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Abstract 

Human mitochondrial ATP synthase is an enzyme containing 18 unlike subunits located in 

the inner mitochondrial membrane (IMM), where the catalytic F1 domain extends into the 

mitochondrial matrix and the FO domain, which contains the c8-ring rotor, the a-subunit 

and the supernumerary subunits, is anchored in the IMM. All the subunits, apart from the 

a- and A6L-subunits, are encoded in the nucleus and require transport into the mitochondria 

before being assembled. The a- and A6L-subunits are encoded on the mitochondrial 

genome. The respiratory complexes generate the proton motive force (PMF), which ATP 

synthase uses to generate ATP from ADP and Pi. Rotation of the α- and β-subunits with the 

central stalk γ-, δ- and ε-subunits is prevented by coupling the F1 domain to the FO domain 

via the peripheral stalk (the OSCP-, F6-, d- and b-subunits). ATP hydrolysis is prevented 

by the natural inhibitor of the enzyme, IF1, binding to the F1 domain. In addition to the a- 

and, b-subunits, the FO domain contains the c8-ring and six supernumerary subunits not 

involved in the catalytic activity of ATP synthase. The roles of five of these subunits in the 

assembly of ATP synthase, the e-, f-, g-, DAPIT- and 6.8 kDa proteolipid-subunits, were 

investigated by suppressing or disrupting their expression individually. The e-subunit is the 

first of the supernumerary subunits to assemble, then the g-subunit followed by the f-, 6.8 

kDa proteolipid- and DAPIT-subunits. All five supernumerary subunits investigated were 

required to facilitate the dimerisation and oligomerisation of ATP synthase. The e-, f- and 

g-subunits were found to be important for maintaining mitochondrial respiratory capacity.  	
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1.1. Bioenergetics 

All living things require a mechanism to convert the energy they consume as food into 

chemical energy to do useful work for the organism, such as growth and reproduction. 

Energy conversion can be in the form of photophosphorylation for plants and 

photosynthetic bacteria during photosynthesis, and oxidative phosphorylation for respiring 

organisms [1]. Most of the energy consumed by eukaryotes is converted to adenosine 

triphosphate (ATP) in mitochondria by the ATP synthase using the proton motive force 

(PMF) generated by enzymes in the respiratory chain. The remaining ATP is produced by 

glycolysis [2] and other substrate-level phosphorylation events including those catalysed 

by succinyl-coA synthetase [3], and creatine kinase [4]. The bioenergetic cost of making 

an ATP molecule in the mitochondria of mammals is 2.7 protons translocated through ATP 

synthase /ATP molecule. When the transport of phosphate through the phosphate/H+ 

symporter is considered, the cost increases to 3.7 protons/ATP synthesised [5]. 

Furthermore, there is the requirement to transport one proton to the IMS to replace the loss 

of membrane potential when ATP4- is exchanged for ADP3- by the adenine nucleotide 

transporter [1]. 

 

The action of respiratory chains can be explained by chemiosmosis, which describes the 

coupling between the proton translocating and electron transferring respiratory complexes 

and the reversible ATP synthase, which catalyses the reaction in Equation 1 [6].  

 

Equation 1. ADP + Pi + H2O « ATP  

 

According to chemiosmosis, the components required for ATP synthesis are the reversible 

ATP synthase, the respiratory chain complexes in bacteria and mitochondria, or 



4 

photophosphorylation complexes in chloroplasts, the mitochondrial transporters and a 

solute and ion impermeable inner mitochondrial membrane, (1, 2, 3 and 4 in Fig. 1.1, 

respectively) [1, 6, 7].  

 

 

Fig. 1.1 The chemiosmotic hypothesis. ADP: adenosine diphosphate, POH: inorganic phosphate, ATP: 

adenosine triphosphate, A-: anions, C+: cations, H+: protons. Figure adapted from ref. [6].   

 

The ability of an organism to use ATP to do useful work requires the ATP:ADP ratio to be 

large, indicating that the reaction in Equation 1 is displaced far from equilibrium in the 

direction of ATP synthesis. In mitochondria, the ADP/ATP translocator and the phosphate 

transporter continuously supply and remove the reactants and products of ATP synthesis, 

while the respiratory chain provides the proton motive force (PMF) that ATP synthase 

requires to synthesise ATP via rotary catalysis. This is related to the Gibbs free energy 

change as shown in Equations 2 and 3:  

 

Equation 2. G = -F + 2.3RT log10 ([H+
matrix]/[H+

IMS])
 

Equation 3. µH+ = -F  + 2.3RT pH  

 

~
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Where DG is the Gibbs free energy change, F = the Faraday constant, DΨ = the electrical 

gradient (membrane potential), R = the universal gas constant, T = the temperature at 

atmospheric pressure measured in Kelvin and DpH is [H+
matrix]/[H+

IMS]. IMS = 

intermembrane space [1]. 

1.2.Mitochondria 

Mitochondria are essential for aerobic respiration in eukaryotic life and are also involved 

in many important cellular processes including regulation of the cell cycle [8], apoptosis 

[9], the permeability transition [10], amino acid and fatty acid metabolism [1], and are the 

site of essential processes such as iron-sulphur cluster (Fe-S) [11] and haem biosynthesis 

[12], and the citric acid cycle [13].  

 

The evolution of eukaryotic life is a controversial subject, and there are many different 

theories which try to explain it [14]. One theory, the hydrogen hypothesis for eukaryotic 

evolution, suggests that an a-proteobacterial cell capable of facultative anaerobic 

respiration was the symbiont for an obligate anaerobic methanosome host that used 

geologically available hydrogen as a substrate for methanogenesis and ATP synthesis. The 

theory suggests that the geological hydrogen source became unavailable to the host 

methanosome and that the host obtained its hydrogen from the symbiont instead. This event 

may have resulted in the host engulfing the symbiont (endocytosis) and the subsequent 

transfer of genes from the symbiont to the host [15]. From this point, it is hypothesised that 

the first eukaryote began to evolve, leading to the transfer of genes from the mitochondria 

to the host cell nucleus. This event resulted in the requirement to translate nuclear encoded 

mitochondrial proteins in the cytosol and then to transfer the proteins into mitochondria 

through the outer and/or inner membrane of the organelle. The process of protein import 

into mitochondria is carried out by the TOM-TIM twin-pore translocase complex [16, 17], 
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which uses the membrane potential generated by the respiratory complexes to insert 

proteins into the inter-membrane space (IMS), inner mitochondrial membrane (IMM) or 

the mitochondrial matrix. Mitochondrial import sequences are recognised by subunits of 

the twin-pore translocase and this sequence determines which compartment of the 

mitochondrion the protein will eventually reside in.  In human mitochondria, the genes that 

remain on the mitochondrial genome encode 13 hydrophobic proteins, all of them 

components of the respiratory chain complexes, 22 transfer RNA (tRNA) molecules and 2 

ribosomal RNA (rRNA) molecules that are used during the translation of the 

mitochondrially encoded proteins. [18]. The organisation of genes on the human 

mitochondrial genome is present in Fig. 1.2. 

 

Fig. 1.2 The human mitochondrial genome. Control region in dark grey, ribosomal RNA in medium grey, 

transfer RNA in light grey, complex III gene CYB in green, complex I genes ND6, ND5, ND4, ND4L, ND3, 

ND2 and ND1 in purple, ATP synthase genes ATP8 and ATP6 in yellow, complex IV genes COX1, COX2 

and COX3 in blue. Figure supplied by Martin Montgomery, MRC-MBU. 

Mitochondria are the site of many metabolic processes that require substrates including 

fatty acids, keto acids, amino acids, nucleotides and vitamins. These molecules need to be 

transported from or to the cytoplasm or mitochondrial matrix through the mitochondrial 

carriers [19–21]. Mitochondria require substrates to carry out their functions, and are the 
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site of synthesis of many enzyme co-factors and substrates including ATP, iron-sulphur 

clusters and haem groups that are required by enzymes outside of the mitochondrion [22, 

23]. In addition, active transport of substrates across the IMM is needed because the IMM 

is impermeable to molecules such as fatty acids, keto acids, amino acids, nucleotides and 

vitamins. Therefore, a mechanism of transport between the mitochondrial matrix and cell 

cytoplasm is required. Members of the mitochondrial carrier family [24] function as 

monomers and contain three points of contact that mediate binding between the carrier and 

substrate [25]. The carriers exist in one of three states at any one time, open to the 

cytoplasm, substrate occluded or open to the mitochondrial matrix [25].  

1.3. Dynamics and morphology of mitochondria 

Mitochondria are dynamic organelles that are constantly changing shape or size [26] via 

different mechanisms, including swelling and shrinking, fusion of numerous mitochondria 

into a larger reticulated mitochondrial network, and fission of mitochondria into multiple 

smaller punctate organelles [27]. The number of mitochondria in cells ranges from zero in 

red blood cells to around 2000/cell in liver, heart and skeletal muscle cells [1]. 

Mitochondria possess two membranes, the IMM surrounded by the outer mitochondrial 

membrane (OMM) with the intermembrane space in between the two, and the 

mitochondrial matrix contained inside the IMM [1]. During each cell cycle, the cell’s 

mitochondrial population needs to double, so that each daughter cell is endowed with a 

mitochondrial population akin to that of the parent cell, highlighting the requirement for 

mitochondrial dynamics to be tuned to the cell cycle. Mitochondria are motile within the 

cell, interacting with microtubules that transport the organelles predominantly to areas of 

the cell with high energy usage [27]. The entire mitochondrial network interacts with the 

cellular actin network, where association of mitochondria with actin filaments is linked to 
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rapid Drp1-mediated fission of the mitochondrial network, followed by immediate fusion 

once the interaction is abolished. It is thought that interaction of actin with mitochondria is 

one of the factors that regulates the homeostasis of mitochondrial morphology [28]. Fission 

is the process of mitochondria dividing and becoming smaller punctate structures, where 

larger, elongated mitochondria have split into multiple smaller organelles. Fission is 

regulated by the dynamin-related GTPase Drp1 [29]. Monomers of Drp1 form helical 

multimers around mitochondria in response to recruitment by a number of factors including 

Fis1, Mff, MiD49 and MiD51 [30], followed by GTP dependent division of the 

mitochondrion into a punctate network consisting of small dot-like mitochondria. Fusion 

of mitochondria results from two or more mitochondria integrating with each other to 

become a larger reticulated mitochondrial network [26]. Fusion relies on the coordination 

of separate events involving the fusion of the OMM and IMM, and allows exchange of 

matrix contents [31]. Proteins known to mediate mitochondrial fusion include the 

mitofusins Mfn1 and Mfn2, and OPA1, which are GTPases. Outer membrane fusion is 

mediated by Mfn1 and Mfn2, and precedes inner membrane fusion, resulting from the 

action of OPA1 [32]. The IMM contains the mitochondrial carriers and respiratory 

complexes and displays two notable structural features: numerous tubular or lamellar 

cristae which increase the surface area, and, therefore, the space available for the membrane 

bound proteins, and a boundary membrane (Fig. 1.3). Cristae display a range of 

morphologies depending on factors including the stage of the cell cycle, cell type and 

disease status of the mitochondrion [33]. The morphology of the cristae in mitochondria is 

linked to the presence of rows of ATP synthase dimers at the apices of the cristae in a range 

of species including cows, potatoes, fungi [34, 35] and the alga Polytomella spp [36]. When 

the gene encoding the e-subunit of ATP synthase is deleted in yeast, the cristae display 

onion-like concentric ring structures [37], which may indicate that the cristae have become 
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disrupted. In Saccharomyces cerevisiae, the e-subunit and also the g-subunit are required 

for dimerisation of ATP synthase [37]. Mgm1p, the yeast homologue of human OPA1, is 

also involved in mitochondrial fusion and is thought to regulate the stabilisation of ATP 

synthase dimers by the e-subunit [38]. 

 

 

Fig. 1.3 Electron microscopic tomograph of mitochondria from chicken cerebellum. The IMM is shown with 

two structural features, the cristae (yellow), the boundary membrane (light blue) which is surrounded by the 

OMM (dark blue). At the interfaces between the cristae and the boundary membrane are cristae junctions. 

Figure adapted from Frey, 2000 [33]. 

 

1.4. The respiratory chain enzymes 

For ATP synthase to synthesise ATP, a PMF across the inner mitochondrial membrane is 

required, which is generated when protons are pumped from the mitochondrial matrix into 

the intermembrane space by respiratory complexes I, III and IV using redox energy. 

Complexes I, II, III and the electron transferring flavoprotein (ETF) contribute to the QH2 

pool in the IMM, (Fig. 1.4). The quinone pool facilitates the mobility of electrons from 

complex I, complex II and the ETF oxidoreductase.  The QH2 pool is utilised by complex 

III in the Q cycle [39]. Electrons are transferred from complex III to complex IV by 
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cytochrome c [1]. The mechanisms of proton pumping differ between respiratory 

complexes. They result in the transport of electrons from low potential redox couples, such 

as the NAD+/NADH couple through higher potential redox couples to the final electron 

acceptor O2 (comprising the O2/2H2O redox couple) [1].  

The electrons transported through the respiratory chain are donated by substrates including 

NADH and succinate, which are generated by the citric acid cycle. Electron transfer and 

proton translocation by the respiratory chain enzymes is depicted in Fig. 1.4.  The electrons 

transferred by complex I (NADH:ubiquinone oxidoreductase) come from NADH generated 

from pyruvate reduction during the citric acid cycle. The stoichiometry of proton pumping 

and electron transfer in mitochondrial complex I is 2 e- transferred from NADH for every 

4 protons pumped into the IMS. Two protons are also taken up from the matrix by complex 

I to reduce Q to QH2 [40, 41].  

Complex II is the only membrane bound enzyme of the citric acid cycle and does not pump 

protons. It catalyses the reduction of succinate to fumarate and electrons are donated to the 

Q-pool. [42].  The electron transferring flavoprotein (ETF) has a flavin adenine 

dinucleotide (FAD) molecule that can be reduced by accepting electrons from many 

dehydrogenases including those involved in fatty acid oxidation. The electrons are 

transferred to membrane bound ETF-Q oxidoreductase, which reduces quinone (Q) to 

ubiquinone (QH2), adding to the QH2 pool in the mitochondrial inner membrane [43].  

The QH2 pool provides electrons for complex III, the cytochrome bc1 complex. The Q-

cycle is central to the mechanism of complex III, where electrons are transported by the 

enzyme from the Q-pool to cytochrome c coupled to proton pumping and contribution to 

the PMF. Complex III is shown in Fig. 1.4 reducing Q to QH2 on one side (Qn), and 

oxidising 2QH2 to Q on the other (Qp). Oxidation QH2 to Q at the Qp site represents a 
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bifurcated electron transfer process, where two electrons are passed down different routes 

in the enzyme [44]. 

 

 

Fig. 1.4 The respiratory chain enzymes and ATP synthase. Complex I, complex II, ETF:Q oxidoreductase, 

complex III, complex IV and ATP synthase shown in lilac, orange, turquoise, green, dark blue and yellow, 

respectively. The total number of subunits each respiratory complex contains is presented, including the 

number of subunits from each enzyme that are encoded on the mitochondrial genome. The adenine nucleotide 

translocase and phosphate carrier are presented in the upper part of the diagram of the inner mitochondrial 

membrane, other mitochondrial carriers are not shown. The number of protons required to synthesise one 

ATP molecule (2.7 protons in ATP synthases with 8 c-subunits) is represented by the solid arrow pointing 

from the IMS to the matrix. The number of protons translocated by each proton pumping respiratory chain 

enzyme is denoted by arrows pointing through the respiratory complexes from the matrix to the IMS. Large 

curly arrows in the matrix represent the reduction of the reducing equivalents NADH, succinate and ETF. 

Small curly arrows represent the reduction or oxidation of the quinone pool in the IMM. Red lightning bolts 

show sites of ROS (reactive oxygen species) production in the electron transport chain. Figure supplied by 

Martin Montgomery, MRC-MBU. 

The Q-cycle is central to the mechanism of complex III, where electrons are transported by 

the enzyme from the Q-pool to cytochrome c coupled to proton pumping and contribution 

to the PMF. Complex III is shown in Fig. 1.4 reducing Q to QH2 on one side (Qn), and 

oxidising 2QH2 to Q on the other (Qp). Oxidation QH2 to Q at the Qp site represents a 

bifurcated electron transfer process, where two electrons are passed down different routes 

in the enzyme [44]. One electron is transferred to an iron sulphur cluster in the Reiske 
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protein and then to haem c1, followed by transfer to cytochrome c, resulting in translocation 

of 2 protons to the intermembrane space (IMS) and the production of semiquinone (SQ) at 

Qp. The other electron passes from SQ and is delivered to two heme groups in cytochrome 

b, bL and bH. Q binds at Qn near the second heme in cytochrome b and accepts an electron, 

which results in its reduction to SQ. The first part of the Q-cycle (oxidation of QH2 to Q) 

is repeated and provides the electrons to reduce Q to QH2 at Qn, with 2 protons taken up 

from the matrix, completing the Q-cycle.  

Cytochrome c shuttles 4 electrons from the quinone pool to complex IV to reduce one 

oxygen molecule to two water molecules. A copper centre (CuA) is the entry point of 

electrons, which are then transferred to the nearby haem a followed by haem a3, and finally 

to another copper centre (CuB) which is adjacent to the oxygen binding site. A single 

oxygen molecule binds in the oxygen binding site, accepts the electrons channelled from 

the copper and haem centres and two protons are taken up from the matrix via two different 

channels in complex IV, which provide the protons for reduction of O2 to 2H2O and also 

pumps 4 protons from the matrix to the IMS.  Complex IV is the terminal enzyme in the 

electron transport pathway [45]. 

The fluid mosaic model of membrane proteins suggests that the respiratory chain 

complexes and ATP synthase would move freely and randomly throughout the IMM. 

However, there is evidence that complexes I, III and IV can form supercomplexes [46]. 

The function of supercomplexes is not understood at present, but there are many 

hypotheses. For example, they may allow generation of a local DpH, where protons are 

utilised directly by ATP synthase, rather than entering the bulk phase and diffusing 

throughout the IMS and cell cytoplasm [47]. They could also facilitate the efficient transfer 

of electrons from respiratory complexes to the quinone and cytochrome c pools [48], or to 

reduce the formation of reactive oxygen species [49]. It has been shown that 
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supercomplexes exist in the form CI:CIII3:CIV6 [50] and that these can be either in a “tight” 

or “loose” conformation, where tight is defined as fully assembled and loose may represent 

a partially assembled supercomplex [49].  

 

1.5. Mitochondrial diseases  

Mitochondria are associated with many pathologies, owing to their involvement in a wide 

range of processes in the cell (section 1.2). As mitochondria are central to energy 

metabolism, it is not surprising that many of the diseases with mitochondrial origin display 

neurological phenotypes. A summary of some of these diseases, the proteins known to be 

involved and the symptoms are presented in Table 1.1. 

 

Table 1.1 Mitochondrial diseases with both nuclear and mitochondrial origins 

Disease Characteristics 

Autosomal dominant 

optic atrophy	[51] 

Defects in OPA1, involved in controlling mitochondrial cristae morphology. 

Results in loss of vision and chromatopsia in the first two decades of life. 

Alzheimer’s [52, 53] Possible defects in complex I and ATP synthase. Brains of AD patients show 

increased oxidative stress, protein oxidation and lipid peroxidation. Results in 

decreased cognitive function, confusion, difficulty with speech and movement. 

Charcot-Marie-Tooth 

[54] 

Mutations in the mitofusin 2 (Mfn2) gene. Mfn2 is involved in mitochondrial 

fusion. Patients exhibit demyelination of peripheral neuronal axons and present 

with muscle weakness and/or numbness in extremities and awkward gait.  

Freidreich’s ataxia 

[55] 

Mutations in the frataxin (Fxn) gene. Fxn is essential for iron-sulphur cluster 

biogenesis. Patients may suffer from ataxia, hypertrophic cardiomyopathy, 

diabetes, muscle weakness and skeletal deformation. 

GRACILE syndrome 

[56] 

Mutations in the complex III assembly factor BCS1L results in growth 

retardation, aminoaciduria, cholestasis, iron overload, lactic acidosis and early 

death. 
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Disease Characteristics 

Hereditary 

paraganglioma [57] 

Mutations in complex II assembly factor SDHAF1, results in impaired iron-

sulphur cluster incorporation into the enzyme. Patients are affected by cancer of 

the neuroendocrine system. 

Leigh syndrome [56, 

58, 59] 

Mutations in complex I subunits-NDUFS8 and -NDUFA2, complex IV 

assembly factors SURF-1, COX10, COX15, LPPRC and TACO1, and ATP 

synthase subunits-a and -A6L. Symptoms include decreased membrane potential 

and decreased capacity for ATP synthesis. Patients suffer from progressive 

demyelination of spinal neurons, glial hypertrophy, ataxia, breathing difficulties, 

optic atrophy, dystonia and often early death. 

Leber’s hereditary 

optic neuropathy [51] 

Mutations in complex I subunits MT-ND1, MT-ND4 and MT-ND6 result in loss 

of vision in the second or third decade of life with blurred or cloudy with retinal 

nerve degeneration. 

MELAS [60, 61] Mutations in complex I subunit ND5 and complex II assembly factor SDHAF2, 

affecting the capacity of the electron transport chain to generate the membrane 

potential and decreased ATP synthesis. Patients are affected by strokes, 

hypertrophic cardiomyopathy, lactic acidosis, seizures and myopathy. 

Parkinson’s [62] PINK1 and parkin mutations have been found in PD patients, as well as a 

decrease in the OSCP-subunit of ATP synthase. Parkin is a mitochondrial E3 

ubiquitin ligase recruited by PINK1 to promote autophagy of damaged 

mitochondria. PD symptoms include progressive loss of dopaminergic neurons 

in the brain resulting in tremors, slow movement and muscle stiffness. 

 

 

There are a number of mitochondrial diseases that are thought to arise from mutations in 

ATP synthase subunits of mitochondrial or nuclear origin, or proteins involved in the 

assembly of ATP synthase [63]. Mutations affecting ATP synthase are known to affect the 

a- and A6L- [64, 65], c- [66] and e-subunits [67], as well as assembly factors for ATP 

synthase [68]. The severity of the phenotype resulting from the mutation depends on the 
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mutational load for the a-subunit and A6L-subunit, which are encoded in the mitochondrial 

genome. Mutational load defines the percentage of the mitochondrial DNA population that 

carries the mutation. Heteroplasmy is defined by the percentage of mitochondrial DNA 

nucleoids carrying a mutation in a mixed population of healthy and mutated DNA 

nucleoids, [69]. Higher mutational load leads to worse prognosis and increased disease 

severity. Pathological ATP synthase depletion can be linked to mitochondrial mutations 

involving ATP synthase a- and A6L-subunits in the FO membrane domain of the enzyme. 

The point mutation T8993G occurring in the a-subunit gene ATP6 results in neuropathy, 

ataxia and retinitis pigmentosa (NARP) when 90-95% of DNA nucleoids are mutated, or 

Leigh syndrome if more than 95% of DNA nucleoids are affected by the mutation [64]. 

There are numerous other mutations that affect the a-subunit, many of which result in a 

spectrum of disease phenotypes with varying severity between NARP and Leigh syndrome 

symptoms, and other diseases that result in seizures, lactic acidosis, or familial bilateral 

striatal necrosis (FBSN) [63]. The diseases associated with a-subunit mutations share the 

underlying biochemical origin of proton transport deficiency through ATP synthase, 

because the physiological role of the a-subunit is to carry protons to and from the c-ring 

[70]. Mutations in the A6L-subunit have been described and are linked to hypertrophic 

cardiomyopathy and congestive heart disease [65]. The single mutation T8528C in the 

ATP6 gene affects both ATP6 and ATP8. ATP8 (A6L) is a supernumerary subunit of ATP 

synthase and there is evidence that this subunit acts as a strut to improve the coupling of 

the F1 domain to FO via contacts with the b-subunit and the a-subunit [71]. It is reported 

that mutations in the nuclear encoded e-subunit are associated with ATP synthase 

deficiency [67]. The defective protein is incorporated into ATP synthase and ATP synthase 

is assembled correctly, but ATP synthesis and the amount of ATP synthase are reduced. 

This mutation results in a cysteine residue replacing Tyr12 in the e-subunit, and associated 
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phenotypes of lactic acidosis, 3-methylglutaconic aciduria, mental retardation and delayed 

onset peripheral neuropathy [67].  

Batten disease is a neurodegenerative disease associated with excessive storage of the c-

subunit of ATP synthase in lysosomes [72, 73] but there is no difference between c-subunits 

contained in storage bodies and c-subunits contained in normal mitochondrial ATP 

synthase including in the trimethylation status of lysine 43 of the c-subunit [72]. The 

disease affects the paediatric population and results in early death.  

 

A mutation affecting the ATP synthase assembly factor ATP12 in yeast has been reported 

[74], and results in reduced activity of ATP synthase due to an assembly defect affecting 

the incorporation of the a- and b-subunits into the F1 domain of the enzyme. A yeast model 

of ATP synthase assembly suggests that ATP12 acts as a chaperone to place the a- and b-

subunits in the correct orientation and proximity to prevent the monomers from forming 

insoluble aggregates. The human homologue of ATP12 is ATPAF2. [75].  

 

The ATP synthase may provide the components of the mitochondrial permeability 

transition pore (mPTP), which is involved in cell death. The damage to heart tissue 

associated with congestive heart failure and associated reperfusion injury upon treatment 

are not necessarily caused by inherited defective genes, rather the opening of the (mPTP) 

[76]. During a heart attack, the blood vessels that supply blood and nutrients to the heart 

may become blocked by a blood clot, resulting in ischemia. The respiratory complexes 

cannot transfer electrons due to the lack of the final electron acceptor (O2), and are in a 

reduced state when oxygen flow is restored. The restoration of blood flow and infusion of 

oxygen to the ischemic heart tissue produces reactive oxygen species that damage the 

respiratory chain enzymes and other mitochondrial residents (proteins, lipids) and results 
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in the opening of the PTP [77]. Triggers of pore opening include mitochondrial calcium 

overload, oxidative stress mediated by the increased production of reactive oxygen species 

(ROS), depleted ATP levels and increased Pi concentration in mitochondria [78, 79]. The 

accumulation of succinate has been reported in ischemic heart tissue [80], and levels of 

ROS production are linked to the amount of succinate accumulated at the point of 

reperfusion, as a result of ROS generation by reverse electron transfer (RET) mediated by 

complex II. The amount of succinate accumulated in heart tissue during ischemia-

reperfusion injury is correlated with PTP-inducing ROS levels [81]. Modulating the 

amount of succinate in-vitro in human cardiomyocytes, and in-vivo, mouse heart tissue 

showed a significantly reduced amount of ROS and the infarct region was much smaller 

compared to control hearts [81].  

 

1.6. ATP synthase 

ATP synthase or F1FO-ATP synthase is present in all forms of life, from the inner 

membrane of mitochondria and chloroplasts [82] to the cell membranes of eubacteria and 

archaea [83]. ATP synthase is the mitochondrial enzyme responsible for synthesising the 

ATP generated by oxidative phosphorylation [5]. The human enzyme contains 18 different 

subunits [82, 84], shown in Fig. 1.5 and Table 1.2, that make up the catalytic F1 domain 

and the central stalk, the peripheral stalk and the membrane bound FO domain which 

contains the proton channel, the b-subunit and the supernumerary subunits, shown in Fig. 

1.5. The subunit compositions of the ATP synthases from cows, sheep, pigs and S. 

cerevisiae and other fungal mitochondrial ATP synthases that have been determined [85, 

86]. 

IF1 is the natural inhibitor of mitochondrial ATP synthase and prevents ATP hydrolysis in 

the event of the PMF being insufficient for ATP synthesis, where ATP is hydrolysed in 
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order to maintain the PMF. IF1 binds to one of the three catalytic interfaces of the enzyme 

and the g-subunit [88, 89].  

 

1.6.1. The structure and mechanism of ATP synthase 

ATP synthase consists of three structural domains, which are F1, FO and the peripheral 

stalk. Most of the structural features of mammalian ATP synthase were established in the 

bovine enzyme.  

 

Fig 1.5 Mitochondrial ATP synthase. The stoichiometry of subunits in bovine ATP synthase F1 is a3b3d1e1g1. 

The remaining subunits are present at one copy per enzyme, including the DAPIT- and 6.8 kDa PL subunits, 

which have been measured by quantitative mass spectrometry to be present in sub-stoichiometric amounts, 

but are assumed to be present at one copy each subunit per monomeric enzyme [82, 87], [Joe Carroll, 

unpublished data].  
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The bovine F1 domain contains the a-, b-, g-, d- and e- subunits [90]. The FO domain 

contains a ring of eight c-subunits, and the a-, A6L-, e-, f-, g-, DAPIT- and 6.8 kDa 

proteolipid-subunits. 

 

Table 1.2 Genes encoding subunits of ATP synthase in humans, cows, S. cerevisiae and E. 

coli. 

Subunit Human Bovine Yeast Bacteria 

a ATP5A ATP5A ATP1 AtpA 

b ATP5B ATP5B ATP2 AtpD 

g ATP5C1 ATP5C1 ATP3 AtpG 

d*  ATP5D ATP5D ATP16 AtpC 

e ATP5E ATP5E ATP15 - 

c ATP5G1 

ATP5G2 

ATP5G3 

ATP5G1 

ATP5G2 

ATP5G3 

ATP9 AtpE 

a MT-ATP6 MT-ATP6 ATP6 AtpB 

OSCP**  ATP5O ATP5O ATP5 AtpC 

b ATP5F1 ATP5F1 ATP4 AtpF 

d ATP5H ATP5H ATP7 - 

F6***  ATP5J ATP5J ATP14 - 

i/j - - ATP18 - 

e ATP5I ATP5I TIM11 - 

f ATP5J2 ATP5J2 ATP17 - 

g ATP5L ATP5L ATP20 - 
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Subunit Human Bovine Yeast Bacteria 

DAPIT USMG5 USMG5 - - 

6.8 PL MP68 MP68 - - 

A6L MT-ATP8 MT-ATP8 ATP8 - 

IF1 ATPIF1 ATPIF1 INH1 - 

* d is e in bacteria, ** OSCP is d in bacteria, *** F6 is h in yeast. 

