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Abstract

With increasing amounts of data being collected in various fields of neuroscience,

there is a need for robust techniques for the quantitative analysis of this informa-

tion. My thesis focuses on the development and assessment of frameworks for the

analysis and classification of neuroscience data in a variety of contexts. Firstly, I

investigate methods for analysing recordings of the electrophysiological activity of in

vitro neuronal networks on microelectrode arrays (MEAs). Analysis of this type of

activity has applications in many areas, including the study of spontaneous neuronal

network activity during development and screening for functional effects of genetic

or pharmacological manipulations.

An essential element in characterising the activity of neuronal networks is the

accurate identification of episodes of ‘bursting’, which are periods of rapid firing of

neurons believed to be associated with a range of physiological processes. Despite

this, no single widely used method for the robust identification of bursting activity

has been adopted in the field. To address this, I perform an unbiased assessment

of the effectiveness of a variety of existing burst detection techniques using both

simulated and experimental data. Based on these results, I provide recommendations

for the robust analysis of bursting activity in experimental recordings and suggest

adaptations to existing burst detection techniques to improve their applicability to a

wide range of spike trains. I further apply these techniques to the analysis of novel

MEA recordings of networks of human induced pluripotent stem cell-derived neurons,

to describe the ontogeny of bursting activity in these networks.

Results from this review of burst detection techniques are then used to inform

the development of a broader quantitative framework for the analysis of MEA record-

ings of spontaneous neuronal network activity. Using this framework, I characterise

the developmental profile of spontaneous activity patterns in two sets of experimental

recordings of in vitro neuronal networks. I show that significant differences in the

nature of these activity patterns can be observed across different brain regions and

developmental ages, and demonstrate that recordings from these different network

types can be reliably differentiated using features of spontaneous activity and stan-

dard classification techniques. I further investigate the most appropriate approaches

for using MEA devices for the high-throughput screening of neuronal network activity

under multiple experimental conditions.



Finally, I consider the classification of neurons into their underlying cell types.

Previous studies in this area have generally used only one type of feature of neurons

for their classification. I investigate the potential benefits of utilising multiple types of

neuronal properties, specifically their morphological and electrophysiological features,

in classification studies. In particular, I consider the use of multi-view clustering

techniques that are designed to find the shared cluster structure in two or more ‘views’

or feature sets obtained from the same data. By applying a number of multi-view

techniques to the clustering of two neuronal data sets, I show that several multi-view

clustering algorithms can more reliably differentiate between classes of neurons in

these data sets compared to single-view clustering techniques. To close, I examine

the properties of the cell types identified by these methods.
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Chapter 1

Introduction and biological

background

1.1 Introduction

Modern neuroscience is a diverse field, centred around the goal of increasing knowl-

edge of the structure and function of the brain and wider nervous system and how

these regions dictate cognitive function and behaviour. The basic building blocks

of this system are neurons, nerve cells that have a variety of distinct anatomical

and functional features. A complete understanding of the nervous system requires

knowledge of the properties of these cells and the connections between them, how

these networks are developed and maintained, as well as how they contribute to the

proper functioning of an organism.

Since the early work of Santiago Ramón y Cajal, the ‘father of modern neuro-

science’, allowed neurons to be visualised as distinct connected cells (De Carlos and

Borrell, 2007), the development of novel and increasingly sophisticated technologies

for collecting experimental data has revolutionised the spatial and temporal resolution

with which the nervous system can be studied. These techniques demand equally ad-

vanced computational methods to ensure that the information and insights extracted

from painstakingly collected experimental data are as accurate and comprehensive

as possible.

The work in this thesis focuses on the development, examination and critical evalua-

tion of computational analysis techniques in two important areas of neuroscience.

1



2 Chapter 1. Introduction and biological background

Firstly, I study techniques for analysing the spontaneously generated activity of

neurons, which has been observed extensively across many regions of the nervous

system during development, and is thought to play an essential role in the proper

development of functional circuits. Study of the spontaneous activity of neuronal

networks in vitro can elucidate important aspects of how these networks functionally

and structurally develop, as well as the effect of pharmacological and genetic manip-

ulations to these systems.

Understanding the underlying mechanisms responsible for neuronal activity patterns

also requires the cellular components of these networks to be defined. Such classi-

fication of neurons is an essential step in understanding the role of different cells

within neuronal networks, how these roles are dictated by the intrinsic structural,

molecular and functional properties of cells, as well as how each cell type contributes

to computation and cognition. The second half of this thesis focuses on computa-

tional techniques that can be applied to the task of characterising neuronal cell types

from diverse data sources, and in particular, the potential contribution of multi-view

clustering methods.

The bulk of this chapter consists of an overview of the biological concepts and

experimental techniques that are relevant for the remainder of this thesis. Following

this, I outline the overall aims and general structure of this thesis.

1.2 Neuron structure and function

1.2.1 Basic neuron anatomy

Neurons typically consists of four major anatomical regions (Kandel et al., 2000)

(Figure 1.1):

• Soma - the cell body, containing the nucleus and endoplasmic reticulum.

• Dendrites - branched projections from the soma that receive and propagate

incoming signals to the neuron.

• Axon - a single long tubular projection from the soma responsible for carrying

signals to postsynaptic cells. The axon is connected to the soma at the axon

hillock.

• Presynaptic terminals - the terminating points of the axonal branches, at which

the presynaptic cell communicates with postsynaptic cells across synapses.
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Axon hillock Myelin 
sheath

Figure 1.1: Major features of neuronal anatomy. The cell body or soma gives rise
to numerous dendrites and generally a single axon that terminates in presynaptic
terminals. In many mammalian neuron types, an insulating myelin sheath coats
much of the axon.

Within this general structure, different types of neurons differ vastly in their anatom-

ical features, ranging from those with highly branched dendritic trees to those with

low number of dendrites, and axons of various sizes and degrees of branching (see

Figure 1.5 for examples).

1.2.2 Signalling via action potentials

The primary mode of communication between neurons is in the form of electrical

impulses called action potentials, which are sudden depolarizations of the neuronal

membrane followed by a swift repolarization (Lodish et al., 2003; Hodgkin and

Huxley, 1952). These voltage changes are a result of the rapid influx of Na+ ions

into the neuron through voltage-gated Na+ channels embedded in the cell membrane,

causing a rise in the membrane potential to a certain peak voltage close to the

sodium equilibrium potential (Lodish et al., 2003; Alberts et al., 2002). At this point,

efflux of K+ ions from the neuron through voltage-gated K+ channels returns the

membrane to its resting potential (Purves et al., 2001). The entire process of the

action potential generally lasts for approximately 1 ms and has a peak voltage of

around +50 mV (Alberts et al., 2002) (Figure 1.2).

