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Abstract

Projector Quantum Monte Carlo Methods for
Linear and Non-linear Wavefunction Ansatzes

Lauretta Rebecca Schwarz

This thesis is concerned with the development of a Projector Quantum Monte Carlo
method for non-linear wavefunction ansatzes and its application to strongly correlated
materials. This new approach is partially inspired by a prior application of the Full
Configuration Interaction Quantum Monte Carlo (FCIQMC) method to the three-
band (p− d) Hubbard model. Through repeated stochastic application of a projector
FCIQMC projects out a stochastic description of the Full Configuration Interaction
(FCI) ground state wavefunction, a linear combination of Slater determinants spanning
the full Hilbert space. The study of the p− d Hubbard model demonstrates that the
nature of this FCI expansion is profoundly affected by the choice of single-particle basis.
In a counterintuitive manner, the effectiveness of a one-particle basis to produce a
sparse, compact and rapidly converging FCI expansion is not necessarily paralleled by
its ability to describe the physics of the system within a single determinant. The results
suggest that with an appropriate basis, single-reference quantum chemical approaches
may be able to describe many-body wavefunctions of strongly correlated materials.

Furthermore, this thesis presents a reformulation of the projected imaginary time
evolution of FCIQMC as a Lagrangian minimisation. This naturally allows for the
optimisation of polynomial complex wavefunction ansatzes with a polynomial rather
than exponential scaling with system size. The proposed approach blurs the line
between traditional Variational and Projector Quantum Monte Carlo approaches whilst
involving developments from the field of deep-learning neural networks which can be
expressed as a modification of the projector. The ability of the developed approach
to sample and optimise arbitrary non-linear wavefunctions is demonstrated with
several classes of Tensor Network States all of which involve controlled approximations
but still retain systematic improvability towards exactness. Thus, by applying the
method to strongly-correlated Hubbard models, as well as ab-initio systems, including
a fully periodic ab-initio graphene sheet, many-body wavefunctions and their one-
and two-body static properties are obtained. The proposed approach can handle and
simultaneously optimise large numbers of variational parameters, greatly exceeding
those of alternative Variational Monte Carlo approaches.
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Chapter 1

Introduction

It was not until the unexpected discovery of high-temperature superconductivity in
cuprates by J. G. Bednorz and K. A. Müller in 1986[1, 2] that the field of strongly
correlated electrons received the attention that it deserves. Soon after their discovery, it
became clear that in order to understand the normal state properties of these materials
and, in particular, the phenomenon of superconductivity deeper insight into the strong
correlations that prevail in these systems is required[3–5].

In strongly correlated materials different physical interactions involving spins,
charges, orbitals and the lattice of the system are strongly coupled to each other and
give rise to a variety of electronic phases[6–8] which are typically close energy, thereby
leading to complex phase diagrams. The cooperation, competition, or a combination
of both, amongst these correlated electronic phases can result in unexpected electronic
phenomena and non-linear responses to external fields as these systems are very
sensitive to small changes in their surroundings, an observation that has been made
in many experimental studies and numerous investigations of model systems[9–11].
This rich variety of phenomena resulting from strong correlation effects includes
not only the high temperature superconductivity in layered copper oxides and iron
pnictides, but also colossal magneto-resistance effects in manganese oxide, as well as
heavy fermion phenomena in lanthanide and actinide intermetallic compounds, to
name just a few[12, 13]. Typically, strongly correlated systems comprise materials in
which transition metals, lanthanides or actinides with partially filled d- or f -shells
play an active role. On the one hand, these electrons in open d- or f -shell are
spatially localised and thus display atomic-like behaviour. On the other hand, they also
participate in chemical bonding to differing extends and can act in a band-like fashion
in some cases. As a consequence, they are located in an intermediate regime between
localised and delocalised electrons[13] and it is this competition between localisation
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and delocalisation, that is between kinetic energy and electron-electron interaction,
which lies at the heart of the strong correlation problem[14] and gives rise to the new
low-energy scales generated by strong correlations[3]. Usually, many of these strongly
correlated materials consist of simple components such as transition metal oxides which
often adopt the perovskite structure whereby a transition metal ion is surrounded
by an octahedral oxygen cage. Yet, when these simple building blocks are brought
together they interact in a highly complex manner such that their collective behaviour is
difficult to predict a priori based on their individual properties. The strong correlations
prevailing in these systems imply that the collective states cannot be understood based
on a one-electron (or even one-quasiparticle) approximation. The latter are therefore of
no use and more sophisticated approaches are needed to gain insight and rationalise the
intriguing electronic phenomena and non-linear responses that emerge in these materials.
Potentially, this behaviour can also form the basis for the design and development of
novel types of electronics with new functionalities for which purpose understanding,
controlling and predicting the emergent complexity of strongly correlated electron
systems is essential. Examples of these potential applications include the surface and
catalytic properties of transition metal and rare earth oxides[15], molecular magnetic
materials[16] and cathode materials of lithium batteries[17].

On the theory side, the foundations of quantum mechanics were established during
the first half of the twentieth century. In 1926, Erwin Schrödinger rederived Bohr’s
semi-classical energy spectrum for hydrogen-like atoms within a quantum mechanical
framework[18] and concluded that each eigenstate can be uniquely labelled by three
quantum numbers. In order to explain spectra of more complicated atoms, Pauli
introduced a fourth degree of freedom and stated that no two electrons can share
the same four quantum numbers[19], a principle which is known as Pauli’s exclusion
principle today. Whilst Uhlenbeck and Goudsmit identified this fourth quantum number
as the spin projection of the electron[20], Heisenberg introduced quantum mechanical
treatments of many-body problems[21]. These and many other contributions and
advances of quantum mechanics lay the foundations for the development of electronic
structure theory. More generally, for any physical system, the Schrödinger equation[22]
defines the allowed states of the system and their evolution in time and solving it leads
to the wavefunction which in the Copenhagen interpretation of quantum mechanics
represents the most complete description of a physical system. Yet, it was soon realised
that this would only be the beginning of the problem, as Paul Dirac said in 1929[23]:

The general theory of quantum mechanics is now almost complete, the
imperfections that still remain being in connection with the exact fitting
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in of the theory with relativity ideas. These give rise to difficulties only
when high-speed particles are involved, and are therefore of no importance
in the consideration of atomic an molecular structure and ordinary chemical
reactions, in which it is, indeed, usually sufficiently accurate if one neglects
relativity variation of mass with velocity and assumes only Coulomb forces
between the various electrons and atomic nuclei. The underlying physical
laws necessary for the mathematical theory of a large part of physics and
the whole of chemistry are thus completely known, and the difficulty is
only that the exact application of these laws leads to equations much too
complicated to be soluble. It therefore becomes desirable that approximate
practical methods of applying quantum mechanics should be developed, which
can lead to an explanation of the main features of complex atomic systems
without too much computation.

Nevertheless exact or approximate solutions to the corresponding equations are
crucial for understanding the collective behaviour of interacting elementary particles
and the variety of complex phenomena emerging from this. Electronic structure
theory is therefore concerned with the development of theories which attempt to find
approximate solutions to the underlying exact equations, with varying degrees of
accuracy and associated computational cost. Over the last century, this has resulted
in a huge array of methods with different levels of approximations to balance the
competing demands of accuracy and tractable computational cost. In the realm of
strongly correlated electrons, developments of various electronic structure approaches
have concentrated on methods which require no assumption of the explicit form of the
full many-body wavefunction since it represents a computationally expensive object.

Thus, ab-initio electronic structure calculations are dominated by density functional
theory (DFT)[24] which is, however, a ground state theory and therefore fails, often
qualitatively. In particular, this is the case for strongly-correlated systems where low-
energy excitations need to be taken into account appropriately. This failure is inherent
and independent of any approximations that are involved in the potential of the Kohn-
Sham equation[3]. An example for such a failure is the local density approximation
(LDA)[25] within DFT which despite its success for conventional metallic systems is
inadequate for strongly correlated systems since it assumes the potential of the Kohn-
Sham equations to be determined by the local density. This assumption breaks down
when the latter has a strong spatial dependence as it is the case in strongly correlated
materials with their strongly fluctuating charge and spin degrees of freedom[3, 9].
Qualitative failures of LDA are widely observed for the Mott insulating phase of
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many transition metal compounds, as well as for phases of correlated metals near
the Mott insulator. Examples of the inability of LDA to reproduce an insulating (or
semiconducting) phase include La2CuO4, YBa2Cu3O6, NiS, NiO and MnO[9, 26, 27].
Nonetheless, semi-empirical methods have had some successes like the renormalised
band-structure method[28]. Several approaches have also been proposed to incorporate
strong correlation in the LDA method such as LDA+U[29] and LDA-SIC[30]. In
contrast to LDA, both methods yield a correct antiferromagnetic insulator as ground
state for La2CuO4, but the origin of the insulating gap is not correct. Being a ground
state method, DFT is not guaranteed to reproduce excitations well which are, however,
often crucial for the properties of strongly correlated systems and many cases exist
where DFT calculations involving standard approximations lead to unacceptable errors.
For example, excitation energies between different states of transition metal, as well as
rare earth and lanthanide atoms are often predicted poorly, differing from measured
values by about 2 eV[3]. Another method applied to strongly correlated electron
systems is the hybrid LDA+DMFT (Dynamical Mean Field Theory) method[31]. In
this approach, the electron self-energy is calculated by DMFT theory in the limit of
infinite dimension and is k-independent[10] which is why the LDA+DMFT approach
provides no viable route to the correct band dispersion. Extensions of the original
DMFT method to cluster DMFT[32] go into the right direction, but the clusters that
can be treated are relatively small.

Since reliable ab-initio methods for strongly correlated methods are still at their
beginning, another widely used theoretical approach is based on simplifying model
Hamiltonians which seem to better capture the essence and unravel the physical effects
of correlated systems. The one most studied is the Hubbard Hamiltonian[33, 9], which
describes the dynamics of electrons on a lattice whereby each lattice site can at most
accommodate two electrons of opposite spin in its associated orbitals. The complexity of
a full Hamiltonian for this system is thus reduced down to only two parameters: a kinetic
energy term t which represents the hopping of electrons between nearest-neighbour
lattice sites and an on-site Coulomb repulsion term U which accounts for the repulsion
between electrons that reside on the same lattice site. The simplifications introduced
by this ansatz compared to an ab-initio Hamiltonian are enormous. Nevertheless,
important insight can be gained by studying Hubbard model systems, in particular
at or close to half filling. A variety of techniques have been applied for the study
of Hubbard systems with emphasis on two dimensions (2D). The reason for this is
that the 2D Hubbard model is claimed to possess all the relevant physics for high-TC

superconductivity. Despite the simplicity of the model Hamiltonian, the latter is still
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very difficult to solve accurately and many questions still remain unanswered. An
example for this is the much studied Mott-Hubbard metal-to-insulator phase transition
at half filling when U >> t for which it is not known at which critical ratio of U

t

this phase transition occurs at T = 0[34]. For a slightly more realistic picture, the
Hubbard model Hamiltonians can also be refined by addition of further orbitals and
parameters. This leads for example to the three-band or five-band Hubbard model
which act as model for Cu–O planes in high-TC cuprates. Hybrid approaches have also
been developed in which LDA is used to construct Wannier functions and compute
parameters of a multi-band Hubbard model. The latter is treated by a generalised
tight-binding method which combines exact diagonalisation of a small cluster with
perturbation treatment of the inter-cluster hopping and interactions. This approach
has been used to find the size of the gap in La2CuO4[35].

In spite of its success, DFT and its various hybrid approaches have some weaknesses
which are difficult to amend. A general drawback is that the true exchange-correlation
potential is unknown and all results of DFT calculations depend on the choice of
approximation to it. Any approximation to the exchange-correlation potential is
essentially uncontrolled and therefore difficult to improve systematically which repre-
sents a major issue for calculations of strongly correlated electrons. Because of the
issues associated with DFT and its hybrid approaches there is also growing interest in
wavefunction-based methods[36–38]. Initially these methods were only used to treat
small molecules, although the studied systems increased in size. Owing to a fruitful
combination of the advent in computer technology and methodological development,
quantum chemical methods have made impressive progress and system sizes increased
to several hundred atoms[39]. In contrast to DFT, wavefunction-based methods provide
a rigorous framework for addressing correlation problems which avoid any uncontrolled
approximations. These approaches explicitly construct many-body wavefunctions at
increasing levels of sophistication and accuracy. However, W. Kohn put forward the
argument that the many-electron wavefunction is not a legitimate concept for large
systems with large electron numbers, N ≳ 103[40, 41]. Electronic wavefunctions are
thus said to face the ‘exponential wall’ problem, another formulation of the fact that
the number of all possible classical configurations of particles grows exponentially
with system size, and so does the Hilbert space that the exact wavefunction lives in.
Yet, electronic structure methods based on many-body wavefunctions have found a
multitude of ways to circumvent this ‘exponential wall’ problem. Standard quantum
chemical methods provide thus an appropriate framework for a rigorous treatment of
the ubiquitous short-range correlations and of a realistic representation of the crystalline
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environment. The success of these quantum chemical methods is founded on an accu-
rate description in real space of the correlation hole around an electron which is of local
character[42, 43] apart from special cases such as marginal Fermi-liquid behaviour or
superconductivity where the long-range part of the correlation hole becomes crucial[41].
Since the correlation hole is a local object, wavefunction-based approaches can limit
its description to a finite periodic cluster out of the infinite solid which is large enough
to account for crucial short-range correlations. Typically, partially filled d- or f -shells
require a multi-configurational wavefunction representation. This can be obtained
with the Complete Active Space Self-Consistent Field (CASSCF) method which in
general provides a good description for strong correlation effects. In these treatments,
the crystalline environment is described by an effective one-electron potential which
is calculated with prior Hartree-Fock evaluations for the periodic system. Although
the Hartree-Fock approximation is a mean-field treatment, charge distributions are
described quite well by it as they are relatively unaffected by correlation effects, even
when the latter are strong. These methods have been used to describe the ground
state of strongly correlated systems such as LaCoO3 and LiFeAs, as well as the Zhang-
Rice-like electron removal band for CuO2 planes in La2CuO4[44]. Further successful
examples include the application of the method of increments, which evaluates the
correlation energy by decomposing it into increments[45, 46], to transition metal and
rare-earth oxides[47–49].

Wavefunction-based approaches are therefore a field with high potential in the future.
Although they tend to be more computationally expensive, they represent promising
alternatives to DFT-based methodologies given that all approximations are fully
controlled and can be successively and systematically improved. In addition, many-body
wavefunctions represent the best framework to obtain deeper insight into correlation
effects of a system and a better understanding of its most important microscopic
processes. Over the last century, developments and applications involving well-chosen
and controlled approximations have yielded wavefunctions whose observables are in
excellent agreement with experimental measurements. Thus, a major motivation for
advances in electronic structure theory has been the aim to arrive at these wavefunctions
at a tractable computational cost. This has lead to a vast array of wavefunction-based
methods at different levels of accuracy when balancing the competing demands of
computational cost and accuracy. A summary of those which are most relevant to this
thesis is given in Chapter 2. A set of promising techniques that may pave the way to
arrive at this delicate balance are Quantum Monte Carlo (QMC) approaches[50, 51]
which broadly split in two main categories, Variational and Projector Quantum Monte
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Carlo methods. These represent an array of versatile and accurate stochastic methods
which treat quantum many-body systems by sampling the space stochastically, as
detailed in Chapter 3 which lays the necessary groundwork for the research presented
in the later chapters. Amongst these QMC approaches, one promising emerging
technique is the Full Configuration Interaction Quantum Monte Carlo (FCIQMC)
method[52], a Projector Quantum Monte Carlo approach which samples both the
projector and the exact wavefunction in Fock space, a linear superposition of all
classical configurations. As such, FCIQMC is a high-accuracy technique and thus
ideally suitable for gaining a fundamental understanding of the structure and important
components in the quantum many-body wavefunction of a system which then also aids
the development of more approximate approaches. A study in this spirit is presented
in Chapter 4 for a prototypical strongly correlated system, the strongly correlated
three-band (p− d) Hubbard model. In this investigation, FCIQMC is used to examine
how the structure of the exact wavefunction is affected by the choice of underlying
single-particle basis spanning the Hilbert space and what the implications for other
more approximate methods are. Even though the high accuracy of FCIQMC represents
a significant advantage, the size of the Hilbert space conceals exponential complexity
in the exact wavefunction ansatz and the associated computational cost can often limit
the applicability of FCIQMC, in particular when considering large systems.

This challenge has inspired the research that the remaining chapters of this thesis
are concerned with: the development of a Projector Quantum Monte Carlo method
for non-linear wavefunction ansatzes. This novel approach reformulates the projected
imaginary time evolution of FCIQMC in terms of a Lagrangian minimisation which nat-
urally admits non-linear wavefunctions ansatzes. The latter more traditionally inhabit
the realm of Variational Quantum Monte Carlo approaches where their polynomial
complexity circumvents the exponential scaling of the Hilbert space, and hence the
‘exponential wall’ problem. Chapter 5 gives a thorough derivation and exposition of this
approach which blurs the line between traditional Variational and Projector Quantum
Monte Carlo methods. At the same time, it includes developments from the field of
deep-learning neural network which can be viewed as a modification of the propagator
of the wavefunction dynamics. In addition, the dynamics of the wavefunction evolution
also grant access to the one- and two-body static properties of the quantum many-body
wavefunction. Chapter 6 and 7 are dedicated to applications which demonstrate the
ability of this approach to sample and optimise arbitrary non-linear wavefunction
parameterisations with different forms of Tensor Network State ansatzes[53–55]. This
set of powerful wavefunction parameterisations has been shown to provide efficient
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representations of the quantum many-body wavefunction with their success rooted in
their ability to capture the natural structure of quantum correlations. Whilst Chapter
6 focuses on Correlator Product State wavefunctions, Chapter 7 considers Matrix
Product States, the underlying variational class of the highly successful Density Matrix
Renormalisation Group (DMRG)[56] approach, and their generalisations to higher
dimensions, Projected Entangled Pair States. All of these wavefunction ansatzes involve
controlled approximations and retain systematic improvability towards exactness. Thus,
these parameterisations are used in Chapters 6 and 7 to find many-body wavefunctions
and their one- and two-body static properties for a range of Hubbard lattice models
and ab-initio systems. The number of variational parameters that are handled and
simultaneously optimised within these applications exceeds those of alternative state-of-
the-art Variational Quantum Monte Carlo methods, again demonstrating the ability of
this novel approach to efficiently treat and optimise arbitrary non-linear wavefunction
ansatzes.



Chapter 2

Theoretical Background

2.1 Introduction

The first postulate of quantum mechanics states that all possible information on any
quantum mechanical system of interacting particles is contained within its wavefunction
Ψ. The time-dependent Schrödinger equation,

iℏ
∂

∂t
Ψ = ĤΨ, (2.1)

together with an appropriate set of boundary conditions entirely determines this
wavefunction, and hence the state of the system and its evolution in time. It is
therefore a primary objective of molecular quantum mechanics to find a solution to
the non-relativistic time-independent Schrödinger equation [18]

ĤΨ = EΨ (2.2)

where Ĥ is the Hamiltonian operator for a system whose state is described by the
wavefunction Ψ with total energy E . For a system of Nnuc nuclei and N electrons, this
Hamiltonian (in atomic units ℏ = e = me = 4πϵ0 = 1), is given by [57]:

Ĥ = −
N∑

i=1

1
2∇

2
i −

Nnuc∑
A=1

1
2MA

∇2
A −

N∑
i=1

Nnuc∑
A=1

ZA

riA

+
N∑

i=1

N∑
j>i

1
rij

+
Nnuc∑
A=1

Nnuc∑
B>A

ZAZB

RAB

, (2.3)

where rij = |ri − rj| is the distance between electrons i and j, riA = |ri − RA| the
distance between electron i and nucleus A with mass MA and atomic number ZA,
and RAB = |RA − RB| the distance between nuclei A and B. Whilst the first two
terms account for the kinetic energy of electrons and nuclei, the third term describes
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the Coulomb attraction between electrons and nuclei. The electron-electron and
nuclear-nuclear repulsion are represented by the last two terms, respectively.

Due to the large difference between nuclear and electronic masses, the electrons are
expected to adjust almost instantaneously to changes in the nuclear positions, such
that the ∑Nnuc

A=1
1

2MA
∇2

A term can be considered negligible. Electronic structure methods
therefore typically invoke the Born-Oppenheimer approximation [58] which decouples
the electronic motion from the nuclear motion by expressing the total wavefunction as
product of electronic and nuclear components,

Ψ(r,R) = Ψelec(r; R)Ψnuc(R). (2.4)

The electronic wavefunction Ψelec represents a solution to the electronic Schrödinger
equation

ĤelecΨelec(r; R) = Eelec(R)Ψelec(r; R), (2.5)

Ĥelec = −
N∑

i=1

1
2∇

2
i −

N∑
i=1

Nnuc∑
A=1

ZA

riA

+
N∑

i=1

N∑
j>i

1
rij

+ Enuc. (2.6)

This electronic Schrödinger equation describes the motion of N electrons in a field of
Nnuc fixed nuclei whose kinetic energy is neglected and whose repulsion contributes a
constant value Enuc = ∑Nnuc

A=1
∑Nnuc

B>A
ZAZB

RAB
to the electronic energy Eelec. This common

approximation has been shown to produce potential energy surfaces with accurate
molecular properties. It is, however, worth noting that the approximation can break
down in systems with closely lying electronic states due to coupling between these states
and the nuclear kinetic energy neglected in the Born-Oppenheimer approximation [59,
60]. Nevertheless, the electronic Schrödinger equation is the basis of the majority of
problems in quantum chemistry. In particular, any discussion of the Hamiltonian within
this thesis is with respect to the Born-Oppenheimer separated electronic Hamiltonian,
unless otherwise stated, and the ‘elec’ subscript is omitted from this point onwards.

In practice, it is extremely difficult to solve 2.5 for the exact Ψ and analytical
solutions can only be found for a few simple one-electron systems such as the H
atom or the H2

+ molecule. For more complicated systems, approximations must be
introduced whilst incorporating as many of the symmetries and characteristics of the
exact wavefunction as possible in the approximate wavefunction to ensure that it gives
a reasonable description of the system. Many of these properties can be introduced
by ensuring that the wavefunction represents an eigenfunction of the corresponding
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operators which commute with Ĥ such as the number operator (N̂ ), or the total (Ŝ2)
and projected spin operators (Ŝz) in non-relativistic theory.

One of the most fundamental characteristics which should be included at each
level of theory arises as a consequence of the fundamental nature of the spin that
each particle is associated with. Since the Hamiltonian is invariant to interchange
of indistinguishable particles, its eigenfunctions can be separated in two symmetry
classes: those wavefunctions which are symmetric and those which are anti-symmetric
with respect to identical particle exchange. The spin-statistics theorem [61, 62] states
that integer spin particles, called bosons, obey Bose-Einstein statistics and half-integer
spin particles, referred to as fermions, obey Fermi-Dirac statistics. Hence, for bosons
the general many-body wavefunction is symmetric with respect to interchange of any
two indistinguishable particles, whilst for fermions it is anti-symmetric with respect to
interchange of any two indistinguishable particles. From the anti-symmetric nature of
the fermionic wavefunction, the Pauli exclusion principle [19, 63, 64] follows which, in
its general form, states that two or more identical fermions such as electrons cannot
occupy the same (pure) quantum mechanical state. In general, writing the function
which completely describes a single electron i as product of a spatial and a spin
component that depend on the spatial and spin coordinates of the electron, collectively
denoted by:

xi = {ri, σi} , (2.7)

where

σ = {α; β} , (2.8)

the anti-symmetry and Pauli principle can thus be described as

Ψ(x1,x2, . . . ,xi, . . . ,xj, . . . ,xN) = −Ψ(x1,x2, . . . ,xj, . . . ,xi, . . . ,xN). (2.9)

The simplest, non-trivial function which satisfies this requirement is a Slater determi-
nant [65]

Di = 1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(x1) ϕ1(x2) . . . ϕ1(xN)
ϕ2(x1) ϕ2(x2) . . . ϕ2(xN)

... ... . . . ...
ϕn(x1) ϕn(x2) . . . ϕN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.10)
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Within this formalism interchanging the coordinates of two electrons is equivalent
to interchanging two rows of the Slater determinant which changes the sign of the
determinant as required by the anti-symmetry principle. If two electrons share the
same spin and spatial coordinates, corresponding to two identical columns in the
Slater determinant, the latter vanishes. At the same time, this characteristic creates a
region of low probability for electrons with like spin at small separation distances. This
represents a manifestation of Fermi correlation which is automatically incorporated into
a wavefunction written as a Slater determinant. Alternatively, the Slater determinant
can also be expressed in terms of an antisymmetrising operator Â acting on a Hartree
product

Di = Â[ϕ1(x1)ϕ2(x2) . . . ϕN(xN)], (2.11)

where

Â = 1√
N !

N−1∑
p=0

(−1)pP̂p = 1√
N !

1−
∑
i ̸=j

P̂ij +
∑

i ̸=j ̸=k

P̂ijk − . . .

 (2.12)

with P̂p the permutation operator which generates all possible permutations of p
electronic coordinates. The functions {ϕi} represent single particle spin orbitals which
describe the distribution of a single electron. Each ϕi depends on the spin and spatial
coordinates x of only one electron and is written as a product of a spatial orbital and
a spin function

ϕi(x) = ϕi,s(r, σ) = ϕI(r)δs,σ. (2.13)

Whereas two spin orbitals with the same spatial function but different spin part are
always orthogonal ⟨ϕi,α(x)|ϕi,β(x)⟩ = 0, the set of spatial orbitals {ϕI(r)} are usually
chosen to be orthonormal ⟨ϕI(r)|ϕJ(r)⟩ = δIJ but need not necessarily be.

Since the Hamiltonian and the antisymmetrising operator are both linear operators,
a linear combination of Slater determinants

Ψ =
∑

i
CiDi (2.14)

creates a more flexible many-body wavefunction whilst still maintaining the required
antisymmetry properties. Wavefunctions written in the form of a single Slater deter-
minant or any linear combination of Slater determinants constitute the basis of the
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Hartree-Fock and Configuration Interaction methods, respectively. Working in a Slater
determinant basis requires keeping track of the occupations of the single particles states
with a certain number of fermions and the appropriate sign factors arising from the
respective permutation. Dirac and Fock established a formalism with this functionality,
referred to as Second Quantisation [66, 67].

2.2 An Alternative Formalism: Second Quantisa-
tion

The Hamiltonian in 2.5 is represented in First Quantisation, a formulation in which
observables are represented by operators and states by functions. In the language
of Second Quantisation [37, 68–70], both wavefunctions and operators are uniquely
described by a single set of elementary operators. One of the major differences between
first and second quantisation is that while the total number of particles is restricted
in first quantisation, second quantisation does not impose such a restriction. In its
first quantisation representation, the N -particle wavefunction is expanded in a basis of
vectors that span the N -particle Hilbert space HN . In the trivial case of no particles,
N = 0, HN is equal to C, and in the case of a single particle N = 1, HN is spanned by
the set of single particle spin orbitals ϕi (i = 1, 2, . . .∞) with inner product ⟨ϕi|ϕj⟩ = δij .
For a general N -particle system, HN is the N -fold tensor product of H1

HN = H⊗N
1 . (2.15)

In the case of bosons, this tensor product is symmetrised after tensor multiplication,
and in the case of fermions it is antisymmetrised, thereby implying that the fermionic
HN is spanned by the set of all N -particle Slater determinants. Since this thesis is
only concerned with fermionic particles the following discussion will be restricted to
fermions.

2.2.1 The Fock Space

Since in second quantisation the number of particles is not a constant, a state vector
in its second quatised form is a basis vector of an abstract linear vector space called
Fock space F∞ comprising all states containing zero to infinitely many particles. This



14 Theoretical Background

Fock space is defined as the direct sum of N -particle Hilbert spaces

F∞ =
∞⊕

N=0
HN . (2.16)

Since F∞ may be decomposed into subspaces of N -particles Hilbert spaces which in
turn are spanned by N -particle Slater determinants, the span of F∞ includes Slater
determinants but for all particle numbers ranging from 0 to ∞. The basis vectors of
the Fock space are occupation number vectors defined as

|n⟩ = |n1, n2, . . .⟩ , ni =

1 ϕi occupied
0 ϕi unoccupied

,
∞∑

i=1
ni <∞, (2.17)

which is an alternative representation for a Slater determinant constructed from the set
of one-particle functions {ϕi}. The occupation number ni is equal to 1 if ϕi is present
in the determinant and 0 if it is absent. Spaces FN with at most N particles,

FN =
N⊕

n=0
Hn. (2.18)

are subspaces of the Fock space F∞ and likewise spanned by |n⟩ satisfying the constraint

∞∑
i=1

ni ≤ N. (2.19)

Whilst the |n⟩ of the Fock space F∞ and its subspaces FN are created from an infinite
set of functions ϕi, in practice only finite basis set with M spin orbitals can be employed.
This further restricts the space to those 2M -dimensional subspaces

FN,M =
N⊕

n=0
Hn,M . (2.20)

spanned by those occupation number vectors that satisfy

|n⟩ = |n1, n2, . . . , nm⟩ ,
M∑

i=1
ni ≤ N. (2.21)

For a given spin orbital basis, a one-to-one mapping between Slater determinants in
canonical order and occupation number vectors in the Fock space exist. However, in
contrast to determinants occupation number vectors have no spatial structure but are
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basis vectors of an abstract vector space, representing an orthonormal and complete
basis with inner product,

⟨m|n⟩ = δm,n =
M∏

i=1
δmi,ni

, (2.22)

and resolution of the identity defined as

Î =
∑

k
|k⟩ ⟨k| . (2.23)

The subspace H0 with no particles contains a single basis vector, the true vacuum state

|0⟩ = |01.02, . . .⟩ = 1 ∈ C = H0 ⊂ F∞, (2.24)

which is normalised to unity ⟨0|0⟩ = 1.

2.2.2 Elementary Operators

In second quantisation, all states and operators can be constructed from the set of
elementary creation and annihilation operators. Whereas the creation operator a†p
creates a fermion in spin orbitals p, its Hermitian adjoint, the annihilation operator ap

annihilates a fermion in spin orbital p. These operators satisfy the anticommutation
rules

{
ap, a

†
q

}
= apa

†
q + a†qap = δpq (2.25)

{ap, aq} =
{
a†p, a

†
q

}
= 0, (2.26)

from which all properties of the operators follow. These anticommutation relations
ensure that, in accordance with Pauli’s exclusion principle, a single-particle state cannot
be occupied with more than one fermion, a†pa†p = −a†pa†p = 0, as well as, the antisym-
metry for multiple fermions a†pa†q = −a†qa†p. Furthermore, the anticommutation rules
imply that if a creation operator a†p (annihilation operator ap) acts on an occupation
number vector |n⟩, it populates (depopulates) the spin orbital ϕp if it is unoccupied
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(occupied) in |n⟩

a†p |n1, . . . , np−1, np, np+1, . . .⟩ =

Γn
p |n1, . . . , np−1, 1p, np+1, . . .⟩ if np = 0p

0 if np = 1p,
(2.27)

ap |n1, . . . , np−1, np, np+1, . . .⟩ =

Γn
p |n1, . . . , np−1, 0p, np+1, . . .⟩ if np = 1p

0 if np = 0p,
(2.28)

with the phase factor

Γn
p =

p−1∏
q=1

(−1)nq . (2.29)

Since for a general occupation number vector the unoccupied spin orbitals can be
identified from the occupied ones, explicit reference to the former may be avoided
altogether by writing the occupation number vector as a string of creation operators in
canonical order (i.e. in the same order as in the occupation number vector) acting on
the vacuum state:

|n⟩ =
 ∞∏

p=1
(a†p)np

 |0⟩ . (2.30)

Due to the definition of the elementary creation and annihilation operators and their
respective anticommutation relation, the antisymmetry properties of the wavefunction
are incorporated in the algebraic properties of the operators. By analogy, similar
creation b†p and annihilation bp operators can be introduced for bosons which satisfy
the commutation rules [bp, b

†
q] = bpb

†
q − b†qbp = δpq and [bp, bq] = [b†p, b†q] = 0 to transfer

the symmetry properties of the bosonic wavefunction into the algebraic properties of
the operator. Second quantisation allows both states and operators to be expressed in
terms of creation and annihilation operators in a unified way. As expectation values of
observables are independent of the representation of operators and states, an operator in
Fock space can be derived by requiring its matrix elements between occupation number
vectors to be equal to the respective matrix elements between Slater determinants of
the operator in its first quantised form. In first quantisation, the operators are exact
and independent of the spin orbital basis, but explicitly depend on the number of
particles, and the dependence on the spin orbital basis is incorporated into the Slater
determinants. In contrast, in the second quantisation formalism, the occupation number
vectors contain no reference to the spin orbital basis. Still, the operators are projections



2.2 An Alternative Formalism: Second Quantisation 17

of the exact operators onto the spin orbital basis, and hence basis-dependent, but
independent of the number of particles. Thus, the second-quantisation representation
of the electronic Hamiltonian in 2.5 is given by [37]:

Ĥ = ĥ+ ĝ + Enuc =
∑
pq

hpqa
†
paq + 1

2
∑
pqrs

gpqrsa
†
pa
†
qasar + Enuc (2.31)

with the one- and two-particle integrals defined as

hpq = ⟨p|ĥ|q⟩ =
∫
ϕ∗p(xi)

(
−1

2∇
2
i −

Nnuc∑
A=1

ZA

riA

)
ϕq(xi)dxi (2.32)

gpqrs = ⟨pq|rs⟩ =
∫ ∫

ϕ∗p(xi)ϕ∗q(xj)
1
rij

ϕr(xi)ϕs(xj)dxidxj (2.33)

Enuc =
Nnuc∑
A=1

Nnuc∑
B>A

ZAZB

RAB

. (2.34)

Within this second-quantisation formulation, if applied to a state vector, the Hamilto-
nian operator generates a linear combination of the original state and further states
constructed by single- and double particle excitations from this state vector. Each such
excitation is associated with an amplitude hpq and gpqrs representing the probability of
this event occurring. In the limit of a complete set of spin orbital, the exact eigenstate Ψ
of the Hamiltonian can be represented by a linear expansion in terms of the occupation
number vectors of the Fock space F∞ when no restriction with respect to particle
number, point-group symmetry or projection of the total spin are enforced. Yet, even
if the total number of electrons is restricted to N = Nα + Nβ with Nα and Nβ the
number of α and β spin particles, the number of terms in the linear combination
becomes infinite due to the infinite basis set. Therefore, the approximation of a finite
spin orbital basis of size M is introduced. Even within this framework, it is exceedingly
difficult in practice to solve for the exact eigenstate Ψ of the Hamiltonian since the 1

rij

term encapsulates the correlation of N interacting particles. The pursuit of accurate
approximations to the solution of the Schrödinger equation is therefore the driving
force of development in electronic structure theory. Within the plethora of different
approaches, many wavefunction-based methods still resort to Slater determinants as
reference functions due to their favourable characteristic of enforcing antisymmetry in
the wavefunction.
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2.3 Hartree-Fock Theory

Hartree-Fock (HF) Theory[71–73] represents a cornerstone of electronic structure theory.
It is not only a useful approximation in its own right, but also often serves as starting
point for more accurate electronic structure methods. HF theory seeks the best single
Slater determinant description of Ψ by optimising its energy with respect to variations
in the molecular (MO) spin orbitals occupying the determinant. Whilst optimisation
of the HF wavefunction can be formulated as an orbital rotation problem that can
be solved using standard techniques of numerical analysis, there exists an alternative
approach which more clearly reflects the physical contents of the HF state ΨHF:
canonical Hartree-Fock theory. Since a single determinant wavefunction represents a
state where each electron behaves as independent particle (subject to Fermi correlation),
the optimal determinant, ΨHF, can be constructed from a set of independent-particle
spin orbitals each of which represents an eigenfunction of an effective one-electron
Schrödinger equation. This set of effective one-electron Schrödinger equation, known
as Hartree-Fock equations, are specified by the Fock operator

f̂ =
∑
pq

fpqa
†
paq, (2.35)

where fpq denotes the elements of the Fock matrix. The Fock operator

f̂ = ĥ+ V̂ (2.36)

retains the one-electron part ĥ of the true Hamiltonian in 2.31, but replaces the
two-electron part ĝ in 2.31 by an effective one-electron potential, also referred to as
Fock potential

V̂ =
∑
pq

∑
i

(2gpiqi − gpiiq)a†paq. (2.37)

Whereas the sums over p and q run over the full set of spin orbitals, the sum over i only
includes occupied spatial orbitals and the Fock potential thus depends on the form of
occupied spin orbitals. While the first term in 2.37 describes the classical Coulomb
interaction of the electron with the charge distribution of the occupied spin orbitals,
the second term, called exchange term, corrects the classical electrostatic interaction
for Fermi correlation. The one-electron eigenfunctions of the Fock operator

f̂a†p |0⟩ = ϵpa
†
p |0⟩ (2.38)



2.3 Hartree-Fock Theory 19

are called canonical spin orbitals and their associated eigenvalues represent the eigen-
values of the Fock matrix

fpq = δpqϵp (2.39)

which is diagonal in this canonical representation. However, the canonical spin orbitals
are not only the eigenvectors of the Fock matrix, but at the same time they represent
the orbitals from which the Fock matrix is constructed, thereby implying that the
Hartree-Fock equations constitute a set of non-linear equations that are not true
eigenvalue equations but more appropriately described as pseudo-eigenvalue equations.
The HF equations can therefore only be solved in an iterative manner whereby, starting
from an initial guess, the Fock matrix is repeatedly reconstructed and rediagonalised
until self-consistency is achieved and the spin orbitals from which the Fock matrix
is constructed are identical to those generated by its diagonalisation. This iterative
procedure is known as self-consistent field (SCF) method[74].

In the classical Roothaan-Hall formulation of Hartree-Fock theory[75, 37], the
molecular orbitals (MO) ϕp are expanded in a finite basis of M orthonormal atomic
spin orbitals (AO) {χµ}

ϕp =
∑

µ

χµCµp. (2.40)

The expansion coefficients Cµp are treated as variational parameters for optimisation
of the HF energy, the expectation value with the true Hamiltonian operator Ĥ,

EHF(C) = min ⟨ΨHF|Ĥ|ΨHF⟩ , (2.41)

which can be written as

EHF(C) =
N∑
i

hii + 1
2

N∑
i

N∑
j

(gijij − gijji) + Enuc, (2.42)

and the indices i and j denote occupied orbitals. Minimisation of this energy subject
to the constraint that the molecular orbitals remain orthonormal

⟨ϕi|ϕj⟩ = δij, (2.43)
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can be reformulated by introducing the Hartree-Fock Lagrangian

L(C) = EHF(C)−
∑
ij

λij(⟨ϕi|ϕj⟩ − δij), (2.44)

where λij denote the set of Lagrange multipliers. The variational conditions on the HF
energy can thus be equivalently expressed in the unconstrained form

∂L(C)
∂Cµk

= 0, (2.45)

which results in the conditions for the optimised HF state

fµk =
∑

j

Sµjλjk, (2.46)

where Sµj represents the overlap between atomic orbital χµ and molecular orbital
ϕj. Multiplication from the left by a set of molecular orbitals demonstrates that the
elements of the Fock operator correspond the the Lagrange multipliers

fik = λik. (2.47)

Since the matrix λ is Hermitian, it may be diagonalised by an orthogonal transfor-
mation among the occupied orbitals λ = UϵUT. The HF state is invariant to such
transformations, and the set of occupied spin orbitals can be rotated into the basis of
canonical spin orbitals which are defined by their diagonalisation of the Fock matrix

fik = δikϵi. (2.48)

In this canonical representation, the variational conditions in 2.46 can be expressed in
the form

∑
ν

fAO
µν Cνk = ϵk

∑
ν

SµνCνk, (2.49)

where the elements of the AO Fock matrix may be entirely evaluated in terms of the
AO basis set spin orbitals

fAO
µν = hµν +

∑
ρσ

DAO
ρσ (gµρνσ − gµρσν), (2.50)
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with the one-electron density matrix defined as

DAO
ρσ =

N∑
i

C∗ρiCσi. (2.51)

The eigenvalue ϵi represents the Fock energy of the respective canonical spin orbital ϕi,

ϵi = hii +
N∑
j

(gijij − gijji). (2.52)

The final HF wavefunction ΨHF is then constructed from the N lowest energy orbitals
of these spin orbitals, and expressing them as Slater determinant with its energy given
by the HF energy in 2.42. In this HF picture, the N electrons move independently
of one another in an electrostatic field created by the stationary nuclei and by the
charge distributions of all the remaining electrons, appropriately modified to account
for Fermi correlation arising from the Pauli antisymmetry principle. The occupied (ϵi)
and virtual (ϵa) spin orbital energies may be interpreted as ionisation potential −ϵi

for removing an electron from the occupied spin orbital ϕi and electron affinity −ϵa

for adding an electron to the virtual spin orbital ϕa (Koopmans’ theorem). The HF
variational conditions in matrix form

fAOC = SCϵ. (2.53)

are also known as the Roothaan-Hall equations[75] within the context of Restricted
Hartree-Fock (RHF) theory. The latter assumes a set of restricted spin orbitals which
impose the constraint that the spatial functions for α and β pairs of spin orbitals of
the same spatial orbital are the same

ϕi,α(x) = ϕI(r)α(σ) (2.54)
ϕi,β(x) = ϕI(r)β(σ). (2.55)

This symmetry is broken in the Unrestricted Hartree-Fock (UHF) formalism which
uses unrestricted spin orbitals that allow different spatial functions for paired spin
orbitals of the same spatial orbital

ϕi,α(x) = ϕα
I (r)α(σ) (2.56)

ϕi,β(x) = ϕβ
I (r)β(σ). (2.57)
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This leads to the Poble-Nesbet equations[76], a generalisation of the Roothaan-Hall
equation, which must be solved simultaneously,

fAO,αCα = SCαϵα (2.58)
fAO,βCβ = SCβϵβ. (2.59)

This additional flexibility may lead to a lower UHF energy compared to the RHF value.
However, whilst the use of restricted spin orbitals ensures that the RHF state is also
an eigenfunction of the total (Ŝ2) and projected spin operators (Ŝz), relaxation of
this constraint in the UHF approach can introduce spin contaminations in the UHF
wavefunction which is thus no longer an eigenfunction of Ŝ2.