 

The peripheral stalk consists of the OSCP-, F6-, d- and b-subunits (the b-subunit extends 

down into the FO membrane domain via two membrane spanning a helices) and in bacteria, 

the peripheral stalk consists of the d-subunit and two b-subunits [91–97]. The A6L- and e-

subunits were the first membrane bound supernumerary subunits to be identified [98, 99], 

followed by the f- and g-subunits [87], then the DAPIT- and 6.8 kDa proteolipid-subunits 

[100].  The arrangement of the membrane bound nuclear encoded supernumerary subunits 

are presented in Fig. 1.6, based upon experiments using cross-linking of lysine residues 

between subunits. Mammalian and probably all metazoan ATP synthases contain eight c-

subunits [5, 101]. Non-metazoan species such as bacteria and fungi possess ATP synthase 

containing between 10 and 15 c-subunits. Common to all species is the symmetry mismatch 

between the number of catalytic b-subunits and the number of c-subunits in the c-ring. 

Symmetry mismatch occurs as a result of the number of c-subunits being indivisible by the 

number of catalytic sites in ATP synthase, and is thought to confer a bioenergetics 

advantage by preventing the enzyme entering a state where additional energy would be 

required for rotation of the rotor [102, 103].  
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Fig. 1.6 The locations of the nuclear encoded supernumerary subunits e, f, g, DAPIT and 6.8 kDa proteolipid 

in the inner mitochondrial membrane, as determined by chemical cross-linking of lysine residues. Figure 

taken from [91]. 

 

The structures of the Pichia angusta, bovine and Paracoccus denitrificans ATP synthase 

are presented in Fig. 1.7. There are many structural similarities and some differences 

between ATP synthases from these three organisms. The three enzymes have the same 

basic structural features. They all contain the globular a3b3 catalytic domain, which is 

connected by the peripheral stalk OSCP-subunit to all three a-subunits [71, 93]. The 

peripheral stalks of the ATP synthases extend down into the membrane domain to contact 

the a-subunit via the b-subunit. The peripheral stalks of some bacterial ATP synthases 

contain two related but not identical b-subunits, b and b’. The b’-subunit is homologous to 

the bovine b-subunit but is unrelated in sequence, and extends into the membrane. Bacterial 

ATP synthase does not possess either the F6- or d-subunits. All three enzymes contain a 

bundle of five a-helices in the a-subunit that traverse the membrane tilted at 30°. In the 

bovine and Pichia enzymes, the a-subunit is contacted by the peripheral stalk and A6L, 

which helps to hold the a-subunit against the c-ring [71]. In the Paracoccus enzyme, A6L 



	 22 

is not present. The models of the bovine and Pichia ATP synthases possess the A6L- and 

f-subunits, and the putative locations of these subunits has been added to the fungal enzyme 

(A in Fig. 1.7). For a comparison of subunits contained in each enzyme, see Table 1.2.  

 

 

Fig. 1.7 The structures of ATP synthase from Pichia angusta, cows and Paracoccus denitrificans in A, B and 

C, respectively. For fungal and cow ATP synthase: a (red), b (yellow), g (royal blue), d (green), e (magenta), 

OSCP (sea green), F6 (purple) (h in the fungal enzyme), d (orange), b (pink), c-rings (grey), a (corn flower 

blue). In panel A, the A6L- and f-subunits are brick red and pale yellow, respectively. In the bacterial enzyme, 

the b- and b’-subunits are shown in pink and orange, respectively. The bacterial d-subunit is orthologous to 

the cow and fungal OSCP-subunit and is in sea-green. The figure was taken from [71], and contains structures 

from [104] (bovine ATP synthase) and [105] (bacterial Paracoccus denitrificans). 

 

The peripheral stalk of ATP synthase is essential for coupling ATP synthesis to the rotation 

of the c-ring and prevents the catalytic domain of F1 from rotating along with the g-subunit 

and the rotor [106]. The binding interface between the OSCP-subunit and the a-subunit 

buries hydrophobic residues in the N-terminal domain of subunit-OSCP by interacting with 

hydrophobic residues in the N-terminal regions of the three a-subunits [93, 107].  The F1 

domain is linked to FO by OSCP and by the other peripheral stalk subunits F6, b and d, and 

also by the central stalk subunits g, d and e [93, 108].  
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The F1 domain houses the three catalytic sites of the enzyme, located at the interfaces 

between the a-subunits and the catalytic b-subunits. The three b-subunits are each in 

different conformational states at any one time [109, 110]. A number of related high 

resolution structures of the F1 domain from bovine or yeast mitochondria have been solved, 

which have allowed the elucidation of the mechanism of ATP hydrolysis [5, 111–115]. The 

catalytic states of the enzyme are termed bE, bTP and bDP, which correspond the to the open, 

loose and tight states in a binding change mechanism of ATP hydrolysis. The mechanism 

of ATP hydrolysis requires ATP to bind at the bE-site, which induces a conformational 

change in the b-subunit. This results in the active site converting to the bDP-state, during a 

120° rotation of the catalytic domain. During ATP hydrolysis, a water molecule is utilised 

for the nucleophilic attack of the g-phosphate of ATP, which is accompanied by another 

120° rotation and conversion of the bDP-state to the bTP-state. The final 120° rotation is 

associated with the bTP-state reverting to the bE-state, and the products of ATP hydrolysis, 

ADP and Pi, are released. During ATP synthesis, rotation of the catalytic domain is 

powered by translocation of protons through the ATP synthase from the IMS to the matrix 

[5]. The mechanism of ATP synthesis is presumed to be a direct reversal of the hydrolytic 

chemical reaction. 

 

1.6.2. The assembly of ATP synthase 

The assembly of the F1 domain of S. cerevisiae ATP synthase is thought to rely on two 

assembly factors, ATP11 and ATP12 [116]. In yeast, when these two assembly factors are 

inactivated by mutation, the a- and b-subunits fail to assemble onto the central stalk, but 

are folded correctly, suggesting an assembly role rather than a chaperone role for ATP11 

and ATP12 [116]. The F6-subunit is presumably assembled after the b-, OSCP- and d-

subunits. The peripheral stalk subunits are assembled sequentially in Saccharomyces 
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cerevisiae, with the order b-subunit first, then the OSCP-subunit followed by the d-subunit 

[117, 118]. The assembly of the FO domain in yeast involves the activity of the 

metalloprotease ATP23 which fulfils two known functional roles. ATP23 mediates the 

processing of the a-subunit to form the mature protein, and also acts as a chaperone with 

ATP10 to coordinate the association of the a-subunit with the c-ring [119].  

The current understanding of the yeast ATP synthase assembly pathway is presented in Fig. 

1.8.  

 

Fig. 1.8. The assembly of yeast ATP synthase via two distinct modular pathways. The figure was taken from 

[120]. The 8- and 6-subunits are the equivalent of the human A6L- and a-subunits, respectively. The 4- and 

7-subunits are the yeast orthologs of the human b- and d-subunits respectively, and subunit-14 is the ortholog 

of the human F6-subunit.  Human subunit-g is ATP20 in yeast and its incorporation is not shown. 

 

The two yeast assembly factors have orthologs in humans, ATPAF1 and ATPAF2 [68]. 

There are no known human assembly factors that function in the assembly of the peripheral 

stalk or FO membrane domain, nor in the assembly of the central stalk onto the c-ring. The 

assembly of ATP synthase in human cells must differ from the yeast assembly pathway 

because subunit-c is encoded on the mitochondrial genome in yeast, unlike in mammals, 

where it is encoded in the nucleus and requires transport into mitochondria. It has been 

shown that ATPAF1 and ATPAF2 interact with the a- and b-subunits of human ATP 
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synthase, respectively, preventing these subunits from forming insoluble aggregates during 

the assembly of the catalytic domain [68].  

 

It has been proposed that the human ATP synthase F1 domain is assembled separately from 

the c-ring, and that the F1c8 subcomplex assembles separately from the peripheral stalk 

[121]. It has also been proposed that the b-, e- and g-subunits form a complex that links the 

peripheral stalk to FO, and that the d-subunit is then assembled with the b-subunit. It has 

been suggested that when the peripheral stalk assembly docks into the IMM via the b-, e- 

and g-subunits, this sub-complex is recruited to the c-ring in the FO domain. Next, it is 

proposed that the OSCP- and F6-subunits are recruited to the peripheral stalk followed by 

the remaining supernumerary subunits and finally the a-subunit is assembled [118, 120]. 

There is evidence suggesting that the a- and A6L-subunits are recruited to the FO domain 

after the other FO subunits because in r0 cells, which lack mitochondrial DNA (and 

therefore lack the a- and A6L-subunits), the vestigial ATP synthase is assembled [122]. 

The advantage of assembling the a-subunit onto the c-ring last is to prevent the F1c8a 

subcomplex from hydrolysing ATP [121]. The c-ring is probably the first structure of FO 

to form [121], and this may be mediated by the correct folding of the c-subunit without the 

necessity for additional assembly factors, because in E. coli, c-rings can form 

spontaneously in-vitro and without other ATP synthase subunits being present [103]. A 

mutation in the a-subunit has been shown to affect assembly of ATP synthase, where two 

sub-complexes of ATP synthase accumulated, one containing the soluble a3b3 F1 domain 

and the other containing F1c8 [123].  
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1.7. Aims of this work 

The supernumerary subunits e, f, g, DAPIT, A6L and 6.8 kDa proteolipid of human ATP 

synthase have no well-defined functions in the mitochondrial enzyme [82, 87, 100, 124]. 

In this work, the roles of subunits e, f, g, DAPIT and 6.8 kDa proteolipid will be 

investigated by suppression of the individual expression either with siRNA molecules or 

by gene disruption.  
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2.1. Materials and reagents 

2.1.1. Chemicals 

All the reagents and chemicals used in this work are listed in Appendix I. Solutions were 

made with Milli-Q water (resistance 18.2 mega Ω/cm3) supplied by a Millipore Academic 

water purification system (ThermoFisher Scientific, Hemel Hempstead, UK), or nuclease 

free water (Qiagen, Manchester, UK). The constituents of buffers are listed in Appendix II. 

 

2.2. Cell culture  

2.2.1. Human cell culture 

Two human cell lines were used for this work. For siRNA mediated depletion of ATP 

synthase subunits, 143B osteosarcoma cells were used (American Type Culture Collection, 

VA, USA). 143B cells are immortal due to transformation during cancer development and 

lack thymidine kinase. For CRISPR-Cas9 mediated gene deletion, HAP1 chronic 

myelogenous leukaemia cells were used (Horizon Discovery, Cambridge, UK). HAP1 cells 

are haploid and immortal due to cancerous transformation and contain a reciprocal 

translocation of chromosomes 9 and 22. 143B cells were grown in Dulbecco’s modified 

eagle medium (DMEM), supplemented with 10% v/v FBS, 100 U/mL penicillin, 100 

µg/mL streptomycin and 45 µg/mL uridine, referred to as complete DMEM throughout the 

text. HAP1 cells were grown in Iscove’s modified Dulbecco’s medium (IMDM) 

supplemented with 10% v/v FBS, 100 U/mL penicillin and 100 µg/mL streptomycin, 

referred to as complete IMDM throughout the text. Cells were washed with warm 

Dulbecco’s PBS (dPBS) and 0.1% w/v trypsin-EDTA dissociation reagent in Hanks 

balanced saline solution (HBSS) was used to dissociate adherent cells from cell culture 

plates. The trypsin was quenched with 10 volumes of growth media, the cells diluted ten-

fold and re-plated. Cells were grown at 37°C under 5% CO2 gas and 95% relative humidity. 
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2.2.2. siRNA transfection of cells 

Cells were dissociated with trypsin-EDTA, plated at 50% or 30% confluence for 143B cells 

or HAP1 cells, respectively, in 10 cm tissue culture plates and incubated for 2 h at 37°C, 

5% CO2. Plasmids or siRNA oligonucleotides were diluted to achieve a final delivery of 

either 1 µg or 50-100 nM, respectively to the cells. A list of sequences of siRNA molecules 

is presented in Table 2.1.  

Table 2.1 Oligonucleotide siRNA sequences 

Target siRNA Sequence 5'-3' 

ATP5I e6 sense GCAGGUCUCUCCGCUCAUCAA 

 e6 antisense UUGAUGAGCGGAGAGACCUGC 

ATP5J2 f7 sense GGAUCUUGAUGCGGGACUU 

 f7 antisense AAGUCCCGCAUCAAGAUCC 

ATP5L g8 sense GCCUCGAUUGGCCACAUUU 

 g8 antisense AAAUGUGGCCAAUCGAGGC 

USMG5 DAPIT 10 sense UCCCAUGCCUGGAGAAGCUAA 

 DAPIT10 antisense UUAGCUUCUCCAGGCAUGGGA 

C14orf2 6.8k1 sense AUGCUUCAAAGUAUUAUUAAA 

 6.8k1 antisense UUUAAUAAUACUUUGAAGCAU 

  

Oligonucleotides for siRNA were added to a solution containing Lipofectamine-2000 

transfection reagent (12 µL/ mL OptiMEM) and left at room temperature for 20 minutes to 

allow the formation of liposome complexes containing siRNA. Transfection with 

pSpCas9(BB)2A-GFP plasmids containing gRNA (guide RNA) is described in section 
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2.6.6. The transfection solution was applied to the cells ensuring complete coverage of the 

plate with transfection solution.  

 

2.2.3. Seeding plates with cells for extracellular flux analysis  

Cells suspensions were counted using a NucleoCounter NC-3000 (Chemometec, 

Denmark). Solution 13 (2.5 µL) containing 30 µg/mL acridine orange stain and 100 µg/mL 

DAPI stain was added to 47.5 µL trypsinised cell suspension. Acridine orange stains both 

live and dead cells and DAPI stains only dead cells, allowing estimation of cell quantity 

and viability. The total number of cells minus the number of dead cells gives the number 

of live cells. Samples (12 µL) were placed onto A8 NC slides (Chemometec) in duplicate. 

Cells were counted and diluted to 250,000 cells/mL in complete DMEM for 143B cells or 

complete IMDM for HAP1 cells. Cells (100 µL) were added to 20 wells of an XFe24 

Seahorse cell culture plate in a randomised order. Four of the 24 wells were left empty as 

background controls. The plate was incubated for 2 h at 37°C under 5% CO2 before a 

further portion of complete DMEM (150 µL) was added to each well and the plate was 

incubated at 37°C overnight. 

 

2.2.4. Stable isotope labelling of amino acids in cell culture 

Cells were grown in SILAC DMEM or IMDM supplemented with 10% v/v dialysed FBS, 

1.737 mM proline, 100 U/mL penicillin, 100 µg/mL streptomycin and 45 µg/mL uridine 

for 8 days to ensure complete labelling of proteins with heavy isotopic amino acids. Heavy 

and light isotopic variants of L-lysine and L-arginine were added separately to two separate 

bottles of media, with concentrations of 0.798 mM and 0.398 mM of L-lysine and L-

arginine, respectively. Heavy isotopic variants of L-lysine and L-arginine contained 8 or 

10 stable isotopes of 13C and 15N in the amino acids, respectively. Cells were harvested 
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(section 2.2.5) and protein content estimated (section 2.4.1.1). Cells containing heavy 

isotopic variants of lysine and arginine were mixed in a 1:1 ratio with cells containing 12C 

and 14N isotopic forms of lysine and arginine [125]. Samples were analysed by mass 

spectrometry as described in section 2.5.4.  

 

2.2.5. Harvesting cells 

Cells were washed with dPBS (10 mL per 15 cm diameter plate) at 37°C and 2 mL of ice 

cold PBS containing Complete protease inhibitors was added. Cells were scraped off the 

plate and transferred to a 50 mL tube on ice. Cells were centrifuged at 100 x g, 20°C for 3 

min, the supernatant was aspirated and the cells resuspended with the required volume of 

ice cold PBS with inhibitors and stored on ice before processing. 

 

2.2.6. Freezing cells 

Cells which had grown to confluence in a 15 cm tissue culture plate were dissociated with 

trypsin-EDTA and collected by centrifugation at 100 x g, 20°C, 3 min. The supernatant 

was removed under sterile conditions. Freezing media solution (3 mL) was added to the 

cells which were resuspended by gently pipetting. 143B cells required 10% v/v DMSO, 

30% v/v FBS, 60% v/v DMEM freezing solution and HAP1 cells required 10% v/v DMSO, 

50% v/v FBS and 40% v/v IMDM freezing solution. Portions (1 mL) of resuspended cells 

were added to individual 2 mL cryovials and placed in a cell freezing container surrounded 

by propan-2-ol and were immediately placed at -80°C. 

 

2.2.7. Extracellular flux analysis to measure oxygen consumption rate (OCR) 

The oxygen consumption rate of cells was measured using an XFe24 Seahorse Biosciences 

extracellular flux analyser (Seahorse Bioscience, MA, USA) [126]. Cells were seeded at a 
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density of approximately 25,000 cells/well (section 2.2.3). The complete DMEM was 

removed from wells and replaced with 37°C XF DMEM assay medium (supplemented with 

2 mM glucose and 1 mM sodium pyruvate). The cell plate was incubated for 1 h at 37°C, 

under atmospheric CO2 to allow the cells to stabilise. The assay measured oxygen 

consumption rate (OCR) in 3 min bursts followed by a period of re-oxygenation (3 min). 

This was repeated four times before adding inhibitors and repeating the OCR 

measurements. Four ports in the assay plate facilitated the separate addition of respiratory 

inhibitors into each well of the cell culture plate. These were added in the order 2-deoxy-

D-glucose, oligomycin A, FCCP, antimycin A/rotenone to achieve final concentrations of 

20 mM, 100 nM, 500 nM and 600 nM, respectively. Protein amount was estimated using 

the SRB assay [127] (section 2.4.1.2).  

 

2.3. Molecular Biology 

2.3.1. Quantitative real time PCR 

cDNA was produced from mRNA using a proprietary cells-to-CT kit (ThermoFisher 

Scientific, Hemel Hempstead, UK) and used according to the manufacturer’s instructions. 

Oligonucleotide sequences were used as primers and probes (Table 2.2). 6-

carboxyfluoroscein (FAM) and tetramethylrhodamine (TAMRA) were bound to the 5’ and 

3’ ends of the probes, respectively. The relative abundance of specific cDNA targets was 

estimated by qPCR. The reaction mixture contained 0.75 µM forward and reverse primers, 

0.16 µM probe and a proprietary master mix of Taq polymerase and appropriate buffer was 

used according to the manufacturer’s instructions. A 7900 HT Fast Real-Time PCR 

thermocycler was used to perform the qPCR. The temperature profile was 50°C for 2 min, 

95°C for 10 min, 60°C for 1 min, repeated 30 times. The sequences of oligonucleotide 

qPCR primers and probes are shown in Table 2.2. 
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Table 2.2 Oligonucleotide sequences of qPCR primers and probes used to quantify the 

relative amounts of ATP synthase subunit mRNA and b-actin mRNA. 

Target Forward primer 5'-3' Reverse	primer	5'-3'	 Probe	5'-3'	

e GCGGAGGTCAGGGACAAGA GTAGGCCACACCGAGGAACA CGCTCATCAAGCTCGGCCGC 

f CTGGCATGCTACGTGCTCTTT CAGAGTGTGTCCTCTTCAGTGGTATT CTACAAGCATCTCAAGCACGAGCGGC 

g CCGTAACCTTGTGGAGAAGACC AGCTCAACCTTGGCGTAGTACC AGTAAGTCACAGCAGCGTTCACCAGCG 

DAPIT GATGCGCAATACCAGTTCACTG AAGACAATCAATGCAATGCTTCC TGTGGCCAGTACACAGTTCATTCTACCTGTGA 

6.8 kDa PL CAGATTTGTGGTGCGTTCTGA GGTAAACTTTGGTGTAGTAGGGCTTC TGTCCTGCGCCAAGATGCTTCAAAGTATTA 

b-actin CCTGGCACCCAGCACAAT GCCGATCCACACGGACTACT ATCAAGATCATTGCTCCTCCTGAGCGC 

	
2.3.2. Agarose gel DNA electrophoresis 

Plasmid DNA (15 ng) was mixed with DNA loading buffer (10% v/v glycerol, 20 mM Tris 

pH 7.4, 5 mM EDTA, 0.01% w/v bromophenol blue and 0.2% w/v SDS) and loaded onto 

a 1% w/v agarose gel containing 100 ng/mL ethidium bromide made with TBE buffer (90 

mM Tris-boric acid, 1 mM EDTA, pH 8.3). DNA was electrophoresed at 40 V for 4 h. 

Visualisation of DNA bands was carried out by detection of light emitted by ethidium 

bromide during excitation at 302 nm using a Chemi-Doc XRS+ UV transilluminator 

(Biorad, Hemel Hempstead, UK). 

 

2.4. Protein biochemistry 

2.4.1. Protein estimation 

2.4.1.1. Bicinchoninic acid assay 

Protein concentrations were estimated using the bicinchoninic acid assay kit [128]. Samples 

were diluted appropriately and bovine serum albumin (BSA) was used as the reference 

standard. The 96 well plate assay format was used according to the manufacturer’s 

instructions and absorbance at 562 nm was measured with a Molecular Devices 

SpectraMax 384 plus spectrophotometer.  
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2.4.1.2. Sulphorhodamine B assay 

Following an extracellular flux assay, the Sulphorhodamine B (SRB) assay was used to 

estimate cell number [127]. Cells were fixed to the assay plate by adding 9% w/v (final 

concentration) trichloroacetic acid (TCA) to each well with incubation at 4°C for 1 h. The 

TCA solution was removed and each well washed with milliQ water (200 µL) three times.  

The plate was air dried for at 4°C for 48 h. Sulphorhodamine B solution (50 µL/well) was 

added to each well of the assay plate and left at room temperature for 20 min. The solution 

was removed and each well washed quickly 3 times with 1% v/v acetic acid (200 µL). The 

assay plate was air-dried for 1 h at room temperature then 10 mM unbuffered Tris (100 µL) 

was added to each well of the assay plate and triturated. This solution was diluted 2-fold 

with 10 mM unbuffered Tris and the absorbance of the solution was measured at 565 nm 

using a Molecular Devices SpectraMax 384 plus spectrophotometer. A standard curve of 

A565 versus cell number was determined and used to estimate cell numbers in each well of 

the assay plate. 

 

2.4.2. Mitoplast and mitochondrial membrane preparation 

Cells obtained from tissue culture were collected by centrifugation at 2300 x g for 5 min at 

4°C and the supernatant was removed. Mitoplasts were prepared by the addition of 

digitonin (to 0.5 mg/mL) in PBS with Complete protease inhibitor solution containing 1 

mM EDTA to the cell pellet, to a protein concentration of 5 mg/mL then incubated on ice 

for 15 min [129]. Mitoplast material was collected by centrifugation at 11200 x g, 5 min, 

4°C. The supernatant was removed and the pellet washed with PBS solution containing 

protease inhibitors. Enriched mitochondrial membranes were prepared using the same 

method, but addition of digitonin was to 2 mg/mL.  
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2.4.3. Purification of ATP synthase 

Mitoplasts were prepared (section 2.4.2) from cell pellets containing 15 mg protein (section 

2.4.1.1) and were resuspended to a volume of 500 µL with 0.1 M Tris-HCl pH 8, 0.15 M 

sodium chloride, 10% v/v glycerol, Complete protease inhibitors without EDTA, 90 µg/mL 

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, 30 µg/mL 1-palmitoyl-2-oleoyl-sn-

glycero-3-phosphoethanolamine, 30 µg/mL 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphoglycerol and 2 mM DTT. Digitonin (9 grams of detergent per gram of protein) was 

added to the samples and they were placed on ice for 15 min, with thorough mixing using 

a vortex mixer every 3 min. Insoluble material was pelleted by centrifugation at 10500 x g, 

4°C for 10 min. The supernatant was collected and was clarified by centrifugation through 

Spin-X micro cellulose filter tubes at 3300 x g, 4°C, 15 min. For quantitative mass 

spectrometry analysis of mitoplasts, a portion (10 µL) of the clarified sample was removed 

and the proteins reduced and alkylated (section 2.5.1). A slurry of ATP synthase 

immunocapture resin (100 µL) was added to the remaining material and samples were 

mixed by rotation overnight at 4°C. The immunocapture resin was pelleted by 

centrifugation, then the supernatant containing unbound material was removed and stored 

at -20°C. The beads were washed four times with wash buffer (20 mM Tris-HCl pH 8.0, 

0.15 M NaCl, 10% v/v glycerol, 90 µg/mL1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine, 30 ug/mL1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine, 30 

µg/mL1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol and 0.05% w/v digitonin). The 

immunocapture slurry was transferred to a micro-spin column using 100 µL of wash buffer. 

A syringe was used to displace the buffer from the column with air pressure. Wash buffer 

(200 µL) was added to the beads and displaced with the syringe. Elution of the sample was 

performed by adding 30 µL 0.2 M glycine-HCl, pH 2.5 containing 0.05% w/v digitonin to 

the beads. The samples were left at room temperature for 5 min and then centrifugation at 
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1400 x g to elute purified ATP synthase. Unbuffered Tris (1M) was added to the eluted 

sample at a final concentration of 150 mM to neutralise the pH. The proteins were reduced 

and alkylated, then the purity of the sample was examined by SDS-PAGE (sections 2.5.1 

and 2.4.6), followed by either MALDI mass spectrometry (section 2.5.3) or LC-MS mass 

spectrometry (section 2.5.4). 

 

2.4.4. Blue native-PAGE 

Protein complexes were fractionated by electrophoresis at 75 V, 4°C for 1 h using 

proprietary electrophoresis buffers (Appendix II). The cathode buffer contained 0.02% w/v 

Coomassie G250 blue dye (Appendix I) diluted according to the manufacturer’s 

instructions.  After 1 h, the cathode buffer was exchanged with a buffer that contained 

0.002% w/v Coomassie G250 blue dye. Proteins were then electrophoresed at 150 V, 4°C 

for 2 h with a X-cell Surelock electrophoresis tank, followed by transfer from the gel onto 

PVDF membrane using Western blotting (section 2.4.7). Samples were prepared by 

solubilising mitochondrial membranes (50 µg) with 3 and 6 mg digitonin (separately) per 

mg of protein in 11.25 µL of 1x Native sample buffer. Samples were incubated on ice for 

15 min and centrifuged at 10500 x g for 20 min at 4°C. The supernatant (10 µL) was 

removed and treated for 30 min at room temperature with 150 units of Benzonase to remove 

DNA. The Benzonase solution contained 1 mM magnesium chloride and 1% w/v digitonin 

in native sample buffer. Insoluble material was removed by centrifugation (10,500 x g, 4°C, 

20 min). Samples (approximately 5 µg) were loaded onto a commercial 3-12% acrylamide 

gradient bis-Tris Native-PAGE gel [130]. Native Mark protein standards and bovine heart 

mitochondria were used as molecular size markers. 
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2.4.5. Self-poured 12-22% acrylamide Tris-glycine SDS-PAGE gels 

Tris-glycine SDS-PAGE gels with an acrylamide gradient of 12-22% were made in-house 

using a 10 cm x 10 cm x 0.05 cm format [131]. Gels were composed of stacking and 

separating gel components. The stacking gel contained 4% acrylamide in 65 mM Tris-HCl 

pH 6.8, 0.05% w/v SDS, 0.0007% v/v N,N,N’,N’-tetramethylethylenediamine (TEMED) 

and 0.0003% w/v ammonium persulphate and the separating gel contained a 12-22% 

acrylamide gradient in 375 mM Tris-HCl pH 8.8, 0.1% w/v SDS, 0.0007% v/v TEMED 

and 0.0003% w/v ammonium persulphate.  

 

2.4.6. SDS-PAGE 

Proteins were fractionated using commercial 10-20% w/v or self-poured 12-22% 

acrylamide gradient Tris-glycine SDS-PAGE gels with Laemmli electrophoresis buffer 

(Appendix II) [131]. A mix of known protein standards were used to estimate the molecular 

size of migrating bands. Proteins loaded onto commercial 10-20% acrylamide gradient 

Tris-glycine gels were electrophoresed at 15 mA for 1 h, then 25 mA for 30 min, or until 

the dye front reached the bottom of the gel, using a X-cell Surelock electrophoresis tank. 

Proteins loaded onto self-poured 12-22% acrylamide gradient Tris-glycine gels were 

electrophoresed at 30 mA for 30 min. Gels containing samples to be analysed by immuno-

detection of proteins were equilibrated in carbonate transfer buffer (Appendix II). Gels 

containing samples to be analysed by mass spectrometry were stained with Coomassie blue 

gel stain (0.2% w/v Coomassie-R250 blue dye, 50% v/v methanol and 7% v/v acetic acid), 

and incubated at room temperature for 20 min. The gel was destained with 50% v/v 

methanol and 7% v/v acetic acid at room temperature with rocking. Silver staining of SDS-

PAGE gels containing immunopurified ATP synthase (section 2.4.3) was performed 

according to [132]. Samples that were to be analysed by Western blotting and immuno-
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detection of proteins (section 2.4.7) or prepared into mitoplasts or mitochondrial 

membranes (section 2.4.2) containing approximately 0.1 mg protein (section 2.4.1) were 

solubilised on ice for 15 min using 3 mg DDM per 1 mg of protein and 1x native sample 

buffer (19.5 µL) was used according to the manufacturer’s instructions. A centrifugation 

step at 10500 x g, 4°C for 20 min was used to separate insoluble material from solubilised 

membrane proteins. Proteins in the supernatant (5 µL) were precipitated with 20 volumes 

of cold ethanol and incubation at -20°C overnight to remove detergent. The sample was 

centrifuged at 10500 x g, 4°C for 10 min and the ethanol was removed and samples left at 

room temperature for 10 min to allow the residual ethanol to evaporate. Samples were 

resuspended in SDS-PAGE loading buffer (20% v/v glycerol, 2 mM EDTA, 100 mM Tris 

pH 6.8, 2% w/v SDS, 50 mM DTT and a trace of bromophenol blue). Samples that were to 

be electrophoresed by SDS-PAGE and analysed by mass spectrometry were reduced and 

alkylated as described in section 2.5.1. 