Action potentials are the only type of membrane potential fluctuations that can

travel over long distances in a neuron (Dayan and Abbott, 2001). They are typically

generated at the axon hillock or first node of the axon, and travel rapidly along the
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Figure 1.2: Representation of the membrane potential of an axon during repeated
action potentials, showing the periods of depolarization and repolarization, as well
as the brief period of hyperpolarization that occurs before the neuron returns to its
resting potential. Figure reproduced from Lodish et al. (2003).

axon with no decay before terminating in the presynaptic terminals (Kandel et al.,

2000). The arrival of an action potential at the presynaptic terminals results in an

influx of Ca2+ ions and subsequent release of neurotransmitters into the synaptic

cleft between the presynaptic and postsynaptic neuron (Lodish et al., 2003). These

neurotransmitters diffuse across the synaptic cleft and bind to transmitter-gated ion

channels on the postsynaptic neuron (Alberts et al., 2002). Depending on the nature

of the postsynaptic receptor to which they bind, the neurotransmitters can pro-

duce an excitatory or inhibitory response in the postsynaptic cell (Lodish et al., 2003).

A neuron can simultaneously receive a number of signals from both excitatory

and inhibitory synapses, which propagate along the dendrites to the soma and axon

hillock (Lodish et al., 2003). At this point, the neuron integrates all of the incoming

signal, and produces an action potential if the membrane at this ‘trigger point’ be-

comes sufficiently depolarized, to a level above the threshold potential (Kandel et al.,

2000). An action potential is thus an ‘all-or-none’ signal - a neuron will produce an

action potential of approximately the same amplitude and duration in response to any

summed stimuli above this threshold, and no response otherwise (Alberts et al., 2002).

The electrical activity of neurons can be measured either intracellularly or using

extracellular methods. Intracellular techniques typically involve connecting a hollow

glass microelectrode filled with an electrolyte to the neuron and measuring the

potential relative to an extracellular reference electrode (Heinricher, 2004). This can
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be achieved using sharp electrodes inserted through the cell membrane, or patch

pipettes which form a high resistance seal that allows current from the membrane

to flow into the pipette and be measured (Hamill et al., 1981; Brette and Destexhe,

2012). Intracellular methods can record both action potentials and subthreshold

membrane potential fluctuations. Conversely, extracellular techniques, which involve

recording induced extracellular currents using an electrode placed near the neuron,

can only detect action potentials and not subthreshold activity (Heinricher, 2004).

1.2.3 Intrinsic neuron properties

Several passive properties of neuronal cells contribute to electrical signalling within

a neuron. These include:

• Resting membrane potential: In the membrane of a neuron at rest, many

K+ permeable ion channels are open, allowing the flow of K+ ions out of the

cell along their concentration gradient, whereas channels permeable to other

ions such as Na+ are largely closed (Lodish et al., 2003; Kandel et al., 2000).

This selective permeability of the membrane, as well as the high intracellular

concentration of negatively charged protein ions, results in a difference of charge

across the neuronal cell membrane of approximately -60 mV to -70 mV, called

the resting membrane potential (Purves et al., 2001).

• Membrane capacitance: The ion imbalance across a neuronal membrane

at rest means that it acts as a capacitor, with an excess of negative charge

along the intracellular surface of the membrane and a corresponding positive

charge extracellularly (Dayan and Abbott, 2001). As in all capacitors, the

capacitance of the membrane is dependent on the area of the capacitor, the

nature of the insulating medium and the distance between capacitor plates.

Since cell membranes consist of relatively equally spaced lipid bilayers with

similar insulating properties, the specific capacitance per unit area of a biological

membrane is a constant value, approximately 1µF cm−2 (Kandel et al., 2000).

The total capacitance of a neuron is thus dependent only on its surface area

(Dayan and Abbott, 2001).

• Input resistance: The input resistance (Rin) of a neuron dictates the degree

of hyperpolarization or depolarization (∆V ) of the neuron in response to a

certain level of injected current (Ie), according to Ohm’s law (Dayan and

Abbott, 2001):

∆V = Ie ×Rin.
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Since ion channels are responsible for conducting current across a neuronal

membrane, the level of input resistance of a neuron is dependant on the density

of resting ion channels in the membrane and the size of the neuron, as neurons

with greater membrane surface area generally contain a larger number of ion

channels (Kandel et al., 2000).

• Membrane time constant: The membrane time constant, τ , is defined as

the time taken for the membrane potential of a neuron to increase to (1− 1
e
)

of its resting value, and is the product of the input resistance and membrane

capacitance (Kandel et al., 2000):

τ = Rin × Cm.

As capacitance and resistance have inverse dependencies on membrane surface

area, τ is independent of the surface area of the cell (Dayan and Abbott, 2001).

In addition to voltage-gated K+ and Na+ channels, another type of ion channel,

called hyperpolarization-activated cyclic nucleotide-gated (HCN) cation channels,

are thought to influence both the passive and active properties of neurons (George

et al., 2009). In contrast to the majority of voltage-gated ion channels in a neuronal

membrane, HCN channels are activated by hyperpolarization below -50 mV to -60 mV

(Robinson and Siegelbaum, 2003). Activation of these channels produces an inward

cation current, called the hyperpolarization-activated cation current or Ih, that

depolarizes the local membrane (Biel et al., 2009).

Because HCN channels are activated at levels at or negative to the typical resting

membrane potential of a neuron, many of these channels are open in a neuron at rest.

This allows for the inflow of Ih, which has a depolarizing effect of 5 mV to 10 mV

on the resting membrane potential and increases resting membrane conductance

(George et al., 2009; Doan and Kunze, 1999; Angelo et al., 2007; Pape, 1996). Due to

the relationships outlined above, this means that Ih also has the effect of decreasing

the input resistance (which is the inverse of membrane conductance) and membrane

time constant of a cell (Robinson and Siegelbaum, 2003).

Activation of Ih in response to hyperpolarizing current pulses is also responsible for

the depolarizing deflection or ‘sag’ observed in neurons with active HCN channels.

Additionally, in neurons such as hippocampal CA1 and pyramidal cells of layer V

neocortex, an increased density of Ih has been observed with increasing distance

from the soma (Williams and Stuart, 2000; Angelo et al., 2007). This is believed to
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influence dendritic integration, by normalising the time course of EPSPs received at

different distances from the soma (Robinson and Siegelbaum, 2003).

1.3 The cortex

The largest regions of the human brain are the cerebral hemispheres, which consist of

the cerebral cortex, white matter, basal ganglia, amygdala and hippocampus (Kandel

et al., 2000). The thin convoluted outer layer of the cerebral hemispheres is made

up of a continuous 2 mm to 4 mm thick layered sheet of neurons and other cells,

known as the cerebral cortex (Purves et al., 2001). Different regions of the cerebral

cortex are responsible for a range of behaviours, including sensory processing, motor

functions, problem solving and complex thought (Kandel et al., 2000).