Bearing in mind the bold approximation introduced by the effective one-body
treatment, HF total electronic energies and properties can perform remarkably well for
some molecular systems when comparing to experimental data. Its results are best
for weakly correlated and single reference systems where the exact wavefunction is
well approximated by a single HF determinant such as first row atoms or dimers at
equilibrium geometry. However, the ability of HF theory to produce accurate, or even
only qualitatively correct, descriptions is limited for most applications, for example,
in the case of N2 the ordering of its ionisation potentials is predicted qualitatively
incorrect[57]. Furthermore, the RHF method fails to describe the dissociation of
dimers into open-shell fragments, even for the simplest case of H2 → 2 H. While
the UHF approach gives a qualitatively correct description in the dissociation limit,
the resulting binding curves are not accurate[37]. In general, the HF wavefunction
performs very poorly in more correlated systems due to the mean-field treatment of
interactions between electrons. More sophisticated approaches are therefore needed for
the treatment of instantaneous electron-electron interactions, also known as electron
correlation.

2.4 Electron Correlation

The broad term electron correlation describes the behaviour of N interacting electrons
and their instantaneous electron-electron interactions in a many-body state, embodied
in the 1

rij
term in the Hamiltonian (Eq. 2.5). In other words, electron correlation effects

loosely denote corrections to the independent electron picture of the HF approximation
that are necessary to reach the limit of the exact wavefunction which is a linear
combination of all occupation number vectors (representing Slater determinants for
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fermions) in the N -particle Hilbert space spanned by the complete single-particle basis
set. As such, the theoretical concept of the correlation energy is introduced which
is defined as the difference between the exact non-relativistic electronic energy of
the system (E0) and the HF energy (EHF) in the limit that the basis set approaches
completeness[37, 57]

Ecorr = E0 − EHF. (2.60)

In practice, the complete basis set has to be limited to a finite number of M one-particle
basis functions and the basis set correlation energy is thus defined as the difference
between the Hartree-Fock energy in this basis and the lowest possible energy of a
wavefunction formed within the variational flexibility available in this incomplete basis.
As the basis set approaches completeness, the basis set correlation energy tends towards
the true correlation energy.

Since the HF state is a single Slater determinant, it is an antisymmetric superposition
of products of one-particle functions. Although this antisymmetrisation of the HF
wavefunction incorporates one mode of correlation, Fermi correlation, which introduces
Fermi holes for electron pairs of parallel spin, ΨHF is nevertheless defined to be an
uncorrelated many-particle state.

Disregarding Fermi correlation, it is conceptually convenient to distinguish between
different types of electron correlation: static and dynamical correlation. Dynamical
correlation arises from the Coulomb repulsion and describes the instantaneous detailed
correlated motion of the electrons due to their mutual repulsion. It is often useful to
separate long-range and short-range dynamical correlation effects. Short-range dynam-
ical correlation manifests itself in the appearance of cusps in the exact wavefunction
when particles coincide. In this limit, the Hamiltonian in 2.5 becomes singular in the
attraction terms for riA = 0 and in the repulsion term for rij = 0. These singularities
must be balanced by the kinetic energy of the wavefunction to ensure that the local
energy E(ri, rj) = ĤΨ(ri,rj)

Ψ(ri,rj) remains constant and equal to the eigenvalue E . It can be
shown that the first derivative of the wavefunction must therefore satisfy[37, 77–79]

lim
riA→0

(
∂Ψ
∂riA

)
= −ZAΨ(riA = 0) (2.61)

lim
rij→0

(
∂Ψ
∂rij

)
= 1

2Ψ(rij = 0), (2.62)
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The first of these conditions represents the nuclear cusp condition and describes the
behaviour of the wavefunction in the vicinity of a nucleus. Likewise, the second
condition is referred to as (electronic) Coulomb cusp condition and establishes the
behaviour of the wavefunction when electrons coincide. Whilst Eq. 2.62 considers
anti-parallel spin electrons, the case is slight different for parallel spin electrons. For
the latter, the situation is somewhat improved since the wavefunction vanishes when
like spin electrons coalesce due to the need to satisfy the Pauli principle. In these
cases of parallel spin electrons, the cusp condition is similar to equation 2.62 but with
the factor of 1

2 replaced by 1
4 . Regardless of their precise mathematical formulation,

all of these cusps in the wavefunction are difficult to approximate by means of a
superposition of Slater determinants and a good description of dynamical correlation
and the wavefunction cusps is only achieved in the limit of a large expansion in Slater
determinant space[80]. This slowly converging expansion is therefore a limitation
that is shared by all Fock-space methods and necessitates the use of very large basis
sets to accurately capture dynamical correlation. In contrast, long-range dynamical
correlations can usually be adequately accounted for by inclusion of a relatively small
number of determinants.

Static correlation – also known as nondynamical or near-degeneracy correlation
– arises from near-degeneracies among configurations (determinants) which interact
strongly and cannot be treated in isolation. In this case, many determinants contribute
significantly to the wavefunction and are needed for a description of the qualitative
behaviour of the system.

The two modes of correlation can be illustrated with two examples. The helium
atom represents a system where correlations are considered to be solely of dynamical
nature. Similarly, H2 at equilibrium geometry displays dynamical correlation effects.
In contrast, in the molecular dissociation limit the electrons in H2 are too far apart
for significant dynamical correlation effects, yet, due to the degeneracy of the bonding
and anti-bonding configurations it is regarded as static correlation problem. In the
intermediate region, the linear combination of determinants serves the double purpose
of describing effects of Coulomb repulsion and the near-degeneracy of configurations
and no clear distinction between the two effects can be drawn. Static correlation effects
generally require a multireference approach where many determinants are included
in the reference wavefunction, in contrast to single-reference methods which only
add correlation corrections onto a single determinant such as the HF determinant.
These methods rely on the assumption that this one reference determinant provides a
reasonable qualitative description of the system and are therefore likely to fail in systems



2.5 Full Configuration Interaction 25

with significant static correlation. Single-reference methods are usually appropriate
for a treatment of long-range dynamical correlations whereas short-range dynamical
correlations are exceedingly difficult to account for and might need treatment with
explicitly correlated methods[81] which go beyond the Fock space description and
multiply the determinant expansion by a suitable correlating function γ(rij) which
imposes the correct Coulomb-cusp behaviour.

2.5 Full Configuration Interaction

The exact eigenstate of the non-relativistic, Born-Oppenheimer Hamiltonian (Eq. 2.31)
for a given single-particle basis set is represented by a wavefunction expressed as
linear combination of all occupation number vectors in the direct-product basis of
single-particle Hilbert spaces

ΨFCI =
q∑

n1n2...nm

Cn1n2...nm |n1n2 . . . nm⟩ =
∑

n
Cn |n⟩ . (2.63)

q denotes the dimension of the local Hilbert space and assumes a value of 2 for spin
orbitals corresponding to the set of unoccupied and occupied single-particle state
{|0⟩ , |1⟩}. The sum is restricted to include only those states which conserve the
number of alpha and beta spin electrons N = Nα + Nβ in the system such that the
occupation number vectors represent Slater determinants of the N -particle Hilbert
space. This is the wavefunction ansatz of Full Configuration Interaction (FCI) which
includes all static and dynamical correlation exactly within the variational flexibility
afforded by the finite basis set[82–84]. The optimal set of expansion coefficients {Cn}
can be found by variationally minimising the energy

EFCI({Cn}) = min ⟨ΨFCI|Ĥ|ΨFCI⟩ (2.64)

subject to the constraint that the wavefunction remains normalised ⟨ΨFCI|ΨFCI⟩ = 1.
This constraint optimisation can be performed via Lagrange’s method of undetermined
multipliers

L[{Cn}] = ⟨ΨFCI|Ĥ|ΨFCI⟩ − E(⟨ΨFCI|ΨFCI⟩ − 1) (2.65)
=
∑
mn

CmCn ⟨m|Ĥ|n⟩ − E(
∑
mn

CmCn ⟨m|n⟩ − 1) (2.66)

=
∑
mn

CmCnHmn − E(
∑

n
C2

n − 1). (2.67)
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Setting the derivative with respect to an arbitrary coefficient, Ck, to zero, the stationary
condition becomes (assuming Ĥ to be a real Hermitian operator and ΨFCI to be a real
wavefunction)

∂L
∂Ck

=
∑
m
CmHmk +

∑
n
CnHkn − 2ECk = 0 (2.68)∑

m
HnmCm − ECn = 0 (2.69)

(Hnn − E)Cn +
∑

m̸=n
HnmCm = 0. (2.70)

These stationary conditions for all k can be written compactly in matrix notation as

(H− EI)C = 0 (2.71)
HC = EC, (2.72)

which is a standard Hermitian eigenvalue problem for the Hamiltonian matrix H. Thus,
minimisation of the expectation value of the energy by variational optimisation of the
expansion coefficients of the linear parameterisation results in the original eigenvalue
formulation of the Schrödinger equation.

Exact diagonalisation of the Hamiltonian in the basis of NFCI Slater determinants
leads to the set of NFCI eigenpairs whereby the m-th eigenfunction can be identified with
the m-th state and the corresponding m-th eigenvalue with its respective energy. Due
to the linearity of the variational expansion, the m-th eigenvalue provides a rigorous
upper bound to the energy of the m-th exact solution to the Schrödinger equation. In
the limit of a complete underlying one-particle basis, the exact wavefunctions and their
energies are recovered.

The FCI wavefunction can also be thought of as generated from a single reference
configuration, typically the HF state vector which tends to dominate the FCI wavefunc-
tion in many systems. These generation processes create a series of occupation number
vectors by vacating states that are occupied in the reference state and occupying states
which are unoccupied in the reference vector instead. These generated occupation
number vectors can thus be characterised according to how many particles in the
reference state have been excited from one single-particle state to another. In this
manner, the occupation number vectors are referred to as single (S), double (D), triple
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Fig. 2.1 Illustration of the excitation level classification of configurations. The full Hilbert space
is spanned by the configurations which can be generated by distributing the N particles amongst
the M single particle states. These configurations are classified by their excitation level from the
reference configuration nref , with an m-fold excitation exciting m particles from the occupied states
i, j, k, . . . in nref to the unoccupied states a, b, c . . . in nref . Single excitations are denoted by na

i , double
excitations by nab

ij , etc. In the case that the reference configuration represents the Hartree-Fock Slater
determinant nref = nHF constructed from the lowest N HF spin orbitals, all excited determinants
are higher in energy than nHF as the excitation process involves exciting particles (blue arrows) into
spin orbitals above the Hartree-Fock Fermi energy (green dotted line), thereby introducing holes (red
circles) below this energy.

(T), quadruple (Q), . . . , N -fold excitations of the reference configuration (Figure 2.1).

ΨFCI = Cnref |nref⟩+
∑
ia

Cna
i
|na

i ⟩+
∑
i<j
a<b

Cnab
ij
|nab

ij ⟩+
∑

i<j<k
a<b<c

Cnabc
ijk
|nabc

ijk⟩+ . . . (2.73)

=
∑

n
Cn |n⟩ (2.74)

Since the Hamiltonian operator contains only one- and two-body terms, it only
connects occupation number vectors which are at most two-particle substitutions
of each other. A general matrix element Hmn = ⟨m|Ĥ|n⟩ can be evaluated using
the Slater-Condon rules[85, 86], as given in Table 2.1. The diagonal elements of the
Hamiltonian matrix Hnn are energies of the occupation number vectors |n⟩. As a
result, the Hamiltonian matrix is diagonally dominant in this basis, and since each
occupation number vector is only connected to O[N2M2] other occupation number
vectors, it is a sparse matrix. However, a difficulty of the FCI method is that the
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Differing orbitals One-electron term Two-electron term

None ∑
i ⟨i|ĥ|i⟩

∑
i<j[⟨ij|ij⟩ − ⟨ij|ji⟩]

i→ a ⟨i|ĥ|a⟩ ∑
j[⟨ij|aj⟩ − ⟨ij|ja⟩]

ij → ab 0 ⟨ij|ab⟩ − ⟨ij|ba⟩
> 2 0 0

Table 2.1 The Slater-Condon rules[85, 86] for evaluating the matrix elements between Slater
determinants.

number of occupation number vectors in the Hilbert space grows factorially with the
number of single particle states M and particles N = Nα +Nβ,

NFCI =
(

M
2
Nα

)
×
(

M
2
Nβ

)
, (2.75)

and exact diagonalisation of the Hamiltonian in this basis is thus NP-complete (in M).
Although the size of this space may be reduced somewhat by symmetry, storage and
subsequent diagonalisation of the full Hamiltonian is prohibitively expensive for all
but the most trivial systems. In order to alleviate some of the computational expense,
iterative diagonalisation techniques such as the Lanczos or Davidson method[87–89]
are used which exploit the sparseness of the matrix to extract only selected eigenpairs.
In addition, the matrix elements can be evaluated ‘on the fly’, resulting in a direct CI
calculation[90]. However, despite these advancements, the FCI wavefunction rapidly
becomes intractable which makes systems of only moderate size too expensive to
study at this level of theory with an N2 system in a space of O[1010] determinants
amongst the largest applications to date[91]. As a result, even though FCI is exact
for a given single-particle basis, FCI calculations for small systems generally serve as
useful benchmarks for other methods, exhibiting their strengths and weaknesses in a
transparent manner.

2.6 Further Approximate Solution Methods

Since exact diagonalisation scales binomially with system size, exact eigenstates in
the form of an FCI wavefunction can only be obtained for small systems, approximate
solution methods need to be employed instead. This section attempts to provide a
minimal overview over the many techniques available each of which has its own delicate
compromise between desired accuracy and affordable computational cost.
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Dynamical correlation can be captured by post Hartree-Fock methods, which start
from the HF Slater determinant and its optimised HF orbitals and add dynamical
correlation onto the single configuration reference. One of the most economical post
HF-methods is Møller-Plesset perturbation theory (MPx)[92] which partitions the
Hamiltonian into an exactly solvable reference Hamiltonian, chosen to be the Fock
operator, and a perturbing correction, the difference between the true Hamiltonian
and the Fock operator. The associated energy and wavefunction of this Hamiltonian
are expanded out as Taylor series and the terms can be solved for to give the x-th
order correction to the energy, whereby the HF state and energy represent the zero-
order wavefunction and the sum of zero- and first-order corrections. By adding the
second-order correction, the second-order Møller-Plesset (MP2) energy is obtained[37]

EMP2 = EHF +
∑

a>b,i>j

| ⟨nHF|Ĥ|nab
ij ⟩ |2

ϵa + ϵb − ϵi − ϵj

, (2.76)

which provides surprisingly accurate, size-extensive, yet non-variational, correction at
low cost[93]. Higher order correction terms are costly, and the MP series does not
converge unconditionally[94]. Additionally, the dominance of the single determinant
reference makes MP2 ill suited for systems with significant static correlation.

A further standard model which incorporates effects of correlation, mostly of
dynamical nature, is the Configuration Interaction (CI) method[95] which arises
naturally from FCI ansatz by truncating the wavefunction expansion to a subset of
occupation number vectors of the full N -electron Hilbert space. The cost limitations of
FCI are thus reduced by truncating its space at a given excitation level with respect to a
reference occupation number vector, typically the HF state. This results in a series of CI
methods denoted by CIS, CISD, CISDT, CISDTQ . . . with a hierarchy of successively
more accurate wavefunction by including up to single, double, triple, quadruple,
. . . excitations of the reference determinant[96]. This truncation is variational, the
FCI energy is approached monotonically from above and the FCI wavefunction is
recovered as the truncation level is increased to the N -th level. The advantage of
an iterative CI diagonalisation is that its cost scales polynomially with excitation
level n as O[N2n+2]. It is interesting to note that if the HF determinant is used as
reference occupation number vector the inclusion of only single-excitations has no effect
due to the zero Hamiltonian matrix elements connecting the HF occupation number
vector and its single excitations according to the Brillouin theorem[97, 98]. In general,
lower order excited configurations are often more important than higher orders and for
single-reference systems, where the reference configuration provides a good zero-order
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approximation, the series will rapidly converge[99]. Since these CI methods start from
a single reference, they efficiently describe dynamical correlation but are likely to fail
for multireference systems due to the difficulty building in static correlation in an
expansion localised around a single occupation number vector. Inclusion of higher
excitation levels in the series can retrieve more of the static correlation but at the
same time also substantially increases the cost of a calculation. All truncated CI
methods suffer from their lack of size extensivity and size consistency, meaning their
energies do not scale correctly with system size and an ever smaller fraction of the
correlation energy is captured as system sizes increase[100, 37, 101]. Additionally, the
CI wavefunction converges slowly with number of variational parameters towards the
FCI limit, partly due to the difficulties encountered when describing Coulomb cusps
by determinantal expansions.

One of the most efficient and accurate post-HF methods is Coupled Cluster Theory
(CC)[102–106] which expresses the wavefunction as non-linear parameterisation of
Slater determinants in product form

ΨCC =
∏

i,a

(1 + X̂a
i )
  ∏

a>b,i>j

(1 + X̂ab
ij )
 . . . |nref⟩ , (2.77)

where X̂a
i = tai a

†
aai is an excitation operator with coefficient tai . An alternative

formulation of the CC wavefunction is given by its exponential ansatz in terms of the
cluster operator T̂

ΨCC = eT̂ |nref⟩ = exp
∑

ia

tai a
†
aai +

∑
a>b,i>j

tab
ij a
†
aa
†
baiaj + . . .

 |nref⟩ . (2.78)

Variational optimisation of the CC wavefunction and its energy is only possible for
small systems. Instead, the CC amplitudes are solved for by projecting the Schrödinger
equation onto a set of states ⟨µ| which spans the space of all determinants that can
be obtained by linear application of the truncated cluster operator T̂ to the reference
state[37]

⟨µ|e−T̂ ĤeT̂ |nref⟩ = 0, (2.79)

and the resulting CC energy

ECC = ⟨nref |e−T̂ ĤeT̂ |nref⟩ (2.80)
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is in general not variational. Much like CI, truncating the CC expansion at a given
excitation level n produces a hierarchy of methods denoted by CCSD, CCSDT, CCS-
DTC, . . . with increasing accuracy and computational scaling of O[N2n+2], tending
towards the FCI limit for a full cluster operator[37]. In contrast to a CI expansion
truncated at level n which is restricted to determinants with excitation levels ≤ n, a
truncated CC wavefunction contains contributions from all states in the Fock space
as the product form allows access to higher level excitations through the cumulative
effect of multiple low-level excitations. The product excitations implicitly approximate
contributions of excited configurations above the truncation level up to infinite order
and in the limit of a full cluster operator the FCI state is recovered, meaning that
the truncated CC wavefunction may be regarded as a particular approximation to
the FCI state. The product form of the CC wavefunction thus makes it manifestly
separable and imposes size-extensivity. Although CCSDT and higher level truncation
methods produce accurate results, their computational costs are too high for prac-
tical application, and an effective compound technique has been devised which uses
perturbation theory to approximate the inclusion of connected triple contributions
on to the CCSD wavefunction. This CCSD(T) method, often referred to as the ‘gold
standard’ of ab-initio quantum chemistry, only increases the scaling to O[N7][107]
and has been shown capable of producing a range of molecular properties within
1 kcal mol−1 chemical accuracy once finite basis set error is removed[108]. Still, since
tractable CC wavefunctions are inherently single reference, they fundamentally break
down for strongly correlated system.

For systems with pronounced static correlated multireference (MR) methods provide
preferred approaches. Multireference coupled cluster (MRCC) theories and alternative
methods of evaluating the CC amplitudes are devised to alleviate this limitation, but
have generally proved difficult to implement such that their development has been
slow and is still ongoing. One means to improve a truncated CI wavefunction, which is
typically based on a set of fixed orbitals generated in a preceding HF optimisation, in
order to retrieve a larger fraction of static correlation is through simultaneous variational
optimisation of the configuration expansion coefficients and the expansion coefficients
of the spin orbitals. This approach, known as multiconfigurational self-consistent
field (MCSCF)[109], results in a more flexible wavefunction than the corresponding
CI wavefunction. One particularly common method is the complete active space
self-consistent field (CASSCF) technique[110–112]. This approach selects a subset
of occupied and virtual orbitals as active space, in which the wavefunction is solved
for exactly while the remaining orbitals are kept frozen. Subsequently, the occupied,
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active and virtual spaces are rotated to minimise the energy[113]. This two-step
cycle is repeated until convergence is achieved. This optimisation of the non-linear
wavefunction parameterisation is more difficult and, in practice, MCSCF wavefunctions
are restricted to small determinant expansions which are adequate for the description of
static correlation but inadequate for the description of dynamical correlation. Dynamic
correlation can be added on top of a MCSCF or CASSCF wavefunction by perturbation
theory (CASPT2)[114–116], a multireference CI expansion (MRCI or CASCI)[117–123]
or CC theory (MRCC or CASCC)[124, 125] such as canonical transformation (CT)
theory[126], an approximate scheme.

In principle all static and dynamic correlation can be captured by density functional
theory (DFT) which is a density-based method. This approach is based on the
Hohenberg-Kohn theorem which states that the electron density uniquely determines
all ground state properties of a system and that a unique universal functional of the
electron density exists which can be used to find the exact electron density[24]. The
most commonly applied approach is the Kohn-Sham formalism which introduces an
artificial non-interacting reference system with exactly the same electron density as
the true interacting system. The energy is thus written as functional of the electron
density ρ and partitioned into several contributions[25]

E[ρ] = TS[ρ] +
∫
drρ(r)

(
Vext(r) + 1

2Φ(r)
)

+ Exc[ρ], (2.81)

where TS[ρ] denotes the kinetic energy of the non-interacting reference system, Vext(r)
the external potential, Φ(r) the classical Coulomb potential and Exc[ρ] the non-classical
exchange correlation energy. The description of electron correlation in DFT is therefore
entirely determined by the choice of the exchange-correlation functional. Unfortu-
nately, the universal functional is unknown. Many approximate exchange-correlation
functionals of various complexity have been designed. A simple proposal for defining
Exc[ρ] is the Local Density Approximation (LDA) which assumes the electron density
to be uniform at a local level. DFT may produce good results in some cases at little
more computational cost than HF theory, or even lower costs with recent linear-scaling
implementations. However, each functional is limited in its applicability to only a
subset of systems and DFT results have often been shown to be outside chemical
accuracy compared to experimental data. Since the exact Exc[ρ] is unknown, current
DFT methods cannot capture all static and dynamic correlation and there is also no
way of systematically improving a DFT result. It can be stated that DFT is rather
poor at capturing static correlation[127].
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2.7 Beyond Traditional Quantum Chemical Meth-
ods: Tensor Network States Approaches

In addition, to conventional quantum chemical post-Hartree-Fock methods, progress in
quantum information theory lead to the development of sophisticated approaches which
decompose the full FCI tensor to obtain highly accurate and faithful representations of
the FCI wavefunction.

2.7.1 Entanglement Entropy and Area Laws

The description of quantum many-body states in strongly correlated systems are central
to understanding a wealth of complex phenomena in condensed matter physics and
quantum chemistry. A significant number of these systems are governed by local
interactions meaning interactions whose strength decays at least exponentially with
distance (beyond a distance cutoff). Naive numerical descriptions of such systems
require an intractably large number of parameters since the underlying Hilbert space
grows exponentially with system size, specifically

dim(H) = O[dn] (2.82)

for a system of size n and local dimension d. As such, exact diagonalisation is hence
NP-complete[128]. It has, however, emerged that ground states, and a number of other
physical states of local Hamiltonians usually occupy a tiny submanifold of the Hilbert
space, also referred to as ‘natural corner of the Hilbert space’. States living in this
tiny submanifold commonly satisfy an area law rooted in the locality of interactions.
The latter not only implies a decay of two-body correlation functions but also stronger
forms of locality which can be captured using concepts of entanglement in quantum
many-body systems[53]. For this purpose, the von Neumann entanglement entropy is
defined[129, 130]

S(ρR) = −Tr[ρR log2 ρR], (2.83)

where ρR is the reduced density matrix of the quantum state ψR in the region R. S(ρR)
represents a measure for the entanglement between the regionR and the complementary
region R̄[131] which is, however, only meaningful for pure, that is non-degenerate,
states. If the two regions are not entangled, S(ρR) = 0. Otherwise, the entropy will be
larger, being bounded from above by its maximum value S(ρR) ≤ |R| log2(d) which
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scales with the size |R| of the region R. For random states, this means that the entropy
usually scales extensively with size S(ρR) = O[|R|][53]. It has emerged that ground
states, and a number of other physical states of local and gapped Hamiltonians satisfy
an area law which states that the entanglement entropy S(ρR) for every region R obeys

S(ρR) ≤ O[∂|R|], (2.84)

where ρR is the reduced density matrix of the quantum state ψR in the region R and
∂|R| is the perimeter of the region R[132, 133, 55]. Thus, the entanglement between
the region R and its complementary region R̄, as measured by the entanglement
entropy, grows only like the boundary area of R and not extensively like its volume.
This is a consequence of the finite correlation length[134, 135] which means that
only subregions in the immediate vicinity of the boundary area are correlated with
subregions on the other side of the boundary. Such area laws have been proven for all
gapped Hamiltonians in 1D[136–138] and it is expected that gapped local systems in
higher dimensions[132] also satisfy an area law, supported by numerical examples and
theoretical arguments[139], although a general proof for arbitrary dimensions is still
lacking. Yet, critical quantum systems with long-ranged interactions and a spectral gap
shrinking to zero with system size violate area laws, albeit their logarithmic corrections
to the area law are typically small[132, 140]. In contrast to random quantum states,
ground and other physical states satisfying area laws or showing only small violations
thereof display thus much less entanglement which effectively quantifies the relevant
number of degrees of freedom that have to be taken into account[55]. This suggests
that the exact FCI wavefunction of quantum many-body states may be efficiently
approximated by alternative more compact representations.

2.7.2 Decomposing the FCI Wavefunction Ansatz

Any arbitrary wavefunction like eigenstates of the Hamiltonian which lives in a Hilbert
space of (Cd)⊗M can be parameterised as

|ΨFCI⟩ =
d∑

n1,n2,...,nM

Cn1...nM
|n1⟩ ⊗ |n2⟩ ⊗ . . .⊗ |nM⟩ (2.85)

=
d∑

n1,n2,...,nM

Cn1...nM
|n1n2 . . . nM⟩ , (2.86)

where d denotes the dimension of the local Hilbert space of the single-particle basis
states {|ni⟩} = {|1⟩ , |0⟩}. The coefficients Cn1...nM

are part of the full FCI tensor C,
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a rank M tensor with O[dM ] coefficients. Whilst this FCI ansatz describes |ΨFCI⟩
exactly within a given single-particle basis, it grows exponentially with system size
and is therefore a computationally inefficient description for growing system sizes.
Efficient wavefunction ansatzes are therefore needed which reduce the complexity in the
representation of |ΨFCI⟩ and allow for efficient computational treatments. The existence
of area laws, and hence, the reduced amount of entanglement which effectively quantifies
the relevant number of degrees of freedom, suggests that physical quantum many-body
states which usually live in the small ‘natural corner’ of the exponentially large Hilbert
space may be faithfully described by an efficient parameterisation, although there may
be limitations to this intuitive expectation for higher dimensional systems[141]. This
concept lies at the core of Tensor Network States (TNS) parameterisations[53–55, 142]
and their powerful numerical algorithms such as the Density Matrix Renormalisation
Group approach (DMRG)[56, 143, 144] and its higher-dimensional analogues[55] which
variationally optimise different classes of TNS[53–55, 142]. Whilst a vast array of
different TNS exists, the following theoretical descriptions will focus on those which
are most relevant to this thesis.

2.7.3 Tensor Network States in One Dimension: Matrix
Product States

Ground states of gapped local Hamiltonians in one dimension are well described by
Matrix Product States (MPS)[145] since both fulfil the area law. According to the
latter, the entanglement entropy, which represents a measure for the entanglement
between a region R and its compliment, scales as the boundary of this region ∂|R|
which suggests that the entanglement between R and the remainder of the system
is concentrated around the boundary between the two regions. This concept lies at
the heart of the MPS ansatz for quantum many-body systems. For the purpose of
describing the MPS ansatz, a one-dimensional fermionic Hubbard model with M

2 lattice
sites is considered where the local Hilbert space of each lattice site comprises the states
{ns} = {|00⟩ , |↑ 0⟩ , |0 ↓⟩ , |↑↓⟩}. In order to construct an MPS for this one-dimensional
system, each site is considered to be composed of two virtual subsystems, one on the
left and one on the right (Figure 2.2). Furthermore, each of these virtual subsystems is
part of a product state of maximally entangled pairs connecting neighbouring sites,
that is the right virtual subsystem of site s and the left virtual subsystem of site s+ 1
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Fig. 2.2 Construction of MPS with open (top) and periodic (bottom) boundary conditions. Each
lattice site is associated with two virtual subsystems (blue filled circles). Two such virtual subsystems
of two neighbouring sites are placed in a maximally entangled product state |ωs,s+1⟩ (blue lines). In
the case of open boundary conditions, the first and last lattice sites are associated with only one
virtual subsystem (top), whilst for periodic boundary conditions the left-most virtual subsystem of
the first lattice site is placed in a maximally entangled state with the right-most virtual subsystem of
the last lattice site (bottom). At each lattice site s, linear maps Ps are applied which project from
the local Hilbert space of the D-dimensional virtual subsystems to the Hilbert space of the physical
lattice site (red filled circles).
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are in a maximally entangled state such that the state of this pair is given by

|ωs,s+1⟩ =
D∑

α=1
|rs = α, ls+1 = α⟩ , (2.87)

where D represents the Hilbert space of the virtual subsystems. For systems with
periodic boundary conditions the left-most subsystem of the first site is maximally
entangled with the right-most subsystem of the last M

2 -th site. In the case of open
boundary conditions, the first site has only a right virtual subsystem and the last
site only a left virtual system. The pure state |ωs,s+1⟩ is maximally entangled in the
sense that the entanglement entropy of each subsystem assumes the maximum value
ln(D)[53, 146]. On this system, linear maps Ps : CD ⊗ CD → Cd at each of the
s = 1, . . . , M

2 lattice sites are applied which project from the Hilbert space of two
D-dimensional subsystems to the Hilbert space of the corresponding physical lattice
site. The map for each lattice site s can be written as

Ps =
d∑

ns=1

D∑
ls,rs=1

A
[s]
ns;lsrs

|ns⟩ ⟨lsrs| , (2.88)

where A[s]
ns;lsrs

denotes a rank-3 tensor of the lattice site s whose physical Hilbert space
is of dimension d. For open boundary conditions the linear maps of the s = 1 and
s = M

2 sites are formulated in terms of rank-2 tensors

P1 =
d∑

n1=1

D∑
r1=1

A[1]
n1;r1 |n1⟩ ⟨r1| , PM

2
=

d∑
n M

2
=1

D∑
l M

2
=1
A

[ M
2 ]

n M
2

;l M
2

|nM
2
⟩ ⟨lM

2
| . (2.89)

Thus, for a system with open boundary conditions, the resulting state vector is
parameterised as

|ΨOBC⟩ =


M
2⊗

s=1
Ps




M
2 −1⊗
s=1
|ωs,s+1⟩

 (2.90)

=
∑

n1,n2,...,n M
2

Tr[A[1]
n1A

[2]
n2 . . . A

[ M
2 ]

n M
2

] |n1n2 . . . nM
2
⟩ (2.91)

=
∑

n1,n2,...,n M
2

DαDβ ...Dω∑
αβ...ω=1

A[1]
n1;αA

[2]
n2;αβ . . . A

[ M
2 ]

n M
2

;ω |n1n2 . . . nM
2
⟩ , (2.92)
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where A[s]
ns

represents the matrix (or vector for the first and last lattice sites) with
entries A[s]

ns;αβ ≡ A
[s]
ns;lsrs

. Each projection onto a configuration |n1n2 . . . nM
2
⟩ is given

by a product of matrices, hence, the name Matrix Product State (MPS). In principle,
the bond dimension, that is the dimensions of the matrices, may also vary across the
system (Dα ̸= Dβ ̸= . . . ̸= Dω). Similarly, a state vector in a system with periodic
boundary conditions can be written as

|ΨPBC⟩ =


M
2⊗

s=1
Ps




M
2⊗

s=1
|ωs,s+1⟩

 (2.93)

=
∑

n1,n2,...,n M
2

Tr[A[1]
n1A

[2]
n2 . . . A

[ M
2 ]

n M
2

] |n1n2 . . . nM
2
⟩ (2.94)

=
∑

n1,n2,...,n M
2

DαDβDγ ...Dω∑
αβγ...ω=1

A
[1]
n1;αβA

[2]
n2;βγ . . . A

[ M
2 ]

n M
2

;ωα |n1n2 . . . nM
2
⟩ , (2.95)

with |ωM
2 , M

2 +1⟩ ≡ |ωM
2 ,1⟩.

2.7.4 The Area Law and Efficient Approximability

It can be shown that for any subset of L consecutive lattice sites the entanglement
entropy for a matrix product state is bounded from above by S(ρL) ≤ Smax = 2 log2 D,
which implies that MPS satisfy an area law by construction[53, 147]. Not only is the
entanglement scaling of both MPS and ground states of gapped local Hamiltonians
the same, but also an even stronger statement can be proven: all states which fulfil an
area law, like ground states of gapped Hamiltonian[136, 132], as well as states which
violate the area law at most logarithmically, such as critical (gapless) one-dimensional
systems, can be efficiently approximated by an MPS[136, 148]. Strictly speaking, this
statement follows from an area law of the Rényi entropy SR(ρR) = 1

1−α
log2(Tr[ρα

R])
(α ≥ 0)[149] which in the limit of α → 1 reduces to the von Neumann entropy (for
situations where a detailed understanding has been reached, this has not been found to
make a difference[53]). Specifically, for any local Hamiltonian describing a system with
M
2 sites whose ground state Ψexact violates the area law at most logarithmically, an

MPS |ΨMPS(D)⟩ with bond dimension D can be found which efficiently approximated
Ψexact up to an error

|| |Ψexact⟩ − |ΨMPS(D)⟩ ||2 ≤ ϵ. (2.96)
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It can be proven rigorously, that in order to achieve a desired accuracy ϵ, the required
bond dimension D scales polynomially in M

2 and 1
ϵ
[150, 53]. It is worth noting that

this MPS representation |ΨMPS⟩ can be obtained numerically in a time that grows
polynomial with system size for ground states of gapped local Hamiltonians[151]. Owing
to these properties the MPS ansatz provides an extremely accurate approximation
to natural states of physical systems already at low values of D. At the same time,
the O[d

M
2 ] complexity of the exact FCI wavefunction ansatz is drastically reduced

to the O[M
2 dD

2] complexity of an MPS wavefunction of bond dimension D[53]. The
latter only scales linearly in system size M

2 for constant D as opposed to exponentially
in M

2 . Whilst D = 1 yields a product state, a variant of a mean-field approach,
with increasing D a larger region of the full Hilbert space is spanned by the MPS
ansatz which usually increases the quality of |ΨMPS⟩ as approximation to natural
states. Allowing D to grow exponentially towards the middle of the system, (1 ×
d), (d× d2), . . . , (d

M
2 −1 × d

M
2 ), (d

M
2 × d

M
2 −1) . . . , (d2 × d), (d× 1) (for open boundary

conditions), the MPS ansatz will eventually span the full Hilbert space[144, 152]. Yet,
MPS are only able to describe correlation functions which decay exponentially with
distance, meaning that the correlation length of matrix product states is always finite.
Thus, they cannot represent algebraically decaying correlation functions, implying
that they cannot reproduce properties of critical or scale-invariant systems where the
correlation length is known to diverge[54, 153]. Nevertheless, for sufficiently large bond
dimensions, MPS can also efficiently approximate states with algebraically decaying
correlation functions but other tensor network ansatzes like the Multiscale Entanglement
Renormalisation Ansatz (MERA)[154] display a more favourable scaling in system size
in these cases[53, 142].

Although |ΨMPS⟩ is an efficient description of the relevant quantum many-body
state |Ψ⟩, this is not sufficient for the MPS parameterisation to represent an effi-
cient variational ansatz. Crucially, |ΨMPS⟩ also needs to allow for efficient extraction
of information, usually in the form of correlation functions, expectation values of
observables, ⟨Ψ|Ô|Ψ⟩, etc. For an MPS ansatz, these quantities can be efficiently eval-
uated in O[M

2 d
2D3] and O[M

2 d
2D5] time for open and periodic boundary conditions,

respectively[55].
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Fig. 2.3 Construction of PEPS. Each lattice site is associated with four virtual subsystems (blue
filled circles). Each such virtual subsystem is placed in a maximally entangled product state, |ωs,s+x⟩
and |ωs,s+y⟩, (blue lines) with the corresponding virtual subsystem of the adjacent lattice site. At
each lattice site s, linear maps Ps are applied which project from the local Hilbert space of the four
virtual subsystems to the Hilbert space of the physical lattice site s (red filled circles).
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2.7.5 Tensor Network States in Two Dimensions: Projected
Entangled Pair States

The concept of tensor network states is not confined to one dimension but a large
variety of tensor network states, also in higher dimensional systems, exists. A natural
generalisation of Matrix Product States to higher-dimensional systems are Projected
Entangled Pair States (PEPS)[53–55, 142, 155] which can be constructed in the same
way as MPS by distributing maximally entangled states between neighbouring sites
and on each site and applying linear maps from the virtual space of subsystems to
the physical Hilbert space. For concreteness, a two-dimensional square lattice with
periodic boundary conditions is considered. Each site of this lattice is thought to
be composed of four virtual D-dimensional subsystems each of which is placed in
a maximally entangled state with the corresponding subsystem of the adjacent site
(Figure 2.3). Thus, labelling the states of the left, right, up and down virtual system
at lattice site s by ls, rs, us and ds, respectively, the maximally entangle pairs between
two sites which are horizontally (+x) and vertically (+y) displaced by one unit give
rise to the maximally entangled states

|ωs,s+x⟩ =
D∑

α=1
|rs = α, ls+x = α⟩ |ωs,s+y⟩ =

D∑
α=1
|us = α, ds+y = α⟩ , (2.97)

respectively. At each site of the system, linear maps Ps : CD ⊗ CD ⊗ CD ⊗ CD → Cd

are applied which project from the Hilbert space of the four virtual subsystems at site
s to the physical Hilbert space of the lattice site. These local linear maps are given by

Ps =
d∑

ns=1

D∑
ls,rs,us,rs=1

A
[s]
ns;lsrsusds

|ns⟩ ⟨lsrsusds| , (2.98)

such that the resulting PEPS state vector can be written as

|ΨPEPS⟩ =


M
2⊗

s=1
Ps




M
2⊗

s=1
|ωs,s+x⟩ ⊗ |ωs,s+y⟩

 (2.99)

=
∑

n1n2...n M
2

Tr[A[1]
n1A

[2]
n2 . . . A

[ M
2 ]

n M
2

] |n1n2 . . . nM
2
⟩ (2.100)

=
∑

n1n2...n M
2

DαDβDγDδ...Dω∑
αβγδ...ω

A
[1]
n1;αβγωA

[2]
n2;δαλη . . . A

[ M
2 ]

n M
2

;ϵζων |n1n2 . . . nM
2
⟩ , (2.101)
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where A[s]
ns

denotes the rank-4 tensor with entries A[s]
ns;αβγδ ≡ A

[s]
ns;lsrsusds

. Likewise, a
PEPS wavefunction for systems with open boundary conditions can be constructed
with modified linear maps for the lattice sites at the edges which are obtained by
replacing the rank-5 tensor for a general lattice site by rank-4 tensors for the edges and
rank-3 tensors for the corners. More generally, the outlined construction of a PEPS
state can be generalised to any lattice shape and dimension[55].

Given their analogy to MPS, PEPS share many properties with their one dimensional
counterparts. Hence, they also obey area laws by construction since the entanglement
entropy of a region R with its complement is bounded from above by O[Nbonds log2 D]
where Nbonds denotes the number of bonds that the boundary ∂|R| covers[132, 53]. By
analogy to MPS, any state can be written as a PEPS provided the bond dimension
D is large enough with the full Hilbert space being covered if D grows exponentially
in system size[53, 54]. Moreover, PEPS can efficiently approximate ground states of
gapped local Hamiltonian provided that the density of states grows at most polynomially
with energy[156, 157]. Unlike for MPS, a strong statement on how well PEPS can
approximate general states is lacking and ground states of non-local Hamiltonians
exist which satisfy the area law but cannot be represented efficiently by PEPS[141].
Yet, numerical evidence[158] suggests that PEPS with a reasonably small and finite
D approximate low-energy states of two-dimensional quantum many-body systems
well[54]. At finite temperatures, they have also been shown to efficiently approximate
thermal states[157, 159]. In contrast to MPS, PEPS can describe algebraically decaying
correlations, a typical characteristic of critical points[148]. In principle, they are
therefore suitable to describe both, states with finite and infinite correlation lengths,
that is gapped phases, as well as critical states.