 

2.4.7. Western blotting and immuno-detection of proteins 

After electrophoretic separation of proteins, the proteins were transferred to a 

polyvinylidene difluoride membrane using Western blotting [133]. The SDS-PAGE gel or 

native-PAGE gel was equilibrated in carbonate transfer buffer (10 mM sodium hydrogen 

carbonate, 3 mM sodium carbonate and 0.025% w/v SDS, pH 9.9) for 10 min. The SDS 

was omitted for native gel transfer. Proteins were transferred to a PVDF membrane by 

electrophoreses with ice-cold carbonate transfer buffer at 300 mA, 60 V for 1 h, using a 

Biorad Western blotting tank. After transfer, protein binding sites on the PVDF membrane 

were blocked by incubation for 30 min on a rocker with a solution of Marvel skimmed milk 

prepared with 5 g milk powder in 50 mL PBS with 0.1% v/v Tween 20. The antibodies 

used to detect proteins are listed in Table 2.3. Sections of membrane were incubated with 
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the antibody in milk solution for 1 h, on a roller at room temperature, followed by washes 

(3 x 5 min) with PBS containing 0.1% v/v Tween-20, then incubation with a secondary 

antibody for 1 h at room temperature. The proteins on the membrane were visualised by 

the addition of enhanced chemiluminescence reagent (ECL). The membrane was pre-

incubated with the ECL reagent in the dark at room temperature for 5 min, and then signals 

developed on X-ray film in a dark room using a range of exposure times. 

Table 2.3 Antibodies used to detect subunits of ATP synthase and cellular proteins. 

Antibody Dilution Species Catalogue 
number 

Source 

ATP synthase e-subunit 1:2000 Rabbit HPA035010 
 

Sigma-Aldrich 

ATP synthase f-subunit 1:2000 Chicken - In-house 

ATP synthase g-subunit 1:10,000 Rabbit  - In-house 

ATP synthase DAPIT-subunit 1:2000 Rabbit 177161AP ProteinTech Europe 

ATP synthase 6.8 kDa PL-subunit 1:2000 Rabbit 147041AP ProteinTech Europe 

ATP synthase b-subunit 1:2000 Rabbit Sc-33618 Sigma-Aldrich 

b-actin 1:20,000 Mouse A2228 Sigma-Aldrich 

Succinate dehydrogenase chain B 1:3000 Rabbit A002868 Atlas Antibodies 

NDUFS1 1:10,000 Rabbit 12444-1-AP ProteinTech Europe 

HRP-conjugated chicken secondary 1:20,000 Rabbit A9046 Sigma-Aldrich 

HRP-conjugated rabbit secondary 1:10,000 Goat 31460 Thermo-Fisher 

HRP-conjugated mouse secondary 1:10,000 Sheep NXA931 GE Healthcare 

 

2.5 Mass spectrometry 

2.5.1. Reduction and alkylation of protein samples   

Immunopurified ATP synthase and digitonin solubilised mitoplasts (section 2.4.3) were 

mixed with gel sample buffer (20% v/v glycerol, 2 mM EDTA, 100 mM Tris-HCl pH 8, 

2% w/v SDS and a trace of bromophenol blue) and were reduced with 20 mM TCEP at 

37°C for 30 min and left at room temperature for 5 min. Alkylation was performed by 
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adding 15 mM (final concentration) iodoacetamide to the sample and incubation in the dark 

for 30 min. DTT (final concentration 16 mM) was added to the sample to quench unreacted 

iodoacetamide. Proteins were separated by SDS-PAGE using 12-22% or 10-20% 

acrylamide gradient Tris-glycine gels (sections 2.4.5 and 2.4.6). The gel was immediately 

stained with Coomassie stain (Appendix II) for 30 min and de-stained (Appendix II) for 4 

h. 

 

2.5.2. In-gel trypsin digestion of proteins  

Individual Coomassie stained protein bands or individual Coomassie stained lanes 

contained in SDS-PAGE gels were cut out of the gel using a clean razor blade and divided 

into approximately 4 pieces or 12 equal sized sections, respectively. The 12 gel sections 

were further divided into approximately 1mm3 pieces. Gel slices or sections were placed in 

a clean 1.5 mL tube; 50% v/v methanol was used to clean the tubes. Gel pieces were stored 

at -20°C until performing in-gel digestion.  In-gel trypsin digestion was performed as 

described by Shevchenko et al, 1996 [134] with the following modifications: ammonium 

bicarbonate was replaced with 20 mM Tris-HCl pH 8.0, iodoacetamide was not added 

because the proteins had been alkylated before the electrophoresis step (section 2.5.1). 

Trypsin (12.5 ng/µL) in 20 mM Tris-HCl pH 8.0 and 5 mM calcium chloride was added to 

cover the gel pieces and digested overnight at 37°C. Peptides were extracted from the gel 

using a solution of 60% v/v acetonitrile and 4% v/v formic acid (extraction solution) to 

cover the gel pieces at room temperature for 1 h. The extraction solution was removed and 

placed into a clean 1.5 mL tube. Tryptic peptide mixtures (0.35 µL) were applied to a 

MALDI plate and air dried before adding matrix solution (0.35 µL) containing a-cyano-4-

hydroxy-trans-cinnamic acid (10 mg/mL) in 60% v/v acetonitrile and 0.1% w/v 

trifluoroacetic acid to the dried peptide spot. Extraction of peptides was carried out a second 
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time for peptides that were to be analysed by LC-MS. The extraction solutions were 

combined and insoluble material removed by a centrifugation step at 10,500 x g. 1/3 of the 

volume was removed and dried in a Thermo Savant SpeedVac SP121P concentrator at 

30°C for 30 min. The dried peptides were re-dissolved in 0.1% v/v trifluoroacetic acid and 

2% v/v acetonitrile before being separated on a nano-LC column. 

 

2.5.3. MALDI TOF-TOF mass spectrometry for protein identification 

MALDI TOF-TOF analysis was performed using an Applied Biosystems 4800 MALDI-

TOF mass spectrometer (AB Sciex, Warrington, Cheshire). The mass spectra were 

calibrated with auto-digested ion products of trypsin (m/z ratios of 2163.057 and 2273.160) 

and a calcium ion adduct derived from the matrix solution (m/z ratio of 1060.048). 

Identification of proteins was performed using a Mascot search engine and a UniProt 

sequence database of human proteins [135]. 

 

2.5.4. LC-MS mass spectrometry 

Samples containing tryptic peptides that had been labelled by SILAC (section 2.2.4) were 

separated by reverse phase HPLC using a Thermo/Proxeon Easy-nanoLC on a C18 column 

(75 µm internal diameter and 100 mm length), using a gradient of 0-40% acetonitrile and 

1% formic acid (Nanoseparations, Nieuwkoop, Netherlands). Heavy SILAC labelled 

tryptic peptides with either a lysine or arginine at their c-termini contain either eight or ten 

stable isotopes of C14 and N15, respectively. The heavy labelling of peptides results in a 

mass shift of either 10.01 or 8.01 Da for arginine or lysine, respectively, compared to 

unlabelled or ‘light’ peptides.  Separated peptides were ionised by electrospray and 

introduced into a Q-Exactive Plus (Thermo Scientific, Hemel Hempstead, UK) Orbitrap 

mass spectrometer, using a gradient of 5% v/v – 95% v/v aqueous acetonitrile containing 
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0.1% formic acid. Raw data were analysed by MaxQuant 1.5.0.12 software using a UniProt 

human protein sequence database and an Andromeda algorithm which uses the MASCOT 

search engine to identify and quantify peptide SILAC isotopic pairs and proteins [135–

137]. The database was modified to include the sequences of the three mature isoforms of 

IF1 and the IF1 precursor protein (Fig. S22 [138]. Perseus version 1.2.0.17 was used to 

process the MaxQuant output data. The data were filtered to remove exogenous 

contaminant proteins, proteins identified by a decoy database designed to establish the 

probability of false positive identification, proteins that were identified using peptide 

sequences that were not unique to the parent protein, and protein ratios with peptide counts 

less than or equal to 1. Experiments were performed in duplicate with reciprocal labelling 

orientations and the ratios from one experiment were inverted and the ratios of both 

experiments were converted to a Log2 scale (Fig. 2.1). The median of the two values was 

calculated and plotted on a bar graph. Statistical significance was calculated with the 

Benjamini-Hochberg method to quantify statistical outliers. [139].  

 

2.6. CRISPR-Cas9 mediated gene deletion  

2.6.1. Preparation of gRNA 

Guide RNAs were designed using the CRISPR design tool (http://www.genome-

engineering.org/crispr/). Phosphorylation and annealing of guide RNAs (gRNAs) was 

performed as described by Ran et al, 2013 [140]. The reaction mixture contained 5 µM 

sense and antisense gRNA, 0.5 µL T4 ligation buffer and T4 kinase per 10 µL reaction and 

10 mM ATP. The oligonucleotides were phosphorylated at 37°C for 30 min followed by a 

step of 95°C for 5 min to remove secondary structure and then annealed by cooling to 25°C 

at a rate of 5°C/min. A list of gRNA sequences is shown in Table 2.6. The gRNA sequences 

used to transfect HAP1 cells were ATP5J2-1 and ATP5J2-5. 
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Fig. 2.1 Representation of a SILAC experiment. Cells were reciprocally labelled with ‘heavy’ or ‘light’ 

amino acids and mixed in a 1:1 ratio. Cells from experiment 1 contained heavy control cells and light treated 

and cells from experiment 2 contained light control cells and heavy treated cells. Treatment refers to siRNA 

or CRISPR-Cas9 mediated suppression or disruption of the expression of supernumerary subunits of ATP 

synthase, respectively. After combination of the cells, mitoplasts were prepared and solubilised with 

digitonin. A portion was analysed by SDS-PAGE, and ATP synthase was immunopurified from the remaining 

mitoplast material, which was also analysed by SDS-PAGE. Peptides were obtained by trypsin digestion of 

the proteins, and protein ratios were calculated from the median peptide ratios. Protein ratios from each 

experiment are represented by each axis on the scatter plot. Proteins that are relatively increased or relatively 

decreased as a result of treatment with siRNA or CRISPR-Cas9 mediated gene editing are in the top right and 

bottom left quadrants of the graph, respectively. Contaminants are in the top left and bottom right quadrants. 

Unchanged proteins are within the circled region.  

 

Table 2.6 Guide RNAs and their sequences. 
gRNA Sequence 5'-3' 

ATP5J2-2 CCTCGCGCGGTCCGGCACAG 

ATP5J2-5 GTAAGGCTGTTTGGACTCCG 

ATP5L-1 TTCCGGCGGGTGACATTCAGCCGGC 

ATP5L-2 AGCGCGATGTGAGACCGCCG 
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2.6.2. Ligation of gRNA into the pSpCas9(BB)-2A-GFP plasmid 

Single phosphorylated, duplex gRNA oligonucleotides were ligated into the pSpCas9(BB)-

2A-GFP plasmid using T7 DNA ligase. The reaction mixture contained 0.25 pmol gRNA, 

26 ng plasmid DNA, 460 Units T7 ligase and 1 µL proprietary ligation buffer per 10 µL 

reaction. The reaction was left at room temperature over-night. A map of the pSpCas9(BB)-

2A-GFP plasmid is shown in Fig. 2.2. 

 

Fig. 2.2. Guide RNA insertion into the pSpCas9(BB)-2A-GFP plasmid. The plasmid contains an sgRNA 

sequence, which binds Cas9.  The gRNA pairs are ligated into the insertion site to guide Cas9 to the DNA 

sequence to be disrupted. The plasmid contained GFP as a reporter gene. The GFP element assists with FACS 

(fluorescence activated cell sorting), as cells successfully transfected with the plasmid will also express GFP.  

The figure is from [140].  

 

2.6.3. Transformation of gRNA plasmids into competent E. coli cells 

NEB 5-a competent E. coli cells were transformed according to the manufacturers heat-

shock protocol (C2987). For each gRNA-pSpCas9(BB)-2A-GFP plasmid, 25 µL NEB 5-

alpha was thawed at 0 °C for 30 min. A final concentration of 0.37 µM plasmid DNA was 

added to the thawed cells and mixed gently without pipetting. The mixture was incubated 

on ice for 30 min, heat-shocked at 42 °C for 30 s, then placed on ice for 5 min before the 

cells were incubated with shaking for 1 h at 37°C in 100 µL SOC outgrowth medium (0.5% 
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w/v yeast extract, 2% w/v tryptone, 10 mM NaCl, 2.5 mM potassium chloride, 10 mM 

magnesium chloride, and 20 mM glucose). The culture was spread onto LB agar with 100 

mg/mL ampicillin and incubated over-night at 37°C. 

 

2.6.4. Purification of pSpCas9(BB)-2A-GFP gRNA plasmids 

Single colonies of cells were picked and grown overnight in LB media containing 100 

mg/mL ampicillin, at 37°C with shaking. DNA was purified from the cells using a Qiagen 

DNA miniprep kit according to the manufacturer’s instructions. Briefly, E. coli cells 

(section 2.6.3) were disrupted with the lysis buffers provided and centrifuged at 10500 x g 

to obtain a supernatant containing DNA. The supernatant was added to an affinity column 

containing a proprietary silica membrane that binds plasmid DNA. A wash step was used 

to remove impurities and purified plasmid DNA was eluted in 10 mM Tris-HCl pH 8.5 by 

centrifugation. All centrifugation steps were carried out at 10500 x g and room temperature. 

The purified plasmid DNA (10 µL) was precipitated with 3 volumes of 100% v/v ethanol, 

1 µL Pellet paint co-precipitant and 370 mM sodium acetate. The ethanol was removed 

after centrifugation at 10500 x g for 5 min, and left at room temperature for 10 minutes to 

allow the residual ethanol to evaporate. The DNA pellet was solubilised in 10 µL nuclease 

free water. 

 

2.6.5. In-vitro assay to confirm the ability of gRNAs to cut f-subunit DNA 

Plasmid DNA containing the DNA sequence of ATP synthase f-subunit was digested with 

gRNA guided Cas9 overnight at 37°C. The reaction contained 1 µL scaffold RNA, 1 µL 

Cas9 protein and 1 µL substrate plasmid. The samples were electrophoresed (section 2.3.2) 

to resolve circular undigested DNA from linear digested DNA. The sample (in DNA 

loading buffer (appendix II) was loaded onto a 1% w/v agarose gel in 90 mM Tris-boric 
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acid, 1 mM EDTA and 100 ng/mL ethidium bromide, pH8.3 and was electrophoresed at 

100 volts for 20 min. Visualisation of DNA bands was performed using UV light at 302 

nm.  

 

2.6.6. Transfection of HAP1 cells with pSpCas9(BB)-2A-GFP plasmids 

HAP1 cells were seeded to 15% confluence in a tissue culture plate and placed in an 

incubator over-night at 37°C, under 5% CO2, and 95% relative humidity.  A transfection 

solution (containing plasmid DNA with gRNAs ATP5J2-1 and ATP5J2-5) was made by 

combining 750 µL OptiMEM and 22.5 µL Lipofectamine-3000 transfection reagent with 

750 µL OptiMEM, 9 µg J2-1-1 plasmid DNA, 9 µg J2-5-2 plasmid DNA and 2 µL/µg 

DNA p3000 transfection reagent. The solution was left at room temperature for 20 minutes. 

Cells were washed with sterile warm dPBS and 250 µL transfection solution added to each 

well. Cells were left for 15 minutes, then OptiMEM (250 µL) was added. The plate was 

incubated at 37°C for 4 h before the addition of 20% v/v FBS in IMDM (0.5 mL/well) 

without antibiotics was added.  

 

2.6.7. Cell sorting and seeding single cells for colony growth 

Two days after transfection, HAP1 cells were displaced from the plate with trypsin-EDTA 

dissociation reagent, resuspended in cold IMDM with 10% v/v FBS, 100 U/mL penicillin 

and 100 µg/mL streptomycin and centrifuged at 100 x g for 3 min at room temperature. 

The supernatant was removed, cells resuspended in IMDM (1 mL) with FBS and 

antibiotics, transferred to a sterile vial and placed on ice. Flow cytometry was performed 

with a BD Influx cell sorter using FACS software. Cells were counted and sorted based on 

the intensity of the fluorescence signal from GFP in the cells then single cells were seeded 

into 96 well sterile tissue culture plates. Plates were incubated at 37°C, 5% CO2 with 
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complete IMDM. The medium was changed once each week and cells from single colonies 

were dissociated from the plate, diluted 3-fold and transferred into single wells of a 24 well 

plate. Clonal cells were grown to 70% confluence, dissociated from the plate with trypsin-

EDTA dissociation reagent and seeded in triplicate in 24 well plates and incubated until 

they reached 70% confluence. Wells in two of the three replicate plates were washed with 

0.4 mL PBS and the plates stored at -20°C immediately. Wells in the remaining plate were 

trypsinised with 0.1 mL of the dissociation reagent and then 0.1 mL cold freezing solution 

was added (20% v/v DMSO, 50% v/v FBS, 30% v/v IMDM), followed by addition of 0.1 

mL 10% v/v DMSO, 50% v/v FBS, 40% v/v IMDM. Cell plates were wrapped in two 

layers of tissue and were placed on dry ice for ~30 min until the media was frozen, followed 

by storage at -80°C. 

 

2.6.8. Characterisation of the gene deletion status of clonal cell populations 

Clonal cells in 24 well plates that had been washed with PBS were lysed with 100 µL buffer 

(10 mM Tris HCl, pH 7.4, 0.2% w/v SDS, Roche protease inhibitor (1 tablet/50 mL) and 

0.5 units of Benzonase). SDS-PAGE loading buffer (section 2.4.6), was added to the lysed 

cell solution and 10 µL of each sample was resolved by SDS-PAGE. Proteins were 

transferred to a PVDF membrane by electrophoresis and detected with antibodies raised 

against the f- and g-subunits and b-actin was used as a loading control (section 2.4.7). The 

presence of the truncated f-subunit or g-subunit genes were assessed by amplifying the f-

subunit or g-subunit genes by PCR and analysing the DNA products using agarose gel 

electrophoresis. Genomic DNA was purified from clonal HAP1 cells grown in 24 well 

plates. Protein was removed by incubation with 0.4 mg/mL of Proteinase K at 50°C for 2 

h in 0.2% w/v SDS, 75 mM sodium chloride and 20 mM EDTA. The DNA was transferred 

to a 1.5 mL tube and an equal volume of propan-2-ol was added. Samples were kept at 4°C 
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overnight then centrifuged at 10500 g at 4°C for 20 min to pellet DNA. The propan-2-ol 

was removed and the DNA was washed with 200 µL absolute ethanol followed by a second 

centrifugation. The ethanol was removed, samples air-dried and the DNA was re-dissolved 

in buffer EB (10 mM Tris pH 8.5). DNA was amplified by PCR using 2.5 µL 10x Hot Start 

reaction buffer/25 µL reaction, 1.5 mM magnesium sulphate, 0.2 mM dNTPs, 10% v/v 

DMSO, 0.4 µM forward and reverse primers, 0.75 units of Hot Start DNA polymerase and 

2 µL genomic DNA template/25 µL reaction. The temperature profile was 94°C for 3 min 

then 35 cycles of 94°C for 20 s, 59°C for 20 s and 68°C for 40 s followed by a final step of 

72°C for 5 min. Agarose gel electrophoresis was used to separate f- or g-subunit DNA PCR 

products (section 2.3.2). The primers for generating the f- and g-subunit PCR products are 

presented in Table 2.7. 

 

Table 2.7 Primer sequences for the f- and g-subunit used to amplify the f- and g-genes 

from HAP1 genomic DNA. ATP5J2 forward and ATP5J2 reverse are the f-subunit 

primers and ATP5L forward and ATP5L reverse are the g-subunit primers. 

Primer Sequence (5’-3’) 

ATP5J2 forward CTGCAGGACCCTCGGATTTT 

ATP5J2 reverse TTCACCCTCCACGCCTAAC 

ATP5L forward GGTTTTCCGGACCTCTACGA 

ATP5L reverse ATCTGCAGGTCAGACGAGTG 
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3. Results 
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3.1. Investigation of the functions of the supernumerary subunits of human ATP 

synthase 

The supernumerary subunits e, f, g, DAPIT, A6L and 6.8 kDa proteolipid of human ATP 

synthase have no known functions in mitochondria [82, 87, 100, 124]. Human 143B cells 

were treated separately for 96 h with siRNAs to deplete the e-, f-, g-, DAPIT- and 6.8 kDa 

proteolipid-subunits. The roles of the f- and g-subunits were also investigated by the 

disruption of the corresponding genes in human HAP1 cells.  

 

3.2. Structures of the genes for the nuclear encoded supernumerary f- and g-subunits 

of ATP synthase 

The chromosome locations of the genes encoding the f- and g-subunits and their structures 

are summarised in Table 3.1 and Fig. 3.1. The diagrams were constructed with gene and 

mRNA sequences from the ‘genome reference consortium human build 38’ (patch release 

7, GRCh38.p7) [141]. The gene for the f-subunit contains an alternative 5’ donor site at 

position 73, which allows the synthesis of the f-2 isoform in addition to the f-1 isoform. 

Isoform f-1 has six additional amino acids (GECPAP) near to its N-terminus (Fig. 3.3B. 

 

Table 3.1 Chromosome locations of supernumerary subunits f and g of human ATP 

synthase. 

Subunit Gene Chromosome, location 

f ATP5J2 7, 7q22.1 

g ATP5L 11, 11q23.3 
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Fig. 3.1 Structures of genes encoding supernumerary subunits f and g of ATP synthase. Dashed lines at 

the beginning and end of the genes represent the 5’ and 3’ UTRs, respectively, and solid lines and black boxes 

are introns and exons, respectively. The numbers below and above each box or line correspond to the number 

of base pairs in the introns and exons, respectively.  

 

3.2.1. The efficacy of the gRNAs ability to cut DNA 

In order to disrupt the f- and g-subunit genes, the CRISPR-Cas9 system was used. To 

demonstrate that the Cas9 nuclease could cut the f-subunit gene, a plasmid containing the 

f-gene was incubated with RNA guided Cas9 and four gRNA molecules (Fig. 3.2A). 

Nicked, linear and supercoiled forms of the plasmid DNA, shown at the top, middle and 

bottom of the gel, were produced. The gRNAs in lanes 2 and 4 were the most effective at 

generating linear DNA, as the majority of the product DNA was present as the linearised 

form. Guides 1 and 3 were less efficient, as some supercoiled DNA remained, plus more 

nicked DNA was produced than in lanes 2 and 4. Therefore, guides 2 and 4 were chosen to 

transfect HAP1 cells; they correspond to gRNAs ATP5J2-2 and ATP5J2-5 in Table 2.6. 

The ATP5L1 and ATP5L2 gRNAs were confirmed by Dr. Jiuya He (MRC-MBU) to cut 

the ATP5L gene efficiently, and the HAP1 cells were also transfected by Dr. Jiuya He. 

Once the cells had been transfected and clonal populations grown from single cells, the 

gene disruption was demonstrated by amplifying the f- and g-genes from genomic DNA 

from the clonal populations by PCR followed by analysis of the product by agarose gel 
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electrophoresis (Fig. 3.2B and C, respectively). The PCR product from the control f-gene 

was 384 bp long, and the PCR product containing the Df-gene deletion was 315 bp (Fig. 

3.2B). The PCR product from the control g-gene was 415 bp long and the Dg-gene was 344 

bp long (Fig. 3.2C). Both DNA products were analysed by Sanger sequencing (Fig. 3.3A 

and 3.4A).  

 

 

    
Fig. 3.2 Disruption of the f-gene. In panel A, validation of gRNAs for disruption of the f-gene in HAP1 

cells. The control contained Cas9 and the plasmid containing the f-gene, but no gRNAs. Lanes 1-4 correspond 

to four gRNAs added to the plasmid containing the f-gene with Cas9. Panels B and C, the PCR products from 

control and Df-HAP1 cells and Dg-HAP1 cells, respectively. Their sequences were determined. 
 

 
3.2.2. Disruption of the genes for the f- and g-subunits  

The Cas9 nuclease was guided to specific sequences in the f- and g-genes by pairs of guide 

RNA molecules with PAM (protospacer adjacent motif) sequences. For the f-subunit gene, 

the 5’-3’ and 3’-5’ PAMS are CCT and GCC, respectively and for the g-subunit gene the 

5’-3’ PAMS are CGG and CCG, respectively. The deletions resulted in 69 and 71 base 

pairs (bp) of DNA being removed from the f- and g-subunit genes, respectively. Within the 
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deleted regions, the 5’ cap of the corresponding mRNA and translational initiator 

methionine codon were removed from both the f- and g-subunit genes. In the f-subunit 

gene, the entire sequence of exon I was removed, and 17 bp were removed from intron A 

(Figs. 3.1 and 3.3A). For the g-subunit gene, 33 bp upstream of exon I were removed and 

32 out of 51 bp were removed from the start site of exon I, resulting in a frame shift 

mutation. The effects on the DNA and protein sequences are shown in Figs. 3.3 and 3.4, 

respectively. The f-subunit gene deletion occurred across an intron-exon boundary, 

between exon I and intron A (Fig. 3.1 and 3.3A), which introduced a frame-shift mutation 

upstream of intron A. If the ribosome was able to bind to a start site ATG codon upstream 

of the f- or g-subunit gene deletions and transcribed the corresponding mRNA, the frame-

shift mutation would probably result in proteins with amino acid sequences did not 

resemble those of the WT f- and g-subunit proteins. The predicted theoretically translated 

protein sequences after the f- and g-subunits were disrupted are in Fig. 3.3B and 3.4B, 

respectively.  
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Fig. 3.3 The effect of gene editing on the f-gene and protein. A, A 69 bp deletion in the gene removed the 

sequence encoding part of the 5’ cap of the corresponding mRNA, the ATG initiator codon (shown in yellow) 

and the following 9 codons from exon I and one base pair from intron A (Fig. 3.2). The binding sites of the 

gRNAs are grey and the coding region of exon I is surrounded by square brackets. B, The gene disruption 

deleted 10 and 6 amino acids from the N-terminus of isoforms 1 and 2, respectively. WT, wildtype; Df, 

deletion strain Df-HAP1. There is no evidence that the truncated f-subunit protein is translated or that there 

is a transcript. 
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Fig. 3.4 The effect of gene editing on the gene and protein of the g-subunit. A, A 71 bp deletion in the 

gene removed the ribosome binding site, the initiator codon (yellow) an additional 35 bp corresponding to 11 

codons and 2 bp in exon I. The binding sites for gRNAs are grey. The coding region of exon I is marked 

between square brackets. B, The gene disruption deleted 13 amino acids at the N-terminus of subunit-g. WT, 

wildtype; Dg, deletion strain Dg-HAP1. There is no evidence that the truncated gene is transcribed or the 

protein translated.  

 

3.3. Suppression of the expression of the e-subunit 

The role of the e-subunit of ATP synthase was investigated by suppressing its expression 

using siRNA, followed by biochemical characterisation of the enzyme. The subunit 

composition of immunopurified ATP synthase depleted of the e-subunit was examined by 

SDS PAGE and mass mapping (Fig. 3.5A and B, and Appendix III Table S1). The 

identification of subunits was based on peptide mass mapping of a previous sample of 

control ATP synthase. 
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Fig. 3.5 Analysis by SDS-PAGE of residual ATP synthase complexes from 143B cells where the 

expression of the e-subunit had been suppressed with RNAi molecules. Cells were treated with 90 nM 

siRNA for 96 h and then mitoplasts were prepared, followed by solubilisation of membrane proteins with 

digitonin (13.4g/g protein) and immunopurification of ATP synthase. Proteins were detected with either 

Coomassie blue dye in panel A, or by silver staining in panel B. The identities of subunits of the enzyme 

identified by peptide mass mapping are indicated on the left-hand side of the gels. The labels f-1 and f-2 are 

the two isoforms of the f-subunit. The efficiency of suppression of the e-subunit protein after 96 h is in panel 

C, where the complex I subunit NDUFS1 was used as a loading control. The e-subunit transcript level after 

treatment with siRNA for 48 h panel D and was normalised to cellular transcript levels of b-actin. 

 

ATP synthase from the control cells contained all eighteen subunits of the enzyme. 

Compared to the control, the residual ATP synthase complex from cells with suppression 

of the e-subunit contained similar levels of all five subunits from the F1-catalytic domain 

of the enzyme (α, β, γ, δ and ε), plus the peripheral stalk subunits OSCP, F6, b and d, and 

the c-subunit of the enzyme’s rotor from the membrane domain. The level of the FO domain 

a-subunit had also decreased. The amount of the natural inhibitor of ATP synthase, IF1, 

was increased compared to the control. In e-subunit depleted ATP synthase, depletion of f- 

isoform 1 (f-1), f- isoform 2 (f-2), g-, F6-, DAPIT-, A6L- and 6.8 kDa proteolipid-subunits 

is also apparent. The level of suppression of the e-subunit protein and transcript are 

presented in Fig. 3.5C and D, respectively. 
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To analyse the relative quantity of ATP synthase subunits in the residual ATP synthase 

complex with suppression of the e-subunit, SILAC with mass spectrometry was performed 

(Fig. 3.6A and B).   