1.3.1 Structure of the cerebral cortex

The majority of the cerebral cortex is neocortex. Neocortex is composed of six layers,

each containing distinctive populations of cells (Purves et al., 2001; Kandel et al.,

2000) (Figure 1.3):

• Layer I - the outermost layer of the cortex, often called the ‘molecular layer’.

This layer contains few neurons, all of which are inhibitory neurons, and consists

primarily of the axons and dendrites from neurons in deeper layers.

• Layer II - the ‘external granular layer’, composed mostly of small spherical

cells called granule cells and some inhibitory interneurons, as well as the apical

dendrites of layer V and VI cells.

• Layer III - the ‘external pyramidal layer’, which contains a variety of cell types,

the majority of which are small pyramidal cells.

• Layer IV - the ‘internal granule cell layer’, consists of mostly granule cells and

is the principal location of spiny stellate cells. Layer IV is the primary layer

for receiving input from the thalamus.

• Layer V - the ‘internal pyramidal layer’, consists primarily of large pyramidal

cells and a smaller proportion of inhibitory neurons. Axons of layer V pyramidal

cells often make long range projections that leave the cortex.

• Layer VI - the ‘multiform layer’, is a heterogeneous layer consisting of a range

of neurons, and blends into the white matter.
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Figure 1.3: The appearance of the layers of the neocortex by different staining
methods. The Golgi stain (left) shows the soma and dendritic trees of neurons, while
the Nissl stain (centre) reveals cell bodies and proximal dendrites of neurons and the
Weigert stain (right) shows axonal distributions. Figure reproduced from Kandel
et al. (2000).

Despite this general structure, there are also regional differences in laminar organisa-

tion across the cortex which define ‘cytoarchitectonic areas’ that often have distinct

functional roles (Purves et al., 2001) (Figure 1.4). For example, sensory areas such as

the primary visual cortex have a very prominent layer IV that can further be divided

into three or more layers (Kandel et al., 2000). In the motor cortex, layer IV is

small or non-existent and layer V is the most prominent (Barbas and Miguel, 2015).

This variability in structure can be understood in terms of the inputs and outputs

of the cortical layers. Layer IV is the primary target for sensory information from

the thalamus, and in primates that rely heavily on visual inputs, this information is

topographically mapped into layer IV (Sun et al., 2016). The motor cortex serves as

a primarily output region and receives little input from the thalamus, accounting for

the small layer IV in this region (Kandel et al., 2000). Most motor signals originate

in layer V, explaining the prominence of this layer in the motor cortex (Shipp, 2007).
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Figure 1.4: Cell layers in different regions of the cerebral cortex. Sensory areas, for
example the primary visual cortex, have pronounced layer IV, while motor cortices
have small layer IV and prominent output layers, including layer V. Bottom panel
shows the lateral view of the brain with regions labelled. Figure adapted from Kandel
et al. (2000).
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1.4 Cortical cell types

Neurons in the cortex can be broadly grouped into two types, excitatory and in-

hibitory. Excitatory neurons comprise approximately 70 to 80% of the total neuronal

population of the cortex, and use the excitatory amino acid glutamate as their

primary neurotransmitter (Kandel et al., 2000). The remaining 20 to 30% of neurons

in the cortex are largely inhibitory interneurons which utilise γ-aminobutyric acid

(GABA) as their primary neurotransmitter (Harris and Mrsic-Flogel, 2013).

These two major groups of neurons can be subdivided into a number of classes,

based on a variety of criteria, including their morphology, physiological properties,

gene expression profiles, connectivity patterns and developmental history, amongst

others (Tasic et al., 2016). Although there has been some success in developing a

top-level classification of neurons based on a subset of these criteria, within each of

these top-level classes exists an unknown number of subclasses of neurons, and the

development of a definitive classification criteria for neurons that is consistent across

the multiple modalities is an ongoing area of investigation (Harris and Shepherd,

2015). In the following sections, I give a brief overview of our current understanding

of the major types of excitatory and inhibitory neurons.

1.4.1 Excitatory neurons

Morphologically, excitatory neurons can be divided into two primary cell types

(Figure 1.5, left):

• Pyramidal cells: Pyramidal cells are the most common type of excitatory

neuron, and are characterised by their pyramidal-shaped soma and distinct

apical and basal dendritic trees (Toledo-Rodriguez et al., 2003). Although

the morphology of pyramidal cells varies between different layers, regions and

species, they generally have several relatively short basal dendrites which

occupy the same layer as the soma and a single prominent apical dendrite,

which branches into a tuft at a distance from the soma (Spruston, 2008).

• Spiny stellate neurons: Spiny stellate neurons are generally smaller than

pyramidal cells and are characterised by a star-like dendritic arbour, consisting

of many short dendrites surrounding a spherical soma (Toledo-Rodriguez et al.,

2003; Markram et al., 2004). Spiny stellate cells are almost exclusively found

in layer IV of primary sensory cortical areas and project mostly to areas local

to their soma (Costa and Müller, 2015).
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Figure 1.5: Major cell types in the monkey cerebral cortex. These can be divided
broadly into spiny (excitatory) and non-spiny (inhibitory) neurons. Spiny neurons
include pyramidal cells (left most cells) and A spiny stellate neurons, which both use
glutamate as their primary neurotransmitter. A variety of smooth inhibitory cells
which use GABA as their primary neurotransmitter are also shown, including B a
cell with local axon arcades, C double bouquet cell, D, H basket cells, E chandelier
cells, F bitufted cell and G neurogliaform cell . Figure reproduced from Schmolesky
(2005).

Both pyramidal and spiny stellate cells possess dendritic spines, which are small

membranous protrusions from the dendrites that act as the postsynaptic sites for the

majority of the cell’s glutamatergic synapses (Spruston, 2008). The soma of these

cells generally only receive inhibitory synapses (Toledo-Rodriguez et al., 2003).

Limited electrophysiological diversity has been observed between excitatory cell

types in the cortex. The most common discharge response of excitatory cells to

sustained input currents has been labelled ‘regular-spiking’, in which a neuron fires

repeatedly with decreasing frequency, called spike train adaptation or accommodation

(Toledo-Rodriguez et al., 2003). Some pyramidal and spiny stellate cells also exhibit

intrinsic bursting behaviour, characterised by an initial rapid burst of spikes followed

by regular single spikes or bursts (Connors and Gutnick, 1990). Rarer subtypes of

pyramidal cells have been observed to display rhythmic firing behaviour without

accommodation, or clustered ‘chattering’ activity patterns (Toledo-Rodriguez et al.,

2003).
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Excitatory cell types have been shown to have characteristic laminar distributions,

and can be divided into layer-specific broad classes within which several subclasses

exist (Tasic et al., 2016; Harris and Shepherd, 2015; Zeisel et al., 2015). Layer

II/III excitatory neurons have often been thought of as a homogeneous cell type,

but evidence suggests they consist of a number of yet-to-be completely classified

subtypes, which vary in their firing activity, gene expression and axonal targets

(Molyneaux et al., 2009; Harris and Mrsic-Flogel, 2013; Tasic et al., 2016). Layer IV

excitatory cells consist of cells from the two major morphological classes, pyramidal

and spiny stellate cells. These cells project most strongly to layer II/III, and contain

sub-populations of regular spiking and intrinsically bursting cells (Harris and Mrsic-

Flogel, 2013; Staiger et al., 2004).