Still, the extraction of information from a PEPS state is computationally much
harder. Contrary to MPS, PEPS cannot be contracted exactly in an efficient manner.
Irrespective of the contraction order, the contraction will at some point involve an
object with a number of indices that is proportional to

√
M
2 , and hence an exponential

number of parameters. The contraction is therefore an exponentially hard problem
and always requires O[exp(M

2 )] time[54]. Strictly speaking, from the point of view
of computationally complexity, the contraction of a PEPS network is contained with
the complexity class ♯P [160]. Yet, this obstacle can be overcome with approximate
contraction techniques which involve small and ideally controlled errors. One of these
approximate contraction schemes[155] works through the network and contracts each
column with the subsequent one while the bond dimensions of the new tensors are
approximated by αD2 for some α. By iterating this procedure column by column,
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the whole network is contracted whilst the size of the tensors always stays bounded.
Although this represents an efficient approximate contraction scheme for PEPS, the
scaling with D is much less favourable than in one dimension. The most simplest
approaches display O[D12] scaling which can be improved down to O[D8]. This
approximate contraction method is therefore limited to much smaller bond dimensions
D in comparison the contraction of an MPS ansatz. The approximation is typically very
accurate provided that the system is short-range correlated and the introduced error is
well controlled. In fact, the accuracy of the approach is rather limited by the bond
dimension D that is needed for a good approximation to the ground state. Another
approximate contraction scheme[161–163] based on renormalisation ideas approximates
block of tensors by one tensor whose bond dimension is appropriately truncated. This
approach relies on approximations to the environment, i.e. the remaining network.
Whilst the introduced errors are less controlled and the accuracy of the approximations
are worse, the scaling in D is more favourable and allows for larger D and thus
potentially better approximations to the ground state[142].

2.7.6 Optimisation of MPS, PEPS, ...

Variationally finding the best description of the ground state in terms of a tensor
network is equivalent to minimising

min
|Ψ⟩∈TNS family

⟨Ψ|Ĥ|Ψ⟩
⟨Ψ|Ψ⟩ , (2.102)

or using a Lagrange multiplier λ to ensure normalisation

min
|Ψ⟩∈TNS family

(⟨Ψ|Ĥ|Ψ⟩ − λ ⟨Ψ|Ψ⟩), (2.103)

where |Ψ⟩ ∈ TNS family implies that |Ψ⟩ is parameterised as one of the class of tensor
networks states such as MPS, PEPS, . . . Since the simultaneous optimisation of all
parameters amounts to a highly non-linear and non-convex global optimisation, this
minimisation problem is broken down into a sequence of linear optimisations of the
tensors

{
A[s]

}
of the TNS. To this end, starting from a randomly chosen tensor at site

k, the energy is minimised with respect to A[k], whilst all other tensors
{
A[s]

}
, s ̸= k,

are held fixed

E[k] := ⟨Ψ|Ĥ|Ψ⟩
⟨Ψ|Ψ⟩ = ⟨A

[k]|K1|A[k]⟩
⟨A[k]|K2|A[k]⟩

, (2.104)
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where K1 and K2 represent the kernels of the respective quadratic forms and |A[k]⟩
denotes the vectorised form of the rank-n tensor A[s]

ns;αβ... with the n indices (ns, α, β, . . .)
combined into a single one. In fact, the solution to this quadratic and convex optimisa-
tion problem is given by the eigenvalue problem K1 |A[k]⟩ = E[k]K2 |A[k]⟩[142, 164, 165].
In this way, by iteratively sweeping back and forth through the system and sequentially
optimising the tensor at each site, convergence onto a state with low energy is reached.

If this minimisation is performed for an MPS with open boundary conditions, noth-
ing but the extremely successful Density Matrix Renormalisation Group (DMRG)[56,
166, 167] is recovered. Originally, DMRG was invented by White in the field of con-
densed matter theory. Within this context, DMRG was historically formulated as a
renormalisation algorithm based on keeping the states that are most relevant for the
entanglement of the system and framed in the language of analysis of reduced density
operators over subsystems of the chain. Later Östlund and Rommer discovered its
underlying variational class, the MPS[168, 169], implying that DMRG can be reformu-
lated as a variational method within the ansatz space of D-dimensional MPS. Although
such a variational minimisation of an MPS can get stuck in principle[164, 165], the
procedure works extremely well in practice and generally converges onto the lowest
energy |ΨMPS⟩, essentially up to machine precision[153, 144, 55] when considering
MPS for one dimensional systems. For MPS in particular, many approaches have
been devised in order to arrive at an efficient algorithmic realisation of the basic
optimisation method and improve upon it. Firstly, the gauge degrees of freedom of the
matrix product state are exploited to arrive at an MPS representation in its canonical
form which is crucial in practical implementations in order to avoid ill-conditioned
matrices[53, 170, 144]. Secondly, each step along the sweep can involve optimising the
tensors of pairs of sites, a so-called double variational site, which improves convergence
and a better control of the error[53]. In addition to MPS, this variational minimisation
approach has also been successfully applied to finite PEPS[155, 55], as well as Tree
Tensor Networks (TTN)[171, 172] and MERA[173].

Beyond variational optimisation, tensor network state wavefunctions can also be
found with imaginary time evolution approaches whereby an initial state is evolved in
imaginary time with the Hamiltonian of interest

|Ψτ ⟩ = lim
τ→∞

e−τĤ |Ψ0⟩
||e−τĤ |Ψ0⟩ ||

, (2.105)

which results in a projection onto the ground state in the limit of τ → ∞. A large
variety of such imaginary time evolution methods for obtaining ground states exist,
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including variants of the time-evolving block decimation (TEBD) approach[174–176],
as well as techniques based on the time-dependent variational principle[177] and
concatenated tensor networks[178]. Even though state-of-the-art PEPS optimisations
rely on imaginary time evolution[158, 161, 179, 55] whose long imaginary time limit is
realised by applying small time steps δτ with a Trotter-Suzuki decomposition of the
imaginary time operator, the considerable computational cost associated with a PEPS
wavefunction means that ground state optimisations are more challenging in comparison
to their MPS analogous. In practice, additional approximations have to be introduced
whereby the PEPS bond dimensions are truncated in an approximate way after each
time step. The truncation can be achieved with a number of different schemes[161,
158, 179, 155] each of which provides its own detailed balance between accuracy and
efficiency and arriving at an efficient PEPS optimisations with a good compromise
between their competing demands still remains challenging[54]. By implementing
real time[167, 176] instead of imaginary time evolution these approaches also provide
insights into the non-equilibrium dynamics of strongly correlated quantum systems.
Thus, thermal states[174, 159] are accessible, as well as time-dependent correlation
functions and expectation values of the form ⟨Ψ|eitĤÔe−iĤt|Ψ⟩ to study system far
from equilibrium[176, 180, 181, 53].

Moreover, bulk systems can be studied without finite size and boundary errors with
infinite MPS (iMPS) and infinite PEPS (iPEPS)[158, 182], formulations of MPS and
PEPS in the thermodynamic limit (possibly with a broken symmetry with finite period),
where a finite unit cell of tensors is repeated through the infinite lattice such as in the
iDMRG[183, 184] and iTEBD[158, 185] methods. Furthermore, in the case of tensor
network classes such as MPS or PEPS, convergence with respect to the bond dimension
D has to be established in order to arrive at the true ground state energy in the infinite
D limit. Since increasing the bond dimension D results in tensor networks spanning
subspaces of the full Hilbert space which are simultaneously supersets of the previous
ones, the quality of the approximate tensor network state improves monotonically. In
the limit D → ∞ the exact tensor network state representation of |Ψ⟩ is recovered
which allows for reliable extrapolations of the energy to the FCI limit[186–189].

Even though all of the approaches outlined above have been successfully applied
to MPS and PEPS, the latter class of tensor networks displays a worse scaling in
bond dimensions D, and thus a higher computational cost, than their one dimensional
analogues and are therefore typically restricted to smaller values of D in practical
application. For this reason, methods with PEPS in two dimensions often achieve
worse accuracy than DMRG calculations using MPS as wavefunction ansatz whereby
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the two dimensional system is mapped onto a one dimensional system with long-ranged
interactions. Reasonable system sizes for PEPS are therefore still roughly the same as
those which can be treated with two dimensional DMRG approaches[190, 191].



Chapter 3

Zero-temperature Ground State
Quantum Monte Carlo Methods

An alternative approach for solving the Schrödinger equation comes from Quantum
Monte Carlo (QMC) methods [192–194, 50, 51, 195] which are a group of accurate
and versatile stochastic techniques for treating quantum many-body systems. These
approaches represent efficient methods to evaluate complex integrals in the high dimen-
sional space of quantum many-particle systems by sampling the integrand statistically
and averaging the sampled values. Regardless of the dimensionality, the statistical
error in the estimated integral decreases as N−

1
2

MC with the number of samples NMC, a
consequence of the central limit theorem. There are many different QMC methods of
which the two most commonly applied classes are Variational Quantum Monte Carlo
(VMC) and various Projector Quantum Monte Carlo (PMC) methods. These QMC
methods can equally well be used for finite discrete Hilbert spaces, infinite continuous
Hilbert spaces or even for spaces with both continuous and discrete degrees of freedom.
In the following, notation appropriate for discrete spaces (sums, matrices, etc.) will
be used interchangeably with notation appropriate for continuous spaces (integrals,
integral kernels etc.).

3.1 Variational Quantum Monte Carlo Approaches

Typical VMC methods [50, 167, 51] combine the variational principle with Monte Carlo
evaluation of integrals by rewriting the expectation value of any general Hermitian
operator Ô such as the Hamiltonian Ĥ with respect to a trial wavefunction |ΨT⟩.
Hence, by making use of the resolution of the identity Î = ∑

n |n⟩ ⟨n| the variational
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energy can be expressed as

EVMC = ⟨ΨT|Ĥ|ΨT⟩
⟨ΨT|ΨT⟩

(3.1)

=
∑

n ⟨ΨT|n⟩ ⟨n|Ĥ|ΨT⟩∑
n ⟨ΨT|n⟩ ⟨n|ΨT⟩

(3.2)

=

∑
n

⟨ΨT|n⟩ ⟨n|ΨT⟩ ⟨n|Ĥ|ΨT⟩
⟨n|ΨT⟩

P [⟨n|ΨG⟩]
P [⟨n|ΨG⟩]

(∑
n

⟨ΨT|n⟩ ⟨n|ΨT⟩
P [⟨n|ΨG⟩]

P [⟨n|ΨG⟩]
)−1

(3.3)

=
∑

n EL(n) ⟨ΨT|n⟩⟨n|ΨT⟩
P [⟨n|ΨG⟩]

P [⟨n|ΨG⟩]∑
n
⟨ΨT|n⟩⟨n|ΨT⟩

P [⟨n|ΨG⟩]
P [⟨n|ΨG⟩]

(3.4)

≡

[
1

NMC

∑NMC
k=1 EL(nk) ⟨ΨT|nk⟩⟨nk|ΨT⟩

P [⟨nk|ΨG⟩]

]
P [⟨n|ΨG⟩][

1
NMC

∑NMC
k=1

⟨ΨT|nk⟩⟨nk|ΨT⟩
P [⟨nk|ΨG⟩]

]
P [⟨n|ΨG⟩]

(3.5)

≡

〈
EL(nk) ⟨ΨT|nk⟩⟨nk|ΨT⟩

P [⟨nk|ΨG⟩]

〉
P [⟨n|ΨG⟩]〈

⟨ΨT|nk⟩⟨nk|ΨT⟩
P [⟨nk|ΨG⟩]

〉
P [⟨n|ΨG⟩]

, (3.6)

where the local energy EL(n) = ⟨n|Ĥ|ΨT⟩
⟨n|ΨT⟩

has been introduced. The form of |ΨT⟩
needs to be such that the local energy EL(n) is efficiently computable, typically in
O[N3] time or even better. The notation in the last two lines indicates that the full
deterministic sums over all states n in the Hilbert space are stochastically evaluated
by drawing NMC samples of the appropriately reweighted local energy EL(n) from the
normalised probability distribution P [⟨n|ΨG⟩] which is a suitable function of a guiding
wavefunction |ΨG⟩, such as the most commonly applied probability density

P [⟨n|ΨG⟩] = | ⟨n|ΨG⟩ |2∑
m | ⟨m|ΨG⟩ |2

. (3.7)

A well chosen function as probability density can significantly reduce the statistical
error in the MC estimate [196–198], a process which is also referred to as importance
sampling. In general, the requirement on |ΨG⟩ is such that the probability density
assumes a non-zero value P [⟨n|ΨG⟩] ̸= 0 if the exact wavefunction |ΨE⟩ has ⟨n|ΨE⟩ ≠ 0.
Algorithmically, this sampling process is often realised using the Metropolis-Hastings
algorithm [199, 200] which generates a sequence of configurations {n} distributed
according to the desired probability P [⟨n|ΨG⟩]. Since the estimate of EVMC is evaluated
as the mean of the random variable EL(n) over the visited configurations, its value
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depends only on the trial wavefunction. Yet, the statistical error in this estimate
depends on both ΨT and ΨG. Although the trial and guiding wavefunction assume
a different role, they are usually chosen to be the same function ΨG = ΨT. In some
circumstances, it might be beneficial to choose ΨG ̸= ΨT. Reasons for such a choice
include cases when ΨT needs to be sparse for efficient evaluation of local estimators
or when the variance in estimates of expectation values needs to be reduced. This
approach is very general and can be extended to any general Hermitian operator Ô
and its estimator ⟨O⟩, whereby the local energy is replaced by the corresponding local
estimator that is analogously defined by

OL(n) = ⟨n|Ô|ΨT⟩
⟨n|ΨT⟩

. (3.8)

An important characteristic of the probability distribution in Eq. 3.7 in the case
that ΨG = ΨT is the zero-variance property[201]. In the limit that the trial wavefunction
ΨT tends towards the exact eigenstate ΨE of the Hamiltonian Ĥ, Ĥ |ΨT⟩ = EE |ΨT⟩,
the local energy EL(n) is constant

EL(n) = ⟨n|Ĥ|ΨT⟩
⟨n|ΨT⟩

= EE
⟨n|ΨT⟩
⟨n|ΨT⟩

= EE. (3.9)

and therefore independent of n. The estimator EVMC therefore coincides with the exact
eigenvalue EE and its statistical error vanishes, as the variance

σ2(Ĥ) = ⟨ΨT|(Ĥ − EVMC)2|ΨT⟩
⟨ΨT|ΨT⟩

= 0. (3.10)

in EL(n) is zero in the limit that |ΨT⟩ = |ΨE⟩. The energy estimator EVMC is thus
also referred to as zero-variance estimator. Likewise, expectation values of operators
that commute with the Hamiltonian also represent zero-variance estimators.

A typical trial wavefunction |ΨT⟩ is written in form of a Slater-Jastrow function[202,
203]

|ΨT⟩ = J
∑

n
dnD

α
nD

β
n, (3.11)

where Dα
n denotes a Slater determinant constructed from α spin orbitals and the

linear combination of Slater determinants determines the 3N − 1 nodal surface of the
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wavefunction. The correlating Jastrow factor is given by

J = exp (f(r,p)) (3.12)

where f(r,p) consists of a set of functions which explicitly depend on the many inter-
particle distances and thereby includes the cusp conditions but does not augment the
original nodal surface of the Slater determinants. The accuracy of the trial wavefunction
is increased by variational optimisation of the parameters p in |ΨT(p)⟩ by minimising
the VMC energy EVMC(p) of the trial wavefunction or the variance σ2(Ĥ,p) in the local
energy EL(n)[204]. Due to the variational principle, the energy EVMC(p) will always be
an upper bound to the true energy EE, but without knowledge of the exact eigenstate,
it is hard to judge how accurate the variational approximation is. In contrast, the
smallest possible variance in EL(n), which is equal to zero, is known a priori and
thus a good criterion for the accuracy of a trial wavefunction. Variance minimisation
methods [205–207] define a cost function that represents a linear combination of energy
and variance each of which can be reweighted or unweighted

C[p] = ceEVMC(p) + cvσ
2(Ĥ,p) + cewEVMC(p)w + cvwσ

2(Ĥ,p)w, (3.13)

where ce, cv, cew and cvw determine the relative weight of each cost. In this context,
weighted refers to changing the relative weight of each configuration by a factor P [⟨n|Ψ′

T⟩]
P [⟨n|ΨT⟩]

based on the changes of the trial wavefunction to account for changes in the probability
distribution. Minimisation of this cost function with any suitable algorithm locates the
optimal parameters. Current state-of-the-art wavefunction optimisation methods [208]
are the Stochastic Reconfiguration (SR) [209–213] and Linear Method (LM) [214–217]
which can treat large numbers of non-linear wavefunction parameters so as to minimise
the energy of the trial wavefunction. Both methods optimise the trial wavefunction
in a subspace Ω of the full Hilbert space which is the tangent space spanned by the
wavefunction |ΨT(p)⟩ and its first derivatives with respect to the variational parameters

Ω = span
(
|Ψ0

T⟩ , |Ψ1
T⟩ , |Ψ2

T⟩ , . . .
)

(3.14)

where |Ψ0
T⟩ ≡ |ΨT⟩ and |Ψi

T⟩ ≡
∂|ΨT⟩

∂pi
for i > 0. The SR method can be regarded

as approximate imaginary time evolution since it repeatedly applies the operator
T̂ = Î − τĤ, the first order expansion of the imaginary time evolution operator
e−τĤ, where τ is a small number. The result of each operation with T̂ on |ΨT⟩ is
projected into the subspace Ω to obtain a new wavefunction expanded in this subspace,
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|Ψ′
T⟩ = ∑

i xi |Ψi
T⟩. The expansion coefficients xi can be found by solving the system

of linear equations

⟨Ψi
T|(Î − τĤ)|ΨT⟩ =

∑
j

⟨Ψi
T|Ψ

j
T⟩xj. (3.15)

The improved parameters are obtained p
′
i = pi + xi

x0
, after which the subspace Ω is

redefined for the new improved wavefunction. This procedure is repeated until the
energy of the wavefunction has converged. An alternative method which optimises the
wavefunction in the same subspace Ω is the Linear Method (LM) which can be viewed
as an approximate Newton method with a built in stabilisation. Instead of imaginary
time propagation, the LM method optimises |ΨT⟩ in the subspace Ω by finding the
lowest energy eigenstate x in Ω determined by the generalised eigenvalue problem

∑
j

⟨Ψi
T|Ĥ|Ψ

j
T⟩xj = E

∑
k

⟨Ψi
T|Ψk

T⟩xk. (3.16)

After solving this generalised eigenvalue problem, the variables p are updated in the
same manner as in the SR method. If the changes to the parameters are too large,
they become unphysical and need to be scaled down by a line search or rotated and
scaled down by adding a diagonal shift. Efficient techniques have been developed to
increase the efficiency of the SR and LM method and their capability of treating large
numbers of parameters [208].

3.2 Projector Quantum Monte Carlo Approaches

An improvement to the VMC energy can be achieved with PMC methods which
represent stochastic implementations of the power method, an iterative method for
determining the dominant eigenpair with the largest absolute eigenvalue of a matrix.
These stochastic approaches are used to find expectation values of operators for the
dominant eigenstate of a matrix or integral kernel that lives in a Hilbert space which
can be discrete, infinite continuous or even contain both continuous and discrete
degrees of freedom. PMC methods are useful when the Hilbert space is so large that
deterministic iterative diagonalisation techniques are unfeasible due to their large
memory requirements for storing a single vector. PMC methods drastically reduce this
memory requirement by storing only a stochastic sample of the vector elements, also
referred to as ensemble of walkers, and computing expectation values as a time average.
The dominant eigenstate |ΨE⟩ with largest eigenvalue in magnitude E0 of a Hermitian
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Method Projector 1-particle basis Quantisation

DMC[218–222] e−τ(Ĥ−E0Î) r 1st
GFMC[223–225] e−τ(Ĥ−E0Î) (samp. τ) r 1st

FCIQMC[52, 226] Î − τ(Ĥ − E0Î) ϕorthog
i 2nd

AFQMC[227] e−τ(Ĥ−E0Î) ϕnonorthog
i 2nd

Table 3.1 Summary of the most commonly used PMC methods. The annotation ‘samp. τ ’
indicates that the value of τ is sampled from a probability density.

operator is obtained by repeated application of a projector P̂ on an initial trial state
|Ψ(0)

T ⟩ with non-zero overlap with |ΨE⟩:

lim
k→∞

(P̂)k |Ψ(0)
T ⟩ = lim

k→∞
|ΨE⟩Ek

0 ⟨ΨE|Ψ(0)
T ⟩ . (3.17)

Since a projector P̂ of a Hermitian operator can be any function of the operator which
has one eigenvalue equal to one and all remaining eigenvalues of absolute magnitude
smaller than one, there is a variety of choices for the determination of the ground state
of the Hamiltonian Ĥ. Consequently, several PMC methods exist which, apart from
many small details, differ not only in the form of their projectors but also in their
choice of basis states that is whether a continuous real space spanned by first quantised
states of particle coordinates or a discrete occupation number space spanned by second
quantised states of occupation number vectors is employed.

Table 3.1 gives a summary of the most commonly applied PMC methods. For
example, Diffusion Monte Carlo (DMC) [218–222] uses the exponential projector
P̂ = e−τ(Ĥ−E0Î), also known as imaginary time propagator, in a 1st quantised basis
of particle coordinates. Even though there is no theoretical upper limit on τ for the
exponential projector, small values of τ are used, since the explicit expressions arising
from a Suzuki-Trotter decomposition of the imaginary time propagator become only
exact in the limit τ → 0[228]. Green Function Monte Carlo (GFMC) [223–225], a
generalisation of DMC, does not contain any time step error and is therefore able
to produce accurate energies for small systems but incurs a greater computational
expense than DMC. Auxiliary Field Quantum Monte Carlo (AFQMC) [227] uses
the Hubbard-Stratonovich transformation[229] of the projector P̂ = e−τ(Ĥ−E0Î) to
map the many-body problem of interacting particles onto a system of non-interacting
particles coupled to a fluctuating external auxiliary field, whilst Monte Carlo sampling
is employed to average over different field configurations[230, 231]. Like AFQMC, Full
Configuration Interaction Quantum Monte Carlo (FCIQMC)[52, 226] works in the
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2nd quantised basis of occupation number vectors, but employs the linear projector
P̂ = Î − τ(Ĥ − E0Î) instead. In particular, this linear projector can only be used
for Hamiltonians with bounded spectra given that the τ is bounded by τ < 2

(Emax−E0)
with E0 and Emax being the minimum and maximum eigenvalues, respectively. The
expectation values of the Hamiltonian and of any Hermitian operator which commutes
with the Hamiltonian are expressed as mixed estimators

⟨O⟩ = ⟨ΨE|Ô|ΨT⟩
⟨ΨE|ΨT⟩

(3.18)

=
∑

n ⟨ΨE|n⟩ ⟨n|Ô|ΨT⟩∑
n ⟨ΨE|n⟩ ⟨n|ΨT⟩

(3.19)

=

∑
n

⟨ΨE|n⟩ ⟨n|ΨT⟩ ⟨n|Ô|ΨT⟩
⟨n|ΨT⟩

P [⟨n|ΨG⟩]
P [⟨n|ΨG⟩]

(∑
n

⟨ΨE|n⟩ ⟨n|ΨT⟩
P [⟨n|ΨG⟩]

P [⟨n|ΨG⟩]
)−1

(3.20)

=
∑

n OL(n) ⟨ΨE|n⟩⟨n|ΨT⟩
P [⟨n|ΨG⟩]

P [⟨n|ΨG⟩]∑
n
⟨ΨE|n⟩⟨n|ΨT⟩

P [⟨n|ΨG⟩]
P [⟨n|ΨG⟩]

(3.21)

≡

[
1

NMC

∑NMC
k=1 OL(nk) ⟨nk|ΨT⟩

P [⟨nk|ΨG⟩]

]
P [⟨n|ΨG⟩]⟨ΨE|n⟩[

1
NMC

∑NMC
k=1

⟨nk|ΨT⟩
P [⟨nk|ΨG⟩]

]
P [⟨n|ΨG⟩]⟨ΨE|n⟩

(3.22)

≡

〈
OL(nk) ⟨nk|ΨT⟩

P [⟨nk|ΨG⟩]

〉
P [⟨n|ΨG⟩]⟨ΨE|n⟩〈

⟨nk|ΨT⟩
P [⟨nk|ΨG⟩]

〉
P [⟨n|ΨG⟩]⟨ΨE|n⟩

, (3.23)

where the factor ⟨ΨE|n⟩ has been subsumed in the probability density P [⟨n|ΨG⟩] ⟨ΨE|n⟩
underlying the sampling process. Usually, the probability distribution

P [⟨n|ΨG⟩] ⟨ΨE|n⟩ = ⟨n|ΨG⟩ ⟨ΨE|n⟩∑
m ⟨m|ΨG⟩ ⟨ΨE|m⟩

(3.24)

is used for the evaluation of the expectation value as average over the ensemble
of walkers. Although the exact wavefunction ΨE appearing in the expressions for
expectation values is unknown, it can be sampled by repeated application of the
projector P̂ or its importance-sampled version. Provided that no approximations
are introduced, the PMC estimate has no bias, independent of the guiding and trial
wavefunction which only affect the statistical error in the MC estimate. As in the case
of VMC, if ΨG = ΨT, which is a common choice, the PMC mixed estimator represents
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a zero-variance estimator in the limit ΨT → ΨE and the bias and statistical error in
the estimate vanish.

Although PMC methods are exact in principle, in practice, they all suffer from the
fermion sign problem when treating fermionic and frustrated systems. The fermion
sign problem is related to the fermionic nature of the wavefunction which necessitates
positive and negative (or more generally complex) wavefunction amplitudes to be
sampled. In all PMC methods, this means that an undesired state grows relative to the
fermionic state of interest when a system is evolved by repeated stochastic application
of a projector. As a result, the computational cost grows exponentially with system size
and the fermion sign problem poses an NP-complete problem[128]. The sign problem
manifests itself differently in the various PMC methods. For PMC methods which
work in the 1st quantised space of electronic coordinate the dominant state of the
projector corresponds to a nodeless bosonic solution. For projector methods working
in a 2nd quantised basis the severity of the sign problem is reduced[232]. Although
the intrinsic anti-symmetry of the space prevents collapse onto a bosonic solutions,
the dominant state of the projector causes an exponentially decreasing signal-to-noise
ratio[233]. Many PMC methods therefore employ approximation such as the fixed-node
(FN) [218, 234] (or fixed-phase in the case of complex wavefunctions) approximation in
DMC or the phaseless approximation [227] in AFQMC. The FN approximation imposes
the antisymmetry as constraint upon the solution in the form a 3N − 1 dimensional
nodal hypersurface on which the wavefunction is zero and across which it changes sign.
The stochastic projection is thus performed subject to the constraint that the projected
state has the same nodes as |ΨT⟩ by fixing the phase of the walkers relative to the trial
state. In most circumstances |ΨT⟩ is necessarily approximate and the nodes introduce a
systematic error in the sampled wavefunction, as well as a systematic bias in expectation
values whose quality is intrinsically limited by the quality of the trial wavefunction.
In the limit that the nodal surface of the trial state is exact the exact ground state
wavefunction is recovered, the bias in expectation values vanishes, and any estimator of
an operator that commutes with the Hamiltonian represents a zero-variance estimator.
Since the accuracy and efficiency of approximate PMC methods depend crucially on the
quality of the trail state, it is common practice to first optimise the trial wavefunction in
a VMC optimisation prior to a PMC calculation. It is clear that the principal limitation
for both approximate PMC and VMC methods is this fixed-node error, which will
always raise the energy and represent a variational upper bound to the exact energy[221].
It has been found difficult to improve upon this limitation, increase the accuracy of the
nodal surface and retrieve more of the correlation energy in a systematic and controlled
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manner through techniques such as backflow corrections[235, 236] or release-node
methods [220, 237]. These more sophisticated approaches can significantly improve
energy calculated by DMC, reducing typical systematic biases from ∼ 3kcal mol−1 to
within chemical accuracy of 1kcal mol−1[238, 239].

3.3 Full Configuration Interaction Quantum Monte
Carlo: FCIQMC

Full Configuration Interaction Quantum Monte Carlo (FCIQMC)[52, 240] is a new
wavefunction-based projector method which seeks the solution to the imaginary-time
Schrödinger equation. It combines the accuracy of the FCI ansatz with the computa-
tional efficiency of Monte Carlo sampling of the projector and wavefunction to realise
a stochastic implementation of the power method[233, 51]. The coefficients in the FCI
wavefunction ansatz are stochastically represented by a set of discrete, signed walkers
within the complete Hilbert space spanned by Slater determinants. In the limit of
a sufficiently large number of walkers, the long-time average of walker distribution
is equal to the FCI wavefunction, the exact solution for a given single-particle basis.
Although the choice of a finite one-particle basis introduces a finite basis set error and
limits the physical accuracy of FCIQMC, working in the intrinsically antisymmetric 2nd
quantised space of occupation number vectors alleviates the Fermion sign problem[232].
In contrast to many other PMC methods which introduce approximations to circumvent
the sign problem that are, however, difficult to improve upon in a systematic and
controlled manner, FCIQMC employs effective cancellation algorithms to control the
sign problem instead. The exact wavefunction therefore emerges spontaneously in
FCIQMC without any a priori wavefunction information. By sampling the wavefunction
and evaluating expectation values as time average over stochastic snapshots, FCIQMC
only needs storage of non-zero coefficients in the FCI expansion which is often a tiny
fraction of the whole Hilbert space, thereby circumventing the memory bottleneck
experienced by deterministic iterative diagonalisation techniques. FCIQMC has been
shown to reproduce FCI energies for a range of systems well within chemical accuracy.
Owing to its reduced computation cost, FCIQMC is capable of treating systems many
orders of magnitude larger than those used in existing more traditional FCI approaches.
FCIQMC and its variants have been found successful in studies of atomic and molecular
systems[241–244], model systems such as the homogeneous electron gas[245] and hub-
bard models[246], as well as solid-state systems[247]. More recently, developments have
also enabled the extension to excited states[248–252], systems at finite temperature[248],
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the calculations of molecular properties[253, 254], the use of FCIQMC as an FCI-solver
in a Multi-Configurational Self-Consistent Field framework, resulting in a stochastic
CASSCF approach[255, 256], as well as the application of explicitly correlated methods
which reduce the error arising from the use of a finite basis set[257, 258]. Additionally,
FCIQMC has also led to further stochastic approaches which aim at solving other types
of quantum chemical equations such as the Coupled-Cluster Monte Carlo method[259]
and the Density Matrix Quantum Monte Carlo technique[260].

3.3.1 Derivation of FCIQMC Equations

The rational basis for the approach taken by many PMC methods is that the time-
dependent Schrödinger equation

i
∂Ψ(r, t)
∂t

= ĤΨ(r, t) (3.25)

can also be viewed as a generalised diffusion equation. If the Hamiltonian of the system
does not vary with time, the solutions of the time-dependent Schrödinger equation are
of the form

Ψ(r, t) =
∑

i

ci(t = 0)e−iϵitψi(r), (3.26)

where ϵi and ψi(r) represent the eigenvalues and eigenfunctions of the corresponding
time-independent equation. By means of a Wick rotation[68], the time-dependent
Schrödinger is transformed into the imaginary-time Schrödinger equation, with τ = it

−∂Ψ(r, τ)
∂t

= ĤΨ(r, τ), (3.27)

thereby converting it to an ordinary differential equation whose solution is formally
given by

Ψ(r, τ) = e−τĤ |Ψ(r, τ = 0)⟩ . (3.28)

The Schrödinger equation may thus be integrated in imaginary time to large values of
τ yielding a solution to the time-independent Schrödinger equation. By expanding the
initial wavefunction |Ψ(r, τ = 0)⟩ in the complete set of orthogonal eigenstates of the



3.3 Full Configuration Interaction Quantum Monte Carlo: FCIQMC 57

Hamiltonian, Ĥ |Ψi(r)⟩ = Ei |Ψi(r)⟩, such that,

|Ψ(r, τ = 0)⟩ =
∑

i

Ci(τ = 0) |Ψi(r)⟩ , (3.29)

and introducing an arbitrary energy offset, Eoff , the wavefunction can be written as

Ψ(r, τ) =
∑

i

Ci(τ = 0)e−τ(Ĥ−Eoff) |Ψi(r)⟩ , (3.30)

which describes the evolution of the individual eigenfunctions of the system in imaginary
time. Using the spectral expansion of the operator[50],

e−τĤ =
∑

j

|Ψj(r)⟩ e−τEj ⟨Ψj(r)| , (3.31)

the decay of high-energy states relative to low-energy states becomes obvious

Ψ(r, τ) =
∑
ij

Ci(τ = 0) |Ψj(r)⟩ e−τ(Ej−Eoff) ⟨Ψj(r)|Ψi(r)⟩ (3.32)

=
∑

i

Ci(τ = 0)e−τ(Ei−Eoff) |Ψi(r)⟩ . (3.33)

If Eoff is equal to the ground state energy E0, all states with energy Ei > E0 decay
exponentially, with the rate of decay determined by their energy relative to the ground
state energy. In the long imaginary-time limit, the wavefunction will be dominated by
the lowest energy state

Ψ(r, τ →∞) = lim
τ→∞

∑
i

Ci(τ = 0)e−τ(Ei−Eoff) |Ψi(r)⟩ (3.34)

= C0(τ = 0)e−τ(E0−Eoff) |Ψ0(r)⟩+O[e−τ(Ei−Eoff)], (3.35)

where {|Ψ0(r)⟩ , E0} represents the lowest energy eigenpair, provided that the initial
wavefunction |Ψ(r, τ = 0)⟩ has non-zero overlap with |Ψ0(r)⟩.

FCIQMC parameterises the wavefunction in the same manner as FCI which ex-
pands the wavefunction in the basis of occupation number vectors representing Slater
determinants spanning the complete N -particle Hilbert space

Ψ =
∑

n
Cn |n⟩ . (3.36)
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Substituting this into the imaginary-time Schrödinger equation (Eq. 3.27) and in-
troducing an energy offset Eoff to allow for a stationary solution in the long τ limit,
gives

∑
n

dCn(τ)
dτ

|n⟩ = −
∑

n
Cn(τ)(Ĥ − Eoff) |n⟩ , (3.37)

which if multiplied by ⟨m|

∑
n

dCn(τ)
dτ

⟨m|n⟩ = −
∑

n
Cn(τ) ⟨m|(Ĥ − Eoff)|n⟩ , (3.38)

reduces to

dCm(τ)
dτ

= −
∑

n
[Hmn − δmnEoff)]Cn(τ). (3.39)

In FCIQMC, the energy offset Eoff is typically split into a reference energy Eref and a
shift parameter ES

dCm(τ)
dτ

= −
∑

n̸=m
HmnCn(τ)

− (Hmm − Eref − ES)Cm(τ). (3.40)

In order to demonstrate the deep connection to other projector methods and the
power method, Eq. 3.40 can also be obtained through application of the projector
P̂ = Î − δτ (Ĥ − (Eref +ES)Î) onto a wavefunction where δτ is viewed as a short time
step in imaginary time τ , such that the k-th application of the projector P̂ onto an
arbitrary coefficient Cm gives

C(k)
m = ⟨m|Ψ(k)⟩ (3.41)

=
∑

n
⟨m|C(k)

n |n⟩ (3.42)

=
∑

n
⟨m|[Î − δτ(Ĥ − (Eref + ES)Î)]C(k−1)

n |n⟩ (3.43)

= ⟨m|[Î − δτ(Ĥ − (Eref + ES)Î)]C(k−1)
m |m⟩ (3.44)

+
∑

n̸=m
⟨m|[Î − δτ(Ĥ − (Eref + ES)Î)]C(k−1)

n |n⟩ (3.45)

= C(k−1)
m − δτHmmC

(k−1)
m + δτ(Eref + ES)C(k−1)

m −
∑

n̸=m
δτHmnC

(k−1)
n . (3.46)
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Substituting this into the derivative of the coefficient with respect to imaginary time

dCm

dτ
= lim

δτ→0

C(k)
m − C(k−1)

m
δτ

(3.47)

gives

dCm

dτ
= lim

δτ→0

1
δτ

C(k−1)
m − δτHmmC

(k−1)
m + δτ(Eref + ES)C(k−1)

m (3.48)

−
∑

n̸=m
δτHmnC

(k−1)
n − C(k−1)

m

 (3.49)

= lim
δτ→0

−
∑

n̸=m
HmnC

(k−1)
n

−HmmC
(k−1)
m + (Eref + ES)C(k−1)

m

 (3.50)

= −
∑

n̸=m
HmnC

(k−1)
n

− (Hmm − Eref − ES)C(k−1)
m , (3.51)

which exactly matches Eq. 3.40. The linear projector P̂ = Î − δτ(Ĥ − (Eref + ES)Î)
represents the Taylor expansion of the e−δτĤ operator with imaginary time τ discretised
into B time steps δτ , such that e−BδτĤ = e−τĤ. Since the imaginary time propagator
e−τĤ represents the formal solution to the Schrödinger equation and shares the same
eigenfunctions as the linear projector, repeated application of P̂ = Î − δτ(Ĥ − (Eref +
ES)Î) will project out the ground state of any non-orthogonal trial state.

Once this initial state has been evolved in imaginary time for a sufficiently long
period, corresponding to sufficiently many repeated application of the projector, the
wavefunction is proportional to the dominant eigenstate of the system, at which point
the coefficients should all be stationary and dCm

dτ
= 0 ∀m and Eq. 3.40 becomes

−
∑

n
[Hmn − (Eref + ES)δmn]Cn = 0 (3.52)∑

n
HmnCn = (Eref + ES)Cm, (3.53)

which returns the time-independent Schrödinger equation for the system in form of a
standard Hermitian eigenvalue problem, where C represents the dominant eigenstate
of H with energy (Eref + ES).
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3.3.2 Stochastic Implementation of FCIQMC

The set of coupled differential equations in Eq. 3.40 describes the evolution of the
wavefunction parameters in imaginary time which in the long-imaginary time limit
projects out the lowest energy eigenstate of the system. In FCIQMC, a stochastic
algorithm[52, 240, 261] realises a finite difference formulation of Eq. 3.40 whereby the
wavefunction is represented stochastically by an ensemble of discrete signed walkers
which live in the complete N -particle Hilbert space, and are propagated iteratively
with small time steps δτ . Each walker, α, possesses an associated sign sα = ±1 and
the instantaneous coefficients, {Cn}, in the wavefunction expansion is defined to be
proportional to the signed sum, Nn, of the signed walkers on each Slater determinant,

Cn ∝ Nn =
∑

α∈|n⟩
sα (3.54)

Representing the wavefunction in this discretised form significantly compresses the
information needed to store a stochastic snapshot of the wavefunction. The total
number of walkers, Nw, is given by

L1 ∝ Nw =
∑

n
|Nn|, (3.55)

which is thus proportional to the L1-norm of the wavefunction. Each iteration which
propagates the walker population by a time step δτ comprises spawning and death
attempts followed by annihilation events. These processes are explained in detail in
the following.

Spawning
Every walker attempts to spawn a child from its determinant |n⟩ onto a connected
determinant |m⟩ which is generated with a normalised probability pgen(m|n,H).
In this context, a connection between two configurations refers to a non-zero
connecting Hamiltonian matrix element Hmn ̸= 0. An attempt is made to spawn
a new child walker on |m⟩ with an acceptance probability

ps(m|n) = δτ |Hmn|
pgen(m|n,H) . (3.56)

This stochastic spawning attempt necessitates the generation of a random number
r in the interval [0, 1). When ps(m|n) < 1 the spawning attempt is accepted if
ps(m|n) > r. When ps(m|n) > 1, ⌊ps(m|n)⌋ walkers are spawned deterministi-



3.3 Full Configuration Interaction Quantum Monte Carlo: FCIQMC 61

cally and one further walker is created with probability ps(m|n)− ⌊ps(m|n)⌋ in
the manner described above. 1 The sign of the child walker is determined by
sign(−HmnNn). The spawning step is designed to give a stochastic representation
of the first term in Eq. 3.40 involving off-diagonal Hamiltonian matrix elements

dCm(τ)
dτ

= −
∑

n̸=m
HmnCn(τ)


︸ ︷︷ ︸

spawning

−(Hmm − Eref − ES)Cm(τ). (3.57)

The generation of connected determinants represents an integral part that is
crucial for the efficiency of the algorithm. Whilst it is perfectly valid to use a
uniform distribution[261] for pgen(m|n,H) this may become rather inefficient as
each determinant is connected to O[N2M2] others. Instead, distributions which
favour preferential generation of determinants with a strong connection |Hmn|
will significantly enhance efficiency, in particular in larger spaces[262, 263].

Death / Cloning
Each parent walker present at the beginning of the iteration (i.e. not including
the newly spawned child walkers) attempts to die or clone itself with probability

pd(n) = δτ(Hnn − Eref − ES). (3.58)

If pd(n) > 0, the walker dies with probability pd(n) (the attempt to die is
successful if pd(n) > r where r is a random number in the interval [0, 1)). It is
removed from the simulation and the population on |n⟩ is reduced accordingly.
If pd(n) < 0, the parent walker instead attempts to clone itself with probability
|pd(n)| and the population on |n⟩ is increased if successful. Cloning attempts are
rare events and usually occur in association with low energy determinants and
positive values of ES. The death step is designated to account for the second
term in Eq. 3.40 comprising diagonal Hamilton matrix elements

dCm(τ)
dτ

= −
∑

n̸=m
HmnCn(τ)


︸ ︷︷ ︸

spawning

−(Hmm − Eref − ES)Cm(τ)︸ ︷︷ ︸
death/cloning

. (3.59)

Annihilation
In the final stage of each iteration, the newly spawned child walkers and surviving

1⌊A⌋ denotes the largest integer less than or equal to A.
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parent walkers are combined. All pairs of walkers with opposite sign which
reside on the same determinant annihilate each other and are removed from
the simulation such that each determinant only retains walkers of a single sign.
All walkers that survive this process form the new walker population which is
propagated further in the next iteration.