The data are presented in scatter plots showing proteins with increased association, 

decreased association or unchanged association with ATP synthase, and are represented in 

the upper right quadrant, lower left quadrant and middle of the scatter plots, respectively. 

See Fig. 2.1 for an explanation of the interpretation of these scatter plots. Proteins contained 

in both immunopurifed ATP synthase and mitoplasts were analysed to investigate the 

possibility of protein degradation or increased association of proteins with ATP synthase. 

As a result of depletion of the e-subunit, the majority of the subunits in the FO domain of 

ATP synthase dissociated from the enzyme. The subunits with a four-fold relative decrease 

in association with ATP synthase were the a-subunit, the two isoforms of the f-subunit (f-

1 and f-2), the g-subunit, and the DAPIT- and 6.8 kDa proteolipid-subunits. The A6L-

subunit displayed a three-fold relative decrease in association with ATP synthase. In 

contrast, there was a three-fold relative increase of IF1-M1, which corresponds to one of 

the mature forms of the IF1 protein (Appendix V, Fig. S22), indicating a relative increase 

in association of IF1 with ATP synthase compared to the control. IF1-M1 contains an N-

terminal Phe-25 residue. The relative abundances of subunits of the F1 domain and the 

peripheral stalk were unchanged. The mitochondrial 
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Fig 3.6 Relative quantitative mass spectrometric analysis of ATP synthase in e-subunit depleted ATP 

synthase from mitoplasts. Mitoplasts were prepared from 143B cells which had been labelled with SILAC 

and treated for 96 h with 90 nM siRNA. In panel A, ATP synthase was immunopurified from mitoplasts 

solubilised with digitonin (13.4g/g protein). Proteins were separated by SDS-PAGE, individual bands were 

Coomassie stained, then in-gel digested with trypsin and analysed by quantitative mass spectrometry. Black 

squares and grey circles represent ATP synthase subunits and all other proteins identified in the sample, 

respectively. Each axis represents data points from experiments 1 and 2. The data points are relative protein 

ratios derived from peptide pair ratios calculated using MaxQuant. In panel B, the data points for ATP 

synthase in panel A are summarised. The bars represent the median relative ratios from both experiments and 

the error bars represent the range of the ratios. In panel C, proteins from a portion of solubilised mitoplast 

material was analysed. The portion was ethanol precipitated, and analysed by SDS PAGE as in panel A. In 

panel D, the data points for ATP synthase in panel C are summarised. IF1 was not identified in the mitoplast 

experiment.  

 

proteome was also investigated by analysing mitoplasts (Fig. 3.6C and D). Subunits that 

were relatively decreased in the immunopurified ATP synthase (Fig. 3.6A and B) were also 

decreased to a similar extent in mitoplasts, indicating that these subunits are degraded when 
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they are lost from the enzyme in e-subunit depleted cells. The evidence that these subunits 

are degraded is that these subunits do not remain unchanged in mitoplasts. No protein ratios 

were obtained for IF1 in mitoplasts.  Protein ratios for the data points are included in 

Appendix IV, Tables S4 and S5.  

 

In order to assess the respiratory capacity of cells with suppression of the e-subunit, the 

oxygen consumption rate (OCR) of cells was measured (Fig. 3.7A). The respiratory states 

measured were basal respiration, (respiration before the addition of respiratory 

modulators), respiration after inhibition of glycolysis with 2-deoxy-D-glucose (2DG), 

respiration after inhibition of the catalytic activity of ATP synthase with oligomycin A 

(oligo) and accelerated respiration induced by the respiratory uncoupler FCCP. The cellular 

OCR during glycolysis inhibited respiration was significantly lower in e-subunit depleted 

cells compared to the control cells. Also, ATP-linked respiration (the difference between 

glycolysis inhibited respiration and oligomycin sensitive respiration) was also significantly 

lower in e-subunit suppressed cells, suggesting that the respiratory chain in subunit-e 

depleted mitochondria cannot pump more protons due to the lack of proton transport 

through ATP synthase.  The mitochondrial OCR (Fig. 3.7B) was calculated by subtracting 

non-mitochondrial respiration (measured after the joint addition of antimycin A and 

rotenone) from basal, oligomycin sensitive and accelerated respiration. Basal and 

accelerated mitochondrial respiration were significantly decreased in cells with e-subunit 

depletion. ATP synthase depleted of the e-subunit did not display a significant difference 

in oligomycin sensitivity compared to the control, as indicated by the cellular and 

mitochondrial OCR after addition of oligomycin. Once the mitochondrial respiration was 

calculated, significant differences in the basal and accelerated respiration were observed.  
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Fig. 3.7 The OCR of 143B cells depleted of the e-subunit of ATP synthase. 143B cells were analysed 96 
h after transfection of the cells with 90 nM siRNA using a Seahorse XFe24 instrument. In panel A, the cellular 
OCR is measured after the additions of the respiratory modulators 2-deoxy-D-glucose (2-DG), which inhibits 
glycolysis, oligomycin A (oligo), which inhibits ATP synthase, FCCP, a protonophore which accelerates 
respiration, and antimycin A with rotenone (AA/Rot), which are complex III and complex I inhibitors, 
respectively. The concentrations of each modulator added to the cells was 20 mM, 1 µM, 0.5 µM and 0.6 µM 
each, respectively. Each data point represents the mean (n=5) +/- the standard deviation. In panel B, the 
mitochondrial OCR (the measurement with the AA/Rot residual rate subtracted) is displayed during basal, 
ATP synthase inhibited (oligo) and accelerated (FCCP) respiration. The bars represent the mean 
mitochondrial OCR of the four time points during each measurement period. A paired Students’ t-test was 
used to show statistical significance between control and siRNA treated groups. The efficiency of the siRNA 
mediated suppression of the e-subunit transcript level and protein are in panels C and D, respectively. The e-
subunit mRNA level was normalised to transcript levels of cellular b-actin.  
 
This may be due to the level of e-subunit depletion, where if the e-subunit had been depleted 

more than was observed, the significant differences may have also been observed in Fig. 
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3.7 A. The level of suppression of the transcript and e-subunit protein in this experiment 

are presented in Fig. 3.7C and D, respectively. 

The effect of suppressing the e-subunit on the oligomerisation state of ATP synthase was 

examined by blue native (BN)-PAGE (Fig. 3.8A). Mitochondrial membranes were treated 

with digitonin (6 g/g protein) to solubilise native protein complexes, which were separated 

by BN-PAGE, followed by Western transfer and antibody detection of protein complexes 

containing the b-subunit of ATP synthase. Oligomeric ATP synthase and the ATP synthase 

dimer were significantly depleted in subunit-e depleted mitochondrial membranes, and sub-

complexes e-S1 and e-S2 accumulated. Oligomers (O) represent two forms of multimers 

containing the ATP synthase dimer. The level of the suppression of the e-subunit protein 

in this experiment is presented (Fig. 3.8B).   

 

Fig. 3.8 Analysis of the native state of ATP synthase after depletion of the e-subunit using siRNA. 

Mitochondrial membranes were prepared from 143B cells within 3 h of harvesting and membrane proteins 

were solubilised with digitonin (6g/g protein). Native protein complexes were separated by BN-PAGE 

followed by immunoblotting and detection of ATP synthase complexes with a b-subunit antibody. O refers 

to oligomeric forms of ATP synthase, D is dimeric ATP synthase, M is monomeric ATP synthase, e-S1 and 

e-S2 are subcomplexes of ATP synthase in order of decreasing size. The SDHA subunit of complex II was 

used as a loading control. The efficiency of the siRNA to suppress the expression of the e-subunit is in panel 

B.  
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3.4. Suppression and disruption of the expression of the f-subunit 

The subunit composition of ATP synthase was examined, in 143B cells where the 

expression of the f-subunit had been suppressed by siRNA, and in Df-HAP1 cells (Fig. 

3.9A and B and Fig. 3.9E and F, respectively). ATP synthase was immunopurified from 

mitoplasts, analysed by SDS-PAGE and subunits were identified by peptide mass mapping 

(Appendix III, Tables S1 and S2). When the expression of the f-subunit was suppressed, 

the subunits that remained unchanged compared to the control were those in the F1 domain, 

the peripheral stalk and the c-subunit. The a-subunit was depleted compared to the control, 

and the band containing IF1 was more intense than in the control. Depletion of subunits 

was seen in the band containing the f-subunit isoform 1, and there was a slight decrease in 

the band containing the f-subunit isoform 2, g- and F6-subunits, which co-migrate. The 

band containing the A6L- and 6.8 kDa proteolipid-subunits was depleted, as well as the 

band containing the e- and DAPIT-subunits. The level of suppression of the f-subunit 

protein and transcript are presented in Fig. 3.9C and D. The changes in ATP synthase where 

the f-subunit had been suppressed with siRNA oligonucleotides (Fig. 3.9A and B) were 

reflected, but more severely, in Df-HAP1 ATP synthase (Fig. 3.9E and F). When a protein 

is depleted with siRNA, the changes in the level of that protein are only transient and the 

protein is not lost completely. In contrast, the disruption of a gene results in sustained, 

indefinite loss of the protein, and so the effects of the loss of that protein are usually 

amplified, as in the case of Df-HAP1 ATP synthase.  In Df-HAP1 ATP synthase, the loss 

of the A6L-, 6.8 kDa proteolipid-, DAPIT- and a-subunits is apparent. The band containing 

the DAPIT- and e-subunits from Df-HAP1 ATP synthase stains less intensely than the 

equivalent band in the control. The DAPIT-subunit was not automatically identified by 

mass spectrometry peptide mass mapping, suggesting that the majority of the protein 

contained in this band in Df-HAP1 ATP synthase is the e-subunit. The band containing IF1 
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stains more intensely than the control in Df-HAP1 ATP synthase. The F1 and peripheral 

stalk subunits were unchanged. In the FO domain, the g-, and e-subunits were unchanged. 

The level of the f-subunit compared to the control in Df-HAP1 mitoplasts is presented in 

Fig. 3.9G. 

 

Fig. 3.9 Analysis of residual ATP synthase complexes from 143B cells where the expression of the f-

subunit had been suppressed with RNAi molecules, or from Df-HAP1 cells. Mitoplasts from cells 

transfected with 90 nM siRNA for 96 h (panels A and B), or mitoplasts from Df-HAP1 cells (panels E and F) 

were solubilised with digitonin (13.4g/g mitoplast protein) and ATP synthase was immunopurified. Proteins 

were separated by SDS-PAGE and visualised with either Coomassie blue dye in panels A and E, or by silver 

staining in panels B or F. The ATP synthase subunits identified by mass mapping are shown to the left of the 

gels. The extent of the suppression of the f-subunit protein is in panel C, the complex I subunit NDUFS1 was 

used as a loading control. The level of the f-subunit transcript after the cells were exposed to the siRNA for 

48 h is in panel D, and was normalised to transcript levels of cellular b-actin. The absence of the subunit-f 

protein in mitoplasts from Df-HAP1 cells is in panel G.  
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To quantify the relative changes in ATP synthase subunits after the suppression or 

disruption of the expression of the f-subunit, ATP synthase was immunopurified from f-

subunit depleted or Df-HAP1 mitoplasts, respectively. SILAC labelling and mass 

spectrometry were used for relative quantification of the proteins. The pattern of depleted 

subunits in Fig. 3.9 was reflected in the analysis of subunit-f depleted ATP synthase after 

siRNA treatment, or in Df-HAP1 ATP synthase (Fig. 3.10A and B and Fig. 3.11A and B, 

respectively).  

After the expression of the f-subunit was suppressed by siRNA, both isoforms of the f-

subunit showed a four-fold relative depletion in immunopurified ATP synthase. Subunits 

with a similar level of depletion were the DAPIT-, 6.8 kDa proteolipid-, a- and A6L-

subunits. The e- and g-subunits remained unchanged, along with the peripheral stalk 

subunits and F1 domain subunits. The IF1-M1 isoform displayed a two-fold increase in 

association with immunopurified ATP synthase. In mitoplasts from cells where the f-

subunit had been suppressed, the 6.8 kDa proteolipid-, a- and A6L-subunits were also 

depleted, and so was the DAPIT-subunit, to a lesser extent. (Fig. 3.10C and D), indicating 

that these subunits apart from DAPIT are turned over either before or after incorporation 

into ATP synthase with f-subunit-suppression. The IF1-M1 protein (Appendix V, Fig. S22) 

was unchanged in mitoplasts, suggesting that suppressing the f-subunit does not result an 

apparent increase in the expression of IF1 in mitochondria. The observed increase in 

association of IF1 with ATP synthase therefore reflects a specific increase in its interaction 

with the complex. A list of the protein ratios used to create Figs. 3.10 and 3.11 is in 

Appendix IV Tables S6-S10. Peptide ratios used to calculate the g-, d-, and e-subunits 

manually are in Appendix IV Table S22.  
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Fig. 3.10 Relative quantitative mass spectrometric analysis of ATP synthase with f-subunit suppression. 

Proteins were labelled by SILAC in f-subunit depleted cells. Mitoplasts were prepared and solubilised with 

digitonin (13.4g/g mitoplast protein). In panel A, immunopurified ATP synthase was analysed by SDS-PAGE 

and relative quantitation of proteins was performed by quantitative mass spectrometry. In panel B, the ATP 

synthase subunits in panel A are summarised. Bars represent median ratios from two experiments and the 

error bars show the range of the ratios. In panel C, the solubilised mitoplast material was ethanol precipitated, 

and analysed as in panel A. In panel D, the data points for ATP synthase in panel C are summarised.  

 

The gene encoding the f-subunit was disrupted (Fig. 3.2), and immunopurified ATP 

synthase from Df-HAP1 mitoplasts was analysed by mass spectrometry with SILAC (Fig.  
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Fig. 3.11 Characterisation of ATP synthase from Df-HAP1 cells. Df-HAP1 cells were labelled with 

SILAC, mitoplasts were prepared and solubilised with digitonin (9g/g mitoplast protein). In panel A, ATP 

synthase was immunopurified from mitoplasts and relative quantification of subunits was obtained by mass 

spectrometry. In panel B, a summary of ATP synthase subunit ratios in panel A is presented. In panels C and 

D, Df-HAP1 mitoplasts that had been solubilised with digitonin and ethanol precipitated were analysed by 

mass spectrometry as in panels A and B. The g- and e-subunits were calculated manually from peptide ratios 

where less than two unique peptides were identified in one or both experiments. 

 

3.11A and B). This experiment should not provide a protein ratio for the f-subunit as the 

proteins should only be present in the wildtype sample. However, both isoforms of the f-

subunit were identified, and were depleted approximately log2 7-fold (a 128-fold 
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depletion). The peptide data for the f-subunit in Df immunopurified ATP synthase samples 

can be explained by incomplete labelling of the wildtype (WT) sample in experiment 1, 

where the WT cells were labelled with heavy isotopes of arginine and lysine, but in 

experiment 2, where the WT cells were unlabelled or ‘light’, the identification of the 

‘heavy’ f-subunit suggests that the Df-HAP1 sample contained some residual f-subunit 

protein. This may have arisen by cross contamination, which could have occurred from the 

adjacent lane in the gel on which the samples were loaded. When Df-HAP1 mitoplasts were 

analysed (Fig. 3.11C and D), there was no evidence of the two isoforms of the f-subunit.  

In Df-HAP1 ATP synthase, the subunits that displayed a 32-fold relative decrease were the 

a-, A6L- and 6.8 kDa proteolipid subunits. The DAPIT-subunit displayed an 8-fold relative 

decrease. The IF1 precursor protein was identified in immunopurified Df-HAP1 ATP 

synthase, as well as the IF1-M1 and IF1-M2 isoforms. The IF1 precursor was elevated 2-

fold, however, the IF1-M1 and IF1-M2 isoforms remained unchanged. In Df-HAP1 

mitoplasts, the relative changes observed in immunopurified ATP synthase were 

approximately reflected. The 6.8 kDa proteolipid-, a- and A6L-subunits   were     decreased  

8-, 90- and 22-fold, respectively, but the DAPIT-subunit was unchanged. Only the IF1-M1 

isoform was identified in mitoplasts, and was unchanged.  

 

The effect on the OCR of cells after the suppression or disruption of the expression of the 

f-subunit was examined in 143B cells or HAP1 cells, and is shown in Figs. 3.12 and 3.13, 

respectively. The cellular OCR of cells with suppression of the f-subunit was significantly 

lower than the control during basal and glycolysis inhibited respiration (fig. 3.12A). There 

was a small but statistically significant decrease in the cellular OCR after the second 

measurement following FCCP addition. The oligomycin sensitive OCR of f-subunit 

suppressed cells and the mitochondrial OCR was also decreased to a small but statistically 
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significant extent (Fig. 3.12A and B). ATP-linked respiration (the difference between basal 

respiration and oligomycin sensitive respiration) was significantly lower in cells with f-

subunit suppression. There was no significant difference in cellular OCR of control cells 

or cells with f-subunit suppression during accelerated respiration, indicating that the 

suppression of the f-subunit did not affect the activity of the respiratory complexes. The 

mitochondrial OCR in 143B cells depleted of the f-subunit (Fig. 3.12B) was significantly 

decreased during basal and accelerated respiration. The degree of suppression of the 

expression of the f-subunit protein and transcript is shown in Fig. 3.12C and D, 

respectively.  

In contrast to 143B cells with f-subunit suppression, in Df-HAP1 cells, the cellular OCR 

was significantly decreased during basal, glycolysis inhibited, oligomycin sensitive and 

accelerated respiration (Fig. 3.13A). This suggests ATP synthesis and respiration in Df-

HAP1 cells are severely disrupted. Df-HAP1 ATP synthase did not display sensitivity to 

oligomycin as indicated by the observation that the OCR did not significantly decrease after 

the addition of oligomycin. Also, the respiratory capacity of the electron transport chain 

may be decreased, indicated by the significantly lower OCR during accelerated respiration. 

When the mitochondrial OCR was calculated (Fig. 3.13B), the significant differences in 

cellular OCR were reflected.  
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Fig. 3.12 The cellular and mitochondrial OCR in 143B cells depleted of the f-subunit of ATP synthase. 
In panel A, the cellular OCR of cells was measured 96 h after transfection of the cells with 90 nM siRNA. 
Each data point is the mean of measurements taken from five different wells, error bars are the standard 
deviations. In panel B, mitochondrial OCR was calculated during basal, oligomycin sensitive and accelerated 
respiration. The non-mitochondrial respiration (after addition ofAA/Rot) was subtracted from these data 
points. Details of the assay are described in the Figure legend of Fig. 3.7. The extent of the suppression of 
the f-subunit transcript is in panel B, normalised to cellular b-actin mRNA. Panel C shows the extent of the 
f-subunit protein suppression, where the complex I subunit NDUFS1 was used as a loading control. 
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Fig. 3.13 The cellular and mitochondrial OCR in Df-HAP1 cells. The cellular OCR of Df-HAP1 cells is 

shown compared to control HAP1 cells is in panel A. The data points represent the mean values (n=10) +/- 

the standard deviation, measured at each time point. In panel B, the mitochondrial OCR was calculated by 

subtracting the non-mitochondrial OCR from each of the data points in panel A. Bars represent the mean of 

the four values in panel A that represent basal, oligomycin inhibited and accelerated and the error bars show 

the standard deviation. Details of the assay are described in the Figure legend of Fig. 3.7 Fig. 3.9G shows the 

protein level of the f-subunit in control HAP1 cells and in Df-HAP1 cells. 

 

 

BN-PAGE was used to examine the effect of suppressing or disrupting the expression of 

the f-subunit on the formation of native protein complexes of ATP synthase. The native 

state of ATP synthase in mitochondrial membranes from 143B cells treated with siRNA to 

deplete the f-subunit is in Fig. 3.14A. The oligomers (O) and the ATP synthase dimer (D) 

were diminished. Two subcomplexes accumulated, a predominant f-S1 subcomplex was 

observed, and also a less prevalent f-S2 subcomplex was detected. In mitochondrial 

membranes and mitoplasts from Df-HAP1 cells, severe depletion of oligomers and the ATP 

synthase dimer was observed (Fig. 3.15A and B) and the Df-S1 and Df-S2 subcomplexes 

accumulated. 
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Fig. 3.14 Analysis of the native state of ATP synthase after depletion of the f-subunit. The f-subunit was 

depleted in 143B cells using siRNA, then mitochondrial membranes were prepared from 143B cells and were 

solubilised with digitonin (6g/g protein). Native protein complexes were separated by BN-PAGE and ATP 

synthase complexes were detected using immunoblotting with an antibody that detects the b-subunit. The f-

S1 and f-S2 are subcomplexes of ATP synthase in order of decreasing size. The SDHA subunit of complex 

II was used as a loading control. The level of depletion of the f-subunit is in panel B, where the complex I 

subunit NDUFS1 was used to control for loading. 

 
Fig. 3.15 Effect on the native state of ATP synthase from Df-HAP1 cells.  Mitochondrial membranes (A) 

or mitoplasts (B) were prepared and proteins solubilised with digitonin (6g/g or 9 g/g protein, respectively). 

Native protein complexes were separated by BN-PAGE and ATP synthase complexes were detected using 

immunoblotting with an antibody raised against the b-subunit. Subcomplexes of ATP synthase are labelled 

Df-HAP1-S1 and Df-HAP1-S2. An antibody that recognises citrate synthase was used as a loading control. 

The protein level of the f-subunit is in Fig. 3.9G. 

 

 



	 73 

3.5. Suppression and disruption of the expression of the g-subunit 

To assess the effect of disruption of the expression of the g-subunit on the subunit 

composition of ATP synthase, mitoplasts were prepared from Dg-HAP1 cells and ATP 

synthase was immunopurified. Peptide mass mapping was used to identify the subunits 

(Appendix III, Table S3). All subunits were identified in the control, except IF1. The ATP 

synthase from Dg-HAP1 cells lacked the band containing the g-, f- and F6 subunits, and 

also all of the bands between the f-1 isoform of the f-subunit down to the band containing 

the e- and c-subunits (Fig. 3.16A and B). The missing bands correspond to the bands in the 

control that contain the f-1 and f-2 isoforms of the f-subunit, and the g-, F6-, e-, DAPIT-, 

A6L- and 6.8 kDa proteolipid-subunits. The Dg-HAP1 ATP synthase did not appear to have 

IF1 associated with it.  The amount of Dg-HAP1 ATP synthase was reduced compared to 

the control, as judged by the intensity of the bands containing the F1 domain subunits. The 

peripheral stalk subunits b, OSCP, d and F6 were also reduced, with the F6-subunit most 

severely depleted. The Dg-HAP1 ATP synthase in Fig. 3.16A displayed two bands that 

were absent in the control and in Dg-HAP1 ATP synthase that was silver stained (Fig. 

3.16B). The band that migrated to the position of the f-2-, g- and F6-subunits in the control 

contained the e-subunit (*). No ATP synthase subunits were identified in the other lower 

band (**), only bovine trypsin, which was used to digest proteins prior to peptide mass 

mapping. The protein in the band labelled ** may not contain any lysine or arginine 

residues that would allow mass spectrometric identification of tryptic peptides, and may 

represent a contaminant because approximately 30x more sample was loaded onto the gel 

in Fig. 3.16A than in Fig. 3.16B, where the bands were not visible.  
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Fig. 3.16. Analysis by SDS-PAGE of residual ATP synthase complexes from Dg-HAP1 cells. Mitoplasts 

were prepared and solubilised with digitonin (13.4g/g protein), followed by immunopurification of ATP 

synthase. Proteins were stained with either Coomassie blue dye in panel A, or by silver staining in panel B. 

Subunits of the ATP synthase identified by peptide mass mapping are designated on the left-hand side of the 

gels. The efficiency of disruption of expression of the g-subunit protein is in panel C, where citrate synthase 

was used as a loading control. The bands marked * and ** in the residual Dg-HAP1 ATP synthase complex 

contained the d-subunit and bovine trypsin, respectively. The c-subunit and e-subunit were not identified 

automatically with the MASCOT search engine.  

 

The subunit composition of immunopurified ATP synthase with suppression and disruption 

of expression of the g-subunit was also investigated by SILAC labelling and quantitative 

mass spectrometry. After depletion of the g-subunit with 90 nM siRNA for 96 h, a three-

fold relative depletion in the g-subunit was obtained. Other subunits which were decreased 

by a similar level were the e-subunit and both isoforms of the f-subunit (Fig. 3.17A and B). 

Proteins that displayed a two-fold relative decrease in association with ATP synthase were 

the DAPIT-, 6.8 kDa proteolipid-, and a-subunits. The A6L-subunit was 1.5-fold 

decreased. IF1-M1 and IF1-M2 (Appendix V, Fig. S22) increased their association with 

ATP synthase by four and three-fold, respectively. The IF1-M1 and IF1-M2 mature forms, 
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correspond to the IF1 protein with N-termini of Phe25 or Gly26, respectively. In an 

equivalent experiment, which analyses the mitochondrial proteome, the F1 domain subunits 

(a, b, g, and d) were unchanged, except the e-subunit, which decreased by 1.5-fold (Fig. 

3.17C and D). The protein ratios used to create Figs. 3.17 and 3.18 are in Appendix IV, 

Tables S11-S15. The peptide data used to manually calculate the IF1-M1 and IF1-M2 

protein ratios is in Appendix IV Table S23.  

The peripheral stalk subunits b, d, and F6 displayed a decrease in association with ATP 

synthase. The f-1 isoform of the f-subunit was three-fold decreased. The a-subunit was 

decreased to a similar extent in mitoplasts as in immunopurified ATP synthase, indicating 

that it was turned over in g-subunit depleted ATP synthase. Both IF1-M1 and IF1-M2 

remained unchanged in mitoplasts, suggesting that the total amount of IF1 in mitochondria 

did not increase when IF1 bound to ATP synthase in g-subunit depleted ATP synthase.  

The subunit composition of ATP synthase from Dg-HAP1 cells (Fig. 3.18A and B) was 

analysed as described for the siRNA mediated suppression of the expression of the g-

subunit (Fig. 3.17). In immunopurified ATP synthase, the g-subunit was identified, despite 

evidence that the gene encoding the g-subunit had been disrupted to the extent of losing 

part of the DNA encoding for the 5’ cap of the mRNA, the initiator methionine codon and 

twelve amino acids at the N-terminus (Fig. 3.4). The g-subunit displayed a relative decrease 

of approximately 5-fold. Immunopurified Dg-HAP1 ATP synthase displayed a 90-fold 

depletion in the f-1 isoform of the f-subunit. The F1 subunits were 3-fold depleted, the 

peripheral stalk subunits were 6-fold depleted and the a-, A6L- and DAPIT-subunits were 

depleted by 5.5-fold. The e- subunit was not significantly changed, with a 4-fold decrease, 

but ranging between 1.5 to -22.6. The IF1-M1 isoform was unchanged. 
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Fig 3.17 Relative quantitative mass spectrometric analysis of ATP synthase in g-subunit depleted cells. 

Mitoplasts were prepared and solubilised with digitonin (13.4g/g mitoplast protein). In panel A, ATP synthase 

was immunopurified and subunits separated by SDS-PAGE followed by quantitative mass spectrometry. In 

panel B, a summary of the ratios for ATP synthase subunits in panel A is presented. In panel C, mitoplast 

material was analysed as described in panel A. In panel D, a summary of the data points for ATP synthase in 

panel C is shown. The IF1-M1 and IF1-M2 isoforms were not identified automatically in neither 

immunopurified ATP synthase or mitoplast material because there were two or less unique peptide ratios 

present in one or both experiments. The protein ratios for the two IF1 isoforms were calculated manually from 

the peptide ratios calculated by MaxQuant.  
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In Dg-HAP1 mitoplasts (Fig. 3.18C and D), the g-subunit was decreased 16-fold, and the 

f-subunit isoform 1, 6.8 kDa proteolipid- and a-subunits were decreased 45-, 16- and 11-

fold, respectively.  The e- and DAPIT-subunits were both decreased 5.5-fold. The F1 

subunits and peripheral stalk subunits were decreased by approximately 3- and 8-fold. The 

IF1-M1 isoform was decreased by approximately 1.5-fold. The changes in the F1 domain 

subunits were statistically insignificant, as was the change in IF1-M1 in mitoplasts.  

 

Fig. 3.18. Relative quantitative mass spectrometric analysis of ATP synthase subunits from Dg-HAP1 

mitoplasts. Panels A and B show relative quantification of proteins from immunopurified ATP synthase from 

mitoplasts solubilised with digitonin (13.4g/g protein). In panel C, solubilised mitoplasts that had been 

ethanol precipitated were analysed, and the ATP synthase protein ratios are summarised in panel D. Appendix 

IV Tables S14 and S15 contain the protein ratios of all identified subunits used in this Figure. 

 

To assess the effect on the respiratory capacity of Dg-HAP1 cells, the cellular OCR was 

measured after the addition of respiratory modulators 2DG, oligomycin A, FCCP, 

antimycin A with rotenone (Fig 3.19A). A significant decrease in the cellular OCR was 
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observed in Dg-HAP1 cells throughout the assay (during basal, glycolysis inhibited, 

oligomycin sensitive, and accelerated respiration) albeit with the oligomycin sensitive OCR 

exhibiting a smaller, but significant decrease compared to the larger differences at the other 

points during the assay. There appeared to be no ATP-linked respiration in Dg-HAP1 cells, 

as there was no difference between the basal OCR and the OCR after oligomycin was 

added.  

 

Fig. 3.19 The OCR of HAP1 cells with disruption of the gene encoding the g-subunit. The OCR of Dg-

HAP1 cells, which lack the g-subunit is compared to control cells. In panel A, the cellular OCR was measured 

after the additions of respiratory modulators. Data points represent the mean values (n=10) +/- the standard 

deviations. In panel B, the mitochondrial OCR is displayed as bars showing the mean of the four data points 

in panel A that represent basal, ATP synthase inhibited (oligo) and accelerated (FCCP) respiration. The error 

bars show the standard deviations of the four data points used to generate the bars. Significance values were 

calculated with a paired Student’s t-test. The disruption of expression of the g-subunit is in Fig. 3.16C. Full 

details of the assay are in the Figure legend of Fig. 3.7. 