Layer V excitatory neurons can be divided into two major subclasses based on

their patterns of axonal projection. Intratelencephalic (IT) layer V neurons are

generally found in the upper part of layer V and project axons exclusively within

the telencephalon, which consists of the neocortex, striatum and corticoid structures

(Reiner et al., 2003). They generally have slender apical dendrites and exhibit

adaptive firing activity (Harris and Mrsic-Flogel, 2013; Molnár and Cheung, 2006).

Pyramidal tract (PT) neurons, also known as subcerebral projection neurons, are

large pyramidal neurons which project to subcerebral locations (Harris and Shepherd,

2015; Molyneaux et al., 2007). These cells generally have thick apical dendrites and

prominent dendritic tufts in layer I, and exhibit limited spike train adaption (Harris

and Mrsic-Flogel, 2013).

Layer VI contains a morphologically diverse population of excitatory neurons that

can be divided into at least two broad classes, within which a number of subclasses

exist (Briggs, 2010). Corticothalamic (CT) layer VI neurons project principally

to the ipsilateral thalamus as well as layer IV (Harris and Shepherd, 2015; Briggs,

2010). These cells generally have short upright pyramidal morphologies with local

axonal arbours (Thomson, 2010). Cortico-cortical layer VI cells project only within

the cortex, have small dendritic trees with a range of morphologies and long range

horizontally orientated axons (Thomson, 2010; Harris and Mrsic-Flogel, 2013).

1.4.2 Inhibitory interneurons

The vast majority of inhibitory neurons in the cortex are ‘interneurons’, named as

such due to the fact that their axonal and dendritic arbours branch only within the
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neocortex (Markram et al., 2004). As well as their GABAergic nature, inhibitory

interneurons can also be distinguished from excitatory cell types by their absence of

an apical dendrite, low spine density and locally projecting axons (Toledo-Rodriguez

et al., 2003). Also, unlike excitatory cells, the soma of inhibitory interneurons

can receive both excitatory and inhibitory synapses (Toledo-Rodriguez et al., 2003).

Inhibitory interneurons are highly heterogeneous in term of their dendritic morphology

and physiological and molecular characteristics. Attempts have been made to classify

neurons based on morphological, electrophysiological and molecular criteria, however,

the overlapping nature of these features in many interneuron subclasses has hindered

efforts to develop a unambiguous classification (Ascoli et al., 2008; Kelsom and Lu,

2013) (see Figure 1.6).

Figure 1.6: Classification of interneurons is generally based on a combination of
their morphology, connectivity, synaptic properties, expression of molecular markers
and electrophysiological properties. The bold connections represent fast-spiking
basket cells, which express parvalbumin and target the soma of pyramidal cells and
interneurons. Figure reproduced from Kepecs and Fishell (2014).
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GABAergic interneurons can be classified into a number of morphologically defined

cell types (see Figure 1.5, right for examples), including:

• Basket cells: Basket cells make up ∼ 50% of inhibitory interneurons, and

preferentially target the soma and proximal dendrites of both pyramidal cells

and interneurons (Markram et al., 2004). Three main subclasses of basket cells

have been defined morphologically. These are large basket cells, which have

large expansive axonal arbours; small basket cells, which generally have local

dense axonal clusters; and nest basket cells, which can have sparse or dense

local arbours with infrequent long horizontal axonal branches and simple short

dendritic trees (Toledo-Rodriguez et al., 2003; Wang et al., 2002).

• Bipolar, double bouquet and bitufted cells: These three cell types gen-

erally have ovoid soma and dendrites that emerge from opposite poles of the

soma, forming narrow bipolar or bitufted morphologies (Markram et al., 2004).

These cell types, however, differ in their axonal morphology. Bipolar cells

generally have narrow vertical axonal projections, while double bouquet cells

have axons that extend vertically in a tight ‘horse tail’-like bundle (Markram

et al., 2004; Schmolesky, 2005) (Figure 1.5C). Bitufted cells generally have

wider horizontal axonal spans than bipolar or double bouquet cells, that can

extend into neighbouring cortical columns (Toledo-Rodriguez et al., 2003)

(Figure 1.5F).

• Chandelier cells: Chandelier cells can be multipolar or bitufted and exclu-

sively target the axons of postsynaptic cells (Markram et al., 2004; Kelsom

and Lu, 2013). They are characterised by local axonal clusters which branch

frequently into vertical sections, resembling a chandelier (Toledo-Rodriguez

et al., 2003) (Figure 1.5E).

• Martinotti cells: Martinotti cells generally have the most elaborate dendritic

projections of all interneuron types (Toledo-Rodriguez et al., 2003). They are

characterised by axons that project to layer I, where they branch extensively

(Rudy et al., 2011). These cells preferentially target the dendrites and dendritic

tufts of postsynaptic cells (Markram et al., 2004).

• Neurogliaform cells: Neurogliaform cells are small neurons that have dense

local spherical dendritic and axonal fields and primarily target dendritic shafts

(Toledo-Rodriguez et al., 2003) (Figure 1.5G).

• Cajal-Retzius cells: Cajal-Retzius cells are multipolar cells that are unique

to layer I and have long horizontal dendrites and horizontally projecting axons
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that are confined to layer I (Markram et al., 2004).

• Small layer I cells: A heterogeneous group of small multipolar neurons which

vary in their axonal arbourisation patterns (Toledo-Rodriguez et al., 2003).

Inhibitory neurons also exhibit diversity in their electrophysiological properties, and

can be classified into several major electrophysiological subclasses based on both

their onset and steady state responses to sustained step-current injections to the

soma (Toledo-Rodriguez et al., 2003; Ascoli et al., 2008) (see Figure 1.7 for details).

Figure 1.7: The firing pattern of neurons is characterised by both their steady state
response (rows) which includes fast spiking, non-adapting non-fast spiking, adapting,
irregular spiking, intrinsic bursting and accelerating, as well as their onset response
to a stepped depolarization (columns), which can be bursting, continuous, delayed or
stuttering. For example, a delayed adapting neuron (row three, column three) would
exhibit a delay between the onset of the injected current and the discharge of the
cell, followed by action potentials which gradually decrease in frequency (adaptation)
(Toledo-Rodriguez et al., 2003). A burst non-adapting interneuron (row two, column
one) initially fires a ‘burst’ of spikes in quick succession, followed by repeated spikes
that have no frequency adaptation. Figure reproduced from Ascoli et al. (2008).
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The cells in the previously detailed morphologically identified classes can fall into a

range of these electrophysiologically defined classes. For example, different Martinotti

cells have been seen to exhibit continuous non-adapting, bursting adapting, contin-

uous adapting or continuous irregular spiking firing behaviours (Toledo-Rodriguez

et al., 2003).