3.3.3 Energy Estimators

FCIQMC provides two independent energy estimators: the shift, ES, and the projected
energy, Eproj. ES has been introduced as part of the energy offset which according to
Eq. 3.52 represents a measure of the energy of the system in the limit of a stationary
solution. The shift assumes the role of a population control parameter which, ignoring
statistical fluctuations, forces the total number of walkers Nw to remain constant,
thereby allowing the system to reach a stationary solution. During an initial growth
phase, ES is fixed at a specified value, typically zero, (fixed-shift mode), after which
the value of ES is allowed to dynamically vary so as to keep Nw constant in τ (variable
shift-mode). Its value is adjusted every A steps according to

ES(τ) = ES(τ − Aδτ)− ζ

Aδτ
ln Nw(τ)
Nw(τ − Aδτ) , (3.60)

where ζ is a damping parameter[222]. In this phase, Eref + ES becomes a meaningful
measure of the energy once the walker population has converged on the stationary
ground state wavefunction.

An alternative, independent energy estimator is the projected energy Eproj, a non-
variational mixed estimator, which is obtained by projecting the wavefunction onto a
reference state, |nref⟩

Eproj(τ) = ⟨nref |Ĥ|Ψ(τ)⟩
⟨nref |Ψ(τ)⟩ (3.61)

=
∑

n Cn(τ) ⟨nref |Ĥ|n⟩∑
n Cn(τ) ⟨nref |n⟩

(3.62)

= ⟨nref |Ĥ|nref⟩+
∑

n̸=nref

⟨nref |Ĥ|n⟩
Cn(τ)
Cnref (τ) (3.63)

= Eref +
∑

n ̸=nref

⟨nref |Ĥ|n⟩
Cn(τ)
Cnref (τ) (3.64)

= Eref +
∑

n̸=nref

⟨nref |Ĥ|n⟩
Nn(τ)
Nnref (τ) (3.65)
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In the last line, the ratio of coefficients Cn(τ)
Cnref (τ) has been equated to the ratio of

walker populations Nn(τ)
Nnref (τ) residing on those determinants, which is true in the long

imaginary-time limit when the walker distribution is proportional to the ground state
FCI wavefunction and Eproj(τ) equal to the FCI energy. In most circumstances,
the reference state, |nref⟩, is defined to be the Hartree-Fock determinant, in which
case Eref is the HF energy. According to the Slater-Condon rules[85, 86], only the
HF determinant and its doubly (and singly if another reference state is used and
Brillouin’s theorem[97, 98] does not apply) excited determinants contribute to Eproj(τ).
The accuracy of the projected energy is rather sensitive to the relative error in the
coefficient of the reference state and even diverges if Nnref = 0. The error in Eproj(τ) is
likely to be larger for systems where the reference determinant constitutes only a small
fraction of the wavefunction, such as multireference systems. In these systems, instead
of a single determinant, the wavefunction can be projected onto a trial wavefunction
which is itself a linear combination of determinants[242]. These more sophisticated
trial wavefunctions can significantly reduce the stochastic error in Eproj(τ)[264, 248],
but also increase the computational expense associated with the calculation of Eproj(τ)
which may become prohibitively expensive.

The availability of these two independent energy estimators is of considerable value.
Whilst the projected energy depends exclusively on the walker population at the refer-
ence state (or at determinants in the trial wavefunction) and its connected determinants,
the shift derives from the dynamics of the entire occupied space. Agreement between
these two distinct measures represents therefore a useful indicator of convergence in a
calculation.

3.3.4 The Fermion Sign Problem and the Importance of An-
nihilation

Like all PMC methods FCIQMC needs to control the Fermion Sign problem which
arises because repeated stochastic application of the projector causes the growth of
an undesired state as the system evolves. In contrast to other PMC methods such as
DMC, FCIQMC achieves this without introduction of approximations that are difficult
to improve systematically and require a priori knowledge of the nodal structure of the
wavefunction to be exact.

In part, this success is based on the use of the 2nd quantised basis of Slater
determinants spanning the complete N -particle Hilbert space. Whilst a 1st quantised
basis allows states of various symmetry which means that the dominant state of the



64 Zero-temperature Ground State Quantum Monte Carlo Methods

projector is the physical bosonic ground state of the Hamiltonian and not its fermionic
ground state, a 2nd quantised basis allows only states of the correct symmetry and
noise from undesired non-fermionic states is thus prevented. However, working in a
2nd quantised basis does not solve the sign problem, as different paths between two
states can contribute with opposite signs in which case they cancel and result in a
total contribution of smaller absolute magnitude, just as they would in a deterministic
calculation. Issues arise when contributions of opposite sign occur at different steps of
the sampling process. Moreover, Ψ and −Ψ are sampled with equal probability which
further adds to the problem[51]. Yet, compared to a 1st quantised basis the intrinsically
antisymmetric 2nd quantised basis reduces the severity of the sign problem[232]. The
antisymmetrised basis not only introduces the possibility of internal cancellations but
is also reduced in size by a factor of N ! which increases the probability for walkers of
opposite signs to meet and cancel each other. Further, since states of symmetry other
than fermionic are eliminated, a stable signal to noise ratio can be obtained in the limit
of large walker populations. FCIQMC reaches exactly this limit with the introduction
of the annihilation step which represents an efficient cancellation algorithm.

Although the annihilation process does not explicitly appear in the FCIQMC master
equations in Eq. 3.40, it is nevertheless a key element to the control of the Fermion sign
problem and the success of the algorithm. In the absence of annihilation the simulation
fails to converge. Only in the presence of the annihilation step, the simulation is able
to project out the ground state wavefunction with correct values for ES and Eproj

provided the total number of walkers in the simulation exceeds a system-dependent
critical value. The annihilation step is also responsible for the pattern of walker growth
in a typical FCIQMC calculation. In fixed-shift mode, where ES is typically fixed
at zero, the walker population initially grows exponentially. However, annihilation
causes the walker growth to spontaneously halt and enter a plateau phase before the
beginning of a second exponential growth phase. During the plateau phase the desired
wavefunction emerges and its height therefore sets the system dependent minimum
required walker number Nw for convergence (Figure 3.1).

This minimum walker number represents the minimum amount of sampling that is
required for sufficient annihilation events to occur such that the Fermion sign problem
is controlled and a stable signal to noise ratio is obtained. Like in all other PMC
methods, noise arises from the growth of an undesired state and the severity of the sign
problem is characterised by the difference in energy between the two competing states.
Yet, unlike in a 1st quantised basis, where the undesired state is the physical bosonic
ground state of the Hamiltonian, this need not be the case in a 2nd quantised basis.
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Fig. 3.1 An illustration of an FCIQMC calculation for the Be2 molecule in a cc-pVTZ basis[265]
with a bond length of 2.254Å. The 1σ2

g1σ2
u core electrons are frozen. Both calculations use a time

step of δτ = 10−3 and are initialised with a single walker at the RHF reference determinant. In
the calculation shown on the left-hand side, Nw is allowed to exceed the annihilation plateau at
Nc = 168, 000 walkers. In this simulation both energy estimators converge onto the correlation energy
of the system. In the calculation on the right-hand side the total walker population is stabilised
(by allowing the shift ES to vary) below the critical walker threshold. In this simulation no reliable
estimate of the correlation energy can be obtained.



66 Zero-temperature Ground State Quantum Monte Carlo Methods

Instead, the undesired state represents the dominant state of the projector with all
off-diagonal elements replaced by their absolute values which is the lowest eigenfunction
of a matrix T̃mn = Hmnδmn − |Hmn − Hmnδmn|[266]. The lowest eigenvalue of T̃ is
always lower than the lowest eigenvalue of the Hamiltonian H, meaning that this
undesired solution dominates in a regime without sufficient annihilation. The difference
between the two eigenvalues of the competing states which characterises the severity
of the sign problem is always smaller than or equal to the relevant difference in a
1st quantised basis, the energy gap between the fermionic and bosonic ground states.
Introduction of cancellation events in the form of the annihilation step has been shown
to inhibit specifically the growth of the undesired competing state and to give rise to
the spontaneous plateau phase in the walker growth, allowing the true ground state
wavefunction of the Hamiltonian to emerge.

3.3.5 The Initiator Approximation

Although the FCIQMC algorithm in its form described above represents a computational
saving over more traditional diagonalisation techniques, its computational expense still
needs to be reduced for the treatment of larger systems, ideally without a commensurate
loss of accuracy. One of the most successful developments with this aim is the initiator
approximation[226, 267] which introduces subtle modifications to the spawning step.
These alterations significantly broaden the scope of FCIQMC by removing the plateau
region from the simulation and reducing the associated minimum walker number
required for convergence. This initiator adaptation of FCIQMC (i-FCIQMC) has been
so successful that it is now routinely used as standard approach and all calculations
presented in this thesis use the initiator adaptation i-FCIQMC, unless otherwise stated.

The alterations introduced by i-FCIQMC start by separating the occupied Slater
determinants into two categories based on their instantaneous walker population relative
to a predetermined parameter, Na. Determinants with a walker population greater
than this threshold, |Nn(τ)| > Na, are classified as initiators while determinants with
a walker population less than or equal to this threshold, |Nn(τ)| ≤ Na, are classified as
non-initiators. The spaces of initiator and non-initiator determinants are dynamically
updated throughout the simulation to reflect the changing populations on individual
determinants. All walkers on initiator determinants attempt to die and spawn as
normal and thus behave exactly as in FCIQMC. Walkers on non-initiator determinants
also attempt to die as normal, but their spawning ability is restricted. In particular, if
a walker on a non-initiator attempts to spawn onto a connected determinants that is
vacant and the attempt is successful, the resulting child walker is still not allowed to
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survive but instead, is removed from the simulation. There is one exception from this
restriction in the case of a so called ‘double spawn’ event wherein two (or more) walkers
from non-initiator determinants successfully spawn child walkers of the same sign onto
the same vacant determinant in one iteration. In these cases both child walkers are
allowed to survive and propagate according to the same rules as all other walkers.
Spawning from walkers on non-initiator determinants onto occupied determinants
largely proceed as normal.2

These modifications to the algorithm aim to prevent the propagation of sign-
incoherent noise. The initiator criteria are based on the assumptions that when
considering determinants with a walker population in excess of Na, more credence
should be given to the sign information that it carries by giving it precedence in the
spawning process and letting it propagate its information throughout the whole Hilbert
space, and in particular, throughout new unexplored areas of the Hilbert space. On
the contrary, determinants with small walker numbers below Na carry less reliable sign
information and are thus prevented from propagating their information onto vacant
determinant in order to ensure that newly populated determinants are associated with
the correct sign. As such, double spawn occurrences are also considered to be sign-
coherent events, and the resultant walkers are therefore allowed to propagate, despite
their parent walkers being located on low-weight non-initiator determinants. In addition
to this sign-coherence argument, it is also thought that the imposed restrictions on
the spawning process inhibit an initial rapid spread of walkers throughout the Hilbert
space that is observed in full-scheme FCIQMC. This enhances the cancellation rate of
oppositely signed walkers in the annihilation step in i-FCIQMC, in particular during
the early stages of a simulation. In doing so, significant growth of the undesired state
representing the lowest energy eigenfunction of T̃[266] is impeded, thereby helping in
controlling the sign problem and achieving a stable signal to noise ratio.

The initiator approximation has significantly extended the ability of FCIQMC to
treat larger systems. The initiator rules prevent the propagation of noise arising from
walkers spawned with the wrong sign which would otherwise have to be removed by
annihilation events in the large walker limit. Suppressing this initial growth of sign-
incoherent walkers removes the annihilation plateau from the dynamics of a simulation
which is observed in the full-scheme version (Figure 3.2). The height of this annihilation
plateau defines a restrictive minimum walker number Nw required for convergence.
Since the computational expenditure scales approximately linearly with Nw, O[Nw],

2There are subtle but defined conventions in the case that simultaneous spawning events onto a
single determinant originate from both initiator and non-initiator walkers and the resulting child
walkers from different categories of determinants have different signs.
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Fig. 3.2 A comparison of FCIQMC and i-FCIQMC calculations for the Be2 molecule in a cc-pVTZ
basis[265] with a bond length of 2.254Å. The 1σ2

g1σ2
u core electrons are frozen. Both calculations use

a time step of δτ = 10−3 and are initialised with a single walker at the RHF reference determinant.
The FCIQMC simulation on the left-hand side displays the characteristic plateau behaviour in the
growth of the total walker number Nw. This calculation requires Nw = 600, 000 walkers for the energy
estimates to converge onto the correlation energy of the system. In contrast, the i-FCIQMC simulation
on the right-hand side with Na = 3 converges onto the correct correlation energy even when the total
walker number is stabilised at Nw = 100, 000 below the critical walker threshold, Nc = 168, 000, of
conventional FCIQMC. The characteristic annihilation plateau is also removed from the i-FCIQMC
simulation and i-FCIQMC thus provides a significant saving over FCIQMC.
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the effort to overcome this barrier can be intractably expensive. Specifically, in some
systems when the required walker number is comparable to the size of the full Hilbert
space, FCIQMC was found to offer little benefit over conventional FCI techniques[52].
By removing the plateau phase, i-FCIQMC is able to converge onto the ground state
wavefunction at substantially lower Nw than full-scheme FCIQMC[243]. Although
the exact mechanism by which i-FCIQMC achieves remains unclear, it is thought
that the combination of encouraging sign-coherent sampling of the Hilbert space and
enhancing cancellation rates to prevent growth of the undesired competing state are the
main factors. However, the success of i-FCIQMC comes at a cost, since the initiator
restrictions on spawning events mean that i-FCIQMC samples a slightly different
Hamiltonian in which some of the connecting off-diagonal elements are temporarily
zeroed,

H ′mn(τ) = 0 if n /∈ {initiators} and Nm(τ) = 0. (3.66)

This places restrictions on the instantaneous space accessible to the i-FCIQMC wave-
function, the extend of which depends on the number of initiators and walkers in the
system. As the affected H ′mn(τ) evolve with the distribution of walkers during the
course of a simulations, these modifications do not generally act like a conventional
truncation of space. Nonetheless, the temporary truncation of Hamiltonian matrix
elements and available Hilbert space can introduce a systematic error. The result of
this is that the measured shift or projected energy are not equal to the true energy of
the system and this difference is defined to be the initiator error, ϵinit,

ϵinit = Eproj − Eexact. (3.67)

Yet, this error is systematically controllable, tending to zero as Nw → ∞. In this
infinite walker limit, all determinants become occupied and thus eventually initiators
which lifts the restrictions imposed by the initiator modifications and is equivalent to
the full scheme FCIQMC algorithm. Similarly, in the limit that Na → 0 all occupied
determinants act as initiators which again returns the full scheme algorithm. However,
extrapolations to any of these limits are difficult, as the initiator error can be of either
sign, as well as nonmonotonic, and in practice one or both of these limits must be
explored in a number of simulations to ensure that any systematic error has been
removed. A typical example is shown in Figure 3.3.
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Fig. 3.3 Convergence of initiator error, ϵinit, with respect to total walker number Nw for the Be2
molecule in a cc-pVTZ basis[265] with a bond length of 2.254Å. The 1σ2

g1σ2
u core electrons are frozen.

Although for the majority of systems the energy seems to converge from above, a number of cases
have been found where this is not the case[247, 245]. Stochastic errors have been obtained with a
Flyvbjerg-Petersen blocking analysis[268].
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3.3.6 Non-integer Real-weight Walkers

Although FCIQMC was originally developed with an ensemble of discrete integer
weight walkers, it was found beneficial to introduce walkers with real non-integer
weights[253, 269]. In the algorithm this is achieved by applying the spawning, death and
annihilation process continuously, rather than discretely. In this context, continuously
means that weights in spawning and death events are assigned in a continuous manner,
omitting the additional stochastic process to convert the weight into an integer walker.
Specifically, instead of spawning a walker of integer weight ±1 from |n⟩ to |m⟩ with
probability ps(m|n), a walker of weight ps is spawned with probability 1. Similarly,
a continuous death event on |n⟩ simply involves altering its walker population by
pd(n) without the discretisation enforced in the integer walker algorithm. A complete
definition of this non-integer algorithm requires a discretisation of the number of
spawning attempts made from each determinant with real weight walkers. This number
of spawning events is set to be a minimum of ⌊Nn⌋ with the possibility of one additional
spawning attempt that is stochastically realised with a probability Nn−⌊Nn⌋ to ensure
that the overall number of spawning events is still proportional to Nn. Apart from
these modifications, the remaining steps of the algorithm proceed largely in the same
way as their integer counterparts.

The continuous version of the FCIQMC algorithm removes much of the random
number generation in the code. At the same time, instantaneous fluctuations on each
determinant are reduced by allowing changes to its population by small fractions of
a walker, rather than by a whole walker at a time, which also leads to significant
reductions in the stochastic error in estimates such as the projected energy. However, as
continuous spawning events are automatically accepted, their number is substantially
increased. Likewise, continuous death events of fractions of a walker can lead to
many determinants being occupied by low-weight walkers. The costs in memory
and simulation time associated with non-integer walkers can thus be significant and
some means of stochastic compression of the low-weighted walkers is needed to avoid
computational costs for these walkers which contribute little but would quickly span
much of the Hilbert space. Three additional parameters are therefore introduced to
control the computational expense of the continuous approach. First, only a subspace
of the full Hilbert space is treated with non-integer walkers whilst the remainder is
described in a discretised manner with integer walkers. The non-integer subspace is
defined by a given number of particle-hole excitations from the reference determinant,
determined by the cutoff parameter χ which is equal to the maximum excitation level.
This still preserves to a large part the minimised fluctuations in the energy estimator
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as the most dominant contributions will be included in the non-integer subspace (or all
contributions with a HF reference and χ ≥ 2) and creates a hierarchy of non-integer
methods which offer different compromises between high resolution and computational
cost. In addition, a minimum threshold value, κ, is introduced for a continuous
spawning event. If ps > κ, ps walkers are spawned with probability 1 in a continuous
process. If ps < κ, κ walkers a spawned with probability ps

κ
in a stochastic process,

otherwise 0 walkers are spawned. This approach alleviates the disproportionate cost
of low-weight walkers which incurs a substantial computational expense compared to
their negligible impact on the simulation. While the death step requires no additional
modification of this kind, the annihilation process needs further considerations and
a minimum occupation threshold, Nocc, is defined. After the annihilation process is
complete, the instantaneous population of each determinant, Nn, is assessed with
respect to this threshold. If Nn < Nocc, its population is discretised to either Nocc

with probability Nn
Nocc

or 0 with probability 1 − Nn
Nocc

. In doing so, it is ensured that
determinants with low-weight walker populations do not proliferate.

It was observed that the description of at least some parts of the space in a
continuous manner was universally beneficial mostly due to the reduction in stochastic
noise[253].

3.3.7 The Semi-stochastic Adaption

A further notable development of FCIQMC which shall only be briefly mentioned is its
semi-stochastic adaption [264, 248]. This approach takes advantage of the observation
that for many system, a large proportion of the spectral weight of the ground state is
concentrated on a relatively small part of the Hilbert space. The Hilbert space HN

is therefore divided into two subspaces, a deterministic subspace D and a stochastic
subspace S, such that D ∪ S = HN and D ∩ S = ∅. Similarly, the linear projector
expanded in the set of basis states {|n⟩},

P̂ = Î − δτ(Ĥ − ESÎ) =
∑
mn

Pmn |m⟩ ⟨n| , (3.68)

whose application is performed stochastically in (i)-FCIQMC, is partitioned into a
deterministic projector P̂D and a stochastic complement P̂S,

P̂ = P̂D + P̂S, (3.69)
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where

PD
mn =

Pmn if m,n ∈ D

0 otherwise
. (3.70)

Whereas P̂D is applied exactly, the application of P̂S is realised stochastically using the
normal processes of FCIQMC. A good choice of states for the deterministic subspace
should be of modest size whilst comprising an appreciable proportion of the ground
state wavefunction. A number of techniques of making this choice have been proposed
ranging from truncations based upon excitation level to iterative schemes that attempt
to identify the highest weighted basis states in the wavefunction. Since a deterministic
projection has no sign problem and no statistical error, the semi-stochastic approach
reduces the severity of the sign problem and the amount of stochastic noise compared
to the fully stochastic version[51].

3.4 Handling Stochastic Estimators

When using stochastic methods such as VMC or FCIQMC, estimates of quantities
and their associated errors arising from statistical fluctuations need to be treated
appropriately. Once a simulation has converged and equilibrated statistically signif-
icant data can be extracted in the form of statistical averages over the appropriate
instantaneous values of estimators collected over a series of iterations. In this process,
the problem of serial correlation in the data need to be addressed, whereby consecutive
data points cannot be considered independent since the wavefunction at iteration k+ 1
is closely related to that at iteration k and new information is only obtained from
data points which are separated by the correlation time. In order to treat these issues
accurately and remove the serial correlation from the data, the reblocking analysis of
Flyvbjerg and Petersen[268] is used which can be implemented in a computationally
convenient and conceptionally simple algorithm. This method divides the set of data
points {x1, x2, . . . , xn} of n into blocks by averaging adjacent data points,

x′i = 1
2(x2i−1 + x2i) (3.71)

n′ = 1
2n, (3.72)

and evaluating the mean m and variance σ2 of the blocks. This blocking transfor-
mation is applied recursively so that the blocks contain 2k data points after the k-th
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transformation. It can be shown that, under this blocking transformation

m′ = m (3.73)
σ2(m′) = σ2(m) (3.74)

ζ ′t =


1
2ζ0 + 1

2ζ1 if t = 0
1
4ζ2t−1 + 1

2ζ2t + 1
4ζ2t+1 if t > 0

, (3.75)

where ζt is the covariance between two data points separated by t steps. Further
analysis shows that as the blocking transformations are repeatedly performed, the
variance of the data set σ2(m) emerges, since

σ2 ≥ ζ0

n
(3.76)

and ζ0
n

increases every time a blocking operation is performed, unless ζ1 = 0, in which
case ζ0

n
is invariant. During the reblocking process the variance initially increases until

the serial correlation has been approximately removed from the data and a plateau is
reached. From this point onwards the variance remains approximately constant with
increasing block size but its error increases due to the small number of blocks. The
quantity

χ =
1
n
(∑n

i=1 x
2
i )− 1

n2 (∑n
i=1 xi)2

n− 1 (3.77)

acts as estimate for ζ0
n

during a calculation and its value is equal to the true variance
of the data set when further blocking operations no longer change its value beyond
minor fluctuations.



Chapter 4

Application of i-FCIQMC to
Strongly Correlated Systems

Wavefunction-based methods represent the best approach for obtaining insight into
the characteristics of a system and its most important microscopic properties since
all observable properties that drive the physical behaviour of the system can be
determined directly from the wavefunction. Owing to this high potential associated
with the knowledge of the wavefunction, there is growing interest in wavefunction-based
methods and their application to strongly correlated systems. Whilst in quantum
chemical methods wavefunctions of strongly correlated molecular systems primarily
build on restricted single-particle bases, the general approach in condensed matter
physics is to start from qualitatively correct broken-symmetry solutions[3]. It is
therefore important to investigate how the structure of a many-electron wavefunction
of a prototypical strongly correlated system depends on the representation of the
one-particle basis underlying the configuration space of the system. On the face
it, such a question appears to be more of a mathematical rather than a physical
nature: a unitary transformation of a basis cannot change the physical content of the
wavefunction, any more than a rotation of a Cartesian system of coordinates changes
the physical content of a tensorial quantity. Still, the choice of single-particle basis can
impact the structure of the exact FCI expansion[270] of a many-body wavefunction in
a dramatic and sometimes even counterintuitive manner. In order to shed more light
on this question, the study in this chapter looks at a range of different basis sets: a
broken-symmetry mean-field basis (UHF), a spin-restricted mean-field basis (RHF), as
well as restricted and unrestricted natural orbitals which are known to give a compact
FCI wavefunction[271–275].
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4.1 Model Hamiltonians

Since reliable ab-initio methods encounter many difficulties, another traditional widely
used theoretical approach is based on simplifying model Hamiltonians which take only a
few relevant degrees of freedom into account. Reducing a full many-body Hamiltonian
to the simplified model Hamiltonian still captures the physics of the relevant low-energy
degrees of freedom, retains the essence of the physical phenomena and seems to better
unravel the physical effects of strongly correlated electron systems.

4.1.1 The Hubbard Model

One of the most studied model system is the Hubbard Hamiltonian[33, 9] which is the
simplest model of interacting electrons on a lattice

Ĥ = −t
∑
⟨IJ⟩,σ

a†IσaJσ + U
∑

I

nI↑nI↓. (4.1)

This model associates one pair of opposite spin orbitals with each site I of the lattice.
a†Iσ and aIσ represent the second quantised fermionic creation and annihilation operators
which create and annihilate an electron with spin σ in the orbital at lattice site I,
while nI↓ = a†I↓aI↓ denotes the number operator. The first summation runs over all
nearest-neighbour pairs ⟨IJ⟩. The behaviour of the correlated electrons is controlled
by just two fundamental parameters. Firstly, the hopping amplitude t describes the
kinetic energy arising from the hopping of electrons between nearest-neighbour lattice
sites. Secondly, the Hubbard repulsion coupling U represents the on-site Coulomb
repulsion energy between two electrons residing at the same lattice site I. These
two terms compete with each other since the kinetic energy favours mobility of the
electrons whilst the electron-electron repulsion favours localisation of the electrons on
different lattice sites. When the ratio U

t
is small, inter-site hopping of electrons leads

to their complete delocalisation and band formation. If there is one electron per site,
n = Nel

N
= 1, the system will be a metal irrespective of how small the value of t is. Yet,

if the distance between lattice sites is large and t correspondingly small (and U
t

large),
the electrons prefer to remain localised with one particle per site in order to minimise
the repulsion energy U . In a metallic state doubly occupied sites which increase the
total energy of the system necessarily occur. However, for strong interactions U > t

(or rather if U > W = 2zt where W denotes the band width and z the number of
nearest-neighbours in the lattice geometry), creation of doubly occupied lattice sites is
very unfavourable as this raises the energy by the Coulomb repulsion U and lowers the
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energy only by the kinetic energy ∼ t. The system will therefore remain insulating with
one electron per site, a state that is referred to as Mott insulator. Since the electrons
in a Mott insulator are localised, localised spins or localised magnetic moments are
simultaneously created[276]. Furthermore, the effective exchange interaction which
represents the main mechanism of exchange in insulators, also known as superexchange,
is antiferromagnetic in nature. This is a result of the tendency to gain kinetic energy
due to the partial delocalisation which is only possible if spins of neighbouring sites are
anti-parallel. Consequently, undoped Mott insulators with n = 1, U >> t and simple
lattices typically display an antiferromagnetic ordering of spins in the ground state.
In general terms, the competition between the hopping parameter t and the on-site
Coulomb repulsion energy U leads to the Mott-Hubbard metal-to-insulator transition, a
metal-insulator transition that many strongly correlated systems at half filling undergo.
As a function of the ratio U

t
, the system undergoes several transitions of the charge

and spin arrangements, as well as the dynamics at low temperatures. When a Mott
insulator is doped, the doped electrons or holes can move through the material and the
resulting state may become metallic. However, the strong correlations can make the
metal anomalous. The motion of charge carriers is hindered by the antiferromagnetic
order since the movement of the additional hole or electrons leaves behind a trail of
wrong spins which in two or three dimensional systems can lead to confinement, that is
the charge carrier remains close to its original position. It is therefore often favourable
for the system to change the antiferromagnetic ordering to a ferromagnetic one which
results in a loss of the superexchange interaction but also a gain in kinetic energy
which more than compensates for the loss. This can result not only in a ferromagnetic,
or paramagnetic, metal but also in more complicated magnetic orderings for smaller
dopings such as canted antiferromagnetism, a magnetic spiral or in a phase separation
whereby ferromagnetic droplets are enclosed in an antiferromagnetic matrix. This is a
general trend that is also observed in more complicated circumstances: Mott insulating
states often coexist with antiferromagnetic order whilst metallic states are typically
associated with ferromagnetism. It is also thought that the magnetic degrees of freedom
and electron correlation determine the nature of superconductivity in high-TC cuprates
and possibly in iron-based superconductors, although a detailed picture is still missing.

Although the simplifications introduced by model Hamiltonians compared to ab-
initio systems are enormous, important insight can nevertheless be gained by studies
of Hubbard model systems. In these studies the emphasis has been on two dimensions
because it is claimed that the 2D Hubbard model retains all relevant physics for
high-TC superconductivity to occur. However, despite the simplicity of the model even
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simple properties such as the phase diagram of a strongly correlated electron system are
difficult to calculate exactly. The competition between localisation and delocalisation,
between hopping term t and Coulomb repulsion U , is thus at the very heart of the
electronic many-body problem[277].

4.1.2 The three-band (p− d) Hubbard Model

The single-band Hubbard model described in the previous section is, however, an over
simplification when compounds are considered which, besides transition metal (TM)
ions with their d electrons, comprise also other ions and electrons. Such compounds
include transition metal oxides which contain not only correlated d electrons of the
transition metal ion but also valence electrons of the s or p shells of elements such as
O or F. In some cases an effective single-band model can be derived by projecting out
electrons other than the transition metal d electrons and deriving effective values for
the parameters which are determined by the interplay of all electrons in the system. In
other cases, these electrons need to be included explicitly. Specifically, this is the case
for perovskites in which the oxygen 2p levels are close in energy to that of the transition
metal d electrons. In ideal materials, these perovskites are based on cubic lattices,
where the transition metal ions are located in the centres of O6 octahedra with oxygens
sitting in between the transition metal ions so that the TM–O–TM angle is ideally
180°. In reality, distortions of this ideal structure occur in the form of tiling and rotation
of the rigid MO6 octahedra resulting in orthorhombic or rhombohedral structures, or
in the presence of orbital degeneracy in the transition metal ions Jahn-Teller effects
can lead to distortions, as well. Despite these possible distortions, the TM–O–TM
angle is not far from the ideal case of 180°.

In materials such as perovskites, the important electrons which need to be included
in model Hamiltonians are the transition metal d electrons and the p electrons of the
ligands. The ligand p electrons have the strongest overlap with the metal d electrons
and thus influence the properties of the materials strongest. In principle, the s electrons
of the ligands could also be included but their inclusion rarely changes the qualitative
picture. In cases of almost filled d-shells such as cuprates based on Cu2+ (d9) ions,
it is convenient to formulate the theoretical treatment not in terms of electrons but
in terms of holes. In this hole picture, the Cu2+ state contains one d-hole whilst the
filled oxygen O2– 2p shells contain no holes. The simplest such theoretical model is the
three-band, or p− d, Hubbard model introduced by Emery[278–280]. This minimal
model describes the dynamics of holes in a copper oxide plane. The CuO2 plane is
modelled by a 3dx2−y2 orbital centred on the copper site and two O 2pσ orbitals, a 2px
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on an oxygen atom displaced in the x-direction from the copper site and a 2py on the
O-site displaced along the y-direction. The Hamiltonian comprises kinetic energy and
hole interaction terms,

Ĥ =
∑
i,σ

(ϵd − µ)d†i,σdi,σ +
∑
iν,σ

(ϵpν − µ)p†iν,σpiν,σ (4.2)

+
∑

i,j,ν,σ

(ti,jνd
†
i,σpjν,σ + h.c.) +

∑
i,ν,j,κ,σ

i ̸=j

t
′

iκ,jνp
†
iκ,σpjν,σ (4.3)

+
∑

i

Udd
†
i,↑di,↑d

†
i,↓di,↓ +

∑
i,ν

Upp
†
iν,↑piν,↑p

†
iν,↓piν,↓ (4.4)

+
∑
i,j,ν

σ,σ
′
,i ̸=j

Updd
†
i,σdi,σp

†
jν,σ′pjν,σ′ (4.5)

+
∑

i,ν,j,κ,
σσ“,i ̸=j,ν ̸=κ

Uppp
†
iν,σpiν,σp

†
jκ,σ′pjκ,σ′ , (4.6)

where d†i,σ (p†iν,σ) creates a hole with spin σ in the Cu 3d orbitals (O 2pν) at site i and
di,σ annihilates a hole with spin σ in the Cu 3d orbital (O 2pν) at site i. Furthermore,
ϵd and ϵpx = ϵpy = ϵp represent the respective orbital energy levels and µ the chemical
potential. Moreover, ti,jν and t

′
iκ,jν describe nearest-neighbour hopping processes

between the Cu 3d and the O 2px/y orbitals with the phase conventions shown in
Figure 4.1[281]. While in this formulation, nearest-neighbour 2px − 2px (2py − 2py)
hopping processes corresponding to t

′
iκ,jν terms with κ = ν are included explicitly,

other variants of the model without these terms also exist[282]. Local on-site repulsion
interactions are taken into account by the Ud and Up terms, whereas nearest-neighbour
repulsion interactions are represented by Udp and Upp. The values chosen for the
parameters (Table 4.1) were obtained with a constrained first-principles calculation for
La2CuO4 by Hybertsen et al[283].

ϵd ϵp tpd tpp Ud Up Upd Upp

0.00 3.60 1.30 0.65 10.50 4.00 1.20 0.00
Table 4.1 Parameters (in eV) for the three-band Hubbard model obtained with a constrained
first principles calculation for La2CuO4 by Hybertsen et al.[283]

Since the p− d Hubbard model includes the oxygen p states explicitly, two types of
charge excitation can principally appear in the system. Besides the d− d transition
known from the simple one-band Hubbard model, dndn → dn+1dn−1, excitations which
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Fig. 4.1 Phase conventions for three-band (p− d) Hubbard model.

transfer a hole from the transition metal ion to the 2p shell of O2– , dnp6 → dn+1p5,
can also take place. Whilst the former d− d transitions require an energy cost Ud, the
Coulomb repulsion between two holes in the d shell, the latter p− d transitions are
associated with an energy cost, also known as the charge-transfer energy,

∆CT = ϵp − ϵd. (4.7)

If two holes were to be created on the same oxygen site the Coulomb repulsion energy
Up should also be taken into account ∆CT = (ϵp + Up)− ϵd. In the simplest cases such
as that of perovskites, direct d− d hopping can be neglected. Instead the holes can
hop from one transition metal ion to another via the oxygens in a two step process,
dn

i p
6dn

j → dn
i p

5dn+1
j → dn−1

i p6dn+1
j . Since the intermediate state with an oxygen hole in

this two step process incurs an excitation energy cost ∆CT, an effective d− d hopping
teff
dd = t2

pd

∆CT
results.

Similar to the case of the simple one-band Hubbard model, it can be shown
that if the hopping tpd is (much) smaller than both Ud and ∆CT, the holes will
remain localised at the their sites. The ground state of the material will thus be
an insulator, like in the one-band Hubbard model, but the lowest charge-carrying
excited states might be different, depending on the ratio of Ud and ∆CT. A concept
for the classification of such insulators was first proposed by Zaanen, Sawatsky and
Allen and is also referred to as ZSA scheme[284]. Broadly speaking, the scheme
distinguishes between two categories which both share an insulating ground state
whereby the electrons are localised on the d states with corresponding localised magnetic
moments and antiferromagnetic order, provided that tpd << {∆CT, Ud}. This insulating
state can be of two types: If ∆CT < Ud, a charge-transfer insulator with p − d
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transitions, dnp6 → dn+1p5, as lowest energy excitations and an energy gap Eg = ∆CT

results, whilst in the opposite case of ∆CT > Ud, a Mott-Hubbard insulator with
d − d transitions, dndn → dn+1dn−1, as lowest energy excitations and an energy gap
Eg = Ud arises, yielding a schematic ZSA phase diagram[285, 276]. In both cases
the magnetic properties of the materials are largely determined by the d states on
the transition metal ions. Similarly, magnetic exchange interaction mostly involves
hopping via intermediate oxygen. For materials with non-degenerate d levels and
simple lattices with TM–O–TM ∼ 180°bond angle the exchange interaction will be
antiferromagnetic in nature. However, whilst in Mott-Hubbard insulators the exchange
interaction is dominated by the standard antiferromagnetic superexchange mechanism
dn

i p
6dn

j
1−→ dn

i p
5dn+1

j
2−→ dn−1

i p6dn+1
j

3−→ dn
i p

5dn+1
j

4−→ dn
i p

6dn
j , in charge-transfer insulators

another antiferromagnetic exchange process, the semicovalent exchange, dominates
dn

i p
6dn

j
1−→ dn

i p
5dn+1

j
2−→ dn+1

i p4dn+1
j

3−→ dn+1
i p5dn

j
4−→ dn

i p
6dn

j , which involves virtual
excited states with two holes on oxygen and is therefore irrelevant in the Mott-Hubbard
regime.

Most transition metal oxides belong to one of the two insulator categories and can be
classified according to which regime of the ZSA phase diagram they are likely to fall into.
In general, the charge-transfer energy ∆CT decreases regularly across the 3d series from
Ti to Cu. Similarly, it also decreases with increasing valency of the transition metal ion
which becomes apparent from the values for ∆CT obtained from spectroscopic data[286].
Early 3d transition metals have a relatively large ∆CT so that their corresponding
materials such as Ti or V oxides typically fall into the Mott-Hubbard insulator regime.
When the p− d hopping becomes large and the ratio Ud

tpd
is reduced in this regime, the

system will sooner or later undergo a Mott transition and a metallic state results. In
contrast, heavy 3d transition metals usually belong to the charge-transfer insulator
regime as ∆CT < Ud. When the ratio ∆CT

tpd
is decreased in this regime, the picture is

less clear[285]. In particular, interesting phenomena may appear for a small or even
negative charge transfer energy[287] which can occur for late 3d transition metals
with high valency like Fe4+ or Cu3+. In these circumstances, the oxygen p bands
acquire a certain number of holes since the transfer process dnp6 → dn+1p5 leads to
a gain in energy. (Strictly speaking, it should be noted that the energy levels are
not single-particle energy levels of non-interacting electrons but also include effects
of Coulomb repulsion interaction.) Hence, the real electronic configuration in these
materials involve oxygen holes with configurations of the type Fe3+L instead of Fe4+

and Cu2+L instead of Cu3+ where L denotes the ligand (here oxygen) hole. This
phenomenon is also known as self-doping[288]: oxygen holes will spontaneously appear,
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even for nominally undoped, stoichiometric materials which can have a strong influence
on many of their properties. Materials with small or negative charge-transfer energy
gaps can thus display a variety of different states, specifically when Ud remains large.
They may be metals (of a heavy-fermion type, as they still contain strongly correlated
d-electrons coexisting with less correlated p-electrons of oxygen ( Ud

tpd
still >> 1)), or

they may be insulators (probably resembling Kondo insulators). They may possess
different magnetic properties, including ferromagnetism (CrO2[288] and (La/Sr)CoO3)
or spontaneous charge disproportionation (CaFeO3[289]) may occur. It is also thought
that, although this is still an open question, the contribution of oxygen p holes is
instrumental for the phenomenon of high-Tc superconductivity[290, 291] since these
materials are mostly obtained by hole-doping of CuO2-planes, as for example in the
case of La2–xSrxCuO4 where the holes will predominantly go to oxygens and states
such as Cu2+ (d9) O– (p5) = Cu2+L instead of Cu3+ will be created.

In some situations such as hole-doped cuprates, the basis of high-Tc superconductiv-
ity, the hybridisation of p and d states can lead to behaviour that resembles that of the
simple one-band Hubbard model. The objects which appear in these cases are referred
to as Zhang-Rice singlets[292]. The latter represent a bound singlet state of the type
d ↑ p ↓ −d ↓ p ↑ whereby the d-hole on the Cu2+ ion (S = 1

2) and the p-hole of opposite
spin delocalised over the surrounding four oxygens (S = 1

2) hybridise. Coherence
effects in the p− d hybridisation (tpd → tpd,coh. = 2tpd) strongly enhances the binding
energy of these singlets. In effect, when an undoped cuprate with Cu2+ (d9,S = 1

2)
like La2CuO4 is doped with holes as in La2–xSrxCuO4[293], each hole first localises on
the oxygen p states and then forms a singlet bound state with Cu2+, corresponding
to one singlet per doped hole similar to the states created when a simple one-band
Hubbard model is doped with holes. Zhang and Rice[292] therefore concluded that
for the ground and lowest excited state in typical high-TC cuprates the p− d model
can be reduced to a simple non-degenerate one-band Hubbard model with the hole
state replaced by a Zhang-Rice singlet state. To be precise, the situation cannot be
described by a single-particle picture and the Coulomb repulsion between particles
needs to be included. This will change some expressions and numerical values but
the qualitative conclusion remain the same. Although some conflicting claims and
controversies remain[294], the Zhang-Rice picture seems to be close to reality and is
widely accepted.
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4.2 Geometries and Cluster Sizes

Since reachable sizes of clusters are rather small it is important that their geometry
is chosen appropriately and the correlation hole is properly described. In particular,
for 2D lattices this is an essential question[167]. Apart from the obvious choices,
Pythagorean lattices with N = λ2

x + λ2
y[295] have significantly extended the available

cluster geometries whilst at the same time keeping the periodic boundary conditions
for 2D square lattices. Examples with an even number of lattice sites include N =
8, 10, 16, 18, 20, . . . and are shown in Figure 4.2. Although these cluster shapes are
square, it has been observed that they are not always optimal with regard to the number
of next nearest neighbours and further nearest neighbours. It has been claimed that
slightly better results can be obtained with clusters with periodic boundary conditions
and slightly deformed lattices[296, 297].

Fig. 4.2 Cluster sizes and geometries on a 2D square lattice.

In the following, results for the three-band Hubbard model on a tilted cluster with
10 CuO2 unit cells are presented, populated by N = 10 holes which corresponds to
an undoped system at half filling. The full Hilbert space of this system encompasses
∼ 20.3× 109 configurations.

4.3 The three-band Hubbard Model in FCIQMC

Since i-FCIQMC provides access to the FCI wavefunction, that is the exact many-body
wavefunction for a given one-particle basis set, it represents a high-accuracy method
and is therefore the best and most accurate approach for studying the structure of
many-body wavefunctions of prototypical strongly correlated systems. At the same
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time, due to its reduced computational cost, i-FCIQMC can treat systems which
are much larger than those amenable to more traditional FCI techniques. As such,
i-FCIQMC can handle larger periodic clusters than conventional FCI approaches
which helps in reducing finite size and boundary errors. Additionally, a high-accuracy
study for gaining an understanding of how the FCI representation of the wavefunction
changes with the underlying single-particle basis set does not only enable conclusions
about the structure of the exact wavefunction itself, but also about other wavefunction
ansatzes and alternative more approximate wavefunction-based methods, as well as
about suitable directions for their further development.