 

The mitochondrial OCR (Fig. 3.19B) was calculated by subtracting the average non-

mitochondrial OCR from each of the data points in Fig. 3.19A. The mitochondrial OCR of 

Dg-HAP1 cells was significantly lower than the mitochondrial OCR of control cells during 

basal, oligomycin sensitive and accelerated respiration, suggesting that ATP synthase from 

Dg-HAP1 cells is not active and that there is also a respiratory chain defect, because the 
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mitochondria did not display an increase in their OCR after the protonophore FCCP was 

added.  

 

The oligomerisation state of the ATP synthase with suppression or disruption of the 

expression of the g-subunit was investigated by BN-PAGE. In siRNA treated 

mitochondrial membranes, oligomers (O) and the ATP synthase dimer were depleted and 

subcomplexes g-S1 and g-S2 accumulated (Fig. 3.20A). Monomeric ATP synthase was not 

significantly affected.  

 

Fig. 3.20 Analysis of the native state of ATP synthase after depletion of the g-subunit. Mitochondrial 

membranes were solubilised with digitonin (6g/g). Subcomplexes of ATP synthase are labelled g-S1 and g-

S2 in order of decreasing size. The SDHA subunit of complex II was used as a loading control. The extent of 

the depletion of the g-subunit is in panel B, and the NDUFS1 subunit of complex I was used to control for 

loading. 

 

However, when the gene encoding the g-subunit was disrupted, ATP synthase oligomers, 

dimers the monomer were not detected in mitochondrial membranes, and two sub-

complexes were observed, denoted Dg-HAP1-S1 and Dg-HAP1-S2 in Fig. 3.21A. 

However, when mitoplasts were prepared from the same batch of cells, only one 

subcomplex was observed (Dg-HAP1-S1(mp). There were also no signs of ATP synthase 
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oligomers or dimers as was the case in Fig. 3.21A, but there was a small amount of ATP 

synthase complex detected at the same position as the control ATP synthase monomer.  

 

 
Fig. 3.21 The effect on the native state of ATP synthase in Dg-HAP1 cells.  Mitochondrial membranes (A) 

or mitoplasts (B) were prepared from Dg-HAP1 cells and proteins were solubilised with digitonin (6g/g or 9 

g/g protein, respectively). Native protein complexes were analysed by BN-PAGE and immunoblotting to 

detect the b-subunit of ATP synthase. Subcomplexes of ATP synthase are labelled Dg-HAP1-S1 and Dg-

HAP1-S2. The level of the g-subunit protein is in 3.16C. 

 

3.6. Suppression of the expression of the DAPIT-subunit 

The subunit composition of residual ATP synthase after suppressing the DAPIT-subunit 

with siRNA was investigated. In DAPIT-subunit depleted ATP synthase, the profile of all 

ATP synthase subunits was identical to the control, apart from the band which contains the 

DAPIT-subunit, which stained less intensely, (Fig. 3.22A and B). The extent of suppression 

of the DAPIT-subunit protein and transcript is in Fig. 3.22C and D, respectively. Peptide 

mass mapping was used to identify the subunits labelled in Fig. 3.22A and B, and the 

peptide data is in Appendix III, Table S1.  
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Fig. 3.22 Analysis by SDS-PAGE of residual ATP synthase complexes from 143B cells where the 

expression of the DAPIT-subunit had been suppressed with RNAi molecules. Cells were treated with 90 

nM siRNA for 96 h and then mitoplasts were prepared, and solubilised with digitonin (13.4g/g) followed by 

immunopurification of ATP synthase. Proteins were visualised with either Coomassie blue dye in panel A, 

or by silver staining in panel B. ATP synthase subunits were identified by peptide mass mapping and are 

indicated to the left of the gels. The degree of the suppression of the DAPIT-subunit protein is in panel C, 

where the loading control was the complex I subunit NDUFS1. The DAPIT-subunit transcript level was 

normalised to cellular b-actin transcripts after treatment with siRNA for 48 h is shown in panel D. 

 

The quantitative mass spectrometry data in Fig.3.23A and B is consistent with the profile 

of immunopurified ATP synthase in Fig. 3.22A and B. The DAPIT-subunit was three-fold 

decreased (-Log2 1.5=3), and the effect on the ATP synthase complex was negligible. All 

of the subunits of ATP synthase remained unchanged after the DAPIT-subunit was 

depleted, and IF1 did not display any change in association with the enzyme. This result 

was reflected in the mitochondrial proteome, which is shown in Fig. 3.23C and D, where 

again, the only subunit of ATP synthase that was changed was the DAPIT-subunit. 

However, the IF1-M1 protein increased four-fold in mitoplasts, and IF1-M2 was 1.5-fold 

increased. However, the protein ratios from mitoplast IF1-M1 and IF1-M2 isoforms (for 

their sequences, see Appendix V, Fig. S22) were calculated manually from the available 

peptide ratios. There were less than two unique peptides in one or both experiments, the 
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protein ratios could not be automatically calculated.  This may have increased the median 

range as less peptide ratios were used to calculate these ratios than the minimum number 

of peptides required by the MaxQuant algorithm used to identify peptide pairs and calculate 

protein ratios. The protein ratios of the proteins identified in Fig. 3.23 are listed in Appendix 

IV, Tables S16 and S17. 

 

 
Fig 3.23 Relative quantitative mass spectrometric analysis of ATP synthase with suppression of the 

DAPIT-subunit with siRNA. Proteins were labelled by SILAC in 143B cells. Mitoplasts were prepared and 

solubilised with digitonin (13.4g/g protein). In panel A, the subunits of immunopurified ATP synthase 

subunits were separated by SDS-PAGE followed by quantitative mass spectrometry. In panel B, the data 

points for ATP synthase in panel A are summarised. In panel C, the mitoplast proteome was analysed as in 

panel A. In panel D, the data points for ATP synthase in panel C are summarised.  The bars show the median 

relative ratios from both experiments and the error bars represent the range of the ratios.  
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Fig. 3.24 The mitochondrial OCR of 143B cells depleted of the DAPIT-subunit was measured. The 
OCR of 143B cells was measured 96 h after transfection of the cells with 90 nM siRNA and is displayed in 
panel A. The mitochondrial OCR is in panel B and was calculated by subtracting non-mitochondrial 
respiration from the data points in panel A, then the mean of these four data points that represent each 
respiratory state was used to generate the bars. The error bars are the standard deviations between the four 
data points. A paired Students’ t-test was used to calculate statistical significance. The level of suppression 
of the DAPIT-subunit protein is in panel B. NDUSF1 was used as a loading control. Details of the assay are 
described in the Figure legend of Fig. 3.7. 
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The cellular OCR of 143B cells where the expression of the DAPIT-subunit had been 

suppressed (Fig. 3.24A) was investigated. The suppression of the DAPIT-subunit does not 

result in any significant defects in cellular OCR during basal respiration, glycolysis 

inhibited respiration, oligomycin inhibited respiration, nor during FCCP mediated 

accelerated respiration (Fig. 3.24A). The mitochondrial OCR of DAPIT-depleted cells 

(Fig. 3.24B) was calculated and the result showed no significant decrease during basal and 

oligomycin sensitive respiration, however, a small but statistically significant difference 

was reported during accelerated respiration. The extent of the suppression of the DAPIT-

subunit protein is presented in Fig. 3.24C.  

 

 

Fig. 3.25 Analysis of the native state of ATP synthase after depletion of the DAPIT-subunit using siRNA 

molecules. Mitochondrial membranes solubilised with digitonin (6g/g protein) were analysed by BN-PAGE 

to investigate the oligomeric state of ATP synthase. Native ATP synthase complexes were detected using an 

antibody that detects the b-subunit of ATP synthase. SDHA was used as a loading control. The efficiency of 

the siRNA to suppress the expression of the DAPIT-subunit protein is in panel B. The complex I subunit 

NDUFS1 was used as a loading control. 
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The effect of suppressing the DAPIT-subunit on the native ATP synthase complex was 

investigated by BN-PAGE (Fig. 3.25A). Oligomers of ATP synthase (O) were reduced in 

subunit-DAPIT depleted mitochondrial membranes.  

A band near to the control ATP synthase dimer migrated further in the DAPIT-depleted 

sample and the band containing monomeric ATP synthase appeared unchanged, when 

loading was controlled for.  

 

3.7. Suppression of expression of the 6.8 kDa proteolipid-subunit 

The role of the 6.8 kDa proteolipid-subunit in maintaining the subunit composition of the 

ATP synthase was investigated by siRNA (Fig. 3.26A and B).  

 

Fig. 3.26 Analysis by SDS-PAGE of residual ATP synthase complexes from 143B cells where the 

expression of the 6.8 kDa proteolipid-subunit had been suppressed using siRNA. Cells were treated with 

90 nM siRNA for 96 h and then mitoplasts were prepared, followed by immunopurification of ATP synthase. 

Immunopurified proteins were detected with either Coomassie blue dye in panel A, or by silver staining in 

panel B. The identities of immunopurified proteins were identified by peptide mass mapping are shown to 

the left of the gels. The level of suppression of the expression of the 6.8 kDa proteolipid-subunit protein is in 

panel C, where the complex I subunit NDUFS1 was used as a loading control. The 6.8 kDa proteolipid-

subunit transcript level 48 h after transfection, and normalised to cellular b-actin mRNA is in panel D. 
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The subunits that remained unchanged in immunopurified ATP synthase from 6.8 kDa 

proteolipid-subunit depleted cells were the F1 domain subunits, the peripheral stalk subunits 

and all of the FO subunits, except for bands containing the a-, A6L- and 6.8 kDa proteolipid-

subunits, which co-migrate (Fig. 3.26A and B). The extent of the suppression of the 

expression of the 6.8 kDa proteolipid subunit protein and transcript is presented in Fig. 

3.26C and D, respectively. Proteins were identified by peptide mass mapping (Appendix 

III, Table S1). 

 

In order to determine the relative abundance of ATP synthase subunits in cells depleted of 

the 6.8 kDa proteolipid-subunit, SILAC assisted mass spectrometry was performed with 

immunopurified ATP synthase (Fig. 3.27A and B). A two-fold depletion of the 6.8 kDa 

proteolipid-subunit was achieved. The other subunits that were also decreased by 

approximately two-fold were the a- A6L- and DAPIT-subunits. The A6L-subunit was only 

identified in experiment 2 and was depleted two-fold. IF1-M1 showed a two-fold increase 

in association with ATP synthase. The F1 domain and the b-, d- and F6-subunits were 

relatively unchanged. These changes were reflected when the mitochondrial proteome was 

investigated, with the exception of IF1-M1, which displayed a 1.5-fold increase in 

mitoplasts (Fig. 3.27C and D). In immunopurified ATP synthase, the protein ratios for 6.8 

kDa proteolipid and A6L were not identified automatically, and were instead calculated 

manually from the available peptide ratios. See Appendix V Fig. S22 for the sequences of 

the IF1 isoforms and Appendix IV Tables S24 and S25 for protein ratios that were 

calculated from peptide evidence. Additionally, in mitoplasts the protein ratios for the e-

subunit were obtained in experiment 2 only. The protein ratio for the IF1-M1 and IF1-M2 

isoforms, and the A6L-subunit were manually calculated from peptide ratios. IF1-M2 was 
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relatively unchanged in mitoplasts, suggesting that the total amount of IF1-M2 in 

mitochondria did not change when the expression of the 6.8 kDa proteolipid-subunit was  

 

 

Fig 3.27 Relative quantitative mass spectrometric analysis of ATP synthase subunit composition from 

cells with suppression of the 6.8 kDa proteolipid subunit. Subunits were labelled by SILAC in control 

cells and in cells where the 6.8 kDa proteolipid-subunit had been depleted from ATP synthase. Mitoplasts 

were solubilised with digitonin (13.4g/g protein). In panel A, ATP synthase was immunopurified and the 

subunits were separated by SDS-PAGE followed by quantitative mass spectrometry. In panel B, the data 

points for ATP synthase in panel A are summarised. In panel C, solubilised mitoplast material was ethanol 

precipitated, proteins separated by SDS-PAGE and analysed as in panel A. In panel D, the protein ratios for 

ATP synthase shown in panel C are summarised.   

 

suppressed. The proteins identified in this experiment and their ratios are listed in Appendix 

IV, Tables S18-S21. 

 

The cellular OCR of 143B cells with suppression of 6.8 kDa proteolipid-subunit was 

measured (Fig. 3.28A). There were no significant differences in the cellular OCR of cells 
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depleted of the 6.8 kDa proteolipid subunit during basal, glycolysis inhibited, oligomycin 

sensitive or accelerated respiration. However, when the mitochondrial OCR was calculated  

 

Fig. 3.28 The mitochondrial oxygen consumption of 143B cells depleted of the 6.8 kDa proteolipid-
subunit of ATP synthase. In panel A, OCR of cells was measured 96 h after transfection of the cells with 
90 nM siRNA. Points are the mean values of measurements taken from ten different wells at different time 
points and error bars represent the standard deviations of the values. In panel B, the mitochondrial OCR was 
calculated by subtracting the non-mitochondrial OCR from the data points displayed in panel A. The 
efficiency of the siRNA mediated suppression of the 6.8 kDa proteolipid-subunit protein is in panel C. Details 
of the assay are described in the Figure legend of Fig. 3.7. 
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(Fig. 3.28B), a small but statistically significant decrease was observed during basal and 

accelerated respiration. A difference in ATP-linked respiration was not observed between 

the control cells and the 6.8 kDa proteolipid-subunit depleted cells, suggesting no defect in 

the activity of ATP synthase with suppression of this subunit. The extent of the depletion 

of the 6.8 kDa proteolipid-subunit protein in this experiment is in Fig. 3.28C.  

 

The effect on oligomerisation of ATP synthase was investigated by BN-PAGE after 

depletion of the 6.8 kDa proteolipid subunit with siRNA (Fig. 3.29A). Oligomers (O) were 

diminished in 6.8 kDa proteolipid-subunit depleted cells. There was also less dimeric ATP 

synthase (D) than in the control, and the 6.8-S1 and 6.8-S2 subcomplexes accumulated. 

The level of 6.8 kDa proteolipid depletion is presented in Fig. 3.29B. 

 

Fig. 3.29 Analysis of the native state of ATP synthase after depletion of the 6.8 kDa proteolipid-subunit 

using RNAi. Mitochondrial membranes were prepared from 143B cells treated with 90 nM siRNA for 96 h 

to suppress the expression of the 6.8 kDa proteolipid subunit. Native protein complexes were solubilised with 

digitonin (6g/g protein) and separated by BN-PAGE. ATP synthase complexes were detected using an 

antibody that detects the b-subunit. The SDHA subunit of complex II was used as a loading control. The 

efficiency of the siRNA to suppress the expression of the 6.8 kDa proteolipid-subunit is in panel B and the 

complex I subunit NDUFS1 was used as a loading control. 
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4. Discussion 
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4.1. The pathways of assembly of mitochondrial ATP synthases 

A proposed pathway for the assembly of yeast mitochondrial ATP synthase is shown in 

Fig. 4.1. In yeast, the F1 catalytic domain, consisting of the a- and catalytic b-subunits, is 

assembled via a pathway involving the assembly factors Atp11p and Atp12p [75]. These 

assembly factors have homologues in humans (ATPAF1 and ATPAF2), which function 

analogously [68]. The a- and b-subunits associate with the central stalk (the g-, d- and e-

subunits), and this sub-assembly is thought to induce the expression of the mitochondrially 

encoded ATP6 and ATP8 (the a- and A6L-subunits in mammalian ATP synthases, 

respectively) [120]. There is no known assembly factor for the incorporation of the central 

stalk into the a3b3 assembly in yeast or humans. In yeast, the assembly factor Atp25p assists 

in the formation of the c10-ring, and the F1 subassembly (a3b3gde) docks onto this ring 

[142], but there is no known assembly factor for the c8-ring of human ATP synthase. The 

A6L-subunit is then incorporated, followed by the pre-assembled peripheral stalk (subunits 

OSCP, b, d and F6) [120, 143, 144]. The a-subunit is incorporated by the assembly factors 

Atp10p and Atp23p, followed by the dimerisation specific subunits e, g and k [144]. There 

is currently no information available about the requirement of assembly factors for, or order 

of the insertion of, the supernumerary e-, f-, g-, k-, or j-subunits. Yeast ATP synthase lacks 

the DAPIT- and 6.8 kDa proteolipid-subunits [145]. In yeast, the INA complex (INAC) has 

been identified as an assembly factor for the assembly of the peripheral stalk, linking F1 

with FO [146, 147], but evidence for the INAC in humans has not yet been found. It has 

been suggested that the INAC interacts directly with subunits-b, -OSCP and -d of ATP 

synthase. The loss of the INAC results in the uncoupling of F1 from FO and subsequent 

futile ATP hydrolysis [146]. The c-subunit in yeast is encoded on the mitochondrial 

genome, and assembles into a ring with ten subunits [102], whereas in mammals, the c-

subunit is encoded on the nuclear genome, requiring import into the IMM, where it forms 
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the c8-ring [5]. These differences point to an intrinsic distinction in the assembly pathways 

of mammalian and yeast ATP synthases.  

The metazoan c-subunit has a fully trimethylated Lys43 residue, the function of which is 

currently unknown [148]. In contrast, the yeast c-subunit contains the conserved lys43 

residue, but it is not trimethylated. The c-subunit of yeast is not imported into the 

mitochondrion from the cytoplasm because it is encoded on the mitochondrial genome, 

unlike the metazoan counterpart, which is encoded in the nucleus. This might point to the 

function of the trimethylated Lysine 43 of the c-subunit being important for the assembly 

of the c-ring and/or import of c-subunits into the mitochondria from the cytoplasm in 

metazoan species.  

 

 

Fig. 4.1 The assembly model of mitochondrial ATP synthase in yeast. The ring of 10 c-subunits (subunit 

9) assembles first, followed by the F1 domain subunits and ATP8. The peripheral stalk is then assembled, 

followed by ATP6 and e, g and k, which aid the dimerisation of ATP synthase. The Figure was taken from 

[144]. 
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The order of the assembly of the human ATP synthase complex including the 

supernumerary subunits was defined in a recent PhD thesis [138] and is also confirmed and 

further delineated in this work (Fig. 4.2). This ATP synthase assembly model [138] states 

that the F1 domain (a3, b3, g, d and e) assembles with the help of ATPAF1 and ATPAF2, 

and the natural inhibitor of ATP synthase, IF1, binds to assembly intermediates lacking the 

a-subunit. The c-ring assembles either with the F1 domain alone, or after the peripheral 

stalk. The e-, f- and g-subunits of both of these assembly intermediates associate with the 

FO domain, and are bound by IF1 [138]. The binding of IF1 to these assembly intermediates 

is supported by evidence from this work, which shows that IF1 exhibits an increased 

association with ATP synthase that had undergone suppression or disruption of the 

expression of the e-, f-, g- and 6.8 kDa proteolipid-subunits (Figs 3.6, 3.10, 3.11, 3.17, 3.18 

and 3.27). But IF1 does not associate with ATP synthase when the expression of the 

DAPIT-subunit alone was suppressed (Fig. 3.23), which resulted in the formation of a 

completely assembled ATP synthase complex. 

The assembly model for ATP synthase [138], is modified by the findings presented in this 

thesis. The difference is the addition of a delineation step in the assembly of the e- and g-

subunits of the FO domain. In the assembly model proposed by Ford [138], F1 domain is 

assembled then the e- and g-subunits are the first supernumerary subunits to assemble 

concurrently with the peripheral stalk subunits, followed by the f-subunit, then the 6.8 kDa 

proteolipid-subunit (which is dependent on the assembly of the a- and A6L-subunits), 

followed finally by the DAPIT-subunit. All Figures referred to from the Ford thesis [138], 

are in Appendix V. 

In yeast mitochondrial ATP synthase, De and Dg mutants resulted in the loss of dimeric 

ATP synthase. The loss of the yeast e-subunit resulted in a loss of the g-subunit, but the 

loss of the g-subunit did not result in the loss of the e-subunit [37]. Relative quantitative 
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mass spectrometry of the subunit abundances of Dg-HAP1 ATP synthase (Fig. 3.18A and 

B) indicated that the e-subunit was unchanged in experiment one. In ATP synthase with 

suppression of the e-subunit with siRNA, the g-subunit was depleted four-fold (Figs. 3.5 

and 3.6A and B). These observations should, however be interpreted with caution, as the 

experiment in Fig. 3.18 was flawed in that it appears that the g-subunit was present but it 

is possibly the result of contamination of control g-subunit protein from adjacent lanes on 

the gel. It is also difficult to reconcile the differences in the e-subunit protein ratios in Fig. 

3.18A and B and it should be said that the data in this experiment are inconclusive due to 

the persistence of the g-subunit. However, even if there was a small amount of the g-subunit 

protein translated, the level of protein depletion observed was comparable to the level 

observed when siRNA was used to deplete the g-subunit (Fig. 3.17A and B). In that case, 

the data from these experiments suggest that the e-subunit is assembled first, followed by 

the g-subunit because the suppression of the e-subunit resulted in a more consistent 

depletion of supernumerary subunits between experiments than in the Dg-HAP1 ATP 

synthase. It must also be noted that this comparison is drawn from experiments with 

different experimental designs. The proposition that the e-subunit is the first supernumerary 

subunit to assemble is based on observations from experiments performed using siRNA to 

deplete the e-subunit, and comparing these findings with results from the disruption of the 

expression of the g-subunit, which should result in complete removal of the protein. These 

results point to the suggested assembly of the e- and g-subunits one after the other, but 

further work is needed to clarify the assembly pathway because of the experimental 

anomalies found in this work. A more informative comparison could be drawn if the 

experiments to investigate the functions of the e- and g-subunits were repeated (and with 

De-HAP1 cells, rather than siRNA). 
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The next subunit to assemble after the e- and g-subunits is the f-subunit, based on the 

finding that the f-S1 and f-S2 subcomplexes of ATP synthase form (Figs. 3.14 and 3.15) 

and the complex consists of the ATP synthase monomer lacking the a-, A6L-, DAPIT- and 

6.8 kDa proteolipid-subunits (Figs 3.10 and 3.11). It is possible that the larger of the 

subcomplexes that accumulate are the result of disruption of the ATP synthase complex by 

the BN-PAGE protocol. This claim is supported by evidence from DAPIT-suppressed ATP 

synthase, where no effect on the subunit composition of the enzyme is observed (Figs. 3.22 

and 3.23A and B). 

After the f-subunit, the 6.8 kDa proteolipid-subunit assembles, based on evidence from 

BN-PAGE analysis after suppression of the expression of the 6.8 kDa proteolipid subunit 

which resulted in the formation of the 6.8-S1 and 6.8-S2 subcomplexes (Fig. 3.29). The 

ATP synthase subcomplex in 6.8 kDa proteolipid depleted ATP synthase probably 

consisted of ATP synthase lacking the a-, A6L- and DAPIT-subunits (Fig. 3.27A and B). 

Interestingly, cells where the expression of the 6.8 kDa proteolipid subunit had been 

suppressed with siRNA did not display a significant change in cellular or mitochondrial 

OCR (Fig. 3.28), despite the a-, A6L- and DAPIT-subunits being lost from the enzyme. 

This observation may cloud interpretation of the results, because the loss of the a-, A6L- 

and DAPIT-subunits from 6.8 kDa proteolipid-depleted cells may be the result of the 

solubilisation of the mitoplasts or mitochondrial membranes with digitonin (Figs. 3.26, 

3.27 and 3.29).  This claim could be supported by evidence where the OCR was measured 

in whole cells (Fig. 3.28), where membranes are not disrupted with detergent. If the a-, 

A6L- and DAPIT-subunits were really lost from the enzyme, the loss of the a-subunit alone 

should result in defects in the OCR because ATP synthase becomes uncoupled from 

respiration and hydrolyses ATP, and in r0 cells, which lack the a- and A6L-subunits, ATP 

is hydrolysed by ATP synthase to contribute to the membrane potential [149, 150].  
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The lack of any drastic effect on the subunit composition of ATP synthase with suppression 

of the DAPIT-subunit (Figs. 3.22 and 3.23A and B), suggests that it is the last of the 

supernumerary subunits to assemble, as stated in the assembly model by Ford [138]. The 

suppression of the DAPIT-subunit of ATP synthase also did not result in any significant 

changes in the OCR of 143B cells (Fig. 3.24), which is consistent with the observation of 

the lack of change in the subunit composition of ATP synthase (Figs. 3.22 and 3.23A and 

B), and also the lack of observable subcomplexes of ATP synthase (Fig. 3.25). In summary, 

the additional steps in the assembly pathway of human ATP synthase identified by the work 

in this thesis is the delineation of the assembly of the e- and g-subunits, which do not 

assemble concurrently, but instead the tentative conclusion is drawn that e-subunit 

assembles first, followed by the g-subunit.  

 

The experiments performed to assess the assembly pathways of ATP synthase were 

performed with mitoplast material or mitochondrial membranes that had not been frozen 

before solubilisation and were kept on ice during sample preparation and fractionated by 

BN-PAGE at 4°C. This experimental set-up reduces experimentally derived artefacts which 

may cause structural degradation of the enzyme, allowing the identification of true 

assembly intermediates of ATP synthase. However, it is possible that all S-1 subcomplexes 

were the breakdown products of ATP synthase complexes due to the BN-PAGE protocol, 

because the S-1 subcomplexes showed variability in their levels across experiments done 

with cells with f-subunit suppression or disruption (Figs. 3.14 and 3.15).  
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Fig. 4.2 The pathway of assembly of monomeric human mitochondrial ATP synthase. The F1 domain 

subunits and the c-ring assemble first. The F1 domain requires the ATPAF1 and ATPAF2 assembly factors 

and IF1 binds to prevent ATP hydrolysis. F1 then associates with the assembled c-ring. On the left, the 

peripheral stalk subunits and the e-subunit assemble next, followed by the g- then the f-, ATP8- (A6L), 6.8 

kDa proteolipid- and ATP6- (a)-subunits and IF1 is released. On the right, the peripheral stalk and e- and g-

subunits can assemble before the addition of the c-ring, followed by the addition of the f, A6L-, 6.8PL and a-

subunits, and release of IF1. The Figure was adapted from Fig. S25 [138].  
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The suppression of the e-subunit with siRNA resulted in the depletion of the entire 

complement of supernumerary subunits and the a-subunit. There is a similarity in the results 

seen in Fig. S23 [138], and this work Fig. 3.8, where two subcomplexes (e-S1 and e-S2) 

accumulated when the e-subunit was depleted in mitoplasts or mitochondrial membranes.  

In ATP synthase with depletion of the g-subunit with siRNA, the e-, f-, 6.8 kDa proteolipid-

, A6L- and DAPIT-supernumerary subunits dissociate from ATP synthase as well as the a-

subunit. In Dg-HAP1 mitochondrial membranes, the ATP synthase was predominantly in 

the form of the Dg-S1 and Dg-S2 subcomplexes (Fig. 3.19). These subcomplexes also 

accumulated in mitochondrial membranes with suppression of the expression of the g-

subunit (Fig. 3.20).  The effects of the suppression of the g-subunit with siRNA on the 

native state of ATP synthase are consistent between this work and the results presented in 

Fig. S23[138] where bands representing monomeric ATP synthase and the two g-

subcomplexes are present in both sets of results, although the g-S2 subcomplex 

accumulated to a greater degree in this work (Fig. 3.21). However, in  Dg-HAP1 

mitochondrial membranes and mitoplasts, monomeric ATP synthase is not observed, 

and/or was severely depleted, respectively, suggesting that the g-subunit plays a role in the 

stability of the entire ATP synthase complex. 

The suppression or disruption of the expression of the f-subunit both resulted in the 

depletion of the 6.8 kDa proteolipid-, a-, A6L- and DAPIT-subunits from ATP synthase, 

suggesting that the f-subunit is assembled after the e- and g-subunits, but before the 6.8 

kDa proteolipid subunit. This interpretation is drawn because when 6.8 kDa proteolipid 

expression was suppressed with siRNA, the relative levels of the f-subunit were unchanged 

(Fig. 3.26 and Fig. 3.27A and B). The results of suppression or disruption of the expression 

of the f-subunit on the subunit composition of ATP synthase were consistent, and mass 

spectrometric analysis of ATP synthase from both f-subunit suppressed and Df-HAP1 cells 
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revealed that the Df-S2 subcomplex (Figs. 3.14 and 3.15) consisted of F1c8 + peripheral 

stalk + e and g. The results of native analyses of subunit-f depleted ATP synthase 

complexes presented by Ford (Fig. S23) [138] are consistent with BN-PAGE analyses of 

ATP synthase with suppression of the f-subunit Figs. 3.14. The IF1 precursor protein (see 

Appendix V for the sequence) was increased in association with Df-ATP synthase, and it 

has been suggested that in r0 cells, IF1-P binds preferentially to monomeric ATP synthase 

[138].  

In BN-PAGE experiments, the a-, A6L- and DAPIT-subunits were probably not associated 

with ATP synthase when the 6.8 kDa proteolipid-subunit was suppressed with siRNA (Fig. 

3.28A and B) suggesting that the incorporation of the a- and A6L-subunits into the enzyme 

depends on the presence of the 6.8 kDa proteolipid subunit. Two subcomplexes of ATP 

synthase formed when the 6.8 kDa proteolipid-subunit was suppressed with siRNA in 

experimental conditions involving digitonin solubilisation of membrane proteins Fig. S23 

[138], but only one subcomplex was observed in Fig. 3.29. However, as mentioned, the 

loss of these subunits may be an experimental artefact. The solubilisation of 6.8 kDa 

proteolipid depleted mitochondria with digitonin may also result in the loss of subunits 

from ATP synthase where there is a possibility that no such effect would be observed in 

ATP synthase depleted of the 6.8 kDa proteolipid-subunit before solubilisation. The OCR 

of cells depleted of the 6.8 kDa proteolipid-subunit was unchanged (Fig. 3.28), suggesting 

that 6.8 kDa proteolipid-subunit may play a role in stabilising the a-, A6L- and DAPIT-

subunits when ATP synthase is solubilised with digitonin. 