Inhibitory interneurons can also be classified molecularly. Recently, it has been

shown that GABAergic interneurons can be divided into three broad subgroups

based on their expression of three molecular markers, the calcium binding protein

parvalbumin (PV), the neuropeptide somatostatin (SST) and the ionotropic serotonin

receptor 5HT3a (5HT3aR) (Lee et al., 2010). These subgroups are non-overlapping,

and together account for almost 100% of total neocortical inhibitory interneuron

diversity (Rudy et al., 2011). These three broad classes, in particular the 5HT3aR-

expressing class, represent heterogeneous populations of cells that express other

proteins and neuropeptides, and exhibit morphological and electrophysiological di-

versity that can be used to further subdivide these classes (Kelsom and Lu, 2013;

Kubota et al., 2011).

Approximately 40% of GABAergic neurons express PV (Rudy et al., 2011). These

cells have been shown to have low input resistance and fast membrane time constants

compared to other interneuron types, and largely exhibit fast spiking firing patterns

(Ascoli et al., 2008; Cauli et al., 1997; Kawaguchi and Kubota, 1997; Rudy et al.,

2011). PV-expressing interneurons are comprised largely of two morphologically

defined cell types, basket and chandelier cells (Ascoli et al., 2008; Harris and Mrsic-

Flogel, 2013; Kawaguchi and Kubota, 1997).

Around 30% of inhibitory interneurons in the neocortex are SST-expressing, the

largest subtype of which have Martinotti morphologies (Kepecs and Fishell, 2014).

SST-expressing Martinotti cells are found in layers II-V, and most commonly ex-

hibit continuous adapting firing patterns (Rudy et al., 2011). Non-Martinotti

SST-expressing cells have also been observed, which include cells with bitufted,

‘basket’ and long-projecting morphologies and irregular spiking, stuttering or fast

spiking firing patterns (Urban-Ciecko and Barth, 2016; Yavorska and Wehr, 2016).

The observed diversity in firing patterns, morphology, as well as the molecular char-

acteristics and connectivity of SST-expressing interneurons suggests that there are

many yet unclassified subtypes in this population, which could number as high as

one hundred (Ma et al., 2006; McGarry et al., 2010; Rudy et al., 2011; Urban-Ciecko

and Barth, 2016).
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The remaining inhibitory neurons in the cortex are largely 5HT3aR-expressing in-

terneurons, which form the most populous interneuron type in the superficial layers

(layers I–III) (Lee et al., 2010). These cells represent the most heterogeneous class

of molecularly defined interneurons, with subclasses that have yet to be completely

characterised. A subset of 5HT3aR-expressing neurons have been found to also

express the neuropeptide vasoactive intestinal peptide (VIP) (Lee et al., 2010).

These VIP-expressing interneurons are thought to be composed of several cell types,

including those with bipolar, bitufted and multipolar morphologies and a variety of

intrinsic spiking patterns (Rudy et al., 2011; Kelsom and Lu, 2013; Xu et al., 2010;

Kawaguchi and Kubota, 1997).

There are also approximately 60% of 5HT3aR-expressing interneurons which are

VIP-negative, 80% of which express the interneuronal marker reelin (Lee et al., 2010;

Miyoshi et al., 2010). A prominent group of these cells are morphologically defined

as neurogliaform cells, which generally have small spherical dendritic fields and late

spiking firing patterns (Toledo-Rodriguez et al., 2003; Rudy et al., 2011). Other

5HT3aR-expressing, VIP-negative, reelin-positive cell types have also been identified,

which exhibit a variety of electrophysiological characteristics (Rudy et al., 2011;

Miyoshi et al., 2010; Lee et al., 2010).

Figure 1.8 shows one possible incomplete classification of cortical inhibitory in-

terneurons from Rudy et al. (2011). Several of these subtypes are still poorly defined,

or it is unknown if they represent true interneuron classes. For example, it has been

suggested that the SST-expressing X94 cell type shown in Figure 1.8 may not be a

true interneuron subtype, but instead represent a subset of a single cell type labelled

‘L4 SST cells’ that includes both X94 and non-X94 cells (Yavorska and Wehr, 2016;

Xu et al., 2013).
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Figure 1.8: A possible incomplete classification of neocortical inhibitory interneurons
by Rudy et al. (2011). Cells are divided into three main subclasses, based on
their expression of PV, SST or 5HT3aR. Each of these classes can be further
subdivided based on a variety of features, including molecular, morphological and
electrophysiological properties, however there still exist a number of poorly defined
classes. A full description is given in Rudy et al. (2011), from which this figure was
reproduced.
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1.5 Spontaneous activity in developing neuronal

networks

Of equal importance to the types of neurons that make up a neuronal network to its

function, are the number and configuration of the synaptic connections between them.

Correct wiring of the over 100 trillion connections between neurons in the human

nervous system is essential for functions ranging from the processing of sensory

information to fine motor movement (Squire et al., 2008). Activity dependent

rewiring and synaptic changes, in which the relative activity patterns between pairs

of neurons dictates the strength of their connection, are thought to play a critical role

in the development and maintenance of these neuronal networks (Butz et al., 2009).

Postnatally, this activity is driven by sensory input and experience (Chapman and

Stryker, 1993). However, in immature networks during development, it is believed

that spontaneous activity assumes this role (Khazipov and Luhmann, 2006) (Figure

1.9).

Figure 1.9: Factors influencing the development of neuronal networks. Embryonically,
genetic information is used to lay down crude maps. Later (precritical period),
mechanisms such as gap-junctions and extrasynaptic neurotransmission result in cor-
related network activity that shapes the gross and fine structure of neuronal networks.
During the critical period, experience-dependent modifications to neuronal networks
occur in a Hebbian manner. Figure reproduced from Khazipov and Luhmann (2006).
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1.5.1 Mechanisms of spontaneous activity

Spontaneous activity has been observed extensively in numerous parts of the mam-

malian nervous system, including the hippocampus, cortex, spinal cord, retina,

cochlea and higher areas of the visual system (Garaschuk et al., 1998; Hanson and

Landmesser, 2003; Meister et al., 1991; Weliky and Katz, 1999; Corlew et al., 2004;

Tritsch et al., 2007). Despite significant differences in their structure and function, the

nature of the spontaneous activity patterns in these networks and the physiological

mechanisms underlying this activity show strong similarities (Blankenship and Feller,

2010).