4.3.1 The Choice of Single-Particle Basis Sets

Since the FCI energy is invariant to unitary transformations of the underlying single-
particle basis spanning the space, it is possible to freely choose a basis set amongst the
huge variety of existing one-particle bases. The purpose of the study in this chapter is to
investigate how this choice affects the resulting Cn coefficients in the FCI wavefunction
expansion,

|ΨFCI⟩ =
∑

n
Cn |n⟩ , (4.8)

where |n⟩ denotes the N -particle Slater determinant. While a good and fruitful choice of
basis can lead to a compact and sparse FCI expansion of |Ψ⟩ which is more amenable to
treatment with configuration-based methods, a poor choice of basis can result in a highly
multiconfigurational and extended wavefunction with many determinants contributing
with significant weight. A natural measure for the sparsity of a wavefunction is the L1

norm,

L1 =
∑

n
|Cn|. (4.9)

Within (i)-FCIQMC this L1 norm is quantified up to a normalisation constant by
the total number of walkers L1 ∝ Nw. Consequently, in this i-FCIQMC study a
representation of |Ψ⟩ is sought in which the L1 norm and level of complexity are
small once the energy has converged to within small error bars. For this purpose, two
widely available sources of single-particle spin orbitals are investigated, restricted and
unrestricted Hartree-Fock spin orbitals (RHF, UHF) which are also compared with
restricted and unrestricted natural orbitals (RNO, UNO). Although the latter require
knowledge of the exact fully correlated wavefunction, they are known to yield rapidly
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converging FCI wavefunction expansion[271–275] and are therefore ideally suitable for
comparisons and analyses.

In the independent-particle Hartree-Fock (HF) approximation, |ΨHF⟩ is written
in the form of a single Slater determinant whose energy is variationally minimised
with respect to unitary transformations of the single-particle states. As outlined in
Chapter 2, this approach leads to a set of effective one-particle Schrödinger equations,
the Roothaan-Hall[75] equations and Pople-Nesbet[76] equations, which are solved in a
self-consistent manner to give the RHF and UHF spin orbitals, respectively. All RHF
and UHF spin orbitals in this thesis have been obtained with a Fortran implementation
of the Roothaan-Hall and Pople-Nesbet equations written by the author. In contrast
to the HF single-particle states which derive from a mean-field wavefunction, the
natural spin orbitals originate from the exact and fully correlated FCI wavefunction.
Specifically, the eigenvectors which diagonalise the exact one-particle density matrix,
γ = UωU†, are referred to as natural orbitals (NO) and their respective eigenvalues,
ωp, as NO occupation numbers. The reduced one- and two-body density matrices,
whose elements are given by

γp
q = ⟨Ψ|a†paq|Ψ⟩ (4.10)

Γpq
rs = ⟨Ψ|a†pa†qasar|Ψ⟩ p > q, r > s, (4.11)

and can be evaluated by sampling from the respective converged i-FCIQMC wave-
function within the dynamics of the FCIQMC algorithm[253]. This sampling process
involves an independent replica approach so that the resulting sampled density matrices
are unbiased and free from systematic errors (apart from those introduced by possible
constraints imposed on the FCIQMC dynamics itself). Whereas restricted HF and NO
spin orbitals, ϕI,R, restrict the spatial distributions ϕI(r) to be the same for α and β

spin parts,

ϕI,R =

ϕI(r)α(σ),
ϕI(r)β(σ),

ϕI,U =

ϕ
α
I (r)α(σ),
ϕβ

I (r)β(σ),
(4.12)

unrestricted spin orbitals, ϕI,U relax this constraints, ϕα
I (r) ̸= ϕβ

I (r)[37].
The FCI wavefunction is not only an eigenfunction of the exact Hamiltonian (Ĥ)

but also of operators which commute with the Hamiltonian such as the total (Ŝ2) and
projected (Ŝz) spin operators. However, approximate wavefunctions, like the UHF state,
need not necessarily display the full symmetry of the exact wavefunction. Imposing
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symmetry constraints to fulfil this criterion can raise the energy of the state, a situation
that is also known as symmetry dilemma[37, 298]. Thus, the RHF wavefunction is
an eigenfunction of Ŝ2 with S = 0 by virtue of being a closed-shell determinant of
spin-restricted orbitals which is contrasted by its UHF counterpart which no longer
represents an eigenstate of Ŝ2.

Fig. 4.3 The convergence of the ground state energy E0 (eV/hole) of three-band Hubbard model with
total walker number Nw in an i-FCIQMC simulations using RHF and UHF basis sets. The energy
estimates and their stochastic errors have been obtained through a Flyvbjerg-Petersen reblocking
analysis[268] of the shift ES and projected energy Eproj.

4.3.2 An i-FCIQMC Study of the Many-Body Ground State
Wavefunctions

Initially, convergence of the i-FCIQMC simulation to the FCI limit with respect to
walker number Nw is established in order to remove the initiator error (Figure 4.3).
Working with RHF orbitals means that the i-FCIQMC calculation appears to be well
converged at a total walker number of Nw = 1.0× 109 give that for a tenfold growth in
Nw from 1.0× 108 to 1.0× 109 in Nw the energy changes by < 0.4 meV which is on the
order of statistical errors, thereby indicating that the initiator error has either been
removed or is smaller than statistical errors. The resulting converged |Ψ⟩ possesses
an L1 norm of L1 = 723.6. In contrast, if the space is spanned by UHF spin orbitals
the energy still changes significantly at Nw = 1.5× 109 and the simulation is far from
convergence. Even the L1 norm in this unconverged |Ψ⟩ is with L1 = 1059.5 already
larger than in the RHF simulation. Additionally, while the RHF calculations display a
well-behaved monotonic convergence to the FCI limit, UHF spin orbitals give rise to a
non-monotonic convergence.
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Wavefunction |ΨFCI⟩ |ΨRHF⟩ |ΨUHF⟩ |ΨCAS⟩
One-particle Basis RHF/UHF RHF UHF RHF UHF RNO UNO

E0 −1.5817(5) −0.9521 −1.5291 −1.3399 −1.5341 −1.5586 −1.5587
ED −0.9521 −1.5291 −0.7636 −0.8350
pcorr 61.6 9.5 97.2 97.0
⟨nCu⟩ 0.70 0.49 0.73 0.53 0.73 0.71 0.73
⟨nO⟩ 0.15 0.25 0.14 0.24 0.14 0.15 0.14
⟨M2⟩ 0.118 0.000 0.113 0.056 0.130
⟨S2⟩ 0.00 0.00 4.37 0.00 0.00

Table 4.2 Properties of the ground state wavefunctions for three-band Hubbard model. Ground state
energies E0(eV/hole), energy of the lowest-energy determinant ED(eV/hole), percentage of correlation
energy pcorr(%) captured by |ΨCAS⟩, average hole densities per atom ⟨nA⟩ (holes/atom), staggered
magnetisation

〈
M2〉, square magnitude of spin

〈
S2〉. Stochastic errors in the previous digit are

presented in parentheses and were estimated with a Flyvbjerg-Petersen blocking analysis[268].

In order to shed some light on the reasons behind this profound difference, the
i-FCIQMC, RHF and UHF ground states are examined. As far as the total ground
state energy is concerned, the UHF approximation is able to capture ∼ 97 % of the
true i-FCIQMC ground state energy, whereas the RHF approximation only accounts
for ∼ 60 %. A similar picture arises when comparing the average hole densities per
atom for the Cu, ⟨nCu⟩, and O, ⟨nO⟩, atomic sites, defined as

⟨nA⟩ = 1
NA

∑
p∈{A}

γp
p = 1

NA

∑
p∈{A}

⟨Ψ|a†pap|Ψ⟩ , (4.13)

where the summation includes only those spin orbitals located on the respective NA

lattice sites that are associated with atoms of type A. Again, the distribution of hole
density in the system as given by the i-FCIQMC wavefunction is much more closely
approximated by the UHF wavefunction. Whilst |ΨUHF⟩ only slightly overestimates the
degree of ionicity in the system (by a few percentages, ∼ 4− 6 %, in ⟨nCu/O⟩), |ΨRHF⟩
largely overestimates the degree of covalency (by a significant percentage, ∼ 30− 66 %,
in ⟨nCu/O⟩).

Like previous studies of the three band Hubbard model[284, 4, 300–304], the exact
i-FCIQMC ground state establishes an antiferromagnetic long-range order across the
copper sites, as illustrated by the respective order parameter, the staggered magnetisa-
tion which can be obtained from the two-body density matrix of the wavefunction,

⟨M2⟩ = 1
NS

∑
ij

(−1)(xi+yi)+(xj+yj) ⟨ΨFCI|Si · Sj|ΨFCI⟩ , (4.14)

where the summations over i and j run over all lattice sites with Cartesian coordinates
(xi, yi) and spin operator Si giving a total of NS terms. Likewise, the local spin-spin
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Fig. 4.4 The local spin-spin correlation function ⟨ΨFCI|Si · Sj |ΨFCI⟩ (i = 1 corresponds to the first
left-most lattice site) from the i-FCIQMC ground state wavefunction. The spin-spin correlation
function is obtained from the sampled two-body density matrix of the i-FCIQMC ground state
wavefunction expressed in the metallic RHF single-particle basis. This spin-spin correlation function
clearly displays the antiferromagnetic order of spins in the ground state as they arise from correlated
two-body function rather than symmetry-breaking[299].
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correlations in Figure 4.4 display the antiferromagnetic order of spins present in the i-
FCIQMC ground state wavefunction expressed in the spin-restricted RHF single-particle
basis. It is also worth pointing out that by evaluating the staggered magnetisation and
the spin correlation function in this way from the two-body density matrix both are
constructed from correlated two-body functions rather than from symmetry-breaking
in the wavefunction. Again, UHF theory reproduces this antiferromagnetic phase
closely by separating α and β spin orbitals on two copper sublattices while yielding
identical band structures for both channels, and hence resulting in an insulating
antiferromagnetic ground state. Since RHF cannot describe an antiferromagnetic order
by construction, it gives rise to a metallic paramagnetic phase (Figure 4.5) where
most orbitals are more or less delocalised over all lattice sites. However, the UHF
wavefunction contains a significant amount of spin contamination, as illustrated by
the huge difference in the squared magnitude of the spin ⟨S2⟩ = ⟨Ψ|Ŝ2|Ψ⟩ between
the UHF and i-FCIQMC states, and |ΨRHF⟩ and |ΨUHF⟩ constitute a clear example
of the symmetry dilemma (Table 4.2). While the UHF basis provides a physically
closer single-determinant description of the antiferromagnetic ground state, it breaks
spin symmetry thereby introducing an inherent spin contamination. In contrast, the
spin-symmetry-conserving RHF basis yields a qualitatively incorrect metallic ground
state for the single-determinant description, but is still found to be a much more
effective basis for correlated calculations within i-FCIQMC.

Fig. 4.5 The restricted (RHF) (left) and unrestricted (UHF) (right) Hartree-Fock band structures
ϵ(k)− ϵF (eV) and density of states d(ϵ) (a.u.) for the three-band Hubbard model. Whilst the RHF
theory gives rise to a paramagnetic phase comprising opposite-spin two-particle channels, UHF theory
yields an insulating antiferromagnetic ground state with single-particle spin channels.
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4.3.3 Orbital Occupation Numbers and Correlation Entropy

Fig. 4.6 The orbital occupation numbers γp
p (left) and mean-field orbital energies ϵp (diagonal elements

of the mean-field generalised Fock matrix)[37, 305] for the restricted and unrestricted Hartree-Fock
spin orbitals, as well as the restricted and unrestricted natural orbitals. In the diagram on the left the
occupation numbers γp

p are ordered according to orbital energy for HF spin orbitals and according
to the occupation numbers themselves for natural orbitals. In the orbital diagram on the right the
numbers indicate degeneracies of the spin orbitals which are exact for HF orbitals and approximate
for natural orbitals.

An indication regarding the nature of the difficulty introduced by the UHF basis can
be obtained by considering the orbital occupation numbers γp

p and mean-field orbital
energies ϵp (diagonal elements of the mean-field generalised Fock matrix)[37, 305] in
the four basis sets (RHF, UHF, RNO and UNO) (Figure 4.6). While for the RHF basis
the occupation numbers decay approximately monotonically with mean-field orbital
energy ϵp, a sharp increase in γp

p is observed for the N highest UHF virtuals, which
are also far higher in energy than those of any other basis (Figure 4.6). As far as the
spatial distribution is concerned, these highest energy UHF virtuals correspond to
spin-flipped counterparts of the occupied UHF orbitals. These spin-flipped versions
can be obtained from their occupied analogues by changing sublattices for the orbital
coefficients on copper atoms (Figure 4.7) which introduces significant anti-bonding
character in the orbitals, thereby splitting the Hubbard bands far apart (Figure 4.5).
It has been observed that in order to obtain rapidly converging CI expansions it is
beneficial for orbitals which ought to correlate with each other to possess spatial
distributions ϕσ

I (r) which have their greatest amplitudes concentrated in similar regions
of space while simultaneously providing suitable nodal surfaces[95]. By breaking spin
symmetry, UHF theory leads to a set of single-particle states characterised by localised
ϕσ

I (r) which strongly differ in their spatial extent in the system (Figure 4.7). While
this enables |ΨUHF⟩ to provide a qualitatively correct single-determinant description
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Fig. 4.7 Illustration of a selection of RHF and UHF spin orbitals for three-band (p− d) Hubbard
model which are used as basis sets. The arrows represent the sign and magnitude of the coefficients of
the respective real space lattice basis orbital in the linear combination describing the illustrated RHF
and UHF spin orbitals. The two graphs in the upper first row illustrate the lowest energy occupied
RHF orbital (left) and a virtual RHF orbital (right) which represents the 21st and 22nd lowest energy
spin orbitals of the RHF basis. The two pictures in the second row show the alpha (left) and beta
(right) spin orbitals of the lowest energy occupied UHF orbital. Finally, the two graphs in lower third
row display the alpha (left) and beta (right) virtual UHF spin orbitals representing the 51st and 52nd
lowest energy UHF spin orbital. These are part of the set of N highest energy virtuals which seems
to be crucial for the structure of |Ψ⟩ when it is expressed in this UHF basis[299].
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with antiferromagnetic long-range order, introducing correlations into |ΨUHF⟩ requires
very high energy orbitals. The highest and lowest energy UHF spin orbitals, which
both share large γp

p and thus contribute significantly to the correlated wavefunction,
need to correlate with each other in order to describe correlations in |Ψ⟩ even though
they are far apart from each other not only in terms of their mean-field energies
but also with respect to their spatial extensions within this system. This then leads
to a complex and extended CI expansion. In contrast, the metallic spin-restricted
RHF orbitals are very delocalised and thus all exhibit similar spatial distributions
ϕI(r), as well as closer mean-field orbital energies. This facilitates correlation of the
single-particle states, thereby favouring a more rapidly converging CI expansion in
comparison to UHF orbitals. In contrast to the spatial distribution of spin orbitals,
the energy Eref of the reference determinant, that is the determinant constructed from
the N lowest energy spin orbitals, and its closeness to the true ground state energy
seem not to represent any indicative measures, given that the reference determinants
in both natural orbital basis sets are even higher in energy than the RHF determinant.
In fact, minimising Eref very aggressively, as in the UHF basis, rather seems to increase
the difficulty of introducing correlation effects in the wavefunction. Instead, the energy
range covered by the single-particle state appears to play a greater role. As such, since
the RHF orbital energies cover a smaller energy range than their UHF counterparts,
the determinants with significant amplitudes in |Ψ⟩ are also concentrated within a
smaller energy range. This seems to be an advantageous characteristic given that it is
also shared by both NO bases which are known to yield less entangled representations
of |Ψ⟩[271, 275]. A quantitative measure of the configurational mixing present in the
wavefunction representation is provided by the (Shannon-type) correlation entropy per
hole[306] which is defined as

SCE = − 1
N

∑
p

γp
p ln γp

p . (4.15)

For an uncorrelated wavefunction described by a single Slater determinant, the natural
orbital occupation numbers are γp

p = 1 for spin orbitals contained in the determinant
and γp

p = 0 otherwise and the correlation entropy thus vanishes SCE = 0. Conversely,
for a correlated N -particle CI wavefunction with ∑

n |Cn|2 = 1 the configurational
mixing of Slater determinants yields natural orbital occupation numbers between
0 and 1, γp

p = ∑
n |Cn|2Θn(p), where Θn(p) = 1 if spin orbitals p is present in the

determinant |n⟩ and 0 otherwise. Hence, the correlation entropy SCE represents a
measure of the configurational mixing of the correlated N -particle state |Ψ⟩. With
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SCE = 0.6421 for spin-restricted and SCE = 0.6115 for unrestricted natural orbitals, the
entanglement in |Ψ⟩ is smallest in NO bases. Whereas the UHF single-particle states
give rise to the wavefunction with the largest configurational mixing (SCE = 0.8846),
the metallic spin-symmetry-conserving RHF basis leads to a significantly less entangled
|Ψ⟩ with a smaller correlation entropy of SCE = 0.7635, even when describing an
antiferromagnetic state which is strikingly physically different from the RHF ground
state and to which the spin-symmetry-broken UHF single-determinant ground state is
a far better approximation.

4.3.4 Subspace Diagonalisations and CI Expansions

Further insight into the different structure of the wavefunctions expressed in the four
single-particle bases can be gained by examining the FCIQMC description of |Ψ⟩
(Figure 4.8). As expected for a strongly correlated system, all wavefunctions are highly
multiconfigurational with a large number of single- to N -fold particle-hole excitations
of the reference with their amplitudes |Cn| decaying approximately exponentially with
determinant energy En. However, comparing RHF and UHF basis sets shows that
the |Ψ⟩ expansion is both sparser within the RHF space and more strongly weighted
towards lower particle-hole excitations of the reference. Thus, when the wavefunction
is expressed in the UHF basis, a plethora of 10-fold excitations contribute to |Ψ⟩,
the amplitudes of which are in most cases extremely difficult to account for in a
treatment of electronic correlations. By contrast, when RHF, and even more so when
RNO and UNO spin orbitals, are spanning the space, the wavefunction expansions are
strongly weighted towards the low particle-hole excitations. In particular, the latter
are more amenable to accurate treatment of correlations via a compact set of explicit
configurations.

The extend of this amenability of the wavefunctions in the four different one-particle
basis sets can be examined more closely with the help of simple subspace diagonalisation
in a (10, 10)-CAS space, a complete active space in which 10 holes are distributed in 10
orbitals about the Fermi level[110], resulting in a Hilbert space of 63, 504 determinants.
A further measure for this amenability is given by the percentage of correlation energy
captured by |ΨCAS⟩, the ground state of these subspace diagonalisations.

pcorr = E0 − Eref

Eexact − ED

, (4.16)

where E0 represents the ground state energy of |ΨCAS⟩, Eref the energy of the reference
determinant and Eexact the i-FCIQMC energy. Remarkably, |ΨFCI⟩ in the RHF basis
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Fig. 4.8 The magnitude of CI coefficients |Cn| ≥ 0.0001 in the FCI expansion |Ψ⟩ =
∑

n Cn |n⟩
shown against the respective Slater determinant energy En for the restricted Hartree-Fock (RHF)
(upper left), unrestricted Hartree-Fock (UHH) (upper right), restricted natural orbital (RNO) (lower
left) and unrestricted natural orbital (UNO) (lower right) basis sets. In all four cases, the amplitudes
of the Slater determinants in the full Hilbert space |Ψ⟩ are depicted in the lower panels, whilst the
(10, 10)-CAS space |ΨCAS⟩ are displayed in the top panels. The different colours distinguish between
determinants based on their excitation level with respect to the reference determinant, that is between
the x-fold excitations (x ∈ {1, 2, . . . , N}) of the reference configuration.
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can be well approximated by these simple CAS-subspace diagonalisations which achieve
to account for 61.6 % of the true correlation energy. Likewise, this is also the case
for restricted and unrestricted NO spanned spaces where |ΨCAS⟩ captures the vast
majority of the respective correlation energy (pcorr ∼ 97 %), as well as the basic
structure of |Ψ⟩. However, in the UHF space barely any correlation energy at all is
captured by this subspace, only a meagre pcorr = 9.5 %. This is a consequence of
the fact that determinant weight is entirely absent from high particle-hole excitations
when compared to |Ψ⟩ despite the fact that many of these significant highly-excited
determinants are in fact included in the CAS space. This suggests that orbitals outside
the CAS space, especially the N highest-energy virtuals, are essential for establishing
the basic structure of |Ψ⟩ in the UHF basis.

4.3.5 Conclusions

These investigations of the strongly correlated three-band Hubbard model with i-
FCIQMC show that the FCI wavefunction representations in different single-particle
basis sets can profoundly differ in their amenability to accurate correlation treatments.
Counterintuitively, the effectiveness of single-particle spaces for rapidly converging CI
expansions is not necessarily paralleled by their ability to reproduce the physics of the
system within a single-determinant description. Whilst the UHF determinant represents
a qualitatively correct insulating antiferromagnet, imposing spin symmetry in the RHF
basis gives a single-determinant wavefunction describing a qualitatively incorrect metal.
Still, in this basis the FCI representation of |Ψ⟩ is sparse, compact and converges
rapidly with particle-hole excitations of the reference. The results therefore suggest
that with an appropriate single-particle description, it may be possible to describe
the many-body wavefunction of strongly correlated systems based on single-reference
quantum chemical methods, which opens up a vast array of powerful many-body
approaches for the study of such materials[307, 308].

For accurate studies of the physics and microscopic processes of real strongly
correlated materials, extensions to larger cluster sizes are essential in order to control
finite size and boundary errors and approach the thermodynamic limit[50, 309–311].
At the same time, this will also increase the computational expense associated with
the simulations, even more so if ab-initio systems instead of Hubbard models are
considered. In particular, the exponential growth of the Hilbert space with system size
conceals exponential complexity in the linear FCI wavefunction ansatz and therefore
poses a significant challenge for i-FCIQMC given that strongly correlated materials
typically result in multiconfigurational wavefunctions. This formal exponential scaling
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of i-FCIQMC implies that larger cluster sizes can become intractable, even if an
optimal single-particle basis set is chosen. Thus, in order to circumvent the challenge
posed by the exponential scaling of the Hilbert space, the development of alternative
wavefunction-based methods which bear a reduced scaling with system size is vital for
the advancement to larger systems and appropriate cluster sizes of strongly correlated
materials.



Chapter 5

A Projector Quantum Monte Carlo
Method for Non-linear
Wavefunctions

Conceptually, the description of quantum many-body states, which is central to under-
standing a wealth of complex emergent phenomena in condensed matter physics and
quantum chemistry, is straightforward and well defined: with the Hamiltonian known,
the exact solution is a linear superposition of all possible classical configurations of
particles spanning the full Hilbert space. However, this conceals exponential complexity
in the wavefunction which in general prohibits both the storage and manipulation of
all of these linear coefficients.

From a methodological perspective, Quantum Monte Carlo methods provide one
approach to deal with the exponentially large Hilbert space by sampling the space
stochastically. For studies of the ground state of quantum systems, these broadly
separate into two categories, Variational (VMC) and Projector (PMC) Quantum Monte
Carlo approaches[193, 50] which are described in detail in Chapter 3. In the first, a
compact, polynomial-complex approximate wavefunction ansatz is imposed, generally
with a small number of variational parameters. State-of-the-art methods to optimise
the wavefunction involve sampling and accumulating the gradient and hessian of the
energy with respect to the parameters in the tangent space of the current wavefunction.
This is done by projecting into and sampling from the exponential configurational
space. Once a stochastic representation of these quantities is obtained, updates to the
wavefunction parameters are found by a variety of iterative techniques until convergence
of this non-linear parameterisation is achieved. By contrast, in PMC approaches an
operator written as a decaying function of the Hamiltonian is continually applied
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to a stochastic representation of the full wavefunction. This projects out the higher
energy components, leaving a stochastic sampling of the dominant, (generally ground
state) eigenfunction. In particular, FCIQMC is a rather promising technique in this
spirit which stochastically samples both the wavefunction and the propagator in Fock
space[52, 247]. By exploiting sparsity inherent in the Hamiltonian, as well as in the
wavefunction representations of many quantum systems essentially exact results can
be obtained with only small fractions of the Hilbert space occupied at any one time.
However, despite often admitting highly accurate solutions for systems far out of reach
of many alternative approaches, as demonstrated by the application of the previous
chapter, the method is formally exponentially scaling with system size, albeit often
weakly.

In order to advance to larger and condensed phase systems whilst still building on
the success of FCIQMC, one approach is to exploit the fact that electron correlation
is, in general, inherently local, as well as the existence of area laws and thus the
reduced amount of entanglement which effectively quantifies the relevant number of
degrees of freedom. These facts not only imply that natural quantum many-body
states live on a tiny submanifold of the exponentially large Hilbert space but also
suggest that states within this relevant subspace may be faithfully described by efficient
parameterisations which contain their scaling to polynomial cost, thereby circumventing
the exponential scaling of the Hilbert space. Traditionally, these wavefunctions ansatzes
inhabited the domain of Variation Quantum Monte Carlo approaches, such as the Linear
Method and Stochastic Reconfiguration which represent state-of-the-art approaches
for the optimisation of large numbers of parameters. In this chapter, a new Projector
Quantum Monte Carlo approach is proposed which naturally admits polynomial
complex wavefunction ansatzes by combining ideas from traditional Variational and
Projector Quantum Monte Carlo approaches. At the same time, developments from
the field of deep-learning neural networks are included to arrive at a new method which
is able to handle and optimise arbitrary non-linear wavefunctions with large numbers
of parameters.
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5.1 Non-linear Projector Quantum Monte Carlo
Method: Combining Variational and Projector
Quantum Monte Carlo

The FCIQMC and some other PMC methods[51, 312] are simulated through stochastic
dynamics given by

|Ψ0⟩ = lim
k→∞

(1− τ(Ĥ − ÎE0))k |ψ(0)⟩ , (5.1)

with τ chosen to be sufficiently small, where |Ψ0⟩ is the ground state of the system, and
E0 is the self-consistently obtained ground state energy[52]. This can be considered
both as a first-order approximation to imaginary-time dynamics as e−βĤ |ψ(0)⟩, or
as a power method to project out the dominant, lowest energy eigenvector of Ĥ[51].
Alternatively, a VMC perspective considers finding the variational minimum of the
Ritz function,

R[Ψ(Zσ)] = ⟨Ψ|Ĥ|Ψ⟩
⟨Ψ|Ψ⟩ , (5.2)

through optimisation of the wavefunction parameters {Zσ}.

5.2 Derivation: Lagrangian Minimisation

These approaches can be shown to be analogous by considering the minimisation of a
positive-definite Lagrangian

L[Ψ(Zσ)] = ⟨Ψ|Ĥ|Ψ⟩ − E0
(
⟨Ψ|Î|Ψ⟩ − A

)
, (5.3)

where normalisation (up to an arbitrary constant A) is enforced by a Lagrange multiplier,
which at convergence is given by E0. It is simple to show that the minimum of this
functional is the same as that given by the Ritz functional (Appendix A). In order to
find the wavefunction with the lowest energy, a simple gradient descent (GD)[313–315]
minimisation of all variational parameters {Zσ} in Eq.5.3 with step size τk at iteration
k is considered. Thus, for a particular parameter σ in the wavefunction this results
in an equation which is equivalent to the finite difference approximation of imaginary
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time propagation,

Z(k+1)
σ = Z(k)

σ − τk
∂L[Ψ(k)(Z(k)

σ )]
∂Zσ

(5.4)

= Z(k)
σ − τk

[
⟨∂Ψ(k)

∂Zσ

|Ĥ|Ψ(k)⟩+ ⟨Ψ(k)|Ĥ|∂Ψ(k)

∂Zσ

⟩

−E0

(
⟨∂Ψ(k)

∂Zσ

|Î|Ψ(k)⟩+ ⟨Ψ(k)|Î|∂Ψ(k)

∂Zσ

⟩
)]

(5.5)

= Z(k)
σ − τk

[
2 ⟨∂Ψ(k)

∂Zσ

|Ĥ|Ψ(k)⟩ − 2E0 ⟨
∂Ψ(k)

∂Zσ

|Î|Ψ(k)⟩
]

(5.6)

= Z(k)
σ − τk ⟨

∂Ψ(k)

∂Zσ

|(Ĥ − E0Î)|Ψ(k)⟩ , (5.7)

where in the third line a real wavefunction and a real, symmetric Hamiltonian are
assumed and in the forth line the factor of 2 is subsumed in the step size τk. Projecting
the equations into the full Hilbert space of configurations {|m⟩} using the resolution
of the identity Î = ∑

n |n⟩ ⟨n|, the equations

Z(k+1)
σ = Z(k)

σ − τk ⟨
∂Ψ(k)

∂Zσ

|(Ĥ − E(k)Î)|Ψ(k)⟩ (5.8)

= Z(k)
σ − τk

∑
mn
⟨∂Ψ(k)

∂Zσ

|m⟩ ⟨m|(Ĥ − E(k)Î)|n⟩ ⟨n|Ψ(k)⟩ (5.9)

= Z(k)
σ − τk

∑
mn
⟨∂Ψ(k)

∂Zσ

|m⟩ (⟨m|Ĥ|n⟩ − E(k) ⟨m|Î|n⟩) ⟨n|Ψ(k)⟩ (5.10)

= Z(k)
σ − τk

∑
mn
⟨∂Ψ(k)

∂Zσ

|m⟩ (Hmn − E(k)δmn) ⟨n|Ψ(k)⟩ , (5.11)

are obtained where the Lagrange multiplier E0 is replaced by the energy E(k) of the
wavefunction at iteration k which at convergence is equal to E0. Similar equations
can simply be derived for complex wavefunctions and hermitian Hamiltonians. This
approach is very versatile and applicable to any wavefunction ansatz for which the
respective derivatives exist. If the chosen wavefunction is an expansion of linearly
independent configurations, then this will return exactly the ‘imaginary-time’ dynamics
of Eq. 5.1 and the FCIQMC master equations, demonstrating the deep connection
between imaginary-time propagation, gradient descent and the power method[315].

Working in the 2nd quantised basis comes with the benefit of a diagonally dominant
and sparse Hamiltonian matrix. Furthermore, since the Hamiltonian is a two-body
operator, non-zero matrix elements, Hmn = ⟨m|Ĥ|n⟩, connect only configurations
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which are at most two particle-substitutions of each other (∼ O[N2M2+NM ]). Despite
the compact nature of the gradient full GD becomes unfeasible for large systems, since
its computational cost per iteration scales linearly with the size of the exponentially
growing Hilbert space. In order to go beyond system sizes tractable with a deterministic
gradient descent, a stochastic approach is pursued instead. In keeping with FCIQMC,
the summations over configurations are replaced by random samples of both the
wavefunction and Hamiltonian connections.

By replacing the deterministically evaluated gradient with its stochastic estimate
the resulting iteration cost is independent of the size of the Hilbert space which renders
this stochastic gradient descent (SGD) approach inherently suitable for large scale
systems. A further major advantage of stochastic gradient descent over its deterministic
counterpart is that its stochastic fluctuations enable it to jump between basins of
minima. This reduces the probability of the optimisation getting trapped in one
of the abundantly present local minima which is one of the key challenges faced by
minimisations of non-linear functions[316] and thus aids convergence towards the global
minimum, or at least a better local minimum with smaller error. (Dauphin et al.[317]
argue that these encountered convergence difficulties are in fact not caused by local
minima but rather by saddle points which are points on the surface where one dimension
slopes up and another one slopes down. These saddle points are usually surrounded
by a plateau of the same error where the gradient is close to zero in all directions
which makes it extremely difficult for SGD to escape and thus drastically slows down
convergence.)

5.3 Sampling of the Lagrangian Gradient

A key insight due to Robbins and Monro[318] was that for first order methods such
as gradient descent, the gradient does not have to be evaluated exactly to ensure
convergence towards the optimal solution. Provided that these methods use sufficiently
small step sizes and that the gradient estimate is unbiased, the error introduced by the
gradient approximation will be lifted on appropriate averaging. The stochastically eval-
uated gradient of the Lagrangian for the optimisation of the wavefunction parameters
at iteration k is written as

∂L[Ψ(k)(Z(k)
σ )]

∂Zσ

=
∑
mn
⟨∂Ψ(k)

∂Zσ

|m⟩ (Hmn − E(k)δmn) ⟨n|Ψ(k)⟩ , (5.12)
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where σ refers to a particular parameter in the wavefunction, {m,n} to a many-body
determinant in the configuration space, and E(k) to the current sampled energy as
given by the density matrices and described in Section 5.7 further below. Minimising
the statistical fluctuations in the stochastic sampling of this quantity is key to the
success and robustness of the algorithm. The quantities σ, n and m ̸= n are all
selected stochastically to ensure that no summation over quantities which explicitly
scale with the system size are considered. The sole exception from this is the ‘diagonal’
contribution of m = n which is considered explicitly for each sample of n. Thus, the
sum over {n} is stochastically sampled via a Metropolis Markov chain, to evaluate
a stochastic representation of the wavefunction[51, 199, 200]. Similarly, a small se-
lecton of configurations, {m}, are sampled from the set of non-zero connections via
Hmn in the manner of FCIQMC, and unbiasing for the probability with a computed
normalised generation probability[261, 263]. Furthermore, the derivatives ⟨∂Ψ(k)

∂Zσ
|m⟩

can be efficiently evaluated from the respective wavefunction amplitudes ⟨Ψ(k)|m⟩.
Further technical details on the sampling of this gradient are outlined in the following
subsections.

Markov Chain Sampling

The selection of n is given by a Markov chain sampling of the many-body states yielding
a stochastic representation of the wavefunction Ψ(k). It is chosen to sample according
to the probability distribution

Pmarkov(n; Ψ(k)) = | ⟨n|Ψ(k)⟩ |2∑
n′ | ⟨n′|Ψ(k)⟩ |2

= | ⟨n|Ψ
(k)⟩ |2

N [|Ψ(k)|2] . (5.13)

where N [|Ψ(k)|2] = ∑
n′ | ⟨n′|Ψ(k)⟩ |2 represents the normalisation constant of the proba-

bility distribution. Other distributions for instance sampling according to the modulus
of the wavefunction are possible and may be preferable in some instances[51]. By
requiring the probability distribution to depend on Ψ(k), Pmarkov(n; Ψ(k)) follows the
evolution of Ψ(k) and there is thus no bias originating from the choice of a (fixed) guid-
ing wavefunction. Due to the difficulty of calculating the normalisation of Eq.5.13 the
sampling of the set of Nsamples configurations n is performed via a Metropolis-Hastings
algorithm[199, 200], which does not require explicit calculation of the normalisation
constant N [|Ψ(k)|2], an unfeasibly expensive operation. Instead, the algorithm gener-
ates configurations {ni} in the Markov chain by proposing a move from ni to n′i with
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probability T (n′i ← ni). The move is then accepted (i.e. ni+1 = n′i) with probability

A(n′i ← ni) = min
[
1, T (ni ← n′i)Pmarkov(n′i; Ψ(k))
T (n′i ← ni)Pmarkov(ni; Ψ(k))

]
, (5.14)

and otherwise rejected (i.e. ni+1 = ni). For the proposal of moves along the Markov
chain only up to double electron substitutions are considered which allows for high accep-
tance ratios, thereby greatly improving the efficiency of the Markov chain sampling[319].

Traditional Fock-space VMC calculations generally perform an exact summation
over the possible values of {m} and update all {σ} parameters in the wavefunction.
In the limit of this exact summation, a zero-variance estimator for the gradient is
possible in the case that the wavefunction Ψ(k) represents an exact eigenstate of the
Hamiltonian[51, 198]. However, in systems with a general two-body interaction, this
gives rise to an O[N4] step per evaluation of the gradient for a given n. Instead, the
zero-variance principle is sacrificed and the set of Hamiltonian connections of n is
sampled via a stochastic algorithm to avoid this high cost. Hence, a small number
(Ns) of configurations ({m}) are generated with an efficient algorithm, according to a
normalised probability for each connection, Pgen(m|n; Ĥ), which can depend on the
Hamiltonian under consideration. Finally a single wavefunction parameter, σ is chosen
to be updated in the algorithm, again with a normalised probability distribution.

The evaluation of the gradient term for each sample of n, and for stochastic sampling
of σ and Ns off-diagonal terms with m ̸= n, can then be written as

∂L[Ψ(k)(Z(k)
σ )]

∂Zσ offdiag
=
〈 ⟨∂Ψ(k)

∂Zσ
|m⟩Hmn ⟨n|Ψ(k)⟩

NsPgen(m|n; Ĥ)P (n; Ψ(k))

〉
P (n;Ψ(k))

(5.15)

where the outer brackets imply that the sampling of n is performed according to the dis-
tribution given in Eq.5.13. Diagonal terms, where m = n are sampled deterministically
due to the generally diagonally dominant nature of the Hamiltonian and contribute for
every sample of n as

∂L[Ψ(k)(Z(k)
σ )]

∂Zσ diag
=
〈⟨∂Ψ(k)

∂Zσ
|n⟩ (Hnn − E(k)) ⟨n|Ψ(k)⟩

P (n; Ψ(k))

〉
P (n;Ψ(k))

. (5.16)

Combination of both contributions

∂L[Ψ(k)(Z(k)
σ )]

∂Zσ

= ∂L[Ψ(k)(Z(k)
σ )]

∂Zσ diag
+ ∂L[Ψ(k)(Z(k)

σ )]
∂Zσ offdiag

(5.17)
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then results in the final estimate of the gradient.

Sampling of Connected Configurations: Excitation Generation

A key to the efficiency of the algorithm is the choice of sampling distribution for
Pgen(m|n; Ĥ). The ideal distribution would sample each m according to a probability
of Pgen(m|n; Ĥ) = |Hmn|(1−δmn)∑

m′ ̸=n |Hm′n|
, however, the cost of computing the denominator for

this distribution returns the algorithm to O[N4] complexity. Instead, this normalised
distribution is approximated without requiring prohibitive computational cost. For
lattice models like the Hubbard model, only O[N ] excitations exist, all of the same
magnitude (apart from minor exception arising for particular boundary conditions),
which allows for a random, uniform choice amongst the possibilities. For ab-initio
Hamiltonians, the distribution and magnitude of non-zero matrix elements, Hmn, is
more complex and covers a wider range, and the quality of the results is more sensitive
to the choice of distribution of excitation sampled.

Progress in this direction has recently been achieved with the ‘heat-bath’ sampling
of Holmes et. al.[263], however, the memory cost of this approach precludes its use for
large applications. Instead, borrowing techniques of ‘excitation generation’ from the
FCIQMC algorithm, the excitations are considered as separable ‘single’ and ‘double’
excitations depending on whether one or two electrons change occupation, and the
probabilities are split into products of normalised conditional probabilities for each
orbital substitution[261]. In the context of FCIQMC the sampling process for the set of
off-diagonal Hamiltonian connections Hmn (m ̸= n) between two configurations {m; n}
in the Hilbert space is referred to as excitation generation[261, 262], a terminology
that arises since m can be constructed by vacating occupied states / spin orbitals
(particles ij) in n, and filling unoccupied states / spin orbitals (holes ab) in n. With
the Hamiltonian being a two-body operator, non-zero Hamiltonian matrix elements
Hmn connect only configurations which are at most two-particle substitutions (∼
O[N2M2+NM ]) of each other. The excitation generation algorithm therefore considers
the excitations as separate ‘single’ (i→ a, m = na

i ) and ‘double’ (ij → ab, m = nab
ij )

excitations, depending on whether one or two electrons change occupations

|n⟩ → |m⟩ (5.18)
|n1, . . . , 1i, . . . , 0a, . . . , nM⟩ → |n1, . . . , 0i, . . . , 1a, . . . , nM⟩ = |na

i ⟩ (5.19)
|n1, . . . , 1i, 1j, . . . , 0a, 0b, . . . , nM⟩ → |n1, . . . , 0i, 0j, . . . , 1a, 1b, . . . , nM⟩ = |nab

ij ⟩ ,
(5.20)
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and the probabilities are split into products of normalised conditional probabilities for
each orbital substitution[261]. In addition, the concept of conditional probabilities is
further extended so that the spin orbitals involved in the substitution are required to
satisfy particular conditions. In this respect, a number of probabilities are introduced,
such as whether to generate a single, psing, or double, pdoub = 1− psing, excitation, or in
the case of a double excitation, whether a parallel, ppara, or opposite, popp = 1− ppara,
spin electron pair is involved. Thus, instead of sampling from the ideal but prohibitively
expensive distribution Pgen(m|n; Ĥ) = |Hmn|(1−δmn)∑

m′ ̸=n |Hm′n|
, the generation probabilities are

factorised such that the probability for generating a single excitation is written as

Pgen(na
i |n; Ĥ) = p(a|i)p(i)psing, (5.21)

whilst the double excitation probabilities for low and high spin pairs are given by

Pgen(nab
ij |n; Ĥ) = p(ab|ij)p(ij)popppdoub (5.22)

Pgen(nab
ij |n; Ĥ) = p(ab|ij)p(ij)pparapdoub. (5.23)

p(i) represents the probability of selecting particle i and p(a|i) denotes the probability
of choosing hole a given that particle i has been picked. By analogy, p(ij) describes the
probability of choosing the pair of particles ij and p(ab|ij) represents the probability
of selecting the pair of holes ab on the condition that particles ij have already been
chosen. Whilst it is perfectly valid to use uniform distributions for these selections
processes, the algorithm will become very inefficient, as the number of single and double
excitations scales as ∼ O[N2M2 +NM ] and many m with zero or small magnitude
Hmn will therefore be generated. An efficient approach thus requires more sophisticated
choices for the probabilities such that Pgen(m|n; Ĥ) approximates the distribution of
Hmn more closely.