The depletion of the DAPIT-subunit was inconsequential for the subunit composition of 

ATP synthase, as no changes in any of the subunits of ATP synthase were observed when 

immunopurified ATP synthase was investigated (Figs. 3.22 and 3.23A and B, respectively). 

There was however, a discrepancy between the results of the native analysis of ATP 
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synthase with suppression of the DAPIT-subunit presented in Fig. S23 [138] and in this 

work (Fig. 3.25), where a large amount of D-S1 subcomplex and also a small amount of D-

S2 subcomplex accumulated, but in this work (Fig. 3.25), the monomeric ATP synthase 

band was unchanged compared to the control and the DS-2 subcomplex was not observed 

in this work. ATP synthase lacking DAPIT may be less stable under the experimental 

conditions used to analyse the native state of the enzyme. However, in DAPIT-depleted 

cells that were not treated with digitonin, ATP synthase may be as structurally stable as the 

control ATP synthase. DAPIT is the last of the supernumerary subunits to be incorporated 

into the FO domain, based on the evidence in this work, and also the evidence reported in 

[138]. 

A notable observation from analysis of the subunit composition of ATP synthase where the 

expression of the e-, f-, g- and 6.8 kDa proteolipid-subunits had been depleted or disrupted, 

is that the a- and A6L-subunits were significantly depleted from the enzyme in each case. 

This suggests that the e-, f-, g- and 6.8 kDa proteolipid-subunits stabilise the association of 

the a- and A6L-subunits in the ATP synthase complex. 

 

4.2. Structural roles of the supernumerary subunits 

Out of all the supernumerary subunits investigated in this work, the depletion of the g-

subunit resulted in the highest degree of loss of subunits from ATP synthase (Figs. 3.16 

and 3.18A and B), and also resulted in a substantial loss of monomeric and dimeric ATP 

synthase (Fig. 3.21). However, to get a clearer picture of the severity of the impact on the 

subunit composition of the enzyme, each subunit investigated in this thesis, should be 

investigated by disruption of their genes. The data in this thesis suggests that the g-subunit 

plays a significant role in stabilising the association of subunits with each other in the FO 
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domain within the membrane domain. However, the stability of the c-ring is not dependent 

on any of the supernumerary subunits investigated (Figs. 3.5, 3.9, 3.16 3.22 and 3.26).  

The structural role of the e-subunit may be similar to that of the g-subunit, due to the similar 

profile of the subunit composition of ATP synthase when the expression of either the e- or 

g-subunits was suppressed or disrupted, but the effect observed when the e-subunit was 

suppressed was less severe than when the g-subunit was disrupted (Figs. 3.5 and 3.16, 

respectively).  

A proposed theoretical structural role of the f-subunit, based on the experiments in this 

work, is to stabilise a module of subunits in the FO domain that contain the a-, A6L-, 6.8 

kDa proteolipid- and DAPIT-subunits (Figs. 3.10A and B and 3.11A and B). This 

suggestion is based upon the finding that suppression or disruption of the expression of the 

f-subunit resulted in the subsequent depletion of these subunits and that the OCR of cells 

with disruption or suppression of the f-subunit was significantly decreased. The f-subunit 

is thought to be in close proximity with the a- and A6L-subunits in the Pichia angusta 

enzyme [71], and the experimental evidence in this thesis points to the f-, A6L- and a-

subunits being in a similar arrangement in human ATP synthase. 

The structural role of the DAPIT-subunit appears to be minimal for maintaining the 

structural integrity and subunit composition of the monomeric enzyme, as indicated in Figs. 

3.22 and 3.23A and B, where no other ATP synthase subunits were depleted when the 

expression of the DAPIT-subunit was suppressed. This result is reflected in an experiment 

where the expression of the DAPIT-subunit was suppressed (Fig. S24) [138]). There are, 

however, some differences in the outcomes of the experiments performed to assess native 

protein complexes of ATP synthase with suppression of DAPIT (Fig. S23 [138]). In Fig. 

S23, suppression of the DAPIT-subunit resulted in accumulation of the D-S2 subcomplex, 

but this was not detected in Fig. 3.25. As there was a lack of evidence for the depletion of 
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any subunits of ATP synthase lacking the DAPIT-subunit (Figs. 3.22 and 3.23A and B), 

the D-S1 and DS2 subcomplexes in Fig. S23 may represent artefactual evidence. 

The 6.8 kDa proteolipid-subunit appeared to exert a similar stabilising force on the a-, A6L- 

and DAPIT-subunits, as the suppression of this subunit resulted in the depletion of these 

three subunits from the enzyme (Fig. 3.28A and B). It is unclear why there is such a 

discrepancy between ATP synthase lacking 6.8 kDa proteolipid in cells without added 

digitonin, compared to ATP synthase lacking 6.8 kDa proteolipid in ATP synthase that had 

been solubilised with digitonin. 

Structural information [71] indicates that the A6L-subunit functions as a strut to brace the 

a-subunit against the c-ring.  

The mitochondrial OCR of cells with suppression  or disruption  of the  expression of the  

e-, f- and g-subunits exhibited significant defects in basal respiration and accelerated 

respiration (Figs. 3.7, 3.12, 3.13 and 3.19), but this phenotype was not reflected in cells 

where the DAPIT- or 6.8 kDa proteolipid-subunits had been suppressed (Figs. 3.24 and 

3.28, respectively). This finding may indicate, that the e-, f- and g-subunits act together or 

separately to stabilise the association of the a-subunit with A6L and the c-ring because the 

disruption or suppression of these subunits resulted in significant decreases in the OCR of 

143B cells. Also, the depletion of the e-, f- and g-subunits all resulted in the loss of the a- 

and A6L-subunits. 

 

4.3. The roles of the supernumerary subunits in the oligomerisation of ATP synthase 

All of the supernumerary subunits investigated in this work are involved in the stabilisation 

of oligomeric forms of ATP synthase, because dimeric and oligomeric forms of the enzyme 

were depleted when the expression of each of the supernumerary subunits was suppressed 

or disrupted individually. Also, DAPIT is primarily involved in the stabilisation of 
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oligomeric forms of ATP synthase, as there was little effect on the dimerization of ATP 

synthase lacking DAPIT. The proposed model of ATP synthase dimerization and 

oligomerisation is presented in Fig. 4.3 and shows that the e-, f- and g-subunits assembled 

in the membrane domain before the 6.8 kDa proteolipid-, A6L-, and a-subunits, which 

promote the formation of dimerisation competent ATP synthase. Four DAPIT subunits may 

mediate the oligomerisation of two dimers of ATP synthase to form a tetramer. The 

suppression of the e-subunit resulted in depletion of oligomeric ATP synthase, the ATP 

synthase dimer and also the ATP synthase monomer in mitochondrial membranes (Fig. 

3.8). This is different to the result seen in Fig. S23 [138], where the suppression of the 

expression of the e-subunit resulted in the depletion of the oligomeric forms of ATP 

synthase, but the amount of the ATP synthase dimer remained unchanged. 

Another difference observed between the two experiments was that monomeric ATP 

synthase was more severely depleted in Fig. 3.8 than in Fig. S23 [138]. A possible 

explanation for the difference could be that the siRNA used to deplete the e-subunit had a 

stronger effect on the cells used in Fig. 3.8 than in Fig. S23, or due to differences involved 

in using mitoplasts or mitochondrial membranes to perform the experiment. De-HAP1 

mitochondrial membranes and mitoplasts should be analysed to assess this discrepancy. 

The e- and g-subunits were found to be required for the dimerisation of yeast ATP synthase, 

and were also required to form a dimerisation capable ATP synthase monomer [151]. 

According to Fig. 3.8 in this work, the e-subunit is required for stabilisation of the human 

ATP synthase dimer and monomer, consistent with the results in [151].  

The oligomerisation capability of ATP synthase in mitochondrial membranes or mitoplasts 

from Dg-HAP1 cells was severely reduced (Fig. 3.21). Oligomerisation of ATP synthase 

with suppression of the g-subunit was affected to a similar degree as ATP synthase with e-

subunit suppression, with oligomeric ATP synthase and the ATP synthase dimer depleted 



	 105 

 

 

Fig. 4.3 Dimerisation and oligomerisation of ATP synthase. The formation of dimeric ATP synthase is 

dependent on the association of all the supernumerary subunits. The a-subunit is assembled after the 

supernumerary subunits. The Figure was adapted from Fig. S26 [138]. 

 

in both Fig. 3.8 (e suppression) and Fig. 3.20 (g suppression). This is different to the result 

for g-subunit suppression in Fig. S23 [138], where only ATP synthase oligomers were 
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depleted, but not the ATP synthase dimer. The effect upon oligomerisation of ATP synthase 

was much more severe in Dg-HAP1 mitochondrial membranes and mitoplasts (Fig. 3.21). 

There were no visible signs of the oligomeric forms of ATP synthase in either 

mitochondrial membranes or mitoplasts. The ATP synthase monomer was also not 

observed in mitochondrial membranes, and in mitoplasts, the monomer was severely 

depleted. The depletion of the ATP synthase monomer in Dg-HAP1 mitochondrial 

membranes and mitoplasts indicates that the g-subunit is required to stabilise the ATP 

synthase monomer and dimer.  

In mitochondrial membranes with suppression of the f-subunit, oligomeric ATP synthase 

and dimeric ATP synthase were depleted (Fig. 3.14). This result is different to that 

presented in Fig. S23 [138], where the oligomers were modestly depleted and there was no 

effect observed upon the dimer. The depletion of oligomeric forms of ATP synthase and 

dimeric ATP synthase was much more severe in Df-HAP1 mitochondrial membranes and 

mitoplasts than depletion of ATP synthase oligomers and dimers in mitochondrial 

membranes with suppression of the f-subunit. This is possibly due to the residual f-subunit 

protein still present in the siRNA treated sample during the experiment.  The e-, f-, g-, 

DAPIT- and 6.8 kDa proteolipid-subunits are probably all required to form a ‘dimerisation-

competent, primed’ ATP synthase. The common loss of subunits in the e-, f- and g-subunit 

suppressed or disrupted ATP synthase complexes were the a-, A6L-, DAPIT- and 6.8 kDa 

proteolipid-subunits (Figs. 3.6A and B, 3.10A and B and, 3.11A and B, 3.17A and B and 

3.18A and B). 

In ATP synthase where the DAPIT-subunit had been suppressed only the oligomeric forms 

of ATP synthase were depleted (Fig. 3.26), which corroborates with the profile of 

oligomeric ATP synthase seen in Fig. S23 [138]. However, the ATP synthase dimer was 

not separated into two discreet complexes in Fig. 2.25 as was the case in Fig. S23, and 
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instead was a more intense band that migrated faster than the ATP synthase dimer in the 

control lane. The loss of ATP synthase lacking DAPIT reported previously [152], has not 

been confirmed here. The evidence for the involvement of DAPIT in the oligomerisation 

of ATP synthase comes from blue native PAGE with immunodetection of the b-subunit. It 

is possible that ATP synthase is able to form oligomers, and that this is mediated by the 

DAPIT-subunit when ATP synthase has been solubilised from the IMM. However, this 

may not be the case in biological inner mitochondrial membranes where the membrane has 

not been disrupted with digitonin. 

In ATP synthase depleted of the 6.8 kDa proteolipid-subunit, the oligomeric and dimeric 

ATP synthase were depleted (Fig. 3.29). The accumulation of monomeric ATP synthase 

may be the result of the decomposition of oligomeric and dimeric ATP synthase. This 

finding is different to that reported in Fig S23 [138], where the oligomers were not depleted 

to the extent they were in Fig. 3.29, and also the ATP synthase dimer appeared to be 

unaffected by suppression of the 6.8 kDa proteolipid-subunit (Fig. S23 [138]), whereas the 

dimer was depleted in Fig. 3.29. Differences in experimental set up may account for these 

discrepancies, as mitochondrial membranes were prepared in Fig. 3.28, whereas mitoplasts 

were prepared in Fig. S23.  

 

4.4. The supernumerary subunits and the PTP 

The mitochondrial permeability transition is a process that occurs in mammals, fish, 

amphibians, plants and fungi [153], suggesting that the physiological role of the 

permeability transition is an evolutionary conserved process. During the permeability 

transition, a pore is formed in the IMM which induces permeabilisation of the membrane 

to metabolites and solutes up to 1.5 kDa in size [154].  
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The permeability transition pore in mitochondria was first believed to be the result of Ca2+ 

activated phospholipases and acetyl coA synthetase that caused formation of a pore in the 

IMM [154]. It was later shown that pore formation and resealing of the mitochondria could 

still occur in the absence of ATP, acetyl-CoA and Mg2+, which are required to activate the 

phospholipase and acetyl coA synthetase enzymes in the phospholipase model of pore 

formation [155]. Pore opening was shown to be a reversible, Ca2+ dependent phenomenon, 

where pore closure could be achieved by chelating Ca2+ [156]. The pore opening effect of 

Ca2+ was only observed in the presence of 2.5 mM Pi, and 35 nmol of Ca2+ per mg of 

protein. The molecular identity of the pore was investigated and assumed to consist of the 

voltage dependent anion channel (VDAC) and the adenine nucleotide transporter (ANT). 

Cyclophillin D was used to purify these components after it was found that pore opening 

could be inhibited by cyclosporin A, which binds to and inhibits cyclophillin D [157]. The 

identity of the protein constituents of the pore still remained (and continue to remain) 

elusive, after it was discovered that neither the ANT nor the VDAC were necessary 

components for establishing a pore [158, 159]. The search for the molecular identity of the 

mitochondrial PTP continued and in 2013, it was suggested that dimeric ATP synthase 

formed the PTP, after dimeric ATP synthase was purified from blue native gels and 

reconstituted into planar lipid bilayers, where electrophysiological measurements 

suggested that a pore was formed with identical electrophysiology to that measured in 

mitochondria [160]. It has also been reported that the c-subunit of ATP synthase forms the 

pore [161, 162], however, it has been shown that cells engineered with gene deletions for 

the three isoforms of subunit-c are still capable of pore formation and permeability 

transition [163]. The role of specific ATP synthase subunits in the formation of the mPTP 

is being investigated using gene-deletion experiments targeting each subunit of ATP 

synthase. Therefore, the Df-HAP1 and Dg-HAP1 cells used in this work to investigate the 
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function of the f- and g-subunits can be used in the permeability transition pore assay to 

assess the involvement of the f- and g-subunits of ATP synthase in the formation of the 

mPTP.  

 

4.5. Methodological considerations: siRNA versus CRISPR-Cas9 

The investigation of protein function in cell biology is often conducted by removal of the 

protein of interest either completely or partially in the cases CRISPR-Cas9 genome editing 

[140], or siRNA [164], respectively. These processes emerged from the biological 

machinery required for the defence of a hosts bacterial DNA from invading viral DNA, in 

the case of CRISPR-Cas9 [165, 166], or from the regulation of gene expression by 

expressed microRNAs (miRNAs) or small interfering RNAs (siRNAs), in the case of 

siRNA [164]. There is a trade-off to be considered when using siRNA to suppress the 

expression of a protein. This is the choice between the dose used to suppress the expression 

of a protein, where too high a dose can result in undesirable off-target effects, and too little 

dose results in inefficient suppression of the protein. Even at doses that will result in off-

target effects, the protein of interest still is not suppressed entirely. That is usually not the 

case with disruption of the expression of a gene using CRISPR-Cas9, where the protein of 

interest is in theory completely gone from the cell. One of the differences in the two 

methods relate to the transfection procedure. When siRNA is used, a plate of cells is 

transfected, and the whole population of transfected cells are grown and used for the 

experiment. However, with CRISPR-Cas9 mediated gene disruption, the plate of cells is 

transfected but then the cells are sorted into single cells by FACS and each cell is grown 

into a clonal colony, which is grown and screened to ensure the gene deletion status of the 

cell. Only after validation of the gene deletion status of the clonal cell population is the 

experiment performed. With siRNA, a high percentage of the mRNA transcripts encoding 
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the protein of interest should be degraded, but the remaining transcripts will result in a 

small amount of the protein of interest being translated. This consequence may be 

responsible for the occasionally differing effects resulting from experiments performed by 

siRNA or with Df-HAP1 or Dg-HAP1 cells. For example, in the extracellular flux analysis 

of OCR performed with siRNA to suppress the expression of the f-subunit, and in Df-HAP1 

cells, the results are different. In siRNA treated cells, the mitochondrial OCR is only 

significantly changed during basal respiration and during accelerated respiration, whereas 

in Df-HAP1 cells, the mitochondrial OCR is significantly changed during all three 

measurements, including during respiration where ATP synthase had been inhibited by 

oligomycin A. This is presumably because the small amount of the f-subunit that remains 

in cells treated with siRNA may still be functional and increases the amount of ATP 

synthase that is analogous to the control. 

 

4.6. Conclusions and further work 

The assembly pathway of ATP synthase has been further characterised by this work, where 

a previously presented pathway [138] suggested the assembly of the e- and g-subunits of 

ATP synthase were incorporated concurrently, whereas the findings in the present work 

point to a putative delineation in the incorporation of these subunits. The e-subunit is 

incorporated first, followed by the g-subunit. Subsequent steps are identical to the assembly 

pathway presented in [138]. 

The theoretical locations of the supernumerary subunits were further defined by 

characterisation of the subunit composition of ATP synthase after the individual 

suppression of expression of the e-, f-, g-, DAPIT- and 6.8 kDa proteolipid-subunits. This 

work points to the f-subunit residing near to the a- and A6L-subunits.   
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This work has pointed to the roles of all the nuclear encoded supernumerary subunits being 

required for the dimerisation of ATP synthase, except DAPIT, which is required for 

oligomerisation only. Once the e-, f- and g-subunits assemble, this is followed by the 

addition of the A6L-, DAPIT-, 6.8 kDa proteolipid- and a-subunits in order to form a 

dimerisation competent ATP synthase monomer. 

 

The experiments conducted to investigate the functions of the supernumerary subunits 

using siRNA should be repeated with cells with disruption of the expression of these genes 

to investigate the effects on ATP synthase, where the complete removal of the protein 

occurs. The quantitative mass spectrometry experiments performed with immunopurified 

ATP synthase from cells with gene disruptions should be modified to prevent 

contamination of subunits from the control that are disrupted in the experimental condition. 

This could be done either by increasing the number of blank wells between experiments on 

the SDS-PAGE gel or by analysing each experiment on a different gel.  

BN-PAGE coupled with 2 dimensional SDS-PAGE could be used to further characterise 

subcomplexes of ATP synthase. Cutting out sections of the BN-PAGE gel corresponding 

to the positions where the subcomplexes of ATP synthase migrate to and separating the 

subunits by SDS-PAGE with mass mapping would identify the subunit composition of 

ATP synthase subcomplexes from cells with disruptions of the supernumerary subunit-

genes.  

In order to investigate the roles of the supernumerary subunits of ATP synthase in the 

formation of the mitochondrial permeability transition pore, cells where the genes encoding 

each nuclear encoded supernumerary subunit individually should be analysed by the 

techniques used by He. et al [163]. 
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There is also a need for a high-resolution structure of the subunits in the FO domain in order 

to corroborate biochemical functional characterisation of the supernumerary subunits with 

structural features of each subunit in the FO domain. 

  



	 113 

 

  



	 114 

 

 

 

 

 

 

 

 

 

5. References 

  



	 115 

1. Nicholls, D. G. & Ferguson, S. (2013). Bioenergetics 4. Elsevier  

2. den Hollander, J. A., Ugurbil, K., Brown, T. R., Bednar, M., Redfield, C. & Shulman, 

R. G. (1986). Studies of anaerobic and aerobic glycolysis in Saccharomyces 

cerevisiae. Biochemistry 25, 203-211. 

3. Li, X., Wu, F. & Beard, D. A. (2013). Identification of the kinetic mechanism of 

succinyl-CoA synthetase. Biosci Rep 33, 145-163. 

4. Wang, S. F., Si, Y. X., Wang, Z. J., Yin, S. J., Yang, J. M. & Qian, G. Y. (2012). 

Folding studies on muscle type of creatine kinase from Pelodiscus sinensis. Int J Biol 

Macromol 50, 981-990. 

5. Watt, I. N., Montgomery, M. G., Runswick, M. J., Leslie, A. G. W. & Walker, J. E. 

(2010). Bioenergetic cost of making an adenosine triphosphate molecule in animal 

mitochondria. Proc. Natl. Acad. Sci. U. S. A. 107, 16823-16827. 

6. Mitchell, P. (1979). Keilin’s respiratory chain concept and its chemiosmotic 

consequences. Science 206, 1148-1159. 

7. Mitchell, P. (1961). Coupling of phosphorylation to electron and hydrogen transfer 

by a chemi-osmotic type of mechanism. Nature 191, 144-148. 

8. Mitra, K., Wunder, C., Roysam, B., Lin, G. & Lippincott-Schwartz, J. (2009). A 

hyperfused mitochondrial state achieved at G1-S regulates cyclin E build up and entry 

into S phase. Proc. Natl. Acad. Sci. U. S. A. 106, 11960-11965. 

9. Newmeyer, D. D. & Ferguson-Miller, S. (2003). Mitochondria: releasing power for 

life and unleashing the machineries of death. Cell 112, 481-490. 

10. Biasutto, L., Azzolini, M., Szabò, I. & Zoratti, M. (2016). The mitochondrial 

permeability transition pore in AD 2016: An update. Biochim. Biophys. Acta 1863, 

2515-2530. 

11. Gakh, O., Ranatunga, W., Smith, D. Y., Ahlgren, E. C., Al-Karadaghi, S., Thompson, 



	 116 

J. R. & Isaya, G. (2016). Architecture of the Human Mitochondrial Iron-Sulfur 

Cluster Assembly Machinery. J. Biol. Chem. 291, 21296-21321. 

12. Ponka, P. (1997). Tissue-specific regulation of iron metabolism and heme synthesis: 

distinct control mechanisms in erythroid cells. Blood 89, 1-25. 

13. Meléndez-Hevia, E., Waddell, T. G. & Cascante, M. (1996). The puzzle of the Krebs 

citric acid cycle: assembling the pieces of chemically feasible reactions, and 

opportunism in the design of metabolic pathways during evolution. J. Mol. Evol. 43, 

293-303. 

14. Embley, T. M. & Martin, W. (2006). Eukaryotic evolution, changes and challenges. 

Nature 440, 623-630. 

15. Martin, W. & Müller, M. (1998). The hydrogen hypothesis for the first eukaryote. 

Nature 392, 37-41. 

16. Rehling, P., Model, K., Brandner, K., Kovermann, P., Sickmann, A., Meyer, H. E., 

Kühlbrandt, W., Wagner, R., Truscott, K. N. & Pfanner, N. (2003). Protein insertion 

into the mitochondrial inner membrane by a twin-pore translocase. Science 299, 

1747-1751. 

17. Chacinska, A., Koehler, C. M., Milenkovic, D., Lithgow, T. & Pfanner, N. (2009). 

Importing mitochondrial proteins: machineries and mechanisms. Cell 138, 628-644. 

18. Anderson, S., Bankier, A. T., Barrell, B. G., de Bruijn, M. H., Coulson, A. R., Drouin, 

J., Eperon, I. C., Nierlich, D. P., Roe, B. A., Sanger, F., Schreier, P. H., Smith, A. J., 

Staden, R. & Young, I. G. (1981). Sequence and organization of the human 

mitochondrial genome. Nature 290, 457-465. 

19. Palmieri, L., Lasorsa, F. M., Vozza, A., Agrimi, G., Fiermonte, G., Runswick, M. J., 

Walker, J. E. & Palmieri, F. (2000). Identification and functions of new transporters 

in yeast mitochondria. Biochim. Biophys. Acta 1459, 363-369. 



	 117 

20. Runswick, M. J., Philippides, A., Lauria, G. & Walker, J. E. (1994). Extension of the 

mitochondrial transporter super-family: sequences of five members from the 

nematode worm, Caenorhabditis elegans. DNA Seq 4, 281-291. 

21. Kunji, E. R. & Robinson, A. J. (2010). Coupling of proton and substrate translocation 

in the transport cycle of mitochondrial carriers. Curr Opin Struct Biol 20, 440-447. 

22. Lill, R. & Kispal, G. (2000). Maturation of cellular Fe-S proteins: an essential 

function of mitochondria. Trends Biochem. Sci. 25, 352-356. 

23. Sano, S., Inoue, S., Tanabe, Y., Sumiya, C. & Koike, S. (1959). Significance of 

mitochondria for porphyrin and heme biosynthesis. Science 129, 275-276. 

24. Fiermonte, G., Dolce, V., Arrigoni, R., Runswick, M. J., Walker, J. E. & Palmieri, F. 

(1999). Organization and sequence of the gene for the human mitochondrial 

dicarboxylate carrier: evolution of the carrier family. Biochem. J. 344 Pt 3, 953-960. 

25. Saraste, M. & Walker, J. E. (1982). Internal sequence repeats and the path of 

polypeptide in mitochondrial ADP/ATP translocase. FEBS Lett. 144, 250-254. 

26. Okamoto, K. & Shaw, J. M. (2005). Mitochondrial morphology and dynamics in 

yeast and multicellular eukaryotes. Annu. Rev. Genet. 39, 503-536. 

27. Brereiter-Hahn, J. & Voth, M. (1994). Dynamics of mitochondria in living cells: 

shape changes, dislocations, fusion and fission of mitochondria. Microscopy research 

and technique 27, 198-219. 

28. Moore, A. S., Wong, Y. C., Simpson, C. L. & Holzbaur, E. L. (2016). Dynamic actin 

cycling through mitochondrial subpopulations locally regulates the fission-fusion 

balance within mitochondrial networks. Nat Commun 7, 12886. 

29. Otera, H., Wang, C., Cleland, M. M., Setoguchi, K., Yokota, S., Youle, R. J. & 

Mihara, K. (2010). Mff is an essential factor for mitochondrial recruitment of Drp1 

during mitochondrial fission in mammalian cells. J. Cell Biol. 191, 1141-1158. 



	 118 

30. Losón, O. C., Song, Z., Chen, H. & Chan, D. C. (2013). Fis1, Mff, MiD49, and 

MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol. Biol. Cell 24, 659-

667. 

31. Malka, F., Guillery, O., Cifuentes-Diaz, C., Guillou, E., Belenguer, P., Lombès, A. & 

Rojo, M. (2005). Separate fusion of outer and inner mitochondrial membranes. 

EMBO Rep. 6, 853-859. 

32. Song, Z., Ghochani, M., McCaffery, J. M., Frey, T. G. & Chan, D. C. (2009). 

Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. 

Mol. Biol. Cell 20, 3525-3532. 

33. Frey, T. G. & Mannella, C. A. (2000). The internal structure of mitochondria. Trends 

Biochem. Sci. 25, 319-324. 

34. Davies, K. M., Strauss, M., Daum, B., Kief, J. H., Osiewacz, H. D., Rycovska, A., 

Zickermann, V. & Kühlbrandt, W. (2011). Macromolecular organization of ATP 

synthase and complex I in whole mitochondria. Proc. Natl. Acad. Sci. U. S. A. 108, 

14121-14126. 

35. Strauss, M., Hofhaus, G., Schröder, R. R. & Kühlbrandt, W. (2008). Dimer ribbons 

of ATP synthase shape the inner mitochondrial membrane. EMBO J. 27, 1154-1160. 

36. Dudkina, N. V., Heinemeyer, J., Keegstra, W., Boekema, E. J. & Braun, H. P. (2005). 

Structure of dimeric ATP synthase from mitochondria: an angular association of 

monomers induces the strong curvature of the inner membrane. FEBS Lett. 579, 5769-

5772. 

37. Arselin, G., Vaillier, J., Salin, B., Schaeffer, J., Giraud, M. F., Dautant, A., Brèthes, 

D. & Velours, J. (2004). The modulation in subunits e and g amounts of yeast ATP 

synthase modifies mitochondrial cristae morphology. J. Biol. Chem. 279, 40392-

40399. 



	 119 

38. Amutha, B., Gordon, D. M., Gu, Y. & Pain, D. (2004). A novel role of Mgm1p, a 

dynamin-related GTPase, in ATP synthase assembly and cristae 

formation/maintenance. Biochem. J. 381, 19-23. 

39. Crofts, A. R. (2004). The cytochrome bc1 complex: function in the context of 

structure. Annu Rev Physiol 66, 689-733. 

40. Fiedorczuk, K., Letts, J. A., Degliesposti, G., Kaszuba, K., Skehel, M. & Sazanov, L. 

A. (2016). Atomic structure of the entire mammalian mitochondrial complex I. 

Nature 538, 406-410. 

41. Zhu, J., Vinothkumar, K. R. & Hirst, J. (2016). Structure of mammalian respiratory 

complex I. Nature 536, 354-358. 

42. Huang, J. & Fraser, M. E. (2016). Structural basis for the binding of succinate to 

succinyl-CoA synthetase. Acta Crystallogr D Struct Biol 72, 912-921. 

43. Watmough, N. J. & Frerman, F. E. (2010). The electron transfer flavoprotein: 

ubiquinone oxidoreductases. Biochim. Biophys. Acta 1797, 1910-1916. 

44. Crofts, A. R., Holland, J. T., Victoria, D., Kolling, D. R., Dikanov, S. A., Gilbreth, 

R., Lhee, S., Kuras, R. & Kuras, M. G. (2008). The Q-cycle reviewed: How well does 

a monomeric mechanism of the bc(1) complex account for the function of a dimeric 

complex. Biochim. Biophys. Acta 1777, 1001-1019. 