Although the complete physiological processes underlying the generation of spon-

taneous activity across the different regions of the nervous system are not well

understood, several mechanisms have frequently been observed to be involved. These

include the depolarizing activity of GABA and glycine during early development,

extrasynaptic neurotransmission, and the presence of gap junctions and transient

connections between cells (Ben-Ari, 2001; Blankenship and Feller, 2010; Kerschen-

steiner, 2014; Syed et al., 2004; Zheng et al., 2006). As the physiological properties

of neuronal networks change during development, for example the switch from elec-

trical to chemical synapses, the dominant mechanisms underlying the generation

of spontaneous activity are also believed to vary, which is reflected by significant

changes in the nature of the spontaneous activity patterns. In most brain regions,

this involves a shift from repetitive activity synchronised across small networks to

more complex large-scale patterns of activity (Luhmann et al., 2016; Khazipov and

Luhmann, 2006; Crépel et al., 2007).

One well studied area that exhibits this phenomenon is the hippocampus. Early

during development, the spontaneous activity in the hippocampus takes the form of

synchronous plateau assemblies. These consist of small groups of neurons connected

via gap junctions, which exhibit bursts of intracellular calcium transients (Crépel

et al., 2007; Garaschuk et al., 1998). Later, spontaneous activity in the hippocampus

transitions to a form of spreading waves called giant depolarizing potentials (GDPs),

which involve slow depolarizations correlated across larger networks of neurons and

are dependent on GABAergic and glutamatergic neurotransmission (Leinekugel et al.,

1997; Ben-Ari et al., 1989). These GDPs are believed to be initiated primarily in the

CA3 region of the hippocampus, where GABAergic interneurons depolarize pyramidal

cells, producing periodic bursts of action potentials that propagate throughout the

hippocampus (Ben-Ari et al., 1989; Ben-Ari et al., 2007).
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Although spontaneous activity in developing neuronal networks has most commonly

been studied in rodent, this phenomenon has also been observed in a range of mam-

malian species, including ferrets, monkeys and humans, with remarkable similarity

across species (Khazipov and Luhmann, 2006). In humans, bursting patterns of

spontaneous activity have been observed in the cerebral cortex from mid-gestation

to just after birth (Tolonen et al., 2007; Moore et al., 2011). Electroencephalogram

recordings of human neonates at the later stages of gestation have also shown the

presence of delta-brush patterns consisting of rapid bursts, which share several

features with the early patterns of spontaneous synchronised activity observed in

neonatal rodent cortex (Vanhatalo and Kaila, 2006; Khazipov and Luhmann, 2006).

1.5.2 The role of spontaneous activity

As well as being conserved across numerous brain regions and species, spontaneous

activity during development has also been observed to exhibit remarkable robust-

ness to genetic and pharmacological manipulations, suggesting that redundancies

exist in these networks to ensure that spontaneous activity is maintained (Chub

and O’Donovan, 1998; Charlesworth et al., 2016). When spontaneous activity is

successfully disrupted, this has been shown to lead to deficits in network structure

(Cang et al., 2005; Clause et al., 2014; Hanson and Landmesser, 2004; Huberman

et al., 2006). Together, these observations suggest that spontaneous activity plays a

crucial role in neuronal network development.

Although the precise function of developmental spontaneous activity across the

nervous system is still an area of investigation, a role for spontaneous activity has

been implicated in numerous physiological processes in developing neuronal networks,

including:

• Neurogenesis: Spontaneous electrical activity has been observed to play a

role in regulating the production and proliferation of neuronal cells during early

development, both directly as well as indirectly, such as through the regulation

of morphogenic factors (Loturco et al., 1995; Weissman et al., 2004; Belgacem

and Borodinsky, 2015). Suppression of retinal waves in embryonic mice has

been shown to increase neurogenesis and alter the structure of cortical layers

(Bonetti and Surace, 2010).

• Apoptosis: Bursting patterns of spontaneous activity are also believed to have

an important role in regulating cell survival. High frequency bursting has been
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shown to increase neuronal survival in cortical cultures, while suppression of

spontaneous activity has been observed to greatly increase rates of programmed

cell death (Golbs et al., 2011; Heck et al., 2008).

• Neuronal migration: Neurons are produced in a limited set of locations in

the brain, from which they must migrate to appropriate sites before being

incorporated into local networks (Purves et al., 2001). The rate and extent

of this migration has been shown to be influenced by temporal changes in

spontaneous Ca2+ transients and neurotransmitters whose expression is reg-

ulated by neuronal activity (Komuro and Kumada, 2005; Luhmann et al.,

2015). Additionally, GABAergic interneurons have been observed to cease their

migration at a similar time to which they begin to participate in synchronised

network activity (de Lima et al., 2009).

• Neuronal differentiation: Dendritic differentiation has been shown to be

regulated by spontaneous Ca2+ transients and activity-dependent release of

transcription factors that are essential for dendritic development (Chen and

Ghosh, 2005; Bando et al., 2016). Spontaneous electrical activity has also

been shown to be involved in axon pathfinding, with disruption of this activity

shown to cause pathfinding errors and alterations in molecular cues believed to

be involved in axon guidance (Hanson and Landmesser, 2004; Kastanenka and

Landmesser, 2013).

• Specification of neurotransmitters: Changes in spontaneous activity pat-

terns have been associated with the alteration of neurotransmitter phenotype

(Spitzer, 2012). Increasing calcium spike frequency has been observed to in-

crease (decrease) the expression of inhibitory (excitatory) neurotransmitters in

embryonic spinal cord (Borodinsky et al., 2004).

• Network connectivity: Patterned spontaneous activity has been shown to

play an important role in the development of precise connectivity patterns

essential for proper functioning of neuronal networks. In particular, spontaneous

activity has been observed to be instructive in the formation of topographic

maps in sensory systems, and the disruption of this activity has been shown to

lead to deficits in both the gross organisation and precise refinement of these

networks (Mrsic-Flogel et al., 2005; Cang et al., 2005; Clause et al., 2014; Xu

et al., 2011).
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1.5.3 Recording of spontaneous activity on microelectrode

arrays

As well as being observed extensively in vivo, correlated spontaneous activity pat-

terns have frequently been recorded in vitro, where they also exhibit increasingly

complex activity patterns over developmental time (Sun et al., 2010; Wagenaar et al.,

2006a; Baker et al., 2006). A common method for studying spontaneous activity

during development is using recordings of the electrical activity of cultured neurons

on microelectrode arrays (MEAs, also known as multielectrode arrays) (Sun et al.,

2010; Chen et al., 2006; Pasquale et al., 2008; Van Pelt et al., 2005; Chiappalone

et al., 2006). These devices consist of planar grids of electrodes, which facilitate the

simultaneous and long-term recording of extracellular action potentials and local field

potentials from neurons with high temporal resolution (Obien et al., 2015) (Figure

1.10).

