1y0, . . . , ym−1]m0

)
6

C2
2 exp

(∑m+n−1
k=0 φ

(
σk(x0, . . . , xn−1 y)

)
− (m+ n)P (φ)

)
exp

(
φ
(
(xn−1 y)

)
− P (φ)

)
C2

1 exp
(∑n−1

k=0 φ(σk(x))− nP (φ)
)

exp
(∑m

k=0 φ(σk(xn−1 y))− (m+ 1)P (φ)
)

=
C2

2

C2
1

exp

(
n−1∑
k=0

φ
(
σk(x0, . . . , xn−1 y)

)
−

n−1∑
k=0

φ(σk(x))

)

6
C2

2

C2
1

exp

(
n−1∑
k=0

varn−k(φ)

)
6

C2
2

C2
1

exp
(
V (φ)

)
< ∞.

A similar argument going in the opposite direction yields

ν
(
[y0, . . . , ym−1]m−1

0

)
µi
(
[y0, . . . , ym−1]m−1

0

) >
C2

1

C2
2

exp
(
− V (φ)

)
> 0

completing the proof.

Note that if Σ+
A is the full shift, then all of the µi are equivalent to µ. Thus

Proposition 4.3 shows that all micromeasures of a fully supported Gibbs measure
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are themselves Gibbs measures for the same potential and a pleasant consequence
of this is that there is at most one invariant micromeasure for any (invariant or
non-invariant) fully supported Gibbs measure.

In the simpler setting of locally constant potentials, one can say even more.
In fact, an explicit expression for the generated distribution Q can be derived easily
from the definitions.

Example 4.4. Let µ ∈ Pσ(Σ+) be a Bernoulli measure. Then all minimeasures
and micromeasures at any point are equal to µ itself and so µ is strongly uniformly
scaling and generates the distribution δµ ∈ D(Σ+).

Proof. This follows immediately from the definitions.

The situation for Markov measures is only slightly more complicated. Here there
are k different measures one can find in the scaling scenery, corresponding to the
first level blow ups µi.

Example 4.5. Let µ ∈ Pσ(Σ+
A) be an ergodic Markov measure for a subshift of finite

type Σ+
A. Then µ is uniformly scaling and generates the distribution∑

i∈I

πi δµi ∈ D(Σ+).

Moroever, if Σ+
A is topologically mixing, then µ is strongly uniformly scaling and all

of the generated distributions Qq are equal to the above.

Proof. Let i ∈ I, x ∈ Σ+ such that xn−1 = i and let y ∈ Σ+ and m ∈ N be arbitrary.
Then

µx,n([y0, . . . , ym−1]m−1
0 ) =

µ
(
[x0, . . . xn−1, y0, . . . , ym−1]m+n−1

0

)
µ
(
[x0, . . . , xn−1]n−1

0

)
=

πx0 px0x1 · · · pxn−2xn−1pxn−1y0 · · · pym−2ym−1

πx0 px0x1 · · · pxn−2xn−1

= pxn−1y0 · · · pym−2ym−1

= µi([y0, . . . , ym−1]m−1
0 )

and so for such x and n, µx,n = µi. This observation combined with the Birkhoff
ergodic theorem implies that for µ almost all x we have

1

N

N−1∑
n=0

δµx,n =
∑
i∈I

(
1

N

N−1∑
n=0

1[i]00

(
σn(x)

))
δµi

→w∗

∑
i∈I

(∫
Σ+

1[i]00
dµ

)
δµi

=
∑
i∈I

πi δµi

completing the proof. The topologically mixing case follows similarly.
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These results can easily be extended to “generalised Markov measures”, i.e., the
Gibbs measures for locally constant functions. The following examples are a simple
demonstration of the sharpness of Theorems 2.1 and 2.2.

Example 4.6. The Markov measure associated with the stochastic matrix 1/2 1/2 0
1/2 1/2 0
0 0 1


and left invariant probability vector (1/3, 1/3, 1/3) is invariant but not uni-
formly scaling as the scenery distributions converge to different limits almost
surely within the two ergodic components.

Example 4.7. The unique Markov measure associated with the stochastic matrix 0 0 1
0 0 1

1/2 1/2 0


is ergodic but not strongly uniformly scaling. In particular, for even q it
is not σq ergodic and the q-sparse scenery distributions converge to different limits
almost surely within the σq ergodic components.

Note that both of these (counter) examples have positive entropy. The simplicity of
the result in the case of Markov measures allows us to make more precise statements
about the statistical behaviour of the scenery distributions. For example, we have
the following Central Limit Theorem (CLT).

Corollary 4.8 (Central Limit Theorem). Let µ be an ergodic Markov measure and
Q =

∑
i∈I πi δµi be the distribution it generates. Fix a cylinder [e0 · · · em−1]m−1

0

and a < b and write U = U([e0 . . . em−1]m−1
0 , a, b). If Q(U) ∈ (0, 1), then letting

σ2 = Q(U)−Q(U)2 > 0 we have

1√
N

N−1∑
n=0

δµx,n(U) −
√
N Q(U) ⇒ N (0, σ2)

where ⇒ denotes convergence in distribution.

Proof. Write IU = {i ∈ I : µi ∈ U}. Example 4.5 and the classical CLT yield

1√
N

N−1∑
n=0

δµx,n(U) −
√
N Q(U) =

1√
N

N−1∑
n=0

(∑
i∈IU

1[i]00

(
σn(x)

))
−
√
N Q(U)

⇒ N (0, σ2)

which completes the proof. We have used the fact that Xn :=
∑

i∈IU 1[i]00

(
σn(x)

)
is an i.i.d. sequence taking the value 1 with probability Q(U) =

∑
i∈IU πi and 0

otherwise.
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Other related statistical results follow similarly, but we omit further details. If one
was interested in obtaining a CLT for general Gibbs measures then, inspecting the
proof of Theorem 2.1, one obtains

1√
N

N−1∑
n=0

δµx,n(U) −
√
N Q(U) =

1√
N

N−1∑
n=0

1(gen)−1(a,b)

(
σn(x)

)
−
√
N Q(U).

This expression is more difficult to handle for two reasons. The first is that it involves
an ergodic sum for a sequence of functions and so one needs an analogue of the CLT
for Maker’s ergodic theorem. The second and more important reason is that the
sequence Xn := 1(gen)−1(a,b)

(
σn(x)

)
is not i.i.d. and moreover we cannot guarantee

that the functions 1(gen)−1(a,b) or even 1(ge)−1(a,b) are Hölder continuous, despite the
fact we know (in the Gibbs setting) that gen and ge are Hölder. This prevents us
from using several standard results on CLTs for ergodic sums, see [PP, CP]. In the
setting of ergodic non-Gibbs µ, a CLT appears even harder to achieve because we
can only guarantee ge is L1.
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perbolic dynamics, Astérisque, (1990), 1–268.

[PW] W. Parry and P. Walters. Endomorphisms of a Lebesgue space, Bull. Amer.
Math. Soc., 78, (1972), 272–276.

[Pa] K. R. Parthasarathy. Introduction to probability and measure, The Macmillan
Co. of India, Ltd., Delhi, 1977. xii+312 pp.

[S] D. Sullivan. Differentiable structures on fractal-like sets, determined by intrinsic
scaling functions on dual Cantor sets, The Mathematical Heritage of Hermann
Weyl (Durham, NC, 1987), Proc. Sympos. Pure Math., 48, Amer. Math. Soc.,
Providence, RI, (1988), 15–23.

[W] P. Walters. Ruelle’s operator theorem and g-measures, Trans. Amer. Math.
Soc., 214, (1975), 375–387.

14