45. Abramson, J., Svensson-Ek, M., Byrne, B. & Iwata, S. (2001). Structure of 

cytochrome c oxidase: a comparison of the bacterial and mitochondrial enzymes. 

Biochim. Biophys. Acta 1544, 1-9. 

46. Shoubridge, E. A. (2012). Supersizing the mitochondrial respiratory chain. Cell 

Metab 15, 271-272. 

47. Medvedev, E. S. & Stuchebrukhov, A. A. (2014). Mechanisms of generation of local 

ΔpH in mitochondria and bacteria. Biochemistry (Mosc) 79, 425-434. 



	 120 

48. Lapuente-Brun, E., Moreno-Loshuertos, R., Acín-Pérez, R., Latorre-Pellicer, A., 

Colás, C., Balsa, E., Perales-Clemente, E., Quirós, P. M., Calvo, E., Rodríguez-

Hernández, M. A., Navas, P., Cruz, R., Carracedo, Á., López-Otín, C., Pérez-Martos, 

A., Fernández-Silva, P., Fernández-Vizarra, E. & Enríquez, J. A. (2013). 

Supercomplex assembly determines electron flux in the mitochondrial electron 

transport chain. Science 340, 1567-1570. 

49. Letts JA, F., K, Sazanov, LA (2016). The architecture of respiratory supercomplexes. 

Nature 537, 664-648. 

50. Schägger, H. & Pfeiffer, K. (2001). The ratio of oxidative phosphorylation complexes 

I-V in bovine heart mitochondria and the composition of respiratory chain 

supercomplexes. J. Biol. Chem. 276, 37861-37867. 

51. Yu-Wai-Man, P., Griffiths, P. G., Hudson, G. & Chinnery, P. F. (2009). Inherited 

mitochondrial optic neuropathies. J. Med. Genet. 46, 145-158. 

52. Bonilla, E., Tanji, K., Hirano, M., Vu, T. H., DiMauro, S. & Schon, E. A. (1999). 

Mitochondrial involvement in Alzheimer’s disease. Biochim. Biophys. Acta 1410, 

171-182. 

53. Beck, S. J., Guo, L., Phensy, A., Tian, J., Wang, L., Tandon, N., Gauba, E., Lu, L., 

Pascual, J. M., Kroener, S. & Du, H. (2016). Deregulation of mitochondrial F1FO-

ATP synthase via OSCP in Alzheimer’s disease. Nat Commun 7, 11483. 

54. Züchner, S., Mersiyanova, I. V., Muglia, M., Bissar-Tadmouri, N., Rochelle, J., 

Dadali, E. L., Zappia, M., Nelis, E., Patitucci, A., Senderek, J., Parman, Y., Evgrafov, 

O., Jonghe, P. D., Takahashi, Y., Tsuji, S., Pericak-Vance, M. A., Quattrone, A., 

Battaloglu, E., Polyakov, A. V., Timmerman, V., Schröder, J. M., Vance, J. M. & 

Battologlu, E. (2004). Mutations in the mitochondrial GTPase mitofusin 2 cause 

Charcot-Marie-Tooth neuropathy type 2A. Nat. Genet. 36, 449-451. 



	 121 

55. Gakh, O., Bedekovics, T., Duncan, S. F., Smith, D. Y., Berkholz, D. S. & Isaya, G. 

(2010). Normal and Friedreich ataxia cells express different isoforms of frataxin with 

complementary roles in iron-sulfur cluster assembly. J. Biol. Chem. 285, 38486-

38501. 

56. Ghezzi, D. & Zeviani, M. (2012). Assembly factors of human mitochondrial 

respiratory chain complexes: physiology and pathophysiology. Adv. Exp. Med. Biol. 

748, 65-106. 

57. Ghezzi, D., Goffrini, P., Uziel, G., Horvath, R., Klopstock, T., Lochmüller, H., 

D’Adamo, P., Gasparini, P., Strom, T. M., Prokisch, H., Invernizzi, F., Ferrero, I. & 

Zeviani, M. (2009). SDHAF1, encoding a LYR complex-II specific assembly factor, 

is mutated in SDH-defective infantile leukoencephalopathy. Nat. Genet. 41, 654-656. 

58. Dahl, H. H. (1998). Getting to the nucleus of mitochondrial disorders: identification 

of respiratory chain-enzyme genes causing Leigh syndrome. Am. J. Hum. Genet. 63, 

1594-1597. 

59. Hoefs, S. J., Dieteren, C. E., Distelmaier, F., Janssen, R. J., Epplen, A., Swarts, H. 

G., Forkink, M., Rodenburg, R. J., Nijtmans, L. G., Willems, P. H., Smeitink, J. A. 

& van den Heuvel, L. P. (2008). NDUFA2 complex I mutation leads to Leigh disease. 

Am. J. Hum. Genet. 82, 1306-1315. 

60. McKenzie, M., Liolitsa, D., Akinshina, N., Campanella, M., Sisodiya, S., Hargreaves, 

I., Nirmalananthan, N., Sweeney, M. G., Abou-Sleiman, P. M., Wood, N. W., Hanna, 

M. G. & Duchen, M. R. (2007). Mitochondrial ND5 gene variation associated with 

encephalomyopathy and mitochondrial ATP consumption. J. Biol. Chem. 282, 

36845-36852. 

61. Hao, H. X., Khalimonchuk, O., Schraders, M., Dephoure, N., Bayley, J. P., Kunst, 

H., Devilee, P., Cremers, C. W., Schiffman, J. D., Bentz, B. G., Gygi, S. P., Winge, 



	 122 

D. R., Kremer, H. & Rutter, J. (2009). SDH5, a gene required for flavination of 

succinate dehydrogenase, is mutated in paraganglioma. Science 325, 1139-1142. 

62. McLelland, G. L., Soubannier, V., Chen, C. X., McBride, H. M. & Fon, E. A. (2014). 

Parkin and PINK1 function in a vesicular trafficking pathway regulating 

mitochondrial quality control. EMBO J. 33, 282-295. 

63. Jonckheere, A. I., Smeitink, J. A. & Rodenburg, R. J. (2012). Mitochondrial ATP 

synthase: architecture, function and pathology. J. Inherit. Metab. Dis. 35, 211-225. 

64. Sgarbi, G., Baracca, A., Lenaz, G., Valentino, L. M., Carelli, V. & Solaini, G. (2006). 

Inefficient coupling between proton transport and ATP synthesis may be the 

pathogenic mechanism for NARP and Leigh syndrome resulting from the T8993G 

mutation in mtDNA. Biochem. J. 395, 493-500. 

65. Ware, S. M., El-Hassan, N., Kahler, S. G., Zhang, Q., Ma, Y. W., Miller, E., Wong, 

B., Spicer, R. L., Craigen, W. J., Kozel, B. A., Grange, D. K. & Wong, L. J. (2009). 

Infantile cardiomyopathy caused by a mutation in the overlapping region of 

mitochondrial ATPase 6 and 8 genes. J. Med. Genet. 46, 308-314. 

66. Palmer, D. N., Fearnley, I. M., Walker, J. E., Hall, N. A., Lake, B. D., Wolfe, L. S., 

Haltia, M., Martinus, R. D. & Jolly, R. D. (1992). Mitochondrial ATP synthase 

subunit c storage in the ceroid-lipofuscinoses (Batten disease). Am. J. Med. Genet. 

42, 561-567. 

67. Mayr, J. A., Havlícková, V., Zimmermann, F., Magler, I., Kaplanová, V., Jesina, P., 

Pecinová, A., Nusková, H., Koch, J., Sperl, W. & Houstek, J. (2010). Mitochondrial 

ATP synthase deficiency due to a mutation in the ATP5E gene for the F1 ε subunit. 

Hum. Mol. Genet. 19, 3430-3439. 

68. Wang, Z. G., White, P. S. & Ackerman, S. H. (2001). Atp11p and Atp12p are 

assembly factors for the F1-ATPase in human mitochondria. J. Biol. Chem. 276, 



	 123 

30773-30778. 

69. Wong, L. J. (2007). Diagnostic challenges of mitochondrial DNA disorders. 

Mitochondrion 7, 45-52. 

70. Stock, D., Gibbons, C., Arechaga, I., Leslie, A. G. W. & Walker, J. E. (2000). The 

rotary mechanism of ATP synthase. Curr Opin Struct Biol 672-679. 

71. Vinothkumar, K. R., Montgomery, M. G., Liu, S. & Walker, J. E. (2016). Structure 

of the mitochondrial ATP synthase from Pichia angusta determined by electron cryo-

microscopy. Proc. Natl. Acad. Sci. U. S. A. 113, 12709-12714. 

72. Chen, R., Fearnley, I. M., Palmer, D. N. & Walker, J. E. (2004). Lysine 43 is 

trimethylated in subunit c from bovine mitochondrial ATP synthase and in storage 

bodies associated with Batten disease. J. Biol. Chem. 279, 21883-21887. 

73. Palmer, D. N. (2015). The relevance of the storage of subunit c of ATP synthase in 

different forms and models of Batten disease (NCLs). Biochim. Biophys. Acta 1852, 

2287-2291. 

74. De Meirleir, L., Seneca, S., Lissens, W., De Clercq, I., Eyskens, F., Gerlo, E., Smet, 

J. & Van Coster, R. (2004). Respiratory chain complex V deficiency due to a mutation 

in the assembly gene ATP12. J. Med. Genet. 41, 120-124. 

75. Ackerman, S. H. (2002). Atp11p and Atp12p are chaperones for F1-ATPase 

biogenesis in mitochondria. Biochim. Biophys. Acta 1555, 101-105. 

76. Halestrap, A. P. (2009). What is the mitochondrial permeability transition pore. J Mol 

Cell Cardiol 46, 821-831. 

77. Halestrap, A. P. & Pasdois, P. (2009). The role of the mitochondrial permeability 

transition pore in heart disease. Biochim. Biophys. Acta 1787, 1402-1415. 

78. Crompton, M. (1999). The mitochondrial permeability transition pore and its role in 

cell death. Biochem. J. 341, 233-249. 



	 124 

79. Di Lisa, F. & Bernardi, P. (2006). Mitochondria and ischemia-reperfusion injury of 

the heart: fixing a hole. Cardiovasc. Res. 70, 191-199. 

80. Pell, V. R., Chouchani, E. T., Frezza, C., Murphy, M. P. & Krieg, T. (2016). Succinate 

metabolism: a new therapeutic target for myocardial reperfusion injury. Cardiovasc. 

Res. 111, 134-141. 

81. Chouchani, E. T., Pell, V. R., Gaude, E., Aksentijević, D., Sundier, S. Y., Robb, E. 

L., Logan, A., Nadtochiy, S. M., Ord, E. N., Smith, A. C., Eyassu, F., Shirley, R., Hu, 

C. H., Dare, A. J., James, A. M., Rogatti, S., Hartley, R. C., Eaton, S., Costa, A. S., 

Brookes, P. S., Davidson, S. M., Duchen, M. R., Saeb-Parsy, K., Shattock, M. J., 

Robinson, A. J., Work, L. M., Frezza, C., Krieg, T. & Murphy, M. P. (2014). 

Ischaemic accumulation of succinate controls reperfusion injury through 

mitochondrial ROS. Nature 515, 431-435. 

82. Walker, J. E. (2013). The ATP synthase: the understood, the uncertain and the 

unknown. Biochem. Soc. Trans. 41, 1-16. 

83. Koumandou, V. L. & Kossida, S. (2014). Evolution of the FOF1 ATP synthase 

complex in light of the patchy distribution of different bioenergetic pathways across 

prokaryotes. PLoS Comput. Biol. 10, e1003821. 

84. Walker, J. E., Lutter, R. E., Dupuis, J. A. & Runswick, M. J. (1991). Identification of 

the subunits of F1FO-ATPase from bovine heart mitochondria. Biochemistry 30, 5369-

5378. 

85. Runswick, M. J., Bason, J. V., Montgomery, M. G., Robinson, G. C., Fearnley, I. M. 

& Walker, J. E. (2013). The affinity purification and characterization of ATP synthase 

complexes from mitochondria. Open Biol. 3, 120160. 

86. Liu, S., Charlesworth, T. J., Bason, J. V., Montgomery, M. G., Harbour, M. E., 

Fearnley, I. M. & Walker, J. E. (2015). The purification and characterization of ATP 



	 125 

synthase complexes from the mitochondria of four fungal species. Biochem. J. 468, 

167-175. 

87. Collinson, I. R., Runswick, M. J., Buchanan, S. K., Fearnley, I. M., Skehel, J. M., van 

Raaij, M. J., Griffiths, D. E. & Walker, J. E. (1994). FO membrane domain of ATP 

synthase from bovine heart mitochondria: purification, subunit composition, and 

reconstitution with F1-ATPase. Biochemistry 33, 7971-7978. 

88. Gledhill, J. R., Montgomery, M. G., Leslie, A. G. W. & Walker, J. E. (2007). How 

the regulatory protein, IF1, inhibits F1-ATPase from bovine mitochondria. Proc. Natl. 

Acad. Sci. U. S. A. 104, 15671-15676. 

89. Bason, J. V., Montgomery, M. G., Leslie, A. G. W. & Walker, J. E. (2014). Pathway 

of binding of the intrinsically disordered mitochondrial inhibitor protein to F1-

ATPase. Proc. Natl. Acad. Sci. U. S. A. 111, 11305-11310. 

90. Walker, J. E., Collinson, I. R., Van Raaij, M. J. & Runswick, M. J. (1995). Structural 

analysis of ATP synthase from bovine heart mitochondria. Methods Enzymol. 260, 

163-190. 

91. Lee, J., Ding, S., Walpole, T. B., Holding, A. N., Montgomery, M. G., Fearnley, I. 

M. & Walker, J. E. (2015). Organization of subunits in the membrane domain of the 

bovine F-ATPase revealed by covalent cross-linking. J. Biol. Chem. 290, 13308-

13320. 

92. Baker, L. A., Watt, I. N., Runswick, M. J., Walker, J. E. & Rubinstein, J. L. (2012). 

Arrangement of subunits in intact mammalian mitochondrial ATP synthase 

determined by cryo-EM. Proc. Natl. Acad. Sci. U. S. A. 109, 11675-11680. 

93. Rubinstein, J. L., Walker, J. E. & Henderson, R. (2003). Structure of the 

mitochondrial ATP synthase by electron cryomicroscopy. EMBO J. 22, 6182-6192. 

94. Walker, J. E., Runswick, M. J. & Poulter, L. (1987). ATP synthase from bovine 



	 126 

mitochondria. The characterization and sequence analysis of two membrane-

associated subunits and of the corresponding cDNAs. J. Mol. Biol. 197, 89-100. 

95. Buchanan, S. K. & Walker, J. E. (1996). Large-scale chromatographic purification of 

F1FO-ATPase and complex I from bovine heart mitochondria. Biochem. J. 318, 343-

349. 

96. Collinson, I. R., Skehel, J. M., Fearnley, I. M., Runswick, M. J. & Walker, J. E. 

(1996). The F1FO-ATPase complex from bovine heart mitochondria: the molar ratio 

of the subunits in the stalk region linking the F1 and FO domains. Biochemistry 35, 

12640-12646. 

97. Carbajo, R. J., Kellas, F. A., Runswick, M. J., Montgomery, M. G., Walker, J. E. & 

Neuhaus, D. (2005). Structure of the F1-binding domain of the stator of bovine F1FO-

ATPase and how it binds an α-subunit. J. Mol. Biol. 351, 824-838. 

98. Fearnley, I. M. & Walker, J. E. (1986). Two overlapping genes in bovine 

mitochondrial DNA encode membrane components of ATP synthase. EMBO J. 5, 

2003-2008. 

99. Walker, J. E. L., RE Dupuis, JA Runswick, MJ (1991). Identification of the subunits 

of F1FO-ATPase from bovine heart mitochondria. Biochemistry 5369-5378. 

100. Chen, R., Runswick, M. J., Carroll, J., Fearnley, I. M. & Walker, J. E. (2007). 

Association of two proteolipids of unknown function with ATP synthase from bovine 

heart mitochondria. FEBS Lett. 581, 3145-3148. 

101. Duncan, A. L., Robinson, A. J. & Walker, J. E. (2016). Cardiolipin binds selectively 

but transiently to conserved lysine residues in the rotor of metazoan ATP synthases. 

Proc. Natl. Acad. Sci. U. S. A. 113, 8687-8692. 

102. Stock, D., Leslie, A. G. W. & Walker, J. E. (1999). Molecular architecture of the 

rotary motor in ATP synthase. Science 286, 1700-1705. 



	 127 

103. Arechaga, I., Butler, P. J. G. & Walker, J. E. (2002). Self-assembly of ATP synthase 

subunit c rings. FEBS Lett. 515, 189-193. 

104. Zhou, A., Rohou, A., Schep, D. G., Bason, J. V., Montgomery, M. G., Walker, J. E., 

Grigorieff, N. & Rubinstein, J. L. (2015). Structure and conformational states of the 

bovine mitochondrial ATP synthase by cryo-EM. Elife 4, e10180. 

105. Morales-Rios, E., Montgomery, M. G., Leslie, A. G. W. & Walker, J. E. (2015). 

Structure of ATP synthase from Paracoccus denitrificans determined by X-ray 

crystallography at 4.0 Å resolution. Proc. Natl. Acad. Sci. U. S. A. 112, 13231-13236. 

106. Collinson, I. R., van Raaij, M. J., Runswick, M. J., Fearnley, I. M., Skehel, J. M., 

Orriss, G. L., Miroux, B. & Walker, J. E. (1994). ATP synthase from bovine heart 

mitochondria. In vitro assembly of a stalk complex in the presence of F1-ATPase and 

in its absence. J. Mol. Biol. 242, 408-421. 

107. Carbajo, R. J., Kellas, F. A., Yang, J. C., Runswick, M. J., Montgomery, M. G., 

Walker, J. E. & Neuhaus, D. (2007). How the N-terminal domain of the OSCP subunit 

of bovine F1FO-ATP synthase interacts with the N-terminal region of an α-subunit. J. 

Mol. Biol. 368, 310-318. 

108. Dickson, V. K., Silvester, J. A., Fearnley, I. M., Leslie, A. G. W. & Walker, J. E. 

(2006). On the structure of the stator of the mitochondrial ATP synthase. EMBO J. 

25, 2911-2918. 

109. Abrahams, J. P., Leslie, A. G. W., Lutter, R. & Walker, J. E. (1994). Structure at 2.8 

Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621-628. 

110. Boyer, P. D. (1993). The binding change mechanism for ATP synthase-some 

probabilities and possibilities. Biochim. Biophys. Acta 1140, 215-250. 

111. Menz, R. I., Walker, J. E. & Leslie, A. G. W. (2001). Structure of bovine 

mitochondrial F1-ATPase with nucleotide bound to all three catalytic sites: 



	 128 

implications for the mechanism of rotary catalysis. Cell 106, 331-341. 

112. Bowler, M. W., Montgomery, M. G., Leslie, A. G. W. & Walker, J. E. (2006). How 

azide inhibits ATP hydrolysis by the F-ATPases. Proc. Natl. Acad. Sci. U. S. A. 103, 

8646-8649. 

113. Bowler, M. W., Montgomery, M. G., Leslie, A. G. W. & Walker, J. E. (2007). Ground 

state structure of F1-ATPase from bovine heart mitochondria at 1.9 Å resolution. J. 

Biol. Chem. 282, 14238-14242. 

114. Rees, D. M., Montgomery, M. G., Leslie, A. G. W. & Walker, J. E. (2012). Structural 

evidence of a new catalytic intermediate in the pathway of ATP hydrolysis by F1-

ATPase from bovine heart mitochondria. Proc. Natl. Acad. Sci. U. S. A. 109, 11139-

11143. 

115. Kabaleeswaran, V., Puri, N., Walker, J. E., Leslie, A. G. W. & Mueller, D. M. (2006). 

Novel features of the rotary catalytic mechanism revealed in the structure of yeast F1 

ATPase. EMBO J. 25, 5433-5442. 

116. Ackerman, S. H. & Tzagoloff, A. (1990). Identification of two nuclear genes (ATP11, 

ATP12) required for assembly of the yeast F1-ATPase. Proc. Natl. Acad. Sci. U. S. A. 

87, 4986-4990. 

117. Straffon, A. F., Prescott, M., Nagley, P. & Devenish, R. J. (1998). The assembly of 

yeast mitochondrial ATP synthase: subunit depletion in vivo suggests ordered 

assembly of the stalk subunits b, OSCP and d. Biochim. Biophys. Acta 1371, 157-162. 

118. Fujikawa, M., Sugawara, K., Tanabe, T. & Yoshida, M. (2015). Assembly of human 

mitochondrial ATP synthase through two separate intermediates, F1-c-ring and b-e-g 

complex. FEBS Lett. 589, 2707-2712. 

119. Osman, C., Wilmes, C., Tatsuta, T. & Langer, T. (2007). Prohibitins interact 

genetically with Atp23, a novel processing peptidase and chaperone for the F1FO-



	 129 

ATP synthase. Mol. Biol. Cell 18, 627-635. 

120. Rak, M., Gokova, S. & Tzagoloff, A. (2011). Modular assembly of yeast 

mitochondrial ATP synthase. EMBO J. 30, 920-930. 

121. Rühle, T. & Leister, D. (2015). Assembly of F1FO-ATP synthases. Biochim. Biophys. 

Acta 1847, 849-860. 

122. Wittig, I., Meyer, B., Heide, H., Steger, M., Bleier, L., Wumaier, Z., Karas, M. & 

Schägger, H. (2010). Assembly and oligomerization of human ATP synthase lacking 

mitochondrial subunits a and A6L. Biochim. Biophys. Acta 1797, 1004-1011. 

123. Nijtmans, L. G., Henderson, N. S., Attardi, G. & Holt, I. J. (2001). Impaired ATP 

synthase assembly associated with a mutation in the human ATP synthase subunit 6 

gene. J. Biol. Chem. 276, 6755-6762. 

124. Paumard, P., Vaillier, J., Coulary, B., Schaeffer, J., Soubannier, V., Mueller, D. M., 

Brèthes, D., di Rago, J. P. & Velours, J. (2002). The ATP synthase is involved in 

generating mitochondrial cristae morphology. EMBO J. 21, 221-230. 

125. Ong, S. E., Blagoev, B., Kratchmarova, I., Kristensen, D. B., Steen, H., Pandey, A. 

& Mann, M. (2002). Stable isotope labeling by amino acids in cell culture, SILAC, 

as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 

1, 376-386. 

126. Wu, M., Neilson, A., Swift, A. L., Moran, R., Tamagnine, J., Parslow, D., Armistead, 

S., Lemire, K., Orrell, J., Teich, J., Chomicz, S. & Ferrick, D. A. (2007). 

Multiparameter metabolic analysis reveals a close link between attenuated 

mitochondrial bioenergetic function and enhanced glycolysis dependency in human 

tumor cells. Am J Physiol Cell Physiol 292, C125-C136. 

127. Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, 

J. T., Bokesch, H., Kenney, S. & Boyd, M. R. (1990). New colorimetric cytotoxicity 



	 130 

assay for anticancer-drug screening. J. Natl. Cancer Inst. 82, 1107-1112. 

128. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., 

Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J. & Klenk, D. C. 

(1985). Measurement of protein using bicinchoninic acid. Anal. Biochem. 150, 76-

85. 

129. Klement, P., Nijtmans, L. G., Van den Bogert, C. & Houstĕk, J. (1995). Analysis of 

oxidative phosphorylation complexes in cultured human fibroblasts and amniocytes 

by blue-native-electrophoresis using mitoplasts isolated with the help of digitonin. 

Anal. Biochem. 231, 218-224. 

130. Schägger, H. & von Jagow, G. (1991). Blue native electrophoresis for isolation of 

membrane protein complexes in enzymatically active form. Anal. Biochem. 199, 223-

231. 

131. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the 

head of bacteriophage T4. Nature 227, 680-685. 

132. Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. (1996). Mass spectrometric 

sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68, 850-858. 

133. Towbin, H., Staehelin, T. & Gordon, J. (1992). Electrophoretic transfer of proteins 

from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. 

1979. Biotechnology 24, 145-149. 

134. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J. V. & Mann, M. (2006). In-gel 

digestion for mass spectrometric characterization of proteins and proteomes. Nat. 

Protoc. 1, 2856-2860. 

135. Perkins, D. N., Pappin, D. J., Creasy, D. M. & Cottrell, J. S. (1999). Probability-based 

protein identification by searching sequence databases using mass spectrometry data. 

Electrophoresis 20, 3551-3567. 



	 131 

136. Cox, J. & Mann, M. (2008). MaxQuant enables high peptide identification rates, 

individualized p.p.b.-range mass accuracies and proteome-wide protein 

quantification. Nat. Biotechnol. 26, 1367-1372. 

137. Cox, J., Neuhauser, N., Michalski, A., Scheltema, R. A., Olsen, J. V. & Mann, M. 

(2011). Andromeda: a peptide search engine integrated into the MaxQuant 

environment. J. Proteome Res. 10, 1794-1805. 

138. Ford, H. (2016). Studies of the assembly of ATP synthase in human mitochondria. 

PhD thesis, Cambridge University  

139. Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M. Y., Geiger, T., Mann, M. 

& Cox, J. (2016). The Perseus computational platform for comprehensive analysis of 

(prote)omics data. Nat Methods 13, 731-740. 

140. Ran, F. A., Hsu, P. D., Wright, J., Agarwala, V., Scott, D. A. & Zhang, F. (2013). 

Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281-2308. 

141. International, H. G. S. C. (2004). Finishing the euchromatic sequence of the human 

genome. Nature 431, 931-945. 

142. Zeng, X., Barros, M. H., Shulman, T. & Tzagoloff, A. (2008). ATP25, a new nuclear 

gene of Saccharomyces cerevisiae required for expression and assembly of the Atp9p 

subunit of mitochondrial ATPase. Mol. Biol. Cell 19, 1366-1377. 

143. Tzagoloff, A., Barrientos, A., Neupert, W. & Herrmann, J. M. (2004). Atp10p assists 

assembly of Atp6p into the FO unit of the yeast mitochondrial ATPase. J. Biol. Chem. 

279, 19775-19780. 

144. Kucharczyk, R., Zick, M., Bietenhader, M., Rak, M., Couplan, E., Blondel, M., 

Caubet, S. D. & di Rago, J. P. (2009). Mitochondrial ATP synthase disorders: 

molecular mechanisms and the quest for curative therapeutic approaches. Biochim. 

Biophys. Acta 1793, 186-199. 



	 132 

145. Hahn, A., Parey, K., Bublitz, M., Mills, D. J., Zickermann, V., Vonck, J., Kühlbrandt, 

W. & Meier, T. (2016). Structure of a complete ATP Synthase dimer reveals the 

molecular basis of inner mitochondrial membrane morphology. Mol. Cell 63, 445-

456. 

146. Lytovchenko, O., Naumenko, N., Oeljeklaus, S., Schmidt, B., von der Malsburg, K., 

Deckers, M., Warscheid, B., van der Laan, M. & Rehling, P. (2014). The INA 

complex facilitates assembly of the peripheral stalk of the mitochondrial F1Fo-ATP 

synthase. EMBO J. 33, 1624-1638. 

147. Stroud, D. A. & Ryan, M. T. (2014). Stalking the mitochondrial ATP synthase: Ina 

found guilty by association. EMBO J. 33, 1617-1618. 

148. Walpole, T. B., Palmer, D. N., Jiang, H., Ding, S., Fearnley, I. M. & Walker, J. E. 

(2015). Conservation of complete trimethylation of lysine-43 in the rotor ring of c-

subunits of metazoan adenosine triphosphate (ATP) synthases. Mol. Cell. Proteomics 

14, 828-840. 

149. Buchet, K. & Godinot, C. (1998). Functional F1-ATPase essential in maintaining 

growth and membrane potential of human mitochondrial DNA-depleted rho0 cells. J. 

Biol. Chem. 273, 22983-22989. 

150. Appleby, R. D., Porteous, W. K., Hughes, G., James, A. M., Shannon, D., Wei, Y. H. 

& Murphy, M. P. (1999). Quantitation and origin of the mitochondrial membrane 

potential in human cells lacking mitochondrial DNA. Eur. J. Biochem. 262, 108-116. 

151. Wagner, K., Rehling, P., Sanjuán Szklarz, L. K., Taylor, R. D., Pfanner, N. & van der 

Laan, M. (2009). Mitochondrial F1FO-ATP synthase: the small subunits e and g 

associate with monomeric complexes to trigger dimerization. J. Mol. Biol. 392, 855-

861. 

152. Ohsakaya, S., Fujikawa, M., Hisabori, T. & Yoshida, M. (2011). Knockdown of 



	 133 

DAPIT (diabetes-associated protein in insulin-sensitive tissue) results in loss of ATP 

synthase in mitochondria. J. Biol. Chem. 286, 20292-20296. 

153. Azzolin, L., von Stockum, S., Basso, E., Petronilli, V., Forte, M. A. & Bernardi, P. 

(2010). The mitochondrial permeability transition from yeast to mammals. FEBS 

Lett. 584, 2504-2509. 

154. Broekemeier, K. M., Schmid, P. C., Schmid, H. H. & Pfeiffer, D. R. (1985). Effects 

of phospholipase A2 inhibitors on ruthenium red-induced Ca2+ release from 

mitochondria. J. Biol. Chem. 260, 105-113. 

155. Crompton, M. & Costi, A. (1988). Kinetic evidence for a heart mitochondrial pore 

activated by Ca2+, inorganic phosphate and oxidative stress. A potential mechanism 

for mitochondrial dysfunction during cellular Ca2+ overload. Eur. J. Biochem. 178, 

489-501. 

156. Al-Nasser, I. & Crompton, M. (1986). The reversible Ca2+-induced permeabilization 

of rat liver mitochondria. Biochem. J. 239, 19-29. 