A B

Figure 1.10: A A 64-channel MEA from Multi Channel Systems, and B configuration
of the 8× 8 layout of electrodes in a 64-channel array. Standard electrode diameters
are either 10µm or 30µm and the spacing of electrodes is either 100µm or 200µm.
Images obtained from Multi Channel Systems MCS GmbH (2015).

MEAs were initially developed more than four decades ago to allow for non-destructive

simultaneous recording of networks of cultured cells (Thomas Jr. et al., 1972; Gross

et al., 1977; Pine, 1980). Since this time, improved semiconductor lithographic

techniques have lead to the development of more reliable MEA devices with increased

numbers and densities of electrodes (Obien et al., 2015). Modern high density

MEAs can contain over 10 000 electrodes, allowing for the recording of activity at

sub-cellular resolution (Spira and Hai, 2013; Frey et al., 2009).
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The microelectrodes on an MEA record changes in the extracellular voltage produced

by the electrical activity of nearby cells, including both action potentials and local

field potentials (Buzsáki et al., 2012). The strongest of these currents are the fast

action potentials described in Section 1.2.2, which are recorded extracellularly as

‘spikes’. Due to the rapid influx of Na+ into the cell during an action potential, a

large negative spike in the extracellular potential is observed, followed by a small

positive spike as K+ ions exit the cell (Obien et al., 2015). These extra-cellular

action potentials (EAPs) have similar durations to intracellular action potentials,

but generally have amplitudes that are several orders of magnitudes lower (Buzsáki

et al., 2012) and can be recorded by electrodes placed near (∼ 100µm) the origin

of the spike (Egert et al., 2002). As well as EAPs, MEAs also record local field

potentials, which are the low-frequency component of extracellular voltage, resulting

from the dynamic activity of neurons surrounding the electrode, as well as noise (Rey

et al., 2015). Noise can arise from biological sources, such as the action potentials of

distant cells and the subthreshold events of nearby neurons, as well as experimental

factors such as the liquid-metal interface of the MEA (Obien et al., 2015).

Extracting the spiking activity of individual neurons from the raw voltage data

recorded by MEA electrodes involves a number of steps. The first is to use band-pass

filtering, generally with a band in the range of 300–3000 Hz, to separate EAPs from

local field potentials and noise (Quian Quiroga, 2009). Next, spikes are detected,

generally using a threshold set at a multiple of the baseline noise level (Rey et al.,

2015; Rizk and Wolf, 2009). These spikes consist of the superimposed spiking activity

of multiple neurons positioned at different distances from the electrode, and spike

sorting techniques can be used to differentiate the spikes originating from each neuron

(Quian Quiroga, 2012).

Using dissociated cultures plated on MEAs to study neuronal network develop-

ment has several advantages. A significant benefit of MEAs is their ability to record

simultaneously from multiple neurons in a network (Spira and Hai, 2013). Other

techniques, such as simultaneous patch clamp recordings, have been recently devel-

oped to allow for simultaneous intracellular recordings of neurons, however, they are

limited in the number of simultaneous recordings they allow (∼ 12 neurons in vitro),

compared to MEAs which can contain several thousand electrodes (Obien et al.,

2015; Perin et al., 2011). The non-invasive nature of MEAs also facilitate long term

recordings, allowing for repeated incubation and recording from the same cultures

(Breckenridge et al., 1995). Cultured networks have been shown to survive and
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exhibit reliable spontaneous activity for over a year on MEAs, greatly exceeding the

short recording times offered by other experimental techniques (Potter and DeMarse,

2001). The use of glass arrays and the monolayer nature of the cultured neurons

also facilitates the imaging of cultured networks on MEAs, allowing for changes in

neuronal morphology to be monitored (Potter et al., 2001). MEAs also allow for

the manipulation of network activity using electrical stimuli delivered through the

microelectrodes, the effect of which can be monitored effectively in the small cultured

networks (Wagenaar et al., 2004; Hales et al., 2010).

MEAs, however, also have some limitations. The extracellular nature of the record-

ings from the microelectrodes results in smaller amplitude recordings and the inability

to measure subthreshold variations in the membrane potential of neurons, which can

only be detected using intracellular recording techniques such as patch clamp (Henze

et al., 2000). The flexibility of MEA recordings is also limited by the fixed location

of their electrodes, and MEAs can exhibit greater sensitivity to variations in fluid

level than other instruments (Whitson et al., 2006). Despite this, network recordings

on in vitro MEAs remain a common method for studying the spontaneous electrical

activity of neuronal networks.

1.5.4 Properties of cultured neuronal networks on MEAs

In vitro cultured neuronal networks are generally produced from dissociated cells

from the brains of early postnatal or embryonic animals (Marom and Shahaf, 2002).

Here I will focus on describing the developmental properties of rat cortical cultures,

which are most commonly used in experimental studies. Within hours of plating,

the dissociated neurons begin producing new neurites and rapidly progress from

a population of unconnected independent neurons to a densely connected network

(Huettner and Baughman, 1986; Van Pelt et al., 2005; Wagenaar et al., 2006a). For

cortical cultures in the absence of cell purification, cultured networks have been found

to contain similar distributions of cell types to that of in vivo networks (Nakanishi

and Kukita, 2000; Huettner and Baughman, 1986). From the first week in vitro,

synapses begin to form, and rapidly increase in density over the following weeks

(Habets et al., 1987; Ichikawa et al., 1993). This increase in synaptic density has

been shown to be correlated with increasing frequency of spontaneous activity in the

cultured networks (Ito et al., 2013; Muramoto et al., 1993).

Spontaneous activity in cultured cortical networks has been observed as early as

3 days in vitro (DIV), and typically initially takes the form of uncorrelated firing
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of neurons (Kamioka et al., 1996; Wagenaar et al., 2006a). After a week in vitro,

synchronous regular bursting of neurons, termed ‘network bursts’, become the domi-

nant activity pattern in the cultured networks (Chiappalone et al., 2005; Van Pelt

et al., 2004b). Initially, this activity consists of long bursts lasting several hundreds

of milliseconds and separated by long periods of quiescence (Kamioka et al., 1996).

These bursts increase in frequency and size before reaching a peak around 3 weeks

in vitro (Van Pelt et al., 2004b; Van Pelt et al., 2004a; Chiappalone et al., 2006).

This peak in network bursting activity corresponds to the period in which synaptic

density in the network reaches is maximum (Van Huizen et al., 1985; Kamioka et al.,

1996; Van Pelt et al., 2004b). This is followed by a period of shortening of network

bursts, which coincides with a stage of ‘pruning’ of dendritic spine synapses and

maturation of excitatory connections between neurons (Chiappalone et al., 2006;

Ichikawa et al., 1993; Van Pelt et al., 2005).