For model systems such as the Hubbard model in the lattice-space basis this
is straightforward, since only O[N ] excitations with non-zero Hmn exist, all of the
same magnitude (apart from some minor exceptions for systems with open or anti-
periodic boundary conditions), which allows for a random, uniform choice amongst the
possibilities. As such, the set of excitations available for sampling of m is restricted
to those single excitations m = na

i which satisfy the condition that a is a hole of the
correct spin residing on a lattice site that is a nearest-neighbour to the lattice site of
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particle i, a ∈ {ha←i}. The appropriate probabilities are thus given by

psing = 1 (5.24)

p(i) = 1
Ni

(5.25)

p(a|i) =


1

Nha(i)
if a ∈ {ha←i}

0 otherwise
, (5.26)

where Ni and Nha(i) denote the number of available particles and holes satisfying
the restriction, respectively. In the algorithm, realisation of these distributions can
be implemented by constructing appropriate lists of allowed particles and holes in
O[NNdim] time prior to the sampling process, (where Ndim is the dimensionality of the
lattice).

However, for ab-initio Hamiltonians, the distribution and magnitude of non-zero
matrix elements, Hmn, is more complex and covers a wider range, and the quality
of the results is more sensitive to the choice of distribution of excitations sampled.
Progress in this direction has been made with the sampling of Smart et al.[262]
which optimises the individual probabilities by basing them on subsets of the exact
Hamiltonian matrix elements, as well as approximations to them using the Cauchy-
Schwartz inequality on the magnitude of the two-electron matrix elements between
orbitals. Their choice of probability distributions is designed to approximate the ideal
distribution Pgen(m|n; Ĥ) = |Hmn|(1−δmn)∑

m′ ̸=n |Hm′n|
as closely as possible without requiring its

prohibitive computational cost. In order to reduce the complexity of the resulting
algorithm, the particles involved in any type of excitation are uniformly sampled from
the set of allowed particles or particle pairs, thereby implying that the individual
probabilities are given by

p(i) = 1
N

(5.27)

p(ij) = p(i)× p(j) = 1
Nα

× 1
Nβ

(5.28)

p(ij) = 1(
Nα

2

)
+
(

Nβ

2

) , (5.29)

for single, opposite and parallel spin pair double excitations, respectively. In return, the
probability distributions that the holes of excitations are sampled from are designed to
best approximate the ideal distribution which involves the Hamiltonian matrix elements
Hmn. For single excitations m = na

i , there is no simple approximation which is close
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enough to the Hamiltonian matrix element Hna
i n = ⟨i|ĥ|a⟩ + ∑

j[⟨ij|aj⟩ − ⟨ij|ja⟩]
and the full matrix element therefore forms the basis for the probability distribution
according to which hole a is sampled

p(a|i) = | ⟨na
i |Ĥ|n⟩ |∑

h∈σn | ⟨nh
i |Ĥ|n⟩ |

. (5.30)

The notation in the denominator means that the sum runs over all holes h in n with
the same spin σ as particle i, thereby requiring an order O[MN ] operation. Although
this is relatively expensive, in fact the single most expensive part of the excitation
generation algorithm, the gains in efficiency with this probability distribution still
outweigh the computational cost compared to uniform distributions or approximate
distributions which do not resemble the ideal distribution closely enough. In contrast,
when considering two-particle substitutions m = nab

ij of n, whose matrix elements are
given by Hnab

ij n = ⟨ij|ab⟩ − ⟨ij|ba⟩, good approximations in lieu of the exact Hnab
ij n are

required since implementations of sampling processes from distributions of exact Hnab
ij n

are too expensive. The Cauchy-Schwarz inequality provides a route towards obtaining
these faithful approximations. In particular, if the two picked particles have opposite
spins, the exchange term is zero, ⟨ij|ba⟩ = 0 and a strict upper bound to the matrix
element can be formulated with the Cauchy-Schwarz inequality,

⟨ij|ab⟩ ≤
√
⟨ii|aa⟩ ⟨jj|bb⟩. (5.31)

This product form suggests that instead of picking a pair of holes holes a and b are
chosen independently, p(ab|ij) = p(a|ij)p(b|ij), from the distributions

p(a|ij) =

√
⟨ii|aa⟩∑

h∈σn

√
⟨ii|hh⟩

(5.32)

p(b|ij) =

√
⟨jj|bb⟩∑

h∈σn

√
⟨jj|hh⟩

. (5.33)

If instead a parallel spin pair ij is considered, the exchange term is non-zero and a
factorised Cauchy-Schwarz based upper bound to the difference provides a much less
tight upper bound to the exact matrix element

| ⟨ij|ab⟩ − ⟨ij|ba⟩ | ≤ |
√
⟨ii|aa⟩+

√
⟨jj|aa⟩| × |

√
⟨ii|bb⟩+

√
⟨jj|bb⟩|. (5.34)
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This suggests that holes are sampled from the probability distributions

p(a|ij) =

√
⟨ii|aa⟩+

√
⟨jj|aa⟩∑

h∈σn

√
⟨ii|hh⟩+

√
⟨jj|hh⟩

(5.35)

p(b|a, ij) =

√
⟨ii|bb⟩+

√
⟨jj|bb⟩∑

h∈σn,h̸=a

√
⟨ii|bb⟩+

√
⟨jj|bb⟩

, (5.36)

where it should be noted that the sum over h in the denominator of p(b|a, ij) excludes
the term h = a to ensure that hole a is not reselected. As noted above, the Cauchy-
Schwarz upper bound obtained is particularly poor for double excitations with the
same spin. Some of this can be regained by sacrificing the strict upper bound to the
matrix element provided by the Cauchy-Schwarz inequality. Instead, only the first hole
a is selected according to the distribution p(a|ij) and the second hole b is sampled from
a different probability distribution based on the exact Hamiltonian matrix elements
Hnab

ij n

p(b|a, ij) =

√
⟨ij|ab⟩ − ⟨ij|ba⟩∑

h∈σn,h ̸=a

√
⟨ij|ah⟩ − ⟨ij|ha⟩

. (5.37)

As such, this scheme better represents the cancellation of coulomb and exchange term
in the matrix element and is thus expected to provide a better approximation to Hnab

ij n.
This approach was found to lead to a much higher efficiency, specifically, in systems
dominated by local interactions where the cancellation of terms assumes a greater
importance. Irrespective of which distribution is used, the associated computational
cost remains the same since all of them involve O[M ] operations. In addition, since
both particles share the same spin, the two holes can be chosen in either order which has
to be taken into account when computing the probability p(ab|ij) = p(b|a, ij)p(a|ij) +
p(a|b, ij)p(b|ij). Taking all these things together, the complete expressions for the
generation probabilities can be formulated as

Pgen(na
i |n; Ĥ) = p(a|i)p(i)psing (5.38)

p(i) = 1
N

(5.39)

p(a|i) = | ⟨na
i |Ĥ|n⟩ |∑

h∈σn | ⟨nh
i |Ĥ|n⟩ |

, (5.40)
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for single excitations,

Pgen(nab
ij |n; Ĥ) = p(ab|ij)p(ij)popppdoub (5.41)

= p(a|ij)p(b|ij)p(ij)popppdoub (5.42)

p(ij) = p(i)× p(j) = 1
Nα

× 1
Nβ

(5.43)

p(a|ij) =

√
⟨ii|aa⟩∑

h∈σn

√
⟨ii|hh⟩

(5.44)

p(b|ij) =

√
⟨jj|bb⟩∑

h∈σn

√
⟨jj|hh⟩

, (5.45)

for opposite spin pair and

Pgen(nab
ij |n; Ĥ) = p(ab|ij)p(ij)pparapdoub (5.46)

= [p(b|a, ij)p(a|ij) + p(a|b, ij)p(b|ij)]p(ij)pparapdoub (5.47)

p(ij) = 1(
Nα

2

)
+
(

Nβ

2

) (5.48)

p(a|ij) =

√
⟨ii|aa⟩+

√
⟨jj|aa⟩∑

h∈σn

√
⟨ii|hh⟩+

√
⟨jj|hh⟩

(5.49)

p(b|a, ij) =

√
⟨ij|ab⟩ − ⟨ij|ba⟩∑

h∈σn,h̸=a

√
⟨ij|ah⟩ − ⟨ij|ha⟩

, (5.50)

for parallel spin pair double excitations. Algorithmically, sampling from these prob-
ability distribution can be realised by computation and inversion of the respective
cumulative distribution function (CDF)[262]. Additionally, in order to further enhance
the efficiency of the algorithm, the probabilities psing, pdoub, popp and psame are dynami-
cally updated during the course of a simulation so as to favour preferential selection of
excitations with large magnitude Hmn. Whilst initial values for these parameters are
computed using the relative number of excitations, better values can be obtained by
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requiring that

max
[

|Hna
i n|

Pgen(na
i |n; Ĥ)

]
sing

= max
 |Hnab

ij n|

Pgen(nab
ij |n; Ĥ)


doub

(5.51)

max
 |Hnab

ij n|

Pgen(nab
ij |n; Ĥ)


opp

= max
 |Hnab

ij n|

Pgen(nab
ij |n; Ĥ)


same

, (5.52)

where the notation max
[

|Hnab
ij

n|

Pgen(nab
ij |n;Ĥ)

]
doub

stands for the maximum value attained

by the ratio of matrix element and corresponding generation probability for single
excitations and by analogy for the other types of excitations.

Selection of Wavefunction Parameter

Finally, the choice of wavefunction parameter, σ, to update is made uniformly from the
set of variables which contribute to the amplitude in configuration m. If a wavefunction
ansatz comprises two or more major components, e.g. a Correlator Product State
contribution and reference state Slater determinant (as detailed in Chapter 6), a
probability is introduced with respect to the prior decision to which of these principal
wavefunction components the set of parameters that σ is chosen from belongs. This
probability may either be fixed at a particular value or dynamically adjusted by
requiring that the L1-norm of the gradient with respect to the parameters of the first
wavefunction component (e.g. the Correlator Product State part) is approximately
equal to the L1-norm of the gradient with respect to the parameters belonging to the
second major component (e.g. the reference state Slater determinant). However, the
precise value of this probability was not observed to make a profound difference and
an update procedure with equal probability for both sets of parameters was found to
generally perform well. Investigations were also carried out using more sophisticated
probability distributions for the choice of σ based on the values of the parameters or
the derivatives with respect to the parameters. However, all of these schemes were
found to be less effective due to the increased computational cost associated with
construction of the probability distributions and uniform selection of σ proved to be
the most efficient approach.
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5.4 Momentum Methods: Nesterov’s Accelerated
Gradient Descent

However, similar stochastic gradient descent (SGD) approaches have been considered
before with little success for large numbers of variables, due to the slow (linear)
convergence of the parameters as O

(
1
k

+ σ√
k

)
where σ is the variance in the gradient

and k the number of iterations[313]. Improving on this to obtain the convergence rate
of state-of-the-art quasi-second order methods involves advances in SGD methods, used
in the field of deep learning algorithms of neural networks[320–322]. Analogously, these
networks represent a flexible non-linear function with parameters to be optimised via
minimisation of a cost function, often achieved via SGD schemes similar to the one in
Eq. 5.4[323, 324].

A major role in slowing down the convergence of SGD minimisation is played by
ravines which typically occur around minima. Within these ravines the gradient is small
in the direction pointing towards the minimum and large in undesired directions. As a
consequence, SGD strongly oscillates around the slope of the ravine whilst progressing
only hesitantly towards to bottom of the minimum[325].

A classical technique for accelerating SGD is the momentum method[326] whereby
the addition of a ‘momentum’ implies that the update depends on not just the current
iterate, but retains a memory of previous iterations. Classical momentum approaches
employ the following pairs of equation

X(k+1)
σ = µX(k)

σ − τk
∂L[Ψ(k)(Z(k)

σ )]
∂Zσ

(5.53)

Z(k+1)
σ = Z(k)

σ +X(k+1)
σ , (5.54)

where the intermediate X(k+1)
σ is introduced as update for the final wavefunction

parameter Z(k+1)
σ . µ is a momentum constant (or equally 1 − µ can be regarded as

friction constant) which controls over how many iterations the gradient information
persists. Propagation thus results in the accumulation of velocity in directions of
low curvature and persistent decrease in energy, thereby accelerating the update in
directions of low curvature over multiple iterations. At the same time, by combining
gradients with opposite signs pointing along the same direction oscillations in directions
of high curvature but gradients with changing directions are damped, thereby reducing
updates for directions whose gradients frequently change directions. (In this sense, a
physical analogy to ball rolling down a hill can be drawn.) As a result, propagation
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of the momentum equations leads to a faster convergence and reduced oscillations,
formally accelerating the convergence rate to a second-order O

(
1

k2 + σ√
k

)
.

A better version of the momentum method can be formulated as Nesterov’s ac-
celerated gradient descent[327], whereby the sequence λ0 = 0, λk = 1

2 + 1
2

√
1 + 4λ2

k−1,
γk = 1−λk

λk+1
is defined and starting at an initial point Z(1)

σ = Y (1)
σ , the algorithm

stochastically iterates the equations[328],

Y (k+1)
σ = Z(k)

σ − τk
∂L[Ψ(k)(Z(k)

σ )]
∂Zσ

(5.55)

Z(k+1)
σ = (1− γk)Y (k+1)

σ + γkY
(k)

σ , (5.56)

for k ≥ 1. The analogies and differences between classical momentum methods
and Nesterov’s accelerated gradient descent can be more clearly seen by defining
X(k+1)

σ = Y (k+1)
σ − Y (k)

σ and µk = −γk and rewriting the equations of Nesterov’s
approach as[329]

X(k+1)
σ = µkX

(k)
σ − τk

∂L[Ψ(k)(Z(k)
σ + µkX

(k)
σ )]

∂Zσ

(5.57)

Z(k+1)
σ = Z(k)

σ +X(k+1)
σ . (5.58)

Ignoring the proposed schedule for γk, the key difference between classical momentum
and Nesterov’s accelerated gradient descent approaches is that classical momentum
methods first compute the gradient before applying the velocity, whilst Nesterov’s
accelerated gradient descent method computes the gradient after doing so[330].

This anticipatory update allows Nesterov’s accelerated gradient descent to move in
a quicker and more responsive way[331], letting it behave more stably than classical
momentum methods in many iterations. To illustrate this point, the situation is
considered where the addition of the momentum term µkX

(k)
σ undesirably increases

the energy (Figure 5.1). In Nesterov’s accelerated gradient descent, the gradient is
computed at Z(k)

σ +µkX
(k)
σ , and if Z(k)

σ +µkX
(k)
σ is indeed a higher energy, the gradient

∂L[Ψ(k)(Z(k)
σ +µkX

(k)
σ )]

∂Zσ
will point more strongly downwards in energy than the gradient

∂L[Ψ(k)(Z(k)
σ )]

∂Zσ
computed at Z(k)

σ (which is used in classical momentum methods), thereby
providing a better and more timely correction. Whilst each iteration of Nesterov’s
approach might only be slightly more effective than classical momentum techniques,
the combined effect means that Nesterov’s accelerated gradient descent performs
significantly better in many situations. Whilst this is not necessarily always the case, it
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was generally observed to perform better or at least equally well as standard momentum
techniques in the proposed optimisation and is therefore used in this optimisation.

Fig. 5.1 Comparison of steps taken in Classical Momentum Methods (top) and Nesterov’s Accelerated
Gradient Descent (bottom).

Due to the addition of the momentum term Nesterov’s scheme is no longer monotone
and as such there is no requirement that each iteration will decrease the energy and
instabilities can be observed[332, 333]. To mitigate this behaviour, some restarting
schemes have been proposed[333, 334], but their restarting criteria are difficult to realise
in stochastic approaches. Instead, in this approach it has also been found beneficial
to include a damping for the momentum, d, as γk → γke

−1
d

(k−1). With a suitably
chosen parameter the rate of convergence of the optimisation should not be hindered,
since this is dominated in the latter stages by the σ√

k
term for both accelerated and

conventional gradient descent[331, 329].
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5.5 Matrix Polynomials - Closing a Circle of Con-
nections

Mathematically, on a more general and abstract level, projections, such as the stochastic
projection onto eigenstates of the Hamiltonian as described in Eq. 5.8, are given by a
monic polynomial of the propagator of degree k[335–338], such that

Ψ(k) = pk
A(A)Ψ(0), (5.59)

where pk
A(A) represents a monic polynomial of the matrix A belonging to the linear

space Pk of polynomials of degree at most k. More specifically, expanding Ψ(0) =∑n−1
i=0 ciΨi in the spectral basis of A with eigenpairs (λi,Ψi) ordered accordingly
|λ0| ≥ |λ1| ≥ . . . ≥ |λn−1|, the projection leads to

Ψ(k) = pk
A(A)Ψ(0) (5.60)

=
n−1∑
i=0

pk
A(λi)ciΨi (5.61)

= pk
A(λ0)c0Ψ0 +

n−1∑
i=1

pk
A(λi)ciΨi. (5.62)

If the dominant eigenpair (λ0,Ψ0) is desired, the component pk
A(λ0)c0 should be much

larger than all other components pk
A(λi)ci, ∀i > 0. Within this requirement, the

polynomial pk
A should ideally be rescaled such that pk

A(λ0) = 1 and

Ψ(k) = c0Ψ0 +
n−1∑
i=1

pk
A(λi)
pk

A(λ0)
ciΨi, (5.63)

while |pk
A(λ0)| > |pk

A(λi)| ∀i > 0 and c0 ̸= 0 are necessary conditions to project onto
the dominant eigenpair.

The most basic matrix polynomial which fulfills these requirements is P k
A(A) = bkAk

with bk being an arbitrary constant. This matrix polynomial is not only constructed
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during iterations of the power method[335, 337],

Ψ(k) = bkAkΨ(0) (5.64)

= bk

(
c0λ

k
0Ψ0 +

n−1∑
i=1

ciλ
k
i Ψi

)
(5.65)

= bkλ
k
0

(
c0Ψ0 +

n−1∑
i=1

ci
λk

i

λk
0
Ψi

)
, (5.66)

which filters out the dominant eigenstate Ψ0 and leads to a decay of contributions of
all other states provided that c0 ̸= 0, but also during those of the Projector Quantum
Monte Carlo method FCIQMC which uses the linear projector P̂linear = Î −τ(Ĥ−E0Î).
Likewise, successive iterations of the basic (S)GD method whose iterations are

Ψ(k+1) = Ψ(k) − τ ∂L[Ψ(k)]
∂Ψ (5.67)

= (I− τ(H− E0I))kΨ(0) (5.68)

=
(
−τ

(
H−

(
E0 + 1

τ

)
I
))k

Ψ(0) (5.69)

= AkΨ(0) (5.70)

computes this polynomial with A = (I− τ(H− E0I)) = (−τ(H− (E0 + 1
τ
)I)). The

matrix A can be identified with the matrix representation of the linear projector P̂linear

applied in FCIQMC. Essentially, both approaches, FCIQMC and (S)GD, amount
to a shifted power method, thereby highlighting the deep connections between the
methods (in the limit of an exact wavefunction ansatz) which are all equivalent in their
realisation of the simple polynomial P k

A(A) = bkAk. A major drawback of this matrix
polynomial is that the decay rate for contributions from unwanted eigenpairs depends
on the separation of eigenvalues. Specifically, the power method attains convergence
rates of |Ψ(k) −Ψ0| = O

(
|λ1|k
|λ0|k

)
and |λ(k) − λ0| = O

(
|λ1|2k

|λ0|2k

)
. In general, convergence

rates for this set of methods can be extremely slow, in particular, if the two dominant
eigenvalues are close to each other. The use of a shift, as employed in the projector
approaches, may then help to either separate the desired eigenvalue from the remaining
spectrum or to suppress components of close eigenvalues. Yet, this requires a priori
knowledge of the eigenvalues which is not available in practice.

A more sophisticated approach is taken by a number of methods which are commonly
referred to as polynomial ‘filtering’ or ‘acceleration’ techniques. They accelerate
convergence by designing a polynomial pk

A(A), ideally the minimal polynomial, a



116 A Projector Quantum Monte Carlo Method for Non-linear Wavefunctions

matrix polynomial of smallest degree k ≤ n (where n represents the dimension of the
matrix A) such that mk

A(A) = 0, which enhances components form desired regions of
the spectrum and suppresses those from unwanted regions[335]. For best convergence
onto the dominant eigenpair (λ0,Ψ0), a polynomial pk

A(A) is required with pk
A(λ0) = 1

and whose maximum absolute value over all λi with i > 0 is the smallest possible
(Figure 5.2). However, as the eigenvalues λi are generally unknown, the problem
is reformulated. Thus, relying on ideas from approximation theory, a polynomial
approximation to a continuous scalar function is sought whose value at the desired
eigenvalue λ0 of the propagator is 1 and whose maximum absolute value in a range [a, b]
covering the rest of the spectrum containing all remaining eigenvalues λi is minimised

min
pk

A∈Pk,pk
A(λ0)=1

max
t∈[a,b]

|pk
A(t)|, (5.71)

where Pk is the linear space of polynomials of degree k. Analytically, the optimal poly-
nomial for this approximation problem is the shifted and scaled Chebyshev polynomial
of the first kind of degree k[335, 338]

Ck
A(t(x)) = C̄k

A(t(x))
C̄k

A(t(λ0))
(5.72)

with

C̄k
A(t) = cos[k cos−1(t)] for − 1 ≤ t ≤ 1, (5.73)

and t(x) providing a simple linear transformation

t(x) = 2x− (a+ b)
b− a

(5.74)

to shift and scale the Chebyshev polynomials which are only defined over the range
[−1, 1] to any finite range [a, b]. Additionally, these shifted and scaled Chebyshev
polynomials Ck

A(A) represent a set of orthogonal polynomials satisfying a three term
recurrence

Ck+1
A (A) = 2ACk

A(A)− Ck−1
A (A), (5.75)

with initial conditions C0
A(A) = I and C1

A(A) = A. This recurrence relation renders
them perfectly suitable for an enhanced projection process in the form Ψ(k) = Ck

A(A)Ψ(0)

which typically converges much faster than the power method or equivalent first-order
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optimisation (Figure 5.2). The success of the Lanczos approach as a second-order
optimisation, as well as other deterministic projections can also be rationalised in this
fashion by considering similar matrix polynomial approximations to the projection[339,
340].

By analogy to Krylov space methods, convergence of GD can also be enhanced by
extracting information from the state vectors Ψ(k−1) of the previous k − 1 iterations.
This becomes apparent by considering the residual after k GD iterations Ψ(k) −Ψopt =
Ak(Ψ(0)−Ψopt) (where Ψopt denotes the optimal state vector) and combining the state
vectors Ψ(k) linearly using coefficients ak which results in[338]

i∑
k=0

akΨ(k) =
i∑

k=0
akAk(Ψ(0) −Ψopt) +

i∑
k=0

akΨopt (5.76)

= pk
A(A)(Ψ(0) −Ψopt) + pk

I (I)Ψopt. (5.77)

Consequently, if pk
I (I) = I is enforced, the value

min ∥pk
A(A)(Ψ(0) −Ψopt)∥2 (5.78)

needs to be minimised to obtain the best approximation to Ψopt. Nesterov’s accelerated
GD achieves this by iterating the equations in 5.55 which in matrix form reads as

Ω(k+1) = Ψ(k) − τ ∂L[Ψ(k)]
∂Ψ (5.79)

Ψ(k+1) = (1− γk)Ω(k+1) + γkΩ(k). (5.80)

This projection process iteratively builds a polynomial Nk
A(A) which satisfies Ω(0) −

Ωopt = Nk
A(A)(Ψ(0) − Ψopt). This implicitly constructed polynomial Nk

A(A) can be
conveniently expressed as a three term recurrence relation[338]

Nk
A(A) = A

[
(1− γk−1)Nk−1

A (A) + γk−1N
k−2(A)

]
(5.81)

with initial conditions N0
A(A) = I and N1

A(A) = A. Whilst not being exactly equal to
the Chebyshev polynomial the polynomial Nk

A(A) of Nesterov’s accelerated approach
is similar to the Chebyshev polynomial and also satisfies Nk

I = I for all k. This means
that it filters out contributions of Ψopt and suppresses those of undesired states more
efficiently than the simple (S)GD approach, thereby accelerating convergence of the
projection. A schematic illustration of the differences in efficiency of the projection
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processes onto the desired state resulting from the various employed polynomials of
the propagator can be seen in Figure 5.2.

Fig. 5.2 Comparison of projections of propagators onto the desired eigenvalue Emin of the Hamiltonian.
The projections resulting from repeated application of the Linear Projector (SGD, FCIQMC, Power
Method) constructing the simple polynomial Ak, of the Chebyshev Projector employing Chebyshev
polynomials Ck(A) and of the Nesterov Projector (Nesterov’s Accelerated Gradient Descent) implicitly
constructing the polynomials Nk(A) are compared to the Optimal Projector.

5.6 Step Size Adaptation: RMSprop

The remaining arbitrariness concerns the step size (or ‘learning rate’) τk, which is
not only crucial for the efficiency of the optimisation but also affects its accuracy.
Whilst decreasing the step size generally improves robustness and accuracy, it slows
convergence and increases autocorrelation time[324, 323]. On the contrary, if too large
a τk is chosen, the optimisation continually overshoots the minimum and oscillates
around it, thereby resulting in poor accuracy, and again slow convergence, or even
divergences. A variety of different schemes, such as Adagrad[341], Adadelta[342],
RMSprop[330, 343] and Adam[344] to name just a few, have been proposed in order
to avoid the use of fixed step sizes and try to address these issues. Amongst these, it
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was found numerically that optimal convergence and accuracy within the accelerated
SGD approach described above is achieved with a deep-learning technique denoted
RMSprop[330, 343], an adaptive step size method which dynamically estimates an
individual and independent τ (k)

Zσ
for each parameter. This gives

τ
(k)
Zσ

= η

RMS[gZσ ](k) , (5.82)

where η is a tuned global parameter for all variables, and RMS[gZσ ](k) represents the
root mean square (RMS) of previous gradients for the variable up to the current
iteration,

RMS[gZσ ](k) =
√

E[g2
Zσ

](k) + ϵ, (5.83)

evaluated by accumulating an exponentially decaying average of the squared gradients
of the Lagrangian, gZσ ,

E[g2
Zσ

](k) = ρE[g2
Zσ

](k−1) + (1− ρ)g2(k)
Zσ

. (5.84)

The small constant ϵ is added to better condition the denominator and ρ represents
a decay constant. The use of the exponentially weighted average in the denominator
instead of a simple accumulating sum which is employed in other adaptation schemes
such as Adagrad[341] avoids a continually decreasing step size which, even though being
beneficial from an accuracy point of view, eventually shrinks to zero and thus stops
the optimisation. This dynamically adaptive, parameter-specific step-size, acts much
like a preconditioner for the system, and allows the optimisation to take larger steps
for those parameters with small gradients, and vice versa. This ensures robustness of
the algorithm to large sudden gradients due to the stochastic nature of the gradient
evaluation[342].

5.7 Wavefunction Properties

In addition, the dynamics of the outlined Projector Quantum Monte Carlo method
also provide a straightforward route to unbiased computation of the two-body reduced
density matrix (2-RDM)[345, 253], a rank-4 tensor in the basis of spin orbitals,

Γpq,rs = ⟨Ψ|a†pa†qasar|Ψ⟩ p > q, r > s, (5.85)
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from which the 1-body reduced density matrix (1-RDM)

γpq = ⟨Ψ|a†paq|Ψ⟩ = 2
N − 1

∑
a

Γpa,qa, (5.86)

can be traced out with the factor of 2
N−1 arising from the normalisation of the 1-

RDM and 2-RDM to N and N(N−1)
2 , respectively. As such, the reduced density matrix

represents a highly compact representation of the relevant information in the N -electron
wavefunction, allowing for the computation of pure expectation values. By evaluating
the trace of the relevant 1- and 2-body operator Q̂ with the 2-RDM

⟨Q⟩ = Tr[ΓQ̂], (5.87)

arbitrary 1- and 2-body static properties can be found[37]. This includes the energy,

ERDM =
∑
pq

hpqγpq +
∑

p>q,r>s

(gpqrs − gpqsr)Γpq,rs + Enuc, (5.88)

(with hpq, gpqrs and Enuc as defined in Section 2.2.2 of Chapter 2), spin, magnetic
properties and many more. In particular, the self-consistently determined energy E(k)

appearing in the gradient in Eq. 5.12 is evaluated each iteration anew from the sampled
energy as given by the density matrix E(k) = E

(k)
RDM, rather than from the local energy

as it is commonly done in traditional VMC methods.
In sampling the 2-RDM a similar approach to the one developed in FCIQMC[253,

269, 267] is employed which projects the 2-RDM into the full Hilbert space of configu-
rations {|m⟩},

Γpq,rs =
∑
mn
⟨Ψ(k)|m⟩ ⟨m|a†pa†qasar|n⟩ ⟨n|Ψ(k)⟩ . (5.89)

Within this formulation, it is obvious that a matrix element is non-zero only when
the configurations m and n are at most two-particle substitutions of each other, or
put another way, when m is at most a double excitation of n. As such, the existing
sampling processes of the Lagrangian gradient that occur throughout the dynamics
of the stochastic projection already provide all the necessary machinery required to
sample the 2-RDM. Thus, entirely analogous to the sampling of the gradient, the
sum over m in Eq. 5.89 is stochastically evaluated by the Metropolis Markov chain.
Similarly, the off-diagonal terms in the sum over m are replaced by a small selection of
configurations sampled within the excitation generation process whilst the diagonal
term n = m is included deterministically for each sample in the Markov chain. It



5.7 Wavefunction Properties 121

should be noted that for an unbiased 2-RDM from which properties other than the
energy are evaluated uniform probability distributions for the orbital selections in the
excitation generation process need to be used[261] to guarantee that all contributions of
the 2-RDM can in principal be selected in the sampling procedure. Otherwise sampling
difficulties can arise if two configurations with significant amplitude weight are only
connected by a very small Hamiltonian matrix element, their contribution to the RDM
may be sampled poorly, or even omitted entirely. Furthermore, both wavefunction
amplitudes

{
⟨Ψ(k)|m⟩ , ⟨n|Ψ(k)⟩

}
have already been evaluated for the calculation of the

Lagrangian gradient. As a result, stochastic evaluation of the reduced density matrix
contribution for each sample n, and for stochastic sampling of m ̸= n can then be
formulated as

Γpq,rs,offdiag =
〈

⟨Ψ(k)|m⟩ ⟨n|Ψ(k)⟩
NsPgen(m|n)P (n; Ψ(k))

〉
P (n;Ψ(k))

(5.90)

where the outer brackets imply that the sampling of n is performed according to the dis-
tribution given in Eq.5.13. Diagonal terms, where m = n, are sampled deterministically
and contribute for every sample of n as

Γpq,rs,diag =
〈
⟨Ψ(k)|n⟩ ⟨n|Ψ(k)⟩

P (n; Ψ(k))

〉
P (n;Ψ(k))

. (5.91)

Combination of both estimates

Γpq,rs = Γpq,rs,diag + Γpq,rs,offdiag (5.92)

then leads to the complete density matrix. At the end of the sampling process, the
2-RDM is normalised to ensure that it satisfies the trace relation

∑
pq

Γpq,pq = N(N − 1)
2 , (5.93)

whilst the one-body RDM can be integrated out if desired. Simultaneously, hermiticity
Γpq,rs = Γrs,pq is enforced in the two-body reduced density matrix by averaging the
related pairs of elements, allowing for evaluation of a hermiticity error Γpq,rs−Γrs,pq

2 for
each pair of off-diagonal elements whose maximum and mean value act as indicators
for the sampling quality and convergence of the RDM[269].

This sampling approach allows for an efficient stochastic evaluation of the 2-RDM
during the dynamics of the SGD algorithm with little additional computational cost.
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Part of this computational expenditure is caused by the increase in memory requirement
for storage of the 2-body reduced density matrix which scales as O[

(
M(M−1)

2

)2
]. The

remaining computational costs are largely associated with identification and update of
the density matrix elements to which each pair of determinants contributes. These
processes involve O[N2] operations for diagonal terms, and O[N ] or O[1] operations
for off-diagonal terms with single- or double excitations, respectively.

Care must be taken when evaluating stochastic estimators of non-linear functions of
expectation values such as the 2-body reduced density matrix and properties obtained
from it so as not to introduce a bias in the estimator. In general, for an unbiased
estimator the expectation value over the probability distribution of the wavefunction
should satisfy (up to a normalisation constant)

E
〈 Ψ(k)

P (Ψ(k))

〉
P (Ψ(k))

 = Ψ(k), (5.94)

where
〈

Ψ(k)

P (Ψ(k))

〉
Ψ(k))

denotes sampling of the exact wavefunction Ψ(k) according to the
probability distribution P (Ψ(k)). Yet, for any function f(Ψ(k)) that is nonlinear in
Ψ(k),

E
f
〈 Ψ(k)

P (Ψ(k))

〉
P (Ψ(k))

 ̸= f

E
〈 Ψ(k)

P (Ψ(k))

〉
P (Ψ(k))

 (5.95)

holds, which implies that estimating f(Ψ(k)) by E
[
f
(〈

Ψ(k)

P (Ψ(k))

〉
P (Ψ(k))

)]
will introduce

a bias[346, 347]. This bias was present when reduced density matrices were sam-
pled in FCIQMC[269, 253], since the appropriate contributions E

[〈
⟨Ψ(k)|m⟩
P (Ψ(k))

〉
P (Ψ(k))

]
× E

[〈
⟨n|Ψ(k)⟩
P (Ψ(k))

〉
P (Ψ(k))

]
are in fact approximated by E

[〈
⟨Ψ(k)|m⟩⟨n|Ψ(k)⟩

P (Ψ(k))

〉
P (Ψ(k))

]
which

neglects the (non-zero) covariance between the amplitudes and thus results in bi-
ased sampling even if the E

[〈
⟨n|Ψ(k)⟩
P (Ψ(k))

〉
P (Ψ(k))

]
themselves are unbiased. The main

source of potential error is therefore the fact that the two amplitudes contribut-
ing to the density matrix elements are correlated with the dominant error arising
from diagonal terms where the instantaneous amplitude projections are perfectly
correlated and where the error is of a single sign thereby removing the possibility
of fortuitous cancellation of errors. To guarantee unbiased sampling of the density
matrices, FCIQMC uses a replica sampling approach whereby two completely inde-
pendent walker populations (replicas) are propagated simultaneously such that the
amplitudes are uncorrelated between them[260, 269, 253], allowing for independent
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estimates of E
[〈
⟨Ψ(k)|m⟩
P (Ψ(k))

〉
P (Ψ(k))

]
× E

[〈
⟨n|Ψ(k)⟩
P (Ψ(k))

〉
P (Ψ(k))

]
as E

〈 ⟨Ψ(k)
(1) |m⟩⟨n|Ψ

(k)
(2)⟩

P (Ψ(k))

〉
P (Ψ(k))


or E

〈 ⟨Ψ(k)
(2) |m⟩⟨n|Ψ

(k)
(1)⟩

P (Ψ(k))

〉
P (Ψ(k))

 or the appropriate average of both, where the notation

⟨Ψ(k)
(1)|m⟩ denotes the wavefunction amplitude ⟨Ψ(k)|m⟩ of replica 1. In the 2-RDM

sampling procedure outlined above a similar replica approach is employed to a limited
extend. In general, because of the non-linearity of the wavefunction many solutions
with the same energy will exist. As a consequence, independent replicas will usually
converge to different minima with the same energy and as such, the replica approach
used in FCIQMC cannot be employed while the parameters in a polynomial complex
wavefunction ansatz are still optimised. Instead, contributions to the energy E(k)

RDM and
the gradient ∂L[Ψ(k)(Z(k)

σ )]
∂Zσ

are simply evaluated from a single replica. Investigations were
made as to whether approaches involving two replicas for sampling of the gradient and /
or energy improved optimisation behaviour. However, all approaches were found to lead
to divergences due to the multitude of different wavefunctions with the same energy.
Once a single replica wavefunction is converged upon the 2-RDM can be sampled by
initialising two replicas from the converged wavefunction, propagating them completely
independently and sampling contributions to the 2-RDM and E

(k)
RDM using amplitudes

from both replicas. This technique will remove as much of the correlation between
the wavefunction amplitudes as possible although the possibility exists that a small
degree of correlation still remains giving the same initial starting wavefunction for
the two replicas. Similarly, concerns may be raised that a sampling of E(k)

RDM and
∂L[Ψ(k)(Z(k)

σ )]
∂Zσ

may be biased during the wavefunction optimisation when both amplitudes
in the contribution originate from the same replica and thus introduce an error in the
optimisation. However, given the results to follow in the next chapter, it seems that
this bias is smaller than the stochastic error in the sampling. In fact, no such error
has so far been observed in practice and the RDM energy obtained from one replica
was usually found to be in agreement with that obtained using two replica. A similar
situation arose in an excited state approach within FCIQMC[249] where analogously
concerns about a similar potential sampling bias were raised. Yet, as in this SGD
approach no such bias was observed in practice despite its theoretical presence.



124 A Projector Quantum Monte Carlo Method for Non-linear Wavefunctions

5.8 A Technical Point: Wavefunction Normalisa-
tion, Step Sizes and Parameter Updates

A technical yet important point regarding the efficiency of the optimisation is the
dependence of estimators and parameter updates on the generally unknown normalisa-
tion of the wavefunction N [|Ψ(k)|2]. In particular, updating the parameters alters the
normalisation of the wavefunction such that the parameter changes may no longer be
the optimal ones. In state-of-the-art VMC wavefunction optimisations this factor was
found to profoundly affect the efficiency of the optimisation[217, 215] and therefore
also needs consideration in this SGD approach. All energy expressions used in this
SGD approach scale as (N [|Ψ(k)|2])0 as they ought to. By sampling the unnormalised
two-body reduced density matrix from the wavefunction and then explicitly normal-
ising from the trace relation, there is thus no issue introduced by any change in the
normalisation of the wavefunction. Similarly, P (n,Ψ(k)) in Eq. 5.13 is a normalised
distribution and therefore scales as (N [|Ψ(k)|2])0. However, the equations for the La-
grangian in Eq. 5.15 and 5.16 include a global dependence on the normalisation of the
wavefunction. A change in the normalisation of the wavefunction therefore affects the
effective magnitude of the update in each iteration, thereby resulting in a new effective
step size, τ (k)′

Zσ
, in a non-trivial manner, through the magnitude of both N [|Ψ(k)|2], as

well as ⟨∂Ψ(k)

∂Zσ
| and |Ψ(k)⟩. In the case of a fixed step size, the dynamics of the non-linear

optimisation will not be invariant to this change which is in contrast to FCIQMC
with its linear ansatz where the magnitude of changes to the wavefunction would vary
linearly with the L1 norm of Ψ(k). The dependence of the resultant effective step size
on the normalisation of the wavefunction will change with both the parameterisation
and the probability distribution used to sample the wavefunction in Eq. 5.13. However,
for an exact parameterisation and sampling, the gradient vector will necessarily vanish
as the solution is converged upon, thereby mitigating the norm dependence in the
effective step size.

It is worth considering the ramifications of the dependence of the parameter changes
on the N [|Ψ(k)|2] and their relationship to other approaches in literature. In general,
controlling the norm of parameter updates for non-linear wavefunctions is a difficult
task for state-of-the-art VMC methods like Stochastic Reconfiguration or the Linear
Method, as well. In these approaches, the update is rescaled, damped or a line search is
performed to search for the optimal changes in parameters[215, 211]. These measures
are not feasible for this SGD approach as they require an explicit projection into
the tangent subspace of the wavefunction, a step that is avoided at all times in the
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SGD optimisation. Yet, in practical applications, the implementation avoids potential
problems for two reasons. Firstly, due to the shifting of the Hamiltonian by the current
estimate of the energy only small changes in the normalisation of the wavefunction occur
for all calculations attempted, even far from convergence. Secondly, the dynamical
parameter-specific step size adjustment also mitigates many of the effects of the norm
dependence of the effective step size. Specifically, by considering parameter-specific
information from gradients of previous iterations and introducing an inverse dependence
on these gradients into the individual step sizes the norm dependence is mitigated and
a stable and efficient optimisation is achieved. For this reason, the N [|Ψ(k)|2] term in
Eq. 5.15 and 5.16 are not explicitly considered in the algorithm, and its effect on the
formal convergence rate is small[323].

5.9 Comparison to State-of-the-art VMC Methods

The stochastic gradient descent (SGD) of the Lagrangian described above results in an
iteration cost that is independent of the size of the Hilbert space and thus renders this
method inherently suitable for large scale systems like other Quantum Monte Carlo
approaches. Yet, it also admits a number of advantages over state-of-the-art VMC
optimisation[215, 348, 213], such as the avoidance of the construction of matrices in
the tangent space of the wavefunction, whose sampling and manipulation becomes a
bottleneck for large numbers of parameters. Krylov subspace techniques have been
proposed to circumvent this by projecting down to more manageable space[208]. Yet,
ill-conditioning can limit the efficiency of this approach although recent developments
of the Linear Method attempt to address its memory bottleneck[349]. Furthermore,
diagonalisation of the randomly sampled matrices required in some optimisations can
lead to biases in the final parameters[248, 350]. Moreover, the SGD approach bears
similarities with the Stochastic Reconfiguration method (SR)[348, 213], which can
also be considered an imaginary time propagation that differs from steepest descent
in its definition of the metric in parameter space for the updates[212]. Due to this,
SR requires projection of the equations into the fixed tangent space of the current
wavefunction and stabilisation of the resultant matrix equations[213]. However, the
proposed matrix-free stochastic application of Eq. 5.4 describes a quasi-continuous
optimisation, where the error bar at convergence represents both the stochastic error in
the sampling, and the variation in the wavefunction as it is sampled. In addition, the
dynamics of the optimisation also provide access to the two-body reduced density, and
thus arbitrary 1- and 2-body static properties of the wavefunction as outlined above
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with little additional computational cost. Hence, these static properties including spin
and magnetic properties, as well as the energy, are evaluated from the sampled density
matrix, rather than from the local energy as it is commonly the case in traditional VMC
approaches. Furthermore, Quantum Monte Carlo methods working in first quantised
basis of electron coordinates usually evaluate density matrices by sampling either
from a grid or a suitable probability distribution within the configuration space which
tends to be more expensive, in particular when considering a 2-RDM expressed in
non-localised basis functions[345].