157. Crompton, M., Virji, S. & Ward, J. M. (1998). Cyclophilin-D binds strongly to 

complexes of the voltage-dependent anion channel and the adenine nucleotide 

translocase to form the permeability transition pore. Eur. J. Biochem. 258, 729-735. 

158. Kokoszka, J. E., Waymire, K. G., Levy, S. E., Sligh, J. E., Cai, J., Jones, D. P., 

MacGregor, G. R. & Wallace, D. C. (2004). The ADP/ATP translocator is not 

essential for the mitochondrial permeability transition pore. Nature 427, 461-465. 

159. Krauskopf, A., Eriksson, O., Craigen, W. J., Forte, M. A. & Bernardi, P. (2006). 

Properties of the permeability transition in VDAC1(-/-) mitochondria. Biochim. 

Biophys. Acta 1757, 590-595. 

160. Giorgio, V., von Stockum, S., Antoniel, M., Fabbro, A., Fogolari, F., Forte, M., Glick, 

G. D., Petronilli, V., Zoratti, M., Szabó, I., Lippe, G. & Bernardi, P. (2013). Dimers 



	 134 

of mitochondrial ATP synthase form the permeability transition pore. Proc. Natl. 

Acad. Sci. U. S. A. 110, 5887-5892. 

161. Alavian, K. N., Beutner, G., Lazrove, E., Sacchetti, S., Park, H. A., Licznerski, P., Li, 

H., Nabili, P., Hockensmith, K., Graham, M., Porter, G. A. & Jonas, E. A. (2014). An 

uncoupling channel within the c-subunit ring of the F1FO ATP synthase is the 

mitochondrial permeability transition pore. Proc. Natl. Acad. Sci. U. S. A. 111, 10580-

10585. 

162. Bonora, M., Bononi, A., De Marchi, E., Giorgi, C., Lebiedzinska, M., Marchi, S., 

Patergnani, S., Rimessi, A., Suski, J. M., Wojtala, A., Wieckowski, M. R., Kroemer, 

G., Galluzzi, L. & Pinton, P. (2013). Role of the c subunit of the FO ATP synthase in 

mitochondrial permeability transition. Cell Cycle 12, 674-683. 

163. He, J., Ford, H. C., Carroll, J., Ding, S., Fearnley, I. M. & Walker, J. E. (2017). 

Persistence of the mitochondrial permeability transition in the absence of subunit c of 

human ATP synthase. PNAS Early Edition, 1-6. 

164. Shabalina, S. A. & Koonin, E. V. (2008). Origins and evolution of eukaryotic RNA 

interference. Trends Ecol Evol 23, 578-587. 

165. Mojica, F. J. & Montoliu, L. (2016). On the Origin of CRISPR-Cas Technology: 

From Prokaryotes to Mammals. Trends Microbiol. 24, 811-820. 

166. Mojica, F. J., Díez-Villaseñor, C., García-Martínez, J. & Soria, E. (2005). Intervening 

sequences of regularly spaced prokaryotic repeats derive from foreign genetic 

elements. J. Mol. Evol. 60, 174-182. 

 

  



	 135 

Appendix I – Reagents and chemicals 

Reagent  Product code Source 

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine 840051C Avanti Polar Lipids, AL, USA 

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine 850757C Avanti Polar Lipids, AL, USA 

1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol 840457C Avanti Polar Lipids, AL, USA 

10-20% acrylamide gradient Tris-glycine SDS PAGE gel EC61355BOX ThermoFisher Scientific, Hemel Hempstead, UK 

143B osteosarcoma cells CRL-8303 ATCC, Teddington, UK 

2-Deoxy-D-glucose 1001469905 ThermoFisher Scientific, Hemel Hempstead, UK 

3-12 % acrylamide gradient bis-Tris native PAGE gel BN1003BOX ThermoFisher Scientific, Hemel Hempstead, UK 

A8 NC slide 942-0003 ChemoMetec, Lillerod, Denmark 

Acetic acid 20104334 VWR Chemicals, Lutterworth, UK  

Acetonitrile H33387 Alfa Aesar, Heysham, UK 

Acrylamide/bis-acrylamide 20% w/v 37.5:1 solution 20-2100-10 Severn Biotech, Kidderminster, UK 

All blue prestained precision plus protein standards 161-0373 Biorad, Hemel Hempstead, UK 

AllStars negative control siRNA 1027281 QIAGEN, Manchester, UK 

alpha-cyano-4-hydroxy-trans-cinnamic acid 476870-2G Sigma-Aldrich, Poole, UK 

Ammonium persulfate A3678-25G Sigma-Aldrich, Poole, UK 

Antimycin A B16715 Seahorse Bioscience, MA, USA 

ATP  1191-50GM Millipore, MA, USA 

ATP synthase immunocapture kit ab109715 AbCam, Cambridge, UK 

ATP synthase subunit 6.8 kDa antibody 147041AP ProteinTech Europe, Manchester, UK 

ATP synthase subunit-6.8 kDa PL qPCR forward primer 8002836950-003* Sigma-Aldrich, Poole, UK 

ATP synthase subunit-6.8 kDa PL qPCR probe 8002836900-002* Sigma-Aldrich, Poole, UK 

ATP synthase subunit-6.8 kDa PL qPCR reverse primer 8002836950-006* Sigma-Aldrich, Poole, UK 

ATP synthase subunit-DAPIT antibody 177161AP ProteinTech Europe, Manchester, UK 

ATP synthase subunit-DAPIT qPCR forward primer 8002836950-001* Sigma-Aldrich, Poole, UK 

ATP synthase subunit-DAPIT qPCR probe 8002836900-001* Sigma-Aldrich, Poole, UK 

ATP synthase subunit-DAPIT qPCR reverse primer 8002836950-002* Sigma-Aldrich, Poole, UK 

ATP synthase subunit-e antibody HPA035010 Sigma-Aldrich, Poole, UK 

ATP synthase subunit-e qPCR forward primer 8003294134-003* Sigma-Aldrich, Poole, UK 

ATP synthase subunit-e qPCR probe 8003294101-001* Sigma-Aldrich, Poole, UK 

ATP synthase subunit-e qPCR reverse primer 8003294134-004* Sigma-Aldrich, Poole, UK 

ATP synthase subunit-f antibody In-House MRC-MBU, Cambridge, UK 

ATP synthase subunit-f qPCR forward primer 8003294134-001* Sigma-Aldrich, Poole, UK 

ATP synthase subunit-f qPCR probe 8003294101-002* Sigma-Aldrich, Poole, UK 

ATP synthase subunit-f qPCR reverse primer 8003294134-002* Sigma-Aldrich, Poole, UK 

ATP synthase subunit-f synthetic oligonucleotide guide RNA1-bottom 8021207207-000140* Sigma-Aldrich, Poole, UK 

ATP synthase subunit-f synthetic oligonucleotide guide RNA1-top 8021207207-000130* Sigma-Aldrich, Poole, UK 

ATP synthase subunit-f synthetic oligonucleotide guide RNA2-bottom 8021207207-000160* Sigma-Aldrich, Poole, UK 

ATP synthase subunit-f synthetic oligonucleotide guide RNA2-top 8021207207-000150* Sigma-Aldrich, Poole, UK 

ATP synthase subunit-f synthetic oligonucleotide guide RNA5-bottom 8021207207-000180* Sigma-Aldrich, Poole, UK 
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Reagent  Product code Source 

ATP synthase subunit-f synthetic oligonucleotide guide RNA6-bottom 8021207207-000200* Sigma-Aldrich, Poole, UK 

ATP synthase subunit-f synthetic oligonucleotide guide RNA6-top 8021207207-000190* Sigma-Aldrich, Poole, UK 

ATP synthase subunit-f synthetic oligonucleotide guide RNA9-bottom 8021207207-000220* Sigma-Aldrich, Poole, UK 

ATP synthase subunit-f synthetic oligonucleotide guide RNA9-top 8021207207-000210* Sigma-Aldrich, Poole, UK 

ATP synthase subunit-g antibody In-House MRC-MBU, Cambridge, UK 

ATP synthase subunit-g qPCR forward primer 8003684726-007* Sigma-Aldrich, Poole, UK 

ATP synthase subunit-g qPCR prone 8003684775-002* Sigma-Aldrich, Poole, UK 

ATP synthase subunit-g qPCR reverse primer 8003684726-008* Sigma-Aldrich, Poole, UK 

BCA assay kit 23228 ThermoFisher Scientific, Hemel Hempstead, UK 

Benzonase D00146087 EMD Chemicals, Darmstadt, Germany 

Beta actin antibody A2228 Sigma-Aldrich, Poole, UK 

Beta actin qPCR forward primer HA04346403-010* Sigma-Aldrich, Poole, UK 

Beta actin qPCR probe HA04346405-002* Sigma-Aldrich, Poole, UK 

Beta actin qPCR reverse primer HA04346404-002* Sigma-Aldrich, Poole, UK 

Boric acid 31146-500G Sigma Aldrich UK 

Bromophenol blue B/P620/44 ThermoFisher Scientific, Hemel Hempstead, UK 

BSA 23288 ThermoFisher Scientific, Hemel Hempstead, UK 

Calcium chloride 100704Y VWR Chemicals, Lutterworth, UK 

Cas9 M0386S New England Biolabs, MA, USA 

Cell scraper 83.183 Sarstedt, Numbrecht, Germany 

Cells to CT kit AM1729 ThermoFisher Scientific, Hemel Hempstead, UK 

Chicken secondary antibody A9046 Sigma-Aldrich, Poole, UK 

Complete protease inhibitor tablets 11844600 Sigma-Aldrich, Poole, UK 

Coomassie R-250 C/P540/46 ThermoFisher Scientific, Hemel Hempstead, UK 

Cryovial 377267 ThermoFisher Scientific, Hemel Hempstead, UK 

D-glucose G0/500/53 ThermoFisher Scientific, Hemel Hempstead, UK 

DDM 09003-C Glycon Biochemicals, Luckenwalde, Germany 

Dialised FBS F0392-500ML Sigma-Aldrich, Poole, UK 

Digitonin 300410 Sigma-Aldrich, Poole, UK 

DMEM 41966-052 ThermoFisher Scientific, Hemel Hempstead, UK 

DMSO D2438-5X10ML Sigma-Aldrich, Poole, UK 

DNA ladder 15613-029 ThermoFisher Scientific, Hemel Hempstead, UK 

DNAse I buffer B0303S ThermoFisher Scientific, Hemel Hempstead, UK 

dPBS 14190-094 ThermoFisher Scientific, Hemel Hempstead, UK 

DTT DTT010 ThermoFisher Scientific, Hemel Hempstead, UK 

ECL reagent RPN2232 GE Healthcare, Amersham, UK 

EDTA EDTA6000 Formedium, Norfolk, UK 

Ethanol 02875-2.5L Sigma-Aldrich, Poole, UK 

FBS F0392 Sigma-Aldrich, Poole, UK 

FCCP B16715 Seahorse Bioscience, MA, USA 

Freezing container 
 

5100-0001 
 

ThermoFisher Scientific, Hemel Hempstead, UK 
 

Fuji Super RX-N X-ray film 47410 19289 FUJIFILM, Bedford, UK 
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Reagent  Product code Source 

Glycerol 24388320 VWR Chemicals, Lutterworth, UK  

Glycine 30-21-60 Severn Biotech, Kidderminster, UK 

HAP1 chronic myelogenous leukemia cells C665 Horizon Discovery, Cambridge, UK 

HBSS 14170088 ThermoFisher Scientific, Hemel Hempstead, UK 

Heavy L-arginine CNLM-539-H-PK Cambridge Isotope Laboratories, MA, USA 

Heavy L-lysine CNLM-291-H-PK Cambridge Isotope Laboratories, MA, USA 

HPLC water W/0106/17 ThermoFisher Scientific, Hemel Hempstead, UK 

Hydrochloric acid SG.1.18 ThermoFisher Scientific, Hemel Hempstead, UK 

Iodoacetamide RPN6302 GE Healthcare, Amersham, UK 

KOD hot start DNA polymerase 71086-4 Millipore, Darmstadt, Germany 

L-Proline 88430 ThermoFisher Scientific, Hemel Hempstead, UK 

LB ampicillin agar plates LMM0202 Formedium, Norfolk, UK 

LB medium LMM0102 Formedium, Norfolk, UK 

Light L-Arginine A8094 Sigma-Aldrich, Poole, UK 

Light L-Lysine L8662 Sigma-Aldrich, Poole, UK 

Lipofectamine-2000 11668019 ThermoFisher Scientific, Hemel Hempstead, UK 

Lipofectamine-3000 L3000008 ThermoFisher Scientific, Hemel Hempstead, UK 

Magnesium chloride 101494V VWR Chemicals, Lutterworth, UK 

Marvel skimmed milk powder 3021601 Sigma-Aldrich, Poole, UK 

Methanol M/4000/17 ThermoFisher Scientific, Hemel Hempstead, UK 

Micro-Spin column 89879 ThermoFisher Scientific, Hemel Hempstead, UK 

Mouse secondary antibody NXA931 GE Healthcare, Amersham, UK 

Native mark LC0725 ThermoFisher Scientific, Hemel Hempstead, UK 

Native PAGE cathode buffer additive BN2002 ThermoFisher Scientific, Hemel Hempstead, UK 

Native PAGE electrophoresis buffer BN2001 ThermoFisher Scientific, Hemel Hempstead, UK 

Native sample buffer BN20032 ThermoFisher Scientific, Hemel Hempstead, UK 

NDUFS1 antibody 12444-1-AP ProteinTech Europe, Manchester, UK 

NEB 5-alpha high efficency competent E. coli cells C2987P New England Biolabs, MA, USA 

Nuclease free water 129114 QIAGEN, Manchester,  UK 

Oligomycin A 942-003 Seahorse Bioscence, MA, USA 

OptiMEM 51985-026 ThermoFisher Scientific, Hemel Hempstead, UK 

PBS PBS100L Formedium, Norfolk, UK 

Pellet paint co-precipitant 69049-3 ThermoFisher Scientific, Hemel Hempstead, UK 

Penicillin/Streptomycin 15140122 ThermoFisher Scientific, Hemel Hempstead, UK 

Phosphate buffered saline PBS100L Formedium, Norfolk, UK 

Propan-2-ol 20842.323 VWR Chemicals, Lutterworth, UK 

pSpCas9(BB)-2A-GFP plasmid PX458 Addgene, Teddington, UK 

PVDF membrane IPVH00010 Millipore, MA, USA 

QIAGEN DNA miniprep kit 27104 QIAGEN, Manchester, UK 

Rabbit secondary antibody 31460 ThermoFisher Scientific, Hemel Hempstead, UK 

RNAse free DNAse I AM2222 ThermoFisher Scientific, Hemel Hempstead, UK 
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Reagent name Product code Source 

Rotenone 101706-100 Seahorse Bioscence, MA, USA 

SDS S/P530/53 ThermoFisher Scientific, Hemel Hempstead, UK 

Sequencing grade trypsin 11418475001 Sigma-Aldrich, Poole, UK 

SILAC DMEM 12132410 ThermoFisher Scientific, Hemel Hempstead, UK 

SILAC IMDM 88423 ThermoFisher Scientific, Hemel Hempstead, UK 

SOC outgrowth medium B9020S New England Biolabs, MA, USA 

Sodium acetate 27649.297 VWR Chemicals, Lutterworth, UK 

Sodium carbonate decahydrate S/2760/53 ThermoFisher Scientific, Hemel Hempstead, UK 

Sodium chloride NAC02 Formedium, Norfolk, UK 

Sodium hydrogen carbonate S/4240/53 ThermoFisher Scientific, Hemel Hempstead, UK 

Sodium pyruvate S8636 Sigma-Aldrich, Poole, UK 

Solution 13 910-3013 ChemoMetec, Lillerod, Denmark 

Spin-X microcellulose filter tubes 8163 Sigma-Aldrich, Poole, UK 

Succinate dehydrogenase chain B antibody A002868 Atlas Antibodies, Stockholm, Sweden 

Sulforhodamine B 1367499 Kodak, Watford, UK 

Synthetic oligonucleotide scaffold RNA plasmid 66565 Addgene, Teddington, UK 

Synthetic oligonucleotide siRNA (ATP synthase subunit-6.8 kDa) SI00319585* QIAGEN, Manchester, UK 

Synthetic oligonucleotide siRNA (ATP synthase subunit-DAPIT) SI00758079* QIAGEN, Manchester, UK 

Synthetic oligonucleotide siRNA (ATP synthase subunit-e) 1027415* QIAGEN, Manchester, UK 

Synthetic oligonucleotide siRNA (ATP synthase subunit-f) SI03211054* QIAGEN, Manchester, UK 

Synthetic oligonucleotide siRNA (ATP synthase subunit-g) 8017355335* Sigma-Aldrich, Poole, UK 

T4 kinase M5201S New England Biolabs, MA, USA 

T4 kinase buffer B0201S New England Biolabs, MA, USA 

T7 ligase M03185 New England Biolabs, MA, USA 

T7 ligation buffer E26215 New England Biolabs, MA, USA 

TCEP 1001240154 Sigma-Aldrich, Poole, UK 

TEMED 1000862779 Sigma-Aldrich, Poole, UK 

Tissue culture plates 10 cm 353003 VWR Chemicals, Lutterworth, UK 

Tissue culture plates 15 cm 2021-01 ThermoFisher Scientific, Hemel Hempstead, UK 

Tissue culture plates 6 well 3526 Corning Inc. NY, USA 

Tissue culture plates 96 well 3595 Corning Inc. NY, USA 

Trichloroacetic acid T4885-2KG Sigma-Aldrich, Poole, UK 

Trifluoroacetic acid 74564-10ML-F Sigma-Aldrich, Poole, UK 

Tris base T15031KG Sigma-Aldrich, Poole, UK 

Trypsin-EDTA dissociation reagent 15400-054 ThermoFisher Scientific, Hemel Hempstead, UK 

Tween-20 17767-B Sigma-Aldrich, Poole, UK 

Uridine U3003-5G Sigma-Aldrich, Poole, UK 

Western blotting tank 1703930 Biorad, Hemel Helpstead, UK 

XCell SureLock electrophoresis tank EI0001 ThermoFisher Scientific, Hemel Hempstead, UK 

XF assay medium 102365-100 Seahorse Bioscence, MA, USA 

XF Callibration buffer pH 7.4 100840-100 Seahorse Bioscence, MA, USA 

XFe24 cell culture plate 100777-004 Seahorse Bioscence, MA, USA 
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Reagent name Product code Source 

XFe24 extracellular flux assay kit (probe plate) 102340-100 Seahorse Bioscence, MA, USA 

Reagents with a ‘*’ were custom products   
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Appendix II – Constituents of buffers 
 

Buffer Constituents Section 
 

Cell lysis buffer 10 mM Tris HCl pH 7.4, 0.2% w/v SDS, Roche protease 

inhibitors (1 tablet/50 mL) contains phenylmethane sulphonyl 

fluoride, Pefabloc SC, Pefabloc SC plus, E-64, aprotinin, 

leupeptin, a-2-macroglobulin 

2.6.8 

Coomassie blue gel stain 0.2% w/v Coomassie R-250, 50% v/v methanol, 7% v/v acetic 

acid 

2.4.6, 2.5.1 

Destain 50% v/v methanol, 7% v/v acetic acid 2.4.6, 2.5.1 

DNA loading buffer 10% v/v glycerol, 20 mM Tris HCl pH 7.4, 5 mM EDTA, 

0.01% w/v bromophenol blue, 0.2% w/v SDS 

2.3.2, 2.6.5 

Freezing solution 40% v/v DMEM or IMDM, 50% v/v FBS, 10% v/v DMSO 2.2.6, 2.6.7 

Laemmli SDS PAGE electrophoresis buffer (10X) 3.84 M glycine, 0.5 M Tris base, 69.3 mM SDS, pH 6.8 2.4.6, 2.6.8 

Matrix solution (MALDI TOF) 10 mg/mL a-cyano-4-hydroxy-trans-cinnamic acid, 60% v/v 

acetonitrile, 1% v/v trifluoroacetic acid 

2.5.2 

Milk/PBS Tween solution 5% w/v Marvel skimmed milk powder, 140 mM NaCl, 0.2 mM 

PO43-, 0.1% v/v Tween 20, pH 7.4 

2.4.7 

Native PAGE cathode buffer 1:20 aqueous dilution of cathode buffer additive, 1:20 aqueous 

dilution of electrophoresis buffer, pH 8.3 

2.4.4 

Native PAGE anode buffer 1:20 aqueous dilution of electrophoresis buffer, pH 8.3 2.4.4 

PBS 140 mM NaCl, 0.2 mM PO43-, pH 7.4 2.2.1, 2.6.6, 
2.2.5 
 
 

PBS Tween 140 mM NaCl, 0.2 mM PO43-, 0.1% v/v Tween 20, pH 7.4 2.4.7, 2.6.7 

PBS with protease inhibitors 140 mM NaCl, 0.2 mM PO43-, 0.1% v/v Tween 20, Roche 

protease inhibitors (1 tablet/50 mL) contains phenylmethane 

sulfonyl fluoride, Pefabloc SC, Pefabloc SC plus, E-64, 

Aprotinin, leupeptin, a-2-macroglobulin, pH 7.4 

2.2.5, 2.4.1, 

2.4.2 

Peptide extraction solution 60% v/v acetonitrile, 4% v/v formic acid 2.5.2, 2.5.3 

SDS PAGE gel loading buffer pH 6.8 (4X) 40% v/v glycerol, 4 mM EDTA, 200 mM Tris-HCl pH 6.8, 4% 

w/v SDS 

2.4.6, 2.6.8 

SDS PAGE gel loading buffer pH 8 (4X) 40% v/v glycerol, 4 mM EDTA, 200 mM Tris-HCl pH 8, 4% 

w/v SDS 

2.5.1 

SDS PAGE separating gel 12-22% w/v acrylamide (gradient), 375 mM Tris-HCl pH 8.8, 

0.1% w/v SDS, 0.0007% TEMED, 0.0003% ammonium 

persulphate 

2.4.5 
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 Buffer Constituents Section 
 

SDS PAGE stacking gel 4% w/v acrylamide, 65 mM Tris-HCl pH 6.8, 0.05% w/v SDS, 

0.0007% TMED, 0.0003% w/v ammonium persulphate 

2.4.5 

Sulforhodamine B solution 0.4% w/v sulphorhodamine B, 1% v/v acetic acid 2.2.7 

TBE electrophoresis buffer 90 mM Tris-boric acid, 1 mM EDTA, pH 8.0 2.3.2, 2.6.5 

Trypsin digestion buffer 
 

20 mM Tris-HCl pH 8.0, 5 mM CaCl2 2.5.2, 2.5.3 
 

Trypsin digestion solution 
 

12.5 ng/µL sequencing grade trypsin in trypsin digestion buffer 2.5.2, 2.5.3 
 

Western blotting SDS carbonate buffer 10 mM sodium hydrogen carbonate, 3 mM sodium carbonate, 

0.025% w/v SDS, pH 9.9 

2.4.7 

Western blotting native carbonate buffer 10 mM sodium hydrogen carbonate, 3 mM sodium carbonate, 

pH 9.9 

2.4.7 
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Appendix III – Peptide mass mapping 
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Appendix IV – SILAC data 
 
The data Tables containing the data that were used to make Figs. 3.6, 3.10. 3.11, 3.17, 3.18, 

3.23 and 2.24 are provided with this web link. https://lighthouse.mrc-

mbu.cam.ac.uk/cplcj2/thesis   

The password is corstenthesis. The titles of the Tables are listed below. 

 

Table S4. Proteins identified in immunopurified ATP synthase depleted of the e-

subunit using siRNA. 

Table S5. Proteins identified in mitoplasts of cells depleted of the e-subunit with 

siRNA. 

Table S6. Proteins identified in immunopurified ATP synthase depleted of the f-

subunit using siRNA. 

Table S7. Proteins identified mitoplasts depleted of the f-subunit using siRNA. 

Table S8. Protein ratios of ATP synthase subunits from mitoplasts depleted of the f-

subunit in Fig. 3.10D that were calculated manually. 

Table S9. Proteins identified in immunopurified Df-HAP1 ATP synthase. 

Table S10. Proteins identified in mitoplasts from Df-HAP1 cells. 

Table S11. Proteins identified in immunopurified ATP synthase depleted of the g-

subunit using siRNA. 

Table S12. Protein ratios from immunopurified ATP synthase depleted of the g-

subunit that were calculated manually from peptide data. 

Table S13. Proteins identified in mitoplasts from 143B cells depleted of the g-subunit. 

Table S14. Proteins identified in immunopurified Dg-HAP1 ATP synthase. 

Table S15. Proteins identified in mitoplasts from Dg-HAP1 cells. 
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Table S16. Proteins identified in immunopurified ATP synthase depleted of the 

DAPIT-subunit using siRNA. 

Table S17. Proteins identified in mitoplasts from 143B cells depleted of the DAPIT-

subunit were analysed by mass spectrometry and SILAC. 

Table S18. Proteins identified in immunopurified ATP synthase depleted of the 6.8 

kDa proteolipid-subunit using siRNA. 

Table S19. Protein ratios in immunocaptured ATP synthase depleted of the 6.8 kDa 

proteolipid-subunit that were manually calculated from peptide data. 

Table S20. Proteins identified in mitoplast material from 143B cells with suppression 

of the 6.8 kDa proteolipid-subunit. 

Table S21. Protein ratios from 6.8 kDa proteolipid depleted mitoplasts that were 

calculated manually from peptide data. 

Table S22. Peptide data from the MaxQuant evidence file used to manually calculate 

protein ratios from f-subunit suppressed mitoplasts. 

Table S23. Peptide data from the MaxQuant evidence file used to manually calculate 

protein ratios from g-subunit suppressed immunopurified ATP synthase. 

Table S24. Peptide data from the MaxQuant evidence file used to manually calculate 

protein ratios from 6.8 kDa proteolipid-subunit suppressed immunopurified ATP 

synthase. 

Table S25. Peptide data from the MaxQuant evidence file used to manually calculate 

protein ratios from 6.8 kDa proteolipid-subunit suppressed mitoplasts. 
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Appendix V – Reference Figures 
 
The Figures in Appendix V were created by Holly Ford, and were part of their thesis [138]. 

The Figures below were referred to in this thesis.  

 

Fig. S22. Sequence alignment of the isoforms of IF1. The amino acid sequences of the different IF1 isoforms 

that were variously identified in quantitative mass spectrometry Figures (Figs. 3.6, 3.10, 3.11, 3.17, 3.18, 

3.23 and 3.27). The Figure is referred also to as Fig. S22 in [138]. 
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Fig. S23. Analysis of native protein complexes of ATP synthase from 143B cells depleted of the e-, f-,  

g-, DAPIT- and 6.8 kDa proteolipid-subunits. Mitoplasts were prepared and solubilised with digitonin then 

analysed by BN-PAGE. The Figure legend was written by [138] and is included at the bottom of the Figure. 

 

Figure 3.31 The effect of depletion of the supernumerary subunits on the assembly of ATP synthase. 

143B cells were transfected with 100 nM siRNA targeting e, f, g, 6.8PL and DAPIT or a scrambled control 

sequence. Mitoplasts were prepared 96 h later, then fractionated by BN-PAGE and ATP synthase 

complexes detected with an antibody against the α-subunit; o, d and m denote oligomers, dimers and 

monomers of ATP synthase respectively. Subcomplexes are denoted e-s1, e-s2, f-s1, f-s2, g-s1, g-s2, 6.8-s1, 

6.8-s2, D-s1 and D-s2. Citrate synthase (CS) was employed as a loading control.  

 

 

 

 

 

 

 

 

 

 

 

 



	 162 

Fig. S24. Relative quantitation of proteins using SILAC and mass spectrometry in 143B cells that 

were depleted of the DAPIT- and 6.8 kDa proteolipid-subunits with siRNA. ATP synthase was 

immunopurified, subunits separated by SDS-PAGE followed by in-gel digestion of proteins, which were 

analysed by LC-MS/MS mass spectrometry. The Figure was referred to as Figure 3.33 in [138] and in this 

thesis. The Figure legend written by [138] is included at the bottom of the Figure. 

 

Figure 3.33 Relative quantitation of SILAC labelled samples analogous to those in Figure 3.32. A and 

B, 6.8PL depletion; C and D, DAPIT depletion. In panels A and C, ATP synthase was immunopurified 

from mitoplasts from SILAC labelled control and subunit-depleted cells. Samples were fractionated by 

SDS-PAGE and analysed by quantitative mass spectrometry. ATP synthase subunits (17 and 18, in parts A 

and C respectively) are black, IF1-M1 is green, IF1-M2 is orange and all other proteins (63 and 104, in 

parts A and C respectively) are grey. 6 and 8 proteins are outside the limits of the axes in the upper left 

quadrants of A and C respectively. Parts B and D show summaries of the relative changes in levels of ATP 

synthase subunits in parts A and C respectively. Bars represent median values of both relative abundance 

ratios of subunits. Error bars show the range of the two values.  
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Fig. S25. The new assembly model of human ATP synthase [138]. The Figure legend was written by 

[138] and is at the bottom of the Figure. 

 

Figure 4.1 New model of the assembly of human ATP synthase. The c subunits can assemble with either 

F1 domain subunits alone, forming an F1-c8+IF1 intermediate, or with a subcomplex comprising the F1 

domain, the peripheral stalk, and subunits e, f and g, forming an ATP synthase lacking subunits ATP6, 

ATP8, 6.8PL and DAPIT. This is alternatively formed by the association of peripheral stalk subunits b, d, 

OSCP and F6, and subunits e, g and f with the F1-c8 subcomplex, with subunit f likely to be incorporated 

last (indicated by dotted arrows). Subunits ATP6, ATP8 and 6.8PL are incorporated co-dependently to form 

a monomer lacking only DAPIT. IF1 is highly associated with all F1 domains in sub-assemblies, but 

dissociates once subunits ATP6, ATP8 and 6.8PL join the enzyme which is then coupled to the pmf.  

 

 