Chapter 6

Applications of the Projector
Quantum Monte Carlo Method for
Non-linear Wavefunctions to
Correlator Product State
Wavefunctions

In this chapter, a number of applications of the Projector Quantum Monte Carlo
method for non-linear wavefunctions are presented which demonstrate the ability of
this approach to optimise arbitrary non-linear wavefunction ansatzes for quantum many-
body systems, as well as its ability to evaluate the static properties of these wavefunction
from their sampled two-body reduced density matrix. These wavefunctions are sought
for a multitude of systems, ranging from lattice Hubbard models to ab-initio systems
in one- and two-dimensions

In order to advance to larger condensed phase systems than those amenable to FCI
techniques and circumvent the exponential scaling of the full Hilbert space, one approach
for designing an efficient and compact wavefunction ansatz is to exploit the fact that
electron correlation is, in general, inherently local. Two-point correlation functions
(away from criticality) will decay exponentially with distance, whilst the screening of the
Coulomb interaction in bulk systems will result in local entanglement of nearby electrons,
with distant electrons behaving increasingly independently[132]. The existence of this
locality of electron correlation, as well as the existence of area laws, and thereby the
reduced amount of entanglement which effectively quantifies the relevant number of
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degrees of freedom, suggests that quantum many-body states of strongly-correlated
materials may be faithfully described by an efficient parameterisation. This concept lies
at the heart of powerful numerical algorithms such as the density-matrix renormalisation
group approach (DMRG)[56, 143, 144] and its higher-dimensional analogues[55] in the
realm of Tensor Network States (TNS). A further quantum many-body state ansatz
which exploits locality to formally contain the scaling to polynomial cost is an ansatz
in the form of Correlator Product States (CPS)[351–356], which explicitly correlate
plaquettes of neighbouring degrees of freedom. Related wavefunctions are also referred
to as entangled plaquette states[357–359] or complete graph tensor networks[360,
361]) to stress their connection to higher-dimension generalisations of matrix product
states[362]. In this sense, the CPS ansatz, which can also be regarded as a class of
Tensor Network States, has been introduced to extend DMRG to higher dimensions
whilst avoiding the computational cost of other higher dimensional TNS algorithms.
Whereas TNS introduce auxiliary degrees of freedom in order to introduce correlations
between physical degrees of freedom, CPS correlate the physical degrees of freedom
explicitly. The CPS ansatz is extremely versatile, the form and size of correlators
can be chosen to best represent the properties of the system, which also makes the
wavefunction systematically improvable. A mapping between some types of CPS and
TNS and vice versa can be established, however, each parameterisation form will
always only represent a subset of the states that it is mapped onto[351, 363]. Like TNS,
CPS with local correlators satisfy an area law thereby suggesting that they should
be well suited for systems with finite correlation length. On the contrary, CPS with
long-ranged correlators are area law violating. Obeying a volume law, they are able to
describe an even higher degree of entanglement and are thus suitable for parameterising
states of critical systems[351, 364].

Previously, the variational parameters of these CPS wavefunction have been opti-
mised with a number of approaches, some of which are of deterministic nature[352, 363],
whilst most of them use Variational Monte Carlo (VMC) approaches[357, 364, 208]. In
particular, VMC methods such as the Linear Method and Stochastic Reconfiguration
enabled the optimisation of large numbers of parameters. The results presented in this
chapter, demonstrate that the Projector Quantum Monte Carlo method proposed in
the previous Chapter is able to optimise and handle CPS wavefunctions with much
larger numbers of variational parameters then previous VMC optimisations.
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6.1 The Correlator Product State Wavefunction
Ansatz

The exact eigenstate of the non-relativistic time-independent electronic Schrödinger
equation for an N -particle system in a discrete basis of M one-particle states assumes
the form of an FCI wavefunction ansatz, as in FCIQMC,

|ΨFCI⟩ =
q∑

n1n2...nM

Xn |n1n2 . . . nM⟩ =
∑

n
Xn |n⟩ , (6.1)

where Xn denotes the expansion coefficient of the occupation number vector |n⟩. The
first sum runs over the dimension q of the local Hilbert space of the single-particle
basis states {|ni⟩} = {|1⟩ , |0⟩} and is restricted to those occupation vectors satisfying∑M

i ni = N . Since each occupation vector is formed as a direct product of states in
the local Hilbert space |n⟩ = |n1n2 . . . nM⟩ = |n1⟩ ⊗ |n2⟩ ⊗ . . .⊗ |nM⟩, the size of the
complete N -particle Hilbert space, and hence, of the number of variational parameters
in the FCI wavefunction scales exponentially with system size[37].

Although the exactness of the FCI wavefunction for a given basis represents a
huge advantage, its exponential scaling makes it prohibitively expensive in practice,
particularly for large systems, and efficient and more compact parameterisations of
the wavefunction such as correlator product states are needed. An integral part of the
CPS ansatz is the concept of a correlator which directly encodes correlations between
single-particle states. In general, the CPS ansatz defines ‘correlators’ as diagonal
operators which directly encode the entanglements within sets of single-particle states
as[351, 352, 357]

Ĉλ =
∑
nλ

Cnλ
P̂nλ

, (6.2)

where P̂nλ
= |nλ⟩ ⟨nλ| is the projection operator for the single many-body state nλ in

the set of all many-body Fock states {nλ} in the correlator λ with correlator amplitudes
{Cnλ

}. The CPS wavefunction is then written as multi-linear product of correlator
operators acting on a chosen reference state[351, 365]

|ΨCPS⟩ =
∏
λ

Ĉλ |Φ⟩ . (6.3)
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Possible choices for the reference state include the uniform reference

|ΦU⟩ =
∑

n
|n⟩ , (6.4)

an equally weighted sum of all occupation number vectors which may be chosen to
satisfy symmetry constraints, as well as an Antisymmetrised Geminal Power (AGP)
wavefunctions[5, 366, 212]

|ΦAGP⟩ = exp(F̂ ) |0⟩ , (6.5)

where the pairing operator F̂ creates a linear combination of all possible singlet pairings

of one-particle states F̂ = ∑M
2

i,j=1 fija
†
i↑a
†
j↓. Similarly, further states which can act as

reference state are a generalisation of the AGP wavefunction, the Pfaffian pairing
wavefunction[367–369]

|ΦPF⟩ = exp(Ĝ) |0⟩ , (6.6)

defined in terms of a generalised pairing operator Ĝ = ∑M
i=1

∑M
j=i+1 gija

†
ia
†
j that creates

linear combinations of all singlet and triplet pairings. Alternatively, a single Slater
determinant can act as reference state

|ΦD⟩ =
N∏

i=1

 M∑
j=1

Θija
†
j

 |0⟩ , (6.7)

where |0⟩ is the vacuum state, a†j represents the creation operator for the jth one-
particle state of the basis set and Θ denotes the matrix of coefficients whose ith row
defines the coefficient of the ith state[365, 65]. The CPS wavefunction thus provides a
product approximation to the FCI wavefunction which for a single Slater determinant
reference state, as it will be used often throughout this work, is of the explicit form

|ΨCPS⟩ =
∑

n

∏
λ

C
(n)
λ |n⟩ ⟨n|

N∏
i=1

 M∑
j=1

Θija
†
j

 |0⟩ , (6.8)

where ∏λ C
(n)
λ denotes the set of correlator amplitudes which give rise to the global

occupation defined in |n⟩. It can be shown that a number of different phases and
wavefunctions can be expressed in this form, including resonating valence bond (RVB)
and Laughlin wavefunctions[351]. As the number of degrees of freedom in the system
grows, the complexity of the wavefunction grows only linearly. Additionally, this choice
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of low-rank factorisation of the wavefunction is systematically improvable in the limit
of increasing correlator sizes as this recovers longer-ranged entanglement effects and
increases the number of variables in the wavefunction parameterisation. In the limit
of one large correlator covering all single-particle states in the system, the exact FCI
wavefunction is recovered[351, 352] and the CPS wavefunction is thus systematically
improvable to exactness.

6.2 Wavefunction Amplitudes and Derivatives

Projecting the CPS wavefunction into the complete Hilbert space of configurations
{n}, the wavefunction amplitudes are given by

⟨n|ΨCPS⟩ = ⟨n|
∏
λ

Ĉλ|n⟩ ⟨n|Φ⟩ . (6.9)

Whilst the correlator part of the CPS wavefunction makes a contribution of

⟨n|
∏
λ

Ĉλ|n⟩ = ⟨n|
Ncorr∏

λ

Ĉ
(n)
λ |n⟩ , (6.10)

where Ĉ(n)
λ denotes the set of correlator amplitudes contributing to |n⟩ and Ncorr the

number of correlators, the explicit form of the reference state contribution depends on
the nature of |Φ⟩. For a uniform reference state, its contribution to the wavefunction
amplitude is

⟨n|ΦU⟩ =
∑
m
⟨n|m⟩ = δnm, (6.11)

while a single Slater determinant reference state results in a determinant of orbital
coefficients

⟨n|ΦD⟩ = ⟨n|
N∏

i=1

 M∑
j=1

Θija
†
j

 |0⟩ , (6.12)

where Θ represents the matrix defining the orbitals in the reference Slater determinant.
Similarly, in the case of an AGP reference state its respective component of the
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projection onto the configuration is a determinant of the pairing matrix

⟨n|ΦAGP⟩ = 1(
N
2

)
!
⟨n|


M
2∑

i,j=1
fija

†
i↑a
†
j↓


N
2

|0⟩ , (6.13)

where f represents the symmetric pairing matrix (fij = −fji) describing the coefficients
of all possible singlets in the linear combination. For a general pairing function acting
as reference state the contribution is given by a pfaffian of the occupied pairing matrix

⟨n|ΦPF⟩ = 1(
N
2

)
!
⟨n|

 M∑
i=1

M∑
j=i+1

gija
†
ia
†
j


N
2
|0⟩ (6.14)

with g describing the occupied pairing matrix (gij = −gji) holding the coefficients of
all possible singlets and triplets in the linear combination.

Whereas the correlator part of the wavefunction amplitudes can be computed in
O[Ncorr] time, the determinant and pfaffian of the reference states both require an
O[N3] operation. Fast updates of the determinant based on the Sherman-Morrison
formula reduce the scaling of the computation of the determinant overlap down to
O[N2], while the correlator amplitudes for a local update can similarly scale as O[1].

Derivatives with respect to the wavefunction parameters Zσ can be computed as

⟨n|∂ΨCPS

∂Cσ

⟩ = 1
Cσ

⟨n|ΨCPS⟩ (6.15)

⟨n|∂ΨCPS

∂Θij

⟩ =
(
Θ−1

)
ji
⟨n|ΨCPS⟩ (6.16)

⟨n|∂ΨCPS

∂fij

⟩ =
(
f−1

)
ji
⟨n|ΨCPS⟩ (6.17)

⟨n|∂ΨCPS

∂gij

⟩ = 1
2
(
g−1

)
ji
⟨n|ΨCPS⟩ , (6.18)

which are thus obtainable from the respective wavefunction amplitudes ⟨n|ΨCPS⟩ in
O[1] time.

6.3 2D Hubbard Model

A first example of the ability of the Projector Quantum Monte Carlo approach to
converge wavefunctions with many parameters is given by the treatment of a 98-site
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Fig. 6.1 Illustration of correlators. On the left hand-side, the independent, overlapping five-site
correlator plaquettes are shown as they are used in the CPS wavefunction parameterisation for the 2D
98-site Hubbard Model on a square lattice. One such correlator plaquette is centred at each lattice site,
giving a total of 98 correlators building the CPS wavefunction. For lattice sites at the boundaries, the
correlators are tiled around the 98-site cluster in accordance with the periodic boundary conditions.
The graph on the right-hand side illustrates the independent, overlapping 5-site line correlators one of
which is anchored at each lattice site. The one exception from this arises in the case of open boundary
conditions where the final last lattice sites are not associated with a correlator. In other words, for
n-site line correlators employed for a 1D system with M

2 lattices sites and open boundary conditions
all lattice sites apart from the last n − 1 lattice sites are associated with one line correlators and
the CPS wavefunction of the system is parameterised with M

2 − (n− 1) independent line correlators.
These line correlators are employed for CPS wavefunctions describing states in the 1D linear Hubbard
model, as well as the linear H50 chain.
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Method Etotal Ecorr Pcorr
RHF 0.351374 0.0 0.0

PMC+CPS −0.505443(3) −0.856817(3) 97.9
GFMC −0.52370(1) −0.87507(1) 100.0

Table 6.1 2D Hubbard model: 98-site tilted cluster on a square lattice at half-filling with U
t = 8

and periodic boundary conditions. The total ground state energy Etotal, and correlation energy Ecorr
per site (both in Eh) were obtained using Restricted Hartree-Fock (RHF) theory, Greens-function
Monte Carlo (GFMC) methods and the developed Projector Quantum Monte Carlo approach in
combination with a CPS wavefunction (PMC+CPS) with five-site tilted square correlators and an
unrestricted reference Slater determinant. Pcorr = Ecorr(approach)

Ecorr(GFMC) (in %) denotes the percentage
of GFMC correlation energy, Ecorr(GFMC), captured by the other approaches. The numbers in
parentheses represents the error in the previous digit. Stochastic errors for PMC+CPS have been
obtained through a Flyvbjerg-Petersen blocking analysis[268]. The GFMC energy is taken from
Ref.[370].

tilted 2D Hubbard model at half-filling, with U
t

= 8 and periodic boundary conditions.
As CPS wavefunction in this study, independent, overlapping five-site correlators centred
on every site in the lattice were chosen to correlate with nearest neighbours, allowing
up to ten-electron short-ranged correlations to be directly captured, as well as long
range correlation and symmetry-breaking through coupling between the overlapping
correlators and the optimisation of the Slater determinant. The lattice and tiling of
these correlator plaquettes is depicted in Figure 6.1. Accurate results for this system
are given by Greens-function Monte Carlo (GFMC)[370] methods. The optimised CPS
wavefunction captures 97.9% of this correlation energy (Table 6.1), with the remaining
likely to be due to the lack of direct long-range two-body correlation. However, this
parameterisation still requires the simultaneous optimisation of over 105 parameters,
specifically 109, 950 parameters, beyond the capabilities of most VMC implementations.
Figure 6.2 displays the convergence of the CPS wavefunction for the simple SGD
scheme and the accelerated scheme with Nesterov acceleration and RMSProp step size
adaptation which demonstrates a striking advance in the rate of convergence afforded
by the accelerated scheme. The inset in Figure 6.2 illustrates fluctuations in both the
statistical sampling of the expectation values and in the variations of the wavefunction
parameters. It is likely that the remaining, or at least part of the remaining 2.1% of
the GFMC correlation energy, can be accounted for by including long-range two-site
correlators, larger-sized correlator plaquettes or a better reference state such as an
AGP or general pairing function.
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Fig. 6.2 Convergence of CPS wavefunction with O[105] parameters for the 2D 98-site Hubbard
model on a square lattice at half-filling with U

t = 8. The differences in the convergences rates of the
Stochastic Gradient Descent (SGD) and the accelerated scheme are apparent. As outlined in the
previous chapter, the accelerated scheme combines Nesterov’s accelerated gradient descent with the
RMSprop algorithms for dynamical step size adjustments. The GFMC energy is taken from Ref.[370].
The inset illustrates both the statistical sampling of expectation values and in the variations of the
parameters.



136
Applications of the Projector Quantum Monte Carlo Method for Non-linear

Wavefunctions to Correlator Product State Wavefunctions

6.4 1D Hubbard Model

To study the systematic improvability of the CPS ansatz, a 1D 1× 22-site Hubbard
model is considered such that benchmark data can be found from the Density Matrix
Renormalisation Group (DMRG), which can be made numerically exact for this 1D
system[352]. Results at half-filling and U = 4t with open boundary conditions are
presented in Figure 6.3 and Table 6.2 while the independent, overlapping line correlators
used in this study are depicted in Figure 6.1. For a CPS wavefunction of three-site
overlapping correlators and a fixed, non-interacting reference, the SGD approach finds
a variationally lower result than previously published for an identical wavefunction
parameterisation via Linear Method optimisation[352]. This might be due to the
bias arising from the non-linear operations (diagonalisation) of random variables
present in these alternate algorithms[248, 350]. Furthermore, this system is used to
investigate how increasing the size of the correlators (three-site (Ĉ3), five-site (Ĉ5) and
seven-site (Ĉ7) line correlators) in order to directly capture longer-ranged many-body
correlations, as well as optimising spin-polarised (ΦUHF) or non-collinear (ΦGHF) Slater
determinants rather than a paramagnetic orbital component (ΦRHF) affects the quality
of the wavefunction. The increased flexibility of this democratic wavefunction gives rise
to systematic convergence towards DMRG with very small error bars, despite requiring
over quarter of a million variables. In particular, the total number of simultaneously
optimised parameters in ΨCPS ranges from 1, 280 (three-site line correlators with
fixed RHF Slater determinant) to 263, 112 (seven-site line correlators with optimised
non-collinear Slater determinant). Examining the convergence towards the DMRG
limit more closely reveals two factors: Firstly, with increasing correlator size more of
the longer-ranged many-body correlations are described directly which, as expected,
increases the accuracy of the CPS wavefunction. Yet, once the correlators span a
number of lattice sites that is comparable to the correlation length of the system the
gain in accuracy resulting from a further enlargement of the correlators in relation to
the associated increase in computational expenditure decreases and convergence to the
exact DMRG limit becomes successively more expensive as the latter is approached.
Similarly, augmenting the variational flexibility of the reference Slater determinant
leads to a smaller rise in accuracy of ΨCPS with increasing correlator size, as more of
the longer-ranged correlations can now be described directly by the correlators and
need not be accounted for by the reference state.

In addition, the two-body density matrices are sampled from the converged wave-
functions and a range of wavefunctions properties are evaluated from the former. These
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Fig. 6.3 Convergence of energy of CPS wavefunctions with increased flexibility for the 1D 1× 22
Hubbard model at half-filling with U = 4t. The CPS energy converges towards the DMRG energy
is the number of parameters and thus the flexibility in the wavefunction is increased. VMC Linear
Method and DMRG energies are taken from Ref. [352].
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properties include the RDM energy

ERDM = Tr[ΓĤ] =
∑
pq

hpqγpq +
∑

p>q,r>s

(gpqrs − gpqsr)Γpq,rs + Enuc, (6.19)

(with hpq, gpqrs and Enuc as defined in Section 2.2.2 of Chapter 2), to demonstrate that
this estimator sampled from two replicas is in agreement with the energy estimated
during convergence which is sampled from just one replica. Likewise, the total squared
magnitude of the spin, Ŝ2 = Ŝ · Ŝ, is computed[37, 57]

S2 = S(S + 1) = Tr[ΓŜ2] (6.20)

= 1
4
∑
P Q

[ΓP αQα,P αQα + ΓP βQβ,P βQβ]− 1
4
∑
P Q

ΓP αQβ,P αQβ (6.21)

− 1
4
∑
P Q

ΓP βQα,P βQα −
∑
P Q

ΓP αQβ,QαP β + 3
4Nα + 3

4Nβ, (6.22)

where Pα refers to the α spin orbital with spatial index P . The value of S2 can also
be taken as a measure for the accuracy of the wavefunction given that the exact
wavefunction has S2 = 0. Moreover, further properties are evaluated such as the double
occupancy, D̂ = 1

Nlat

∑
I nI↑nI↓ = 1

Nlat

∑
I a
†
I↑a
†
I↓aI↓aI↑,

D = Tr[ΓD̂] = 1
Nlat

∑
I

ΓI↑I↓,I↑I↓, (6.23)

where the sum over I includes all Nlat lattice sites, as well as the correlation entropy
per electron

SCE = −Tr[γ ln γ] = − 1
N

∑
p

γp
p ln γp

p , (6.24)

with γp
p being the occupation numbers of the one-body RDM γ that is integrated out

from the 2-RDM. A last quantity which is evaluated from the density matrix is the
anti-ferromagnetic order parameter, the staggered magnetisation, which is defined
according to

M2 = 1
N2

lat

∑
IJ

(−1)(xI+yI)+(xJ +yI) ⟨Ψ|ŜI · ŜJ |Ψ⟩ , (6.25)

where the summations over I and J run over all Nlat lattice sites and xI and yI represent
the x- and y-coordinate of the position of the lattice site I. The total spin operator
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Ŝ = Ŝx + Ŝy + Ŝz comprises three Cartesian components which are given by

Ŝx = 1
2
∑
P

(a†P αaP β + a†P βaP α) (6.26)

Ŝy = 1
2i
∑
P

(a†P αaP β − a†P βaP α) (6.27)

Ŝz = 1
2
∑
P

(a†P αaP α + a†P βaP β) (6.28)

with Ŝz = 1
2(Nα −Nβ) = Mz.

The results for the properties evaluated from the sampled two-body density matrix
of the differently parameterised wavefunctions are presented in Table 6.2. Firstly, a
good agreement within error bars is observed between the RDM energy ERDM sampled
with one replica during the convergence of the wavefunction and ERDM evaluated from
the density matrix sampled with two replicas. This agreement demonstrates that a
bias which can potentially arise when ERDM is sampled from just one replica cannot
be observed, seems to be negligible, or at least, smaller than stochastic errors and does
not cause any issues. Secondly, the increased accuracy of ΨCPS with successively larger
correlators becomes apparent in the values of S2 which for any given reference state
converge towards the correct value S2 = 0 of the exact wavefunction with increasing
correlator size. However, for any given correlator size, whilst increasing the flexibility
of the reference state lowers and improves the CPS energy, the accuracy of ΨCPS does
not necessarily improves in the same manner. This becomes obvious when considering
the S2 values of different reference states for a fixed correlator size which shows the rise
in spin contamination in ΨCPS as the number of simultaneously optimised variables in
the reference state is raised when going from ΦRHF to ΦGHF.
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6.5 Linear H50 Chain

Ab-initio systems can also be treated in the same vein by stochastically sampling
from both the configuration space of the wavefunction and from its O[N4] connected
configurations in Eq. 5.12, which are now far larger than found in the Hubbard model
due to long-range interactions. As an example, the symmetric dissociation of H50 (in
a STO-6G minimal basis[371]) is considered which represents a molecular model for
strongly-correlated systems and a non-trivial benchmark system[372] at the same time.
This system has been treated not only with conventional quantum chemistry methods
such as Coupled Cluster (CC) but also with strongly-correlated approaches including
DMFT and other embedding methods[373, 307, 374–376], due to the availability of
numerically exact DMRG values for comparison[372]. Whilst CC methods encounter
convergence difficulties at stretched bond-lengths beyond 2.0a0, a well known and
documented fundamental problem in CC theory[372], strongly-correlated approaches
can treat all bond lengths. The CPS wavefunction is parameterised with 5-atom
overlapping correlators, and both a fixed unpolarised, or stochastically optimised
unrestricted reference determinant, leading to a total of 47, 104 or 49, 604 simultaneously
optimised variables. The results obtained with this ΨCPS are comparable or in some
cases even better in their accuracy and closeness to DMRG results than approaches
designed to treat strongly-correlated electrons as can be seen in the comparison in
Table 6.3. At stretched bond lengths, nearly all of the DMRG correlation energy is
captured (99.7%), as the correlation length spans few atoms, and on-site repulsion
dominates (Figure 6.4). However, as the bond length decreases, a successively smaller
percentage of the DMRG correlation energy is captured, as the entanglement of the
electrons span larger numbers of atoms, which can also be seen in the larger bond
dimension required of DMRG at these geometries[372]. Despite this, the correlation
energy is so small at these lengths, that the maximum error in the total energy is only
1.1 kcal/mol per atom across all bond lengths.
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Fig. 6.4 The percentage of DMRG correlation energy captured by the CPS wavefunction for the
symmetric dissociation of a linear chain of 50 H atoms in a STO-6G basis. The CPS wavefunction is
parameterised with 5-atom overlapping correlators, and both a fixed unpolarised, or stochastically
optimised unrestricted reference determinant. Numerically exact DMRG, as well as high-level
correlated quantum chemical methods of Møller-Plesset perturbation theory (MP2), coupled-cluster
up to double excitations (CCSD) and with perturbative triple excitations (CCSD(T)) are also included
with values taken from Ref. [372]. The largest deviation in the total energy compared to DMRG
across all bond lengths is 1.1kcal/mol per atom.

6.6 Graphene Sheet

Fully periodic localised orbitals can also be used to construct a Fock space in which to
form a CPS wavefunction, and here an infinitely periodic graphene sheet with 4× 4
k-point sampling[377] is considered. From a double-zeta periodic Gaussian basis one
localised, translationally invariant 2pz orbital centred on each carbon atom is chosen.
Overlapping correlators consisting of the atoms on each hexagonal six-membered ring
can then be constructed (Figure 6.5), and the full Hamiltonian projected into this
low-energy space, including a potential from the core electrons at the Hartree-Fock
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level[255]. A generalised reference determinant is then stochastically optimised along
with the correlators, giving a wavefunction parameterisation of 67, 584 parameters
– the largest, or at least one of the largest numbers of non-linear parameters for an
ab-initio system to date. This is equivalent to a quantum chemical calculation of a
complete active space of 32 orbitals, which is beyond that which could be treated
by conventional techniques. This spans the dominant strong correlation effects, but
precludes high-energy many-body dynamic correlation and screening.

Fig. 6.5 Illustration of correlators and CPS wavefunction for graphene sheet used for both the
S = 0 ground state and the S = 1 excited state[299]. This CPS wavefunction is parameterised with
overlapping correlators covering hexagonal six-membered rings and a generalised Slater determinant
as reference state.

This graphene sheet serves as an example that not only ground states but also
excited states are accessible with this SGD approach. By restricting the spin quantum
number S the first excited state with S = 1 becomes accessible and the spin gap, the
difference in energy between the S = 0 and the S = 1 state, can be computed. For
the CPS wavefunction the spin gap evaluates to 0.18147± 0.00012Eh, which is slightly
smaller than at the Hartree-Fock level of theory 0.182661Eh. Thus, correlation effects
stabilise the S = 1 state to a slightly larger extend than the S = 0 ground state. Table
6.4 summarises all evaluated properties of the wavefunctions of both states which are
defined as above, apart from the staggered magnetisation, which for a hexagonal lattice
is defined according to

M2 = 1
N2

lat

∑
IJ

(−1)nI (−1)nJ ⟨Ψ|ŜI · ŜJ |Ψ⟩ , (6.29)
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where the sign factor (−1)nI assumes a value of −1 (nI = 1) if the lattice site I belongs
to sublattice A and 1 (nI = 2) if it belongs to sublattice B.

Total Energies
S state ERHF/UHF ECPS ERDM
S = 0 −104.211436 −104.48575(12) −104.485398
S = 1 −104.028775 −104.304276(15) −104.304271

ES=1 − ES=0 0.182661 0.18147(12) 0.181127

RDM Properties
S state ERDM S2 M2 D SCE
S = 0 −104.485398 0.013560 0.033896 0.206018 3.261103
S = 1 −104.304271 2.024314 0.032950 0.200342 3.424658

Table 6.4 4× 4 graphene sheet: Total energies of the S = 0 and S = 1 states were obtained with
Hartree-Fock theory ERHF/UHF (RHF for S = 0 and UHF for S = 1 state). ECPS represents to
total energies of the states described by a CPS wavefunction with overlapping, six-membered ring
correlators and a generalised reference determinant optimised with the Projector Quantum Monte
Carlo method for non-linear wavefunctions. The spin gap ES=1 − ES=0 is thus evaluated at different
levels of theory. All energies are given in Eh. Quantities evaluated from the sampled RDM for
|ΨCPS⟩ for both states include total energy obtained from RDM ERDM, square magnitude of spin S2,
staggered magnetisation M2, double occupancy D and entanglement entropy SCE. All quantities
are given in atomic units. Stochastic errors in the previous digits are presented in parentheses and
were estimated with a Flyvbjerg-Petersen blocking analysis[268]. An estimate of the stochastic error
associated with RDM properties is more difficult to obtain, but an idea can be gained by considering
the difference between the theoretical and calculated value of S2, as well as the maximum absolute
error in Hermiticity and the sum of all absolute errors in Hermiticity, which are typically ∼ 0.0007
and ∼ 40.0, respectively, in these calculations.

Furthermore, from the two-body sampled density matrix, the spin correlation
function

⟨Ψ|ŜI · ŜJ |Ψ⟩ , (6.30)

can be evaluated to analyse the extent to which spin fluctuations among the π/π∗-
bands around the Fermi level affect the magnetic order of the system. The spin
correlation functions are constructed from two-point functions, rather than from
symmetry-breaking in the wavefunction, and show a rapid decay of anti-ferromagnetic
correlations which only substantially affect nearest neighbours as shown in Figure 6.6.
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Fig. 6.6 Spin correlation functions for ⟨Ψ|ŜI · ŜJ |Ψ⟩ for graphene sheet for the S = 0 ground state
(top) and the S = 1 excited state (bottom)[299]. The spin correlations are obtained from two-body
reduced density matrices which are samples from the converged CPS wavefunctions.
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6.7 Conclusions

The applications presented in this chapter demonstrate the capability of this stochastic
accelerated projector approach to handle and optimise arbitrary non-linear wavefunc-
tions of quantum many-body systems. The large numbers of simultaneously optimised
parameters in the wavefunctions greatly exceeds those accessible to alternative formu-
lations of Variational Quantum Monte Carlo optimisations. Systematically improvable
Fock-space wavefunctions have thus been found for both lattice Hubbard models and
ab-initio systems, as well as one- and two-body static properties of these wavefunctions.
At the same time, the proposed Projector Quantum Monte Carlo method for non-linear
wavefunction ansatzes blurrs the line between traditional Variational and Projector
Quantum Monte Carlo approaches.





Chapter 7

Projector Quantum Monte Carlo
Method for Tensor Network States

Many natural quantum many-body states live on a tiny submanifold of the exponentially
large Hilbert space. This ‘natural corner of the Hilbert space’ derives from the locality
of interactions, implying that these physical states obey area laws for entanglement (or
show only small violations thereof)[132, 55, 53, 54] (as detailed in Chapter 2). Progress
in quantum information theory has lead to a better understanding of entanglement in
quantum many-body states and enabled the formulation of efficient parameterisations
which directly target this relevant subspace of the Hilbert space: Tensor Network States
(TNS). By efficiently describing the structure of quantum correlations and capturing the
entanglement in low-energy states of a system, they satisfy area laws by construction
and are thus able to approximate physical states to a high level of accuracy with a
number of parameters that grows only polynomial with system size whilst still retaining
systematic improvability towards exactness[55, 53, 54]. Amongst the large variety
of tensor networks Matrix Product States (MPS)[170], the underlying variational
ansatz of the DMRG approach, have been extremely successful in one-dimensional
systems[136, 148]. However, the extension of their success to higher dimensions has
proved more difficult due to their one-dimensional encoding of correlations. In recent
years, Projected Entangled Pair States (PEPS)[53, 55, 54, 142, 155], the natural
generalisation of MPS to higher dimension, have emerged as a potential promising
alternative. This has been demonstrated by accurate results obtained for many
quantum systems including the t− J [378], the Hubbard model[189] and frustrated spin
systems[379].

However, in contrast to MPS, contraction of a PEPS network, as it is necessary
for the extraction of information from a state vector, is a computationally hard
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problem in the complexity class ♯P [160] and approximate contraction schemes need
to be resorted to. Despite these developments, PEPS are still much harder to handle
computationally than their one-dimensional analogues due to the increased exponent
in their polynomial scaling with system size[55, 53, 54]. Even more so, an efficient
optimisation of the variational parameters in a PEPS which give the best approximation
to ground states has remained profoundly more challenging than for MPS. Since this
involves a highly non-linear minimisation of the energy expectation value, state-of-the-
art PEPS optimisations employ imaginary time evolution which projects an initial
trial state onto the ground state |ψ0⟩ = limτ→∞ e

−τĤ |ψ⟩[158, 161, 179]. The limit
τ → ∞ is approached with a Trotter-Suzuki decomposition by applying sufficiently
small time steps. To arrive at an efficient algorithm with tractable cost, the PEPS
bond dimensions have to be truncated in an approximate way after each time step.
This truncation can be realised with a range of differing techniques each of which
provides a different compromise between accuracy and computational cost such as the
full[158, 179], the variational[55] or the simple[161] update scheme. Whilst the full
update approach which takes into account the complete environment as provided by the
full PEPS wavefunction represents the most accurate procedure, even though it is not
guaranteed to result in the globally optimal truncation, it is also the computationally
most expensive one[158, 179]. In contrast, the simple update scheme sacrifices part
of this accuracy by using simple approximations to the environment which can be
evaluated at a much reduced computational cost[161]. Yet, at both ends of the scale
the optimisation can become inefficient: whereas the computational cost of the full
update scheme is often too demanding, the approximate local environment of the
simple update is often a crude oversimplification of the quantum correlations. Because
of these difficulties it is unclear whether these state-of-the-art approaches succeed
in obtaining the optimal state of a given variational PEPS parameterisation which
has also sparked the proposal of alternative optimisation approaches based on the
variational principle[380] or gradient methods[381].

As an alternative to circumvent the challenges described above, this chapter proposes
an optimisation of TNS with the Projector Quantum Monte Carlo method for non-linear
wavefunctions described in Chapter 5. Being formulated in a very general manner, this
approach is applicable to any arbitrary wavefunction ansatz for which the gradient of
the energy functional with respect to the wavefunction parameters exists. For practical
implementations, it is also vital that projections of the wavefunction parameterisations
onto configurations in the Hilbert space, as well as projections of the respective energy
derivatives onto the same configurations, are efficiently computable. For this reason
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a novel approach for evaluating tensor network contractions stochastically is also
developed in this chapter which in combination with the Projector Quantum Monte
Carlo method enables the efficient optimisation of tensor network state wavefunctions.
It is worth noting that the considerations outlined in this chapter are in principle also
applicable to many of the existing TNS categories and appropriate equations can be
straightforwardly derived. However, the main focus of this chapter are PEPS and MPS,
and for brevity and clarity any equations are formulated in terms of PEPS and MPS
wavefunctions only.

7.1 The Computational Challenge of PEPS Wave-
functions - Can It Be Tackled Stochastically ?

Before detailing the rigorous mathematical foundations of the tensor notwork state
optimisation developed in this chapter, it is worth giving a more intuitive and broad
picture of the challenge encountered in dealing with PEPS wavefunctions and the
proposed approach to tackle it by returning to the graphical description of a PEPS
wavefunction introduced in Chapter 2 (Figure 7.1). Optimisations, or even just the
extraction of information, from a PEPS state require contraction of the tensor network
which can conceptually be split in two nested contractions: firstly, a contraction of the
physical indices (represented by the red filled circles in the graphical depiction) and
secondly, a contraction of the auxiliary indices (embodied by the blue circles and lines
in the graph). Exact evaluation of these contractions is prohibitively expensive for
PEPS wavefunctions and state-of-the-art PEPS calculations therefore perform these
contractions deterministically, but in an approximate manner. This chapter proposes
an alternative approach which instead of deterministically contracting the network,
samples the contraction. This stochastic network contraction will also be coupled to
a stochastic optimisation of the variational parameters in the PEPS state using the
Projector Quantum Monte Carlo method for non-linear wavefunctions which has been
outlined in Chapter 5. Essentially, this results in two nested stochastic processes: The
outer stochastic process realises the contraction of physical indices with a Metropolis
Markov chain just in the same way as it is outlined in Chapter 5 and used in the
applications of Chapter 6. Within this, the inner stochastic process evaluates the
contraction over auxiliary indices to obtain stochastic estimates for the projections of
wavefunction amplitudes and derivatives onto configurations in the full Hilbert space
which are required within the Markov chain sampling of the outer sampling procedure
for physical indices. In order to aid the stochastic contraction and avoid it suffering
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from the negative sign problem, the tensor elements are constrained to be positive.
Additional multiplication by a reference state such as a Slater determinant or a general
pairing function introduces a nodal structure in the PEPS wavefunction. Simultaneous
optimisation of the variational parameters in this state means that the optimal nodal
structure available within the functional form of the reference state is obtained.

Fig. 7.1 Illustration of a PEPS network. As detailed in Chapter 2, each lattice site is associated with
four virtual subsystems (blue filled circles). Each such virtual subsystem is placed in a maximally
entangled product state, |ωs,s+x⟩ and |ωs,s+y⟩, (blue lines) with the corresponding virtual subsystem
of the adjacent lattice site. At each lattice site s, linear maps Ps are applied which project from
the local Hilbert space of the four virtual subsystems to the Hilbert space of the physical lattice
site s (red filled circles). Conceptually, contraction of the PEPS network can be split in two nested
contractions: a contraction of the physical indices represented by the red filled circles (sums over ns)
and a contraction of the auxiliary indices represented by the blue filled circles and lines (sums over D).

7.2 The PEPS and MPS Wavefunction Ansatz

The rigorous mathematical formulation of the PEPS wavefunction in Figure 7.1 has
been derived and explained in detail in Chapter 2. Thus, for a lattice with M

2 sites
each of which comprises a local Hilbert space of dimension Cd, a general PEPS state
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vector in the full Hilbert space H = (Cd)⊗
M
2 can be written as[55, 53, 54]

|ΨPEPS⟩ =


M
2⊗

s=1
Ps




M
2⊗

s=1

p−1⊗
i=1
|ωs,i⟩


 (7.1)

=
∑

n1n2...n M
2

F(A[1]
n1A

[2]
n2 . . . A

[ M
2 ]

n M
2

) |n1n2 . . . nM
2
⟩ , (7.2)

where A[s]
ns

denotes the rank-p tensor at lattice site s whose local configuration is ns.
The rank p of the tensor is usually equal to the number of nearest-neighbours of the
lattice site s and the function F(. . .) represents the contractions of tensors A[s]

ns
whose

explicit form depends on the rank p of the tensors, as well as the dimension and shape
of the lattice. As explained in Chapter 2, for one dimensional systems, this formulation
recovers an MPS

|ΨMPS⟩ =


M
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M
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 (7.3)

=
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2
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This well known and widely used ansatz is slightly extended in order to aid the
stochastic evaluation of the tensor network contraction. Hence, the fully generalised
wavefunction parameterisation can be expressed as

|ΨPEPS⟩ =




M
2⊗

s=1
Ps




M
2⊗

s=1

p−1⊗
i=1
|ωs,i⟩



 |Φ⟩ (7.5)

=
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n2) . . . f(A[ M
2 ]

n M
2

)) |n1n2 . . . nM
2
⟩ ⟨n1n2 . . . nM

2
|Φ⟩ ,

(7.6)

where the PEPS is multiplied by a reference state |Φ⟩. Similar to the CPS wavefunction
parameterisation in Chapter 6, the uniform reference |ΦU⟩, a Slater determinant |ΦD⟩,
an AGP |ΦAGP⟩ or a general pairing wavefunction |ΦPF⟩ can act as reference state.
Their contributions to wavefunction amplitudes are all given in Section 6.2 of the
previous chapter. Moreover, f(. . .) represents a function of the tensor elements, such
as f(x) = x2, f(x) = |x|, f(x) = ex etc. These two extensions of the wavefunction
ansatz are introduced in order to prevent the sampling approach for the tensor network
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contraction from suffering from the negative sign problem. Whereas the functions f(. . .)
serve the purpose of constraining the tensor elements to be positive, the reference state
|Φ⟩ reintroduces a nodal structure into |ΨPEPS⟩. In the limit of a uniform reference |ΦU⟩
as reference state and the function f(x) = x, the original wavefunction ansatz of Eq.7.1
is recovered. By analogy, for one-dimensional systems the generalised wavefunction
ansatz based on MPS can be written as

|ΨMPS⟩ =




M
2⊗

s=1
Ps




M
2⊗

s=1
|ωs,s+1⟩


 |Φ⟩ , (7.7)

=
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2
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2
|Φ⟩ . (7.8)

7.3 Wavefunction Amplitudes and Derivatives

Hence, projecting the |ΨPEPS⟩ of Eq. 7.5 into the full Hilbert space of configurations
{|n⟩} =

{
|n1n2 . . . nM

2
⟩
}

, the wavefunction amplitudes are given by

⟨n|ΨPEPS⟩ = ⟨n|F(f(A[1]
n1)f(A[2]

n2) . . . f(A[ M
2 ]

n M
2

))|n⟩ ⟨n|Φ⟩ . (7.9)

For an MPS, the function F representing the contraction over auxiliary indices involves
rank-2 tensors of dimensions Dα, Dβ, . . . such that

⟨n|ΨMPS,obc⟩ = ⟨n|
DαDβ ...Dλ∑

αβ...λ=1
f(A[1]

n1;α)f(A[2]
n2;αβ) . . . f(A[ M

2 ]
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2
;λ)|n⟩ ⟨n|Φ⟩ (7.10)

⟨n|ΨMPS,pbc⟩ = ⟨n|
DαDβDγ ...Dω∑

αβγ...ω=1
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2
;λω)|n⟩ ⟨n|Φ⟩ , (7.11)

for open and periodic boundary conditions, respectively. By analogy, for a PEPS on a
2D square lattice, the wavefunction amplitudes can be written as contraction of rank-4
tensors of dimensions Dα, Dβ, . . .

⟨n|ΨPEPS⟩ = ⟨n|
DαDβDγDδ...Dω∑

αβγδ...ω=1
f(A[1]

n1;αβγω)f(A[2]
n2;δαλη) . . . f(A[ M

2 ]
n M

2
;χζων)|n⟩ ⟨n|Φ⟩ .

(7.12)



7.4 A Sampling Approach for Wavefunction Amplitudes and Derivatives 155

From these, the appropriate derivatives of the wavefunction amplitudes with respect
to a particular element of a tensor such as A[2]

n2;ij can be evaluated as

⟨n|∂ΨMPS,obc
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(7.14)

in the case of open and periodic boundary MPS. Likewise, the derivative of a PEPS
projection with respect to a particular tensor element A[2]

n2;ijkl can be formulated as

⟨n| ∂ΨPEPS

∂A
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n2;ijkl
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(7.16)

Similar expressions for wavefunction amplitudes and derivatives of PEPS states living
on lattices with other geometries, shapes and dimensionalities can be straightforwardly
derived. Furthermore, appropriate derivatives with respect to the parameters of the
reference state |Φ⟩ are given by the expressions in Section 6.2 of Chapter 6.

In the case of MPS, the contractions involved in the projections amount to a series of
simple matrix-vector (open boundary conditions) or matrix-matrix (periodic boundary
conditions) multiplications which can be computed efficiently. On the contrary, PEPS
contraction involves rank-4 tensors whose exact contraction is prohibitively expensive.
State-of-the-art PEPS simulations therefore rely on approximate contraction schemes.
Yet, these still incur a much worse scaling with bond dimension D than their exact
MPS counterparts.

7.4 A Sampling Approach for Wavefunction Am-
plitudes and Derivatives

Similar to the Projector Quantum Monte Carlo method proposed in this thesis, previous
approaches have also combined PEPS contraction and Monte Carlo sampling[382–384]
by replacing sums over physical indices which arise during the evaluation of expectation



156 Projector Quantum Monte Carlo Method for Tensor Network States

values by random samples. These techniques have allowed for the use of larger values of
D with the same computational resources[383, 382, 384]. Still, since even approximate
contraction schemes for PEPS projections ⟨n|ΨPEPS⟩ incur significant computational
expenditures, a new approach is proposed in this section which employs Monte Carlo
sampling for the contraction of auxiliary indices. Thus, in addition to sampling of the
physical indices and nested within this first sampling process, the explicit sums over
all Nauxinds auxiliary indices α, β, . . . in the PEPS projections

⟨n|ΨPEPS⟩ = Sn ⟨n|Φ⟩ (7.17)
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(7.20)

are also evaluated stochastically by drawing a few randomly sampled terms. For
a practical implementation of this sampling approach, all terms arising in the sum
need to be positive as otherwise the sampling approach is prone to suffer from the
negative sign problem. This restriction can be straightforwardly imposed with the
help of the functions f(. . .), such as f(x) = ex, f(x) = x2, f(x) = |x|, . . ., which have
been introduced for this sole purpose of restraining the individual tensor elements to
be positive. |ΨPEPS⟩ then retains a sign structure by multiplication by the reference
state |Φ⟩ which, likewise, has been included solely for this purpose of providing the
nodal structure of the wavefunction. Similar to the CPS wavefunction optimisation
in Chapter 6, the reference state is optimised simultaneously such that the optimal
nodal structure available within its functional constraint is obtained at convergence.
For brevity and clarity, any equations below are given for PEPS on a 2D square lattice,
but similar expressions can be derived for PEPS in other dimensions and lattice shapes
with a different contraction function F such as MPS.

Instead of explicitly enumerating all terms appearing in the sum Sn, a number
of NTNS,samples terms are randomly chosen instead. Each single product term of this
sampling process is picked by randomly selecting a particular value for each of the
Nauxinds auxiliary indices and unbiasing for the probability of the occurrence of this
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event
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where a term Tαβ...ω(z) and its respective probability Pαβ...ω(z) are given by

Tαβ...ω(z) = f(A[1]
n1;abco)f(A[2]
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2 ]
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Pαβ...ω(z) = pn1n2
α (a)pn1n3

β (b) . . . pn1nM/2
ω (o). (7.25)

In this notation, Greek letters α, β, γ, . . . refer to auxiliary indices and Roman letters
a, b, c, . . . to the particular values which are chosen for each auxiliary index, that is
a denotes the particular value which has been picked for the auxiliary index α. All
these picked values for the auxiliary indices are then collectively combined into one
single index z. pn1n2

α (a) represents the normalised probability distribution from which
the value a is sampled for auxiliary index α which connects lattice sites 1 and 2 with
occupations n1 and n2 in their local Hilbert spaces of size d. There exists a relatively
large freedom in the choice for pn1n2

α (a) provided that it satisfies the necessary constraint
that there remains a finite probability of picking each non-zero tensor element. The
functional form for these probability distributions is thus chosen such that it enables
preferential selection of the most dominant terms whilst still being efficiently calculable.
A good comprise was found to be

pn1n2
α (a) = 1

Nnorm

∑
βγω

f(A[1]
n1;aβγω)

×
∑

δλη

f(A[2]
n2;δaλη)

 , (7.26)

where Nnorm is a normalisation constant.
Similar to the wavefunction amplitudes, the derivative of a PEPS projection with

respect to a particular rank-4 tensor A[2]
n2 is also sampled by stochastically choosing

NTNS,samples terms in the manner described above and accumulating them in the
appropriate elements of the rank-4 tensor S ′

n;n2 holding all derivatives with respect to
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In the algorithm, the distributions pn1n2
α are all computed at the beginning of each

iteration with O[d2NauxindsD] operations such that they follow the changes in tensor
elements. Following this, sampling from these distributions can be efficiently realised
in O[1] time with the Alias method and the computation of one TNS projection onto a
Hilbert space configuration, as well as the evaluation of its derivatives with respect to
a single tensor, therefore requires O[NTNS,samplesNauxinds] operations.

7.5 Investigation of TNS Projection Sampling Ap-
proach

Prior to optimisations of arbitrary TNS wavefunctions with the proposed Projector
Quantum Monte Carlo approach in combination with the previously outlined sampling
approach for the TNS projections, an investigation of the convergence behaviour of
the TNS projection sampling approach is necessary to demonstrate that the latter is
able to yield faithful and accurate stochastic estimates of the gradient and energy at a
tractable computational cost. MPS naturally lend themselves for such a rigorous study
as their exact contraction can be evaluated efficiently, thereby granting access to exact
benchmark results. For this purpose, a 1D 1×8 Hubbard model at half-filling and U

t
= 2

and U
t

= 8 with open boundary conditions is considered which represents a non-trivial
benchmark system that is still small enough to allow for deterministic evaluation of the
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energy, as well as for a deterministic gradient descent optimisation of the wavefunction.
The investigated MPS wavefunctions are parameterised with a general pairing function
as reference state and rank-3 tensors (rank-2 at the boundaries) (one physical and
two (one at the boundaries) auxiliary indices) with a bond dimension of D = 10.
Evaluation of the TNS projections onto configurations therefore requires contractions
over auxiliary indices whose exact computation involves Nterms = 10, 000, 000. In the
following, energies are evaluated for MPS wavefunctions with a fixed set of parameters
which have either been chosen randomly or obtained by a deterministic optimisation and
the convergence of the stochastic estimates with respect towards the number of samples
for the auxiliary, Naux, and physical, Nphys, indices towards the true deterministic
values are studied.

Hence, in a first instance, the convergence of the energy estimate with respect to
the amount of sampling for auxiliary indices only is investigated. While the TNS
projections onto configurations are sampled, the contraction of the physical indices is
realised deterministically as represented by the full sum over all configurations {n,m}
in the Hilbert space

ETNS =
∑

mn ⟨ΨTNS|m⟩Hmn ⟨n|ΨTNS⟩∑
n ⟨ΨTNS|n⟩ ⟨n|ΨTNS⟩

=
∑

mn Sm ⟨Φ|m⟩Hmn ⟨n|Φ⟩Sn∑
n Sn ⟨Φ|n⟩ ⟨n|Φ⟩Sn

. (7.31)

It should be stressed that for each single occurrence of a particular configuration
appearing in the sums over n and m a separate and independent stochastic estimate of
the TNS projection Sn/m is sampled. In particular, this includes diagonal terms of the
form Sn ⟨Φ|n⟩Hnn ⟨n|Φ⟩Sn and Sn ⟨Φ|n⟩ ⟨n|Φ⟩Sn where two independent estimates of
Sn are calculated, one for the bra and one for the ket state. This repeated independent
estimation of the sampled quantities Sn is vital to ensure that no bias arising from
a repeated use of the same stochastic estimate with the same associated error is
introduced in the stochastic energy estimate. Unfortunately, the normalisation in
the energy estimate in Eq. 7.31 can introduce a potential unavoidable bias since
the (∑n Sn ⟨Φ|n⟩ ⟨n|Φ⟩Sn)−1 factor represents a non-linear function of the sampled
quantities Sn.

The convergences in Figure 7.2 illustrate that already at a moderate number of
samples for the auxiliary indices (Naux ≈ 100), which represents a tiny fraction of the
total number of terms in the contraction sum ( Naux

Nterms
≈ 1 × 10−6), the errors in the

energy estimates is less than one percent in almost all cases. As expected, increasing
Naux results in a general trend towards the deterministic value and agreement within
error bars in most cases. This behaviour is more pronounced for wavefunctions with
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Fig. 7.2 Convergence of stochastic energy estimates with the number of samples. The considered
system is a 1D 1× 8 Hubbard model at half-filling with open boundary conditions and U

t = 2 (left
column) and U

t = 8 (right column). The wavefunction is parameterised with a general pairing function
as reference state and a matrix product state with bond dimension D = 10. Whilst the first and
third row consider a wavefunction with random parameter values, the second and last row treat a
wavefunction with optimal parameters which have been obtained with a completely deterministic
optimisation. The top four graphs display the convergences of the stochastic energy estimate with
the number of samples for the auxiliary indices Naux while the sum over physical indices is evaluated
deterministically (Eq. 7.31). The four graphs on the bottom show the convergence of the stochastic
energy estimate in Eq. 7.34 with the number of samples for the physical indices for Naux = 100. All
eight graphs compare the convergence behaviour for different functional forms of f(x).
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optimal parameters where the error in the estimate tends to be larger than for random
values. Moreover, for optimal wavefunction parameters a tendency of the energy
estimates to converge from below onto the exact energy is observed. This is most
likely an appearance of the potential bias introduced by the division of the sampled
normalisation. At the same time, convergences for the three functional forms f(x) = ex,
f(x) = x2 and f(x) = |x| as possible choices for the restriction function f(. . .) are
compared. These clearly demonstrate that the most efficient function is f(x) = |x|
given that for the same number of samples the error is typically smaller, even by an
order of magnitude in the case of optimal wavefunction parameters.

Moreover, the convergence of the stochastic energy estimates towards its determinis-
tic analogue is investigated when in addition to the contraction of auxiliary indices the
contraction of physical indices is also sampled using the techniques outlined in Section
5.3 and 5.7 of Chapter 5. Thus, the energy is estimated with two nested stochastic
processes whereby the outer sampling procedure involves a Metropolis Markov chain
comprising Nphys samples of n. Each sampled configuration n contributes a small
sampled selection of Ns off-diagonal terms with m ̸= n,

ETNS,off−diag =
〈
⟨Ψ(k)|m⟩Hmn ⟨n|Ψ(k)⟩

NsPgen(m|n; Ĥ)P (n; Ψ(k))

〉
P (n;Ψ(k))

(7.32)

where the outer brackets imply that the sampling of n is performed according to the
distribution given in Eq.5.13, as well as a diagonal term m = n which is included
deterministically and contributes

ETNS,diag =
〈
⟨Ψ(k)|n⟩Hnn ⟨n|Ψ(k)⟩

P (n; Ψ(k))

〉
P (n;Ψ(k))

, (7.33)

to the complete estimate of the energy.

ETNS = ETNS,diag + ETNS,offdiag. (7.34)

Again, two independent estimates are sampled for the bra and the ket state to remove
as much of a potential bias as possible. Unfortunately, three potential sources for the
introduction of a bias in the estimate still remain in this sampling procedure. Firstly,
due to the choice of probability distribution in Eq.5.13 unbiasing by the probability
P (n; Ψ(k)) involves computation of 1

⟨n|Ψ(k)⟩ for the off-diagonal contributions which
can potentially introduce a bias given that 1

Sn
represents a non-linear function of

the sampled quantity Sn. However, since this bias is only present in the off-diagonal
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terms and the diagonal terms tend to dominate the estimate, this potential bias is
likely to be small. Secondly, within the Markov chain sampling process whenever a
move from the configuration ni to a new configuration is proposed and rejected, no
new estimate of the TNS projection Sni

is sampled but the old estimate is reused
instead. Many investigations were undertaken in order to arrive at an approach which
involves newly sampled independent estimates for each sampled n and proposed move
along the Markov chain. All of these were found to introduce too much stochastic
noise, leading to very unstable algorithms, and therefore do not provide a viable route
forward. Yet, provided that the acceptance rate of the Markov chain is high enough
all sampled configurations will be revisited, most likely several times, with different
independently sampled estimates which thus still allows for independent stochastic
estimates to represent the TNS projections for the same configuration, thereby helping
in mitigating this potential bias. Furthermore, another potential source for introduction
of a potential bias is the evaluation of the acceptance ratio ⟨n

′
i|Ψ

(k)⟩
⟨ni|Ψ(k)⟩ itself. Again, this

involves with its 1
Sni

component a non-linear function of the sampled quantity Sni

and can thus potentially lead to a bias in the decision whether to accept or reject the
proposed move which implies that the distribution which is actually sampled with the
Markov chain includes a non-linear bias. Similar challenges arising from the use of
stochastic estimates within a Metropolis Markov chain have also been observed in other
contexts[385]. It has been investigated whether one of the many proposed schemes
for evaluation of a (first-order) correction of the bias in the ratio estimator can aid
the situation and remove at least part of the bias. However, these were all found to
perform worse and the only viable approach to reduce this potential bias is the limit of
a sufficiently large number of samples. Fortunately, the potential biases in the ratios
represent O( 1

N
) biases where N denotes the number of samples[347]. This means that

they will asymptotically tend to zero as the limit of an infinite number of samples is
approached. In general, there are cases where a biased estimator may be preferred to
an unbiased estimator if the mean square error of the former is less than the variance
of the latter[386]. In these cases the (small) bias of the estimator is compensated by
the small mean square error such that the biased estimator still represents a more
efficient one. The sampling procedure described above seems to be such a situation
where in the limit of a sufficiently large number of samples the bias is controlled and
the reduced mean square error implies that the biased estimator is still more efficient
than its unbiased analogue.

Initially, the convergence behaviour of this stochastic estimate is also compared
for the three functional forms f(x) = ex, f(x) = x2 and f(x) = |x| as possible choices



7.5 Investigation of TNS Projection Sampling Approach 163

Fig. 7.3 Convergence of stochastic energy estimates with the number of samples for auxiliary and
physical indices. The considered system is a 1D 1×8 Hubbard model at half-filling with open boundary
conditions and U

t = 2 (left column) and U
t = 8 (right column). The wavefunction is parameterised

with a general pairing function as reference state and a matrix product state with bond dimension
D = 10. Whilst the first and third row consider a wavefunction with random parameter values, the
second and last row treat a wavefunction with optimal parameters which have been obtained with a
completely deterministic optimisation. All eight graphs consider the stochastic energy estimate in Eq.
7.34 which stochastically evaluates the sum over auxiliary indices with Naux random samples and the
sum over physical indices with Nphys samples.
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for f(. . .). As with the previous estimate, the functional form f(x) = |x| is again
found to be the most effective one with errors which are often smaller than for the
others, even by an order of magnitude in the case of optimal parameters (Figure 7.2).
For completeness, stochastic estimates for optimal wavefunction parameters are also
included in Figure 7.2 for the function f(x) = x which means that the tensor elements
can be of either sign. The observed errors, in particular the large errors in the estimate
of 7.34 which employs two nested stochastic processes, are a clear manifestation of the
negative sign problem and demonstrate the necessity to constrain the tensor elements
to be positive. Thus, all calculations considered in the following impose this constraint
with the function f(x) = |x|. As can be seen in the convergence profiles in Figure
7.3, the stochastic estimates converge towards the deterministic value with increasing
number of samples for Naux and Nphys until agreement within the estimated error bars
is reached in most cases. Even for the least amount of sampling the errors in the
estimates are smaller than five percent and relatively rapidly drop below one percent
already at small number of samples (Naux ≈ 100 and Nphys ≈ 2, 000). In general,
in order to achieve a given error in the energy estimates, increasing the number of
samples for the physical indices allows for the use of a smaller value for Naux and
vice versa. Good choices for Naux and Nphys therefore depend on each other. When
a wavefunction with random parameters is considered, the energy estimates in the
convergence profiles oscillate around their deterministic counterpart and the potential
biases mentioned above appear to be smaller than the stochastic noise associated
with the estimates. However, when a wavefunction with optimal parameter values is
considered, the stochastic estimates exhibit a tendency to converge from below onto
the exact energy. One explanation for this observation is that the above mentioned
biases become noticeable. In general, the acceptance ratio for optimal wavefunction
parameters is significantly smaller than for arbitrary values. As a consequence, the
configurations are most likely not revisited enough to reduce the bias arising from
repeated use of the same estimate of Sn along the Markov chain below stochastic
errors. Still, the stochastic estimates converge onto their deterministic analogue and in
the limit of a sufficient amount of sampling of Naux and Nphys the biases seem to be
controllable. It should be noted that even though many efforts are taken to remove
as much as possible of any potential biases in the estimates, non-linear biases still
remain which cannot be removed exactly. Even the individual tensor elements are
correlated, and therefore through the multiplication of several of them for a particular
TNS projection, a biased distribution for the TNS projection will result which might
also explain the tendency of the estimates to converge from below. Irrespective of



7.6 Applications for MPS and PEPS Wavefunctions 165

the detailed explanations for the obtained convergence behaviours, all observations
indicate that with increasing number of samples for the physical and auxiliary indices,
the stochastic estimates relatively rapidly converge towards the correct value such that
at relatively small number of samples for Naux and Nphys potential biases seem to be
controllable and stochastic estimates with small errors obtainable.

7.6 Applications for MPS and PEPS Wavefunctions

Fig. 7.4 The convergence of the ground state energy with number of iterations for the 1D 1× 10
Hubbard model at half-filling with periodic boundary conditions and U

t = 2 (left) or U
t = 8 (right).

The wavefunctions are parameterised with matrix product states of bond dimensions D = 4 in
combination with a general pairing function. DMRG values have been obtained with a bond dimension
of D = 1000 and are converged with respect to bond dimension. Whilst the optimisation with ‘exact
contraction’ evaluates the contraction of auxiliary indices deterministically and only samples the
contraction of physical indices, the optimisation with ‘sampled contraction’ samples the contraction of
auxiliary indices nested within the stochastic sampling of physical indices. These calculations illustrate
that with an appropriate amount of sampling wavefunction optimisations employing stochastic and
exact network contraction are able to result in wavefunctions which are very close in energy.

In a first series of applications, the ability of the sampling approach for the tensor
network contractions to optimise the wavefunction parameters within the framework of
the Projector Quantum Monte Carlo method proposed in this thesis is assessed with
applications to a range of 1D Hubbard models. With exact tensor network contractions
being tractable for the MPS wavefunctions |ΨMPS,pbc⟩ of these system, benchmark
results from optimisations employing exact network contractions are available which
allows for a rigorous assessment of the effects of the stochastic evaluation of the
tensor network contraction on the wavefunction optimisation. The considered 1D
1 × M

2 Hubbard models include chains with M
2 = 10, M

2 = 14 and M
2 = 22 lattice

sites, all at half-filling with periodic boundary conditions and U
t

= 2 or U
t

= 8. The
wavefunctions are parameterised with matrix product states of bond dimension D = 2
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and D = 4 comprising M
2 independent, simultaneously optimised rank-3 tensors which

are combined with a simultaneously optimised general pairing function as reference
state.

1× 10 Hubbard model
EDMRG ETNS(D = 2) PTNS ETNS(D = 4) PTNS

U
t

exact sampled exact sampled
2 −0.86384157 −0.86211(1) −0.86201(3) 99.8 −0.862221(8) −0.86230(1) 99.8
8 −0.33149967 −0.3243(2) −0.32214(7) 97.8 −0.32767(6) −0.3249(2) 98.8

1× 14 Hubbard model
EDMRG ETNS(D = 2) PTNS

U
t

exact sampled
2 −0.85388192 −0.851697(4) −0.85149(5) 99.7
8 −0.32950733 −0.32003(2) −0.32023(5) 97.1

1× 22 Hubbard model
EDMRG ETNS(D = 2) PTNS

U
t

exact sampled
2 −0.84790465 −0.842108(9) −0.841890(2) 99.3
8 −0.32832582 −0.31757(3) −0.31471(3) 96.7

Table 7.1 Ground state energies per site ETNS for 1D 1×10, 1×14 and 1×22 Hubbard model for MPS
wavefunctions parameterised according to Eq. 7.7 with bond dimensions of D = 2 and D = 4 whose
variational parameters have been obtained with the Projector Quantum Monte Carlo method whereby
the MPS contraction of auxiliary indices is either sampled (‘sampled’) or evaluated deterministically
(‘exact’). EDMRG denotes the DMRG energy for the system (D = 1000). PTNS = ETNS

EDMRG
(%)

represents the percentage of EDMRG captured by |ΨMPS,pbc⟩ where ETNS is estimated using exact
network contraction. Differences in the Projector Quantum Monte Carlo energies between optimisations
involving exact and stochastic contraction of the auxiliary indices tend to increase for larger system sizes
and bond dimensions and are most likely due to the non-linear biases of the sampling approaches which
cannot be remove. Furthermore, exact agreement with DMRG values is in general not expected for a
number of reasons detailed in the text. All energies are given in Eh/site. The numbers in parentheses
represent the stochastic error in the previous digit as obtained through a Flyvbjerg-Petersen reblocking
analysis[268].

As a first observation, the results in Table 7.1 demonstrate that already at small
values of D, the parameterised |ΨMPS,pbc⟩ are able to capture the vast majority of the
total DMRG energy (∼ 99.0% in many cases). Part of this success of the Projector
Quantum Monte Carlo energies, ETNS, and their closeness to DMRG values is due to
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the optimised pairing function acting as reference state which is usually able to account
for a large part of the correlation energy and thus allows for the use of small values of
D whilst still yielding energies close the the infinite D limit of DMRG. However, it
is worth pointing out that the results obtained with the Projector Quantum Monte
Carlo method for non-linear wavefunctions are in general not expected to agree exactly
with DMRG values for a number of reasons. Firstly, DMRG rigorously conserves
all symmetries and quantum numbers, whereas the Projector Quantum Monte Carlo
optimisation explicitly breaks symmetries and non-zero projections onto section of the
Hilbert space with other (e.g. spin) quantum numbers and symmetries typically remain.
Secondly, by constraining the nodal structure of |ΨMPS,pbc⟩ to the variational flexibility
affordable by the reference state, a ‘fixed-node’ error will in general be introduced
apart from those cases where the nodal structure of the reference state recovers the
nodal structure of the exact wavefunction. In most situations small values of D are
then sufficient to reach the wavefunction with the variational lowest energy available
within the given parameterisation. In contrast, DMRG energies are converged with
respect to bond dimension D in which limit they can be considered to be numerically
exact.

Moreover, the convergences displayed in Figure 7.4 demonstrate that the Projector
Quantum Monte Carlo optimisation for non-linear wavefunctions is able to converge
onto wavefunctions whose energies largely agree with DMRG results irrespective of
whether just one single stochastic process for sampling of the physical indices is
employed or whether two nested stochastic processes sample both the contraction of
physical and auxiliary indices. Unfortunately, when comparing Projector Quantum
Monte Carlo energies in Table 7.1 obtained with exact deterministic (one stochastic
process) and sampled (two nested stochastic processes) contraction of auxiliary indices
small differences persist which tend to become more pronounced when either system
sizes, bond dimensions or both increase. These deviations are most likely due to the
unavoidable biases in the TNS sampling approach which have been detailed in the
previous section. Yet, given the smallness of the difference for small systems and
values of D, this is another indication that the biases can be controlled in the limit of
sufficient sampling.

In principle, the number of samples for stochastic contraction of the auxiliary indices,
Naux, as well as for stochastic contraction of the physical indices, Nphys, which are
required for efficient wavefunction optimisations grows with the bond dimension D of the
tensors and system size. In the initial stages of the optimisation, relatively small number
of samples are sufficient (e.g. Naux ∼ 100 and a total of Nphys ∼ 4× 106 distributed
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across several processors) for all considered system sizes and bond dimensions. As the
optimisation progresses these typically have to be raised gradually to achieve a higher
accuracy with the maximum number of samples now depending on system size and bond
dimension (Naux ∼ 200 and Nphy ∼ 16×106 for the 1×14 Hubbard model with D = 2).
However, a precise scaling of Naux and Nphys with bond dimension and system size is
more difficult to arrive at since the appropriate values depend on each other, as well as
on the step size of the optimisation and the value of U

t
. It should be pointed out that in

order to ensure converged results, the optimisations aimed to substantially oversample,
which results in small error bars in the calculated quantities. Since reducing error
bars in this approach by an order of magnitude represents two orders of magnitude
more computational effort, results close to convergence can already be obtained with
substantially fewer number of samples. In terms of reducing stochastic errors, one of
the dominant factors is the sampling of the gradient. Since the Naux samples used
to stochastically evaluate the derivatives with respect to a whole tensor S ′

n;ns
, the

actual number of samples which contribute to the estimate of the derivative of a single
element S ′

n;ns,ijkl is smaller, e.g. by approximately a factor of ∼ 1
D4 for rank-4 tensors

of dimension D (assuming approximately uniform selection of the elements of S ′
n;ns

for
simplicity). Whilst this approach increases the stochastic errors of the derivatives, it
ensures that each element S ′

n;ns,ijkl is estimated independently from all other elements in
S

′
n;ns

. If the elements of S ′
n;ns

were not estimated independently, correlations in between
them will be significantly enhanced which will lead to considerable biases. Additionally,
the random selection of elements of S ′

n;n2 also aids in breaking the symmetry of the
individual tensor elements in the optimisation.

Having established that sampling the tensor network also allows for efficient optimi-
sation of the wavefunction parameters within the framework of the Projector Quantum
Monte Carlo method proposed in this thesis, the approach is applied to PEPS wave-
functions, the main aim of this chapter. Thus, a two-dimensional 4 × 4 Hubbard
model on a square lattice at half-filling is considered with periodic boundary conditions
and U

t
= 2 or U

t
= 4. For these systems benchmark results from the Auxiliary Field

Quantum Monte Carlo method (AFQMC) are available[387] which can be considered
numerically exact at half-filling. While the nodal structure of the PEPS wavefunction
|ΨPEPS⟩ is provided by an optimised general pairing function acting as reference state,
further correlations are captured by the independent, simultaneously optimised rank-5
tensors of the PEPS state (one physical index and four auxiliary indices). At a bond
dimension of D = 2, the error in the total ground state energy per site of |ΨPEPS⟩ is
only ∼ 1.0% for both values of U

t
.
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4× 4 Hubbard model
U
t

EAFQMC EPEPS(D = 2) PPEPS
2 −1.1265(4) −1.11812(5) 99.3
4 −0.8510(4) −0.84228(2) 98.9

Table 7.2 Ground state energy per site EPEPS for 2D 4× 4 Hubbard model on a square lattice at
half-filling with periodic boundary conditions and U

t = 2 or U
t = 4. The PEPS wavefunctions are

parameterised according to Eq. 7.5 with a bond dimension of D = 2 and a general pairing function
acting as reference state. The wavefunction parameters have been optimised with the Projector
Quantum Monte Carlo method coupled to stochastic evaluation of the PEPS contraction. EAFQMC
represents Auxiliary Field Quantum Monte Carlo (AFQMC) energies which can be considered to be
numerically exact at half-filling. PPEPS = EPEPS

EAFQMC
(%) denotes the percentage of EAFQMC captured

by |ΨPEPS⟩. All energies are given in Eh/site. The numbers in parentheses represent the stochastic
error in the previous digit as obtained through a Flyvbjerg-Petersen reblocking analysis[268]. The
AFQMC energies are taken from Ref.[387].

7.7 Conclusions

In this chapter, a sampling approach for stochastic evaluation of the contraction
of tensor networks has been proposed as alternative to approximate deterministic
contraction schemes that state-of-the-art PEPS optimisation methods rely on. This
sampling method is able to yield stochastic estimates which are close to results obtained
with exact tensor network contraction. Some potential and unavoidable sources of
biases still remain but these can be controlled in the limit of sufficient sampling.
Within the framework of the Projector Quantum Monte Carlo approach detailed in the
previous chapters, this sampling approach allows for the efficient stochastic optimisation
of the variational parameters in a wavefunction with energies close to those values
exact contraction results. In future, an improvement in the efficiency of the sampling
approach or additional development for a better control of the potential sources of
biases would benefit this sampling approach, in particular when it is applied to larger
system sizes. Further applications to wavefunction parameterised with higher bond
dimensions D, as well as treatments of larger system sizes, might then also allow for
extrapolations to the infinite D and thermodynamic limit[189].





Chapter 8

Concluding Remarks and
Continuing Directions

In this thesis, a novel Projector Quantum Monte Carlo method for non-linear wave-
function ansatzes has been developed and successfully applied to a range of challenging
strongly correlated systems. The formulation of this new approach has been partially
inspired by a prior application of the Full Configuration Interaction Quantum Monte
Carlo (FCIQMC) method to a prototypical strongly correlated system. FCIQMC
repeatedly and stochastically applies a projector onto an initial trial wavefunction
parameterised as linear expansion in the basis of Slater determinants spanning the
full Hilbert space of a system. Whilst stochastic application of the propagator takes
advantage of the sparse and diagonally dominant nature of the Hamiltonian in Fock
space, sparsity inherent in the wavefunction is exploited by an ensemble of walkers
which provides a stochastic coarse-grained description of the wavefunction. As such,
FCIQMC represents a stochastic realisation of the Power Method, allowing access to
essentially exact results for systems far out of reach of many traditional diagonalisation
approaches.

FCIQMC therefore naturally lends itself as a suitable method for obtaining bench-
mark results and investigating the nature of the exact wavefunction. As a first
investigation in this spirit, an FCIQMC study of a prototypical and highly non-trivial
strongly correlated system, the three-band (p−d) Hubbard model, was conducted. The
main focus of this study was the FCI wavefunction representation expressed in different
single-particle basis sets and their amenability to accurate correlation treatments. The
investigated one-particle bases included the widely available restricted (RHF) and unre-
stricted (UHF) Hartree-Fock spin orbitals which were compared with restricted (RNO)
and unrestricted (UNO) natural orbitals. The latter are known to yield compact FCI
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expansions whose coefficients decay rapidly with increasing particle-hole excitations of
the reference Slater determinant.

Counterintuitively, it was found in this investigation that the ability of single-
particle basis sets to reproduce the physics of a system within a single-determinant
description is not necessarily an indicator for their ability to give rise to rapidly
converging CI expansions. Instead, it was observed that whilst a UHF determinant
describes a qualitatively correct insulating antiferromagnet as ground state, imposing
spin symmetry in the RHF basis provides a qualitatively incorrect metal as RHF
determinant. Still, in the latter basis, and even more so in both natural orbital bases,
the FCI expansion of the many-body wavefunction is sparser and converges rapidly with
particle-hole excitations of the reference determinant. These findings are of particular
interest for approaches in condensed matter physics. Whilst these typically start from
qualitatively correct symmetry-broken solutions, the findings of this FCIQMC study
indicate that these may not always be the optimal starting points and that approaches
building on symmetry conserving basis sets may be more successful. In addition, the
results of this investigation suggest that single-reference quantum chemical methods in
combination with an appropriate single-particle descriptions may be able to treat many-
body wavefunctions of strongly correlated systems. This is of great importance for the
development of these single-reference approaches and their applications to strongly
correlated materials which have so far been found to pose non-trivial challenges for
these methodologies.

Despite these findings, the challenge of an exponentially growing Hilbert space still
remains, implying that for highly multi-reference wavefunctions, as they typically occur
for strongly correlated materials, the FCI expansion will become intractable for large
systems even when expressed in an optimal single-particle basis. Thus, if progress to
larger system sizes is to be made, more compact wavefunction ansatzes need to be
considered which scale polynomially rather than exponentially with system size, ideally
whilst still building on the success of FCIQMC. This has lead to the development of a
novel Projector Quantum Monte Carlo approach through reformulation of the projected
imaginary time evolution of FCIQMC in terms of a Lagrangian minimisation. This
naturally admits wavefunction ansatzes with polynomial complexity which have more
traditionally inhabited the realm of Variational Quantum Monte Carlo approaches. At
the same time, it highlights the deep connection between imaginary time evolution,
the power method and (stochastic) gradient descent. However, similar approaches have
previously had little success given the slow convergence rate of stochastic gradient
descent. Improvements on this have been made by advances in the field of deep
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learning algorithms and neural networks. Two of these have been incorporated in
the proposed Projector Quantum Monte Carlo method resulting in a modification
of the propagator of the wavefunction dynamics. As a first advancement, Nesterov’s
accelerated approach has been included which belongs to the class of ‘momentum’
methods. Within these techniques the update of variational parameters retains a
memory of previous updates thereby formally accelerating convergence rates to second
order. The second improvement has been the incorporation of RMSprop which is
a scheme to automatically and independently estimate an individual optimal step
size for each individual variational parameter. This has increased the robustness of
the optimisation, as well as accelerated its convergence by taking larger steps for
parameters with small gradients and vice versa. Combining all these methods has lead
to a new Projector Quantum Monte Carlo approach which represents a very versatile
and general, as well as highly efficient optimisation of arbitrary non-linear wavefunction
ansatzes of quantum many-body systems with large numbers of parameters.

Following the exposition of the method, it has been combined with a number of
efficient and highly accurate wavefunction ansatzes. The first of these is a parameteri-
sation referred to as Correlator Product States (CPS), a form of Tensor Network States
whose complexity grows polynomially with system size. This CPS ansatz represents a
versatile approach which, at the same time, is systematically improvable to the exact
FCI limit. The capabilities of the proposed accelerated Projector Quantum Monte
Carlo approach has thus been demonstrated by optimising wavefunctions of this CPS
parameterisation for a number of strongly correlated systems. These applications
include one and two dimensional Hubbard models, as well as ab-initio systems. The
latter begin with the highly non-trivial benchmark system of the symmetric dissociation
of H50 for whose stretching total energies have been obtained with chemical accuracy
and culminate in a fully periodic ab-initio graphene sheet. In addition to optimisation
of wavefunction parameters, the same dynamics also allow for sampling of the reduced
one- and two-body density matrices, thereby granting access to one- and two-body
static properties of the investigated systems.

In a further series of applications, the developed Projector Quantum Monte Carlo
method has been applied to another wavefunction ansatz, Projected Entangled Pair
States (PEPS), also a class of Tensor Network States and the natural generalisation of
the extremely successful Matrix Product States (MPS) to higher dimensions. Whilst
PEPS wavefunctions are known to yield accurate approximations to ground states,
efficient optimisation of their variational parameters still poses a significant challenge.
This is partly rooted in the large computational cost associated with exact contraction
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of a PEPS network when information in the form of expectation values and correlation
functions is extracted from the wavefunction. Even though approximate contraction
schemes improve on this, they are still relatively expensive. A new approach has
therefore been proposed in this thesis which, instead of performing the contraction
deterministically, relies on Monte Carlo sampling to obtain a stochastic estimate of
the contraction by sampling a sufficient number of terms appearing in the sum. With
this stochastic contraction approach, applications of the Projector Quantum Monte
Carlo method for MPS and PEPS wavefunctions have been realised for a number of
Hubbard models providing results close to exact energies. In the future, this approach
would benefit from improvements in the Monte Carlo sampling scheme for the PEPS
contractions in the sense that fewer number of samples will lead to a more accurate
estimate.

The ability of the proposed Projector Quantum Monte Carlo method for non-
linear wavefunctions to treat wavefunctions with polynomial complexity allows for the
consideration of systems which are intractable for exact but exponentially complex
wavefunction ansatzes, as illustrated by the many successful applications presented in
this thesis. It has been demonstrated in this thesis that this novel approach can handle
and efficiently optimise large numbers of parameters, greatly exceeding those which
are amenable to state-of-the-art VMC methods where only recent developments have
made progress at extending these numbers[349]. Moreover, this optimisation approach
is very versatile and general and can be applied to arbitrary wavefunction ansatzes
provided that the projections of wavefunction amplitudes, as well as the derivatives of
the Lagrangian with respect to the variational parameters, onto configurations in the
full Hilbert space are efficiently computable.

Thus, further ansatzes which might be considered include wavefunctions param-
eterised as artificial neural networks which have already been successfully applied
to spin models with state-of-the-art VMC approaches[388]. In addition to applica-
tions with other wavefunction ansatzes, continuing developments can also extend the
scope of the Projector Quantum Monte Carlo method. A possible direction for these
developments involves the use of symmetry. So far, the Projector Quantum Monte
Carlo has not made any use of symmetry but instead has explicitly broken symmetry.
Thus, as an extension, symmetry may be directly enforced in order to reduce the
number of independent variational parameters which allows for the treatment of even
larger systems. Additionally, by imposing a specified symmetry excited states with a
symmetry different to the ground state can also be converged upon. Another route to
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excited states might be via orthogonalisation against the ground state as it has been
introduced in FCIQMC[249].

In conclusion, the Projector Quantum Monte Carlo method formulated in this thesis
has been demonstrated to provide a powerful and promising novel method for efficient
optimisation of the variational parameters in arbitrary non-linear wavefunction ansatzes.
The presented results have clearly illustrated the ability of this approach to handle large
numbers of variational parameters which greatly exceed those amenable to alternative
Variational Quantum Monte Carlo techniques. Moreover, the employed non-linear
wavefunction ansatzes represent efficient and accurate approximate parameterisations.
At the same time, they grow only polynomially with system size and thus allow for
the treatment of much larger systems than those which are amenable to the exact
wavefunction ansatz of diagonalisation approaches. Like other wavefunction-based
methodologies, this proposed Projector Quantum Monte Carlo approach possesses two
major advantages over DFT-based approaches which have dominated electronic struc-
ture calculations, so far. Firstly, typical approximations involved in the wavefunction
parameterisation are controlled and systematically improvable toward exactness. In
addition, many-body wavefunction descriptions of physical systems grant access to all
of its properties and therefore represent one of the best frameworks to gain deeper
insight into the mechanics of quantum many-body systems,





Appendix A

Comparison of Lagrangian and Ritz
Functional Derivatives

For an arbitrary wavefunction ansatz Ψ(Zσ) based on variational parameters {Zσ} the
positive-definite Lagrangian is given by

L[Ψ(Zσ)] = ⟨Ψ|Ĥ|Ψ⟩ − E0
(
⟨Ψ|Î|Ψ⟩ − A

)
, (A.1)

where normalisation of the wavefunction Ψ(Zσ) (up to an arbitrary constant A) is
enforced by a Lagrange multiplier which at convergence is equal to the self-consistently
determined ground state energy E0. As outlined in Chapter 5, the derivative of this
Lagrangian with respect to any of the wavefunction parameters, Zσ, can be written as

∂L[Ψ(Zσ)]
∂Zσ

= ⟨ ∂Ψ
∂Zσ

|Ĥ|Ψ⟩+ ⟨Ψ|Ĥ| ∂Ψ
∂Zσ

⟩ (A.2)

.− E0

(
⟨ ∂Ψ
∂Zσ

|Î|Ψ⟩+ ⟨Ψ|Î| ∂Ψ
∂Zσ

⟩
)

(A.3)

= 2 ⟨ ∂Ψ
∂Zσ

|Ĥ|Ψ⟩ − 2E0 ⟨
∂Ψ
∂Zσ

|Î|Ψ⟩ (A.4)

= 2 ⟨ ∂Ψ
∂Zσ

|(Ĥ − E0Î)|Ψ⟩ , (A.5)

where in the third line a real wavefunction and a real, symmetric Hamiltonian are
assumed.
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Furthermore, when considering the same wavefunction parameterisation Ψ(Zσ), the
Ritz functional is defined as

R[Ψ(Zσ)] = ⟨Ψ|Ĥ|Ψ⟩
⟨Ψ|Ψ⟩ , (A.6)

and its derivative with respect to any of the wavefunction parameters, Zσ, is given by

∂R[Ψ(Zσ)]
∂Zσ

=
2 ⟨ ∂Ψ

∂Zσ
|Ĥ|Ψ⟩

⟨Ψ|Ψ⟩ −
2 ⟨Ψ|Ĥ|Ψ⟩ ⟨ ∂Ψ

∂Zσ
|Ψ⟩

(⟨Ψ|Ψ⟩)2 (A.7)

= 2
⟨Ψ|Ψ⟩

⟨ ∂Ψ
∂Zσ

|Ĥ|Ψ⟩ −
⟨Ψ|Ĥ|Ψ⟩ ⟨ ∂Ψ

∂Zσ
|Ψ⟩

⟨Ψ|Ψ⟩

 (A.8)

= 2
⟨Ψ|Ψ⟩

(
⟨ ∂Ψ
∂Zσ

|Ĥ|Ψ⟩ − R[Ψ(Zσ)] ⟨ ∂Ψ
∂Zσ

|Ψ⟩
)
, (A.9)

where again a real wavefunction and a real, symmetric Hamiltonian are assumed.
A comparison of the Lagrangian and Ritz functional derivative leads to the conclu-

sion that both are equivalent if the following two conditions are satisfied: that is if
⟨Ψ|Ψ⟩ = 1 and R[Ψ(Zσ)] = E0. These conditions are met by the Projector Quantum
Monte Carlo method detailed in Chapter 5. Firstly, since the gradient employed in
this approach is sampled with the probability distribution of Eq. 5.13 in Chapter 5,
normalisation is implicitly imposed such that ⟨Ψ|Ψ⟩ = 1 is ensured. Secondly, during
the course of an optimisation the value of E0 is explicitly set to the energy of the wave-
function which is given by R[Ψ(Zσ)], such that the second condition R[Ψ(Zσ)] = E0 is
fulfilled, as well.
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