At later ages (> 30 DIV), the networks appear to reach a stable network state,

characterised by complex and non-periodic bursting activity with properties that

remain stable over long developmental periods (Chiappalone et al., 2006; Kamioka

et al., 1996; Van Pelt et al., 2004b). As well as in rat cortical cultures, the presence

of network bursting activity has also been observed in a variety of other brain regions

and species in vitro (Van Den Pol et al., 1996; Ben-Ari, 2001; Rhoades and Gross,

1994; Harris et al., 2002; Meister et al., 1991) and in vivo (Chiu and Weliky, 2001;

Leinekugel et al., 2002; Weliky and Katz, 1999).

Although animal models provide a useful tool for studying spontaneous develop-

mental activity, human cortical development has been observed to exhibit certain

species-specific features, and the translational value of animal models for studying

human neuronal development, particularly in diseased states, remains poor (Suzuki

and Vanderhaeghen, 2015; Kuijlaars et al., 2016). Recently, in vitro studies of

the spontaneous activity of developing human neuronal networks on MEAs have

been performed using embryonic or induced pluripotent stem-cell derived neurons

(Heikkilä et al., 2009; Odawara et al., 2016; Amin et al., 2016). Synchronous bursting

resembling that in rat cortical cultures was observed in these networks, generally

arising 8 to 12 weeks after differentiation and increasing in frequency over develop-

ment.

Using calcium imaging, Kirwan et al. (2015) also observed similar developmen-

tal progression of spontaneous activity in networks of human pluripotent stem

cell-derived neurons to that previously seen in rodent cortical cultures. This began
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with synchronised bursting of small networks of neurons after ∼ 60 days in culture,

progressing to larger bursts with longer interburst periods. The frequency and size of

these bursts peaked around 70 days in culture, after which the frequency of correlated

bursts decreased and were eventually replaced by more complex activity patterns.

These results suggest that human stem cell-derived cultures form functional neuronal

networks that exhibit stereotypical patterns of developmental spontaneous activity

and have the potential to replace animal models for studying spontaneous activity

during development (Kirwan et al., 2015; Amin et al., 2016).

1.6 Spike trains

As mentioned in Section 1.5.3, studying the electrical activity of neurons using MEAs

frequently involves reducing the raw voltage measurements recorded by each electrode

to a series of binary events or ‘spikes’ that represent the time of the peaks of the

recorded action potentials (see Figure 1.11 for examples). This is based on the idea

that action potentials convey information primarily through their timing, rather than

any feature of the shape of the action potential waveform (Purves et al., 2001).
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Figure 1.11: Examples of three spike trains from MEA recordings of mouse cortical
neurons. Each row shows 10 s of spiking activity recorded from one electrode, where
each vertical line represents the time of a spike. Scale bar represents 1 s. Experimental
recordings by Paul Charlesworth from the Department of Physiology, Development
and Neuroscience.

Statistical analysis of both single ‘spike trains’ as well as multiple simultaneously

recorded spike trains from several neurons can reveal important details about the

mechanisms of neuronal signalling and the interactions between neurons, as well as

how neurons encode information (Perkel et al., 1967a). Analysis of a single spike

train typically involves examining a variety of first and second order statistics such

as the instantaneous mean firing rate, Fano factor and autocorrelation of the spiking

activity, as well as features of the interspike interval (ISI) distribution (Perkel et al.,

1967a; Purves et al., 2001). If simultaneously recorded spike trains from several

neurons are available, this can be expanded to examining features of the correlation
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and associations between the spiking activity of the multiple neurons (Perkel et al.,

1967b; Brown et al., 2004).

As spikes are regarded as instantaneous and indistinguishable apart from their

temporal location, spike trains can be modelled mathematically as stochastic point

processes (Perkel et al., 1967a). The simplest model used to approximate the stochas-

tic behaviour of neuronal firing is the homogeneous Poisson process, for which the

spike count in any interval on the spike train is assumed to be Poisson distributed

with rate λ (Purves et al., 2001; Tuckwell, 1988). This requires the simplifying

assumption of a stationary firing rate as well as the independence of individual spike

times. Spike trains have also commonly been modelled using inhomogeneous Poisson

processes, in which the firing rate is a time dependant function, λ(t) (Purves et al.,

2001; Perkel et al., 1967a).

Individual spike trains from real neurons rarely correspond to Poisson processes, due

to various factors, such as the presence of a refractory period, bursting, and long

range temporal correlations between spikes, and several other models of neuronal

activity have been developed to incorporate these features (Barbieri et al., 2001;

Averbeck and Lee, 2003; Câteau and Reyes, 2006; Pillow, 2009; Kass and Ventura,

2001; Brown et al., 2001). Despite this, the Poisson process is still a useful model for

approximating stochastic neuronal spiking activity, and in particular for describing

the trial-averaged response of a neuron to repeated presentations of a stimulus

(Pouzat and Chaffiol, 2009).

Analysis of such spike trains recorded from neurons in response to certain stim-

uli are commonly used in studies of neuronal coding, which aim to uncover how

neurons use spikes to encode and transmit information (Aljadeff et al., 2016; Awiszus,

1997). An open question in this field is whether it is simply the overall spike rate

of a neuron that carries information about the features of stimuli (‘rate coding’),

or if the precise pattern of spike timing also plays an important role in information

transmission (‘temporal coding’) (Brette, 2015).

1.7 Bursting in neuronal networks

The analysis of periods of ‘bursting’ in spike trains has been a component of spike

train analysis for several decades (Smith and Smith, 1965; Legéndy and Salcman,

1985). Although many studies of developmental spontaneous activity focus on the

analysis of network bursts, single cell bursts have also been observed commonly in
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MEA recordings from cultures of dissociated neurons, as well as in numerous in

vitro systems (Wagenaar et al., 2006a; Pasquale et al., 2008; Weyand et al., 2001;

Legéndy and Salcman, 1985). These single cell bursts consist of brief periods of

high frequency firing of a neuron separated by periods of quiescence (see Figure 1.12

for an example), and can be produced by strong dynamic inputs or generated by

intrinsic ionic mechanisms of certain cell types (Lisman, 1997; Izhikevich et al., 2003).

Figure 1.12: Voltage trace from a rhythmically bursting neuron, recorded from cat
visual cortex in vivo. Figure adapted from Wang (2010).

Although this type of bursting is widely believed to play an important role in

information transmission in the brain, the purpose of bursts and the precise mecha-

nisms underlying their generation are only partially understood (Lisman, 1997). In

the following sections, I present the current understanding of several burst-related

phenomena.

1.7.1 The functional role of bursting over single spikes

Central synapses in various brain regions have been shown to exhibit low probabilities

of neurotransmitter release in response to single presynaptic spikes, making infor-

mation transfer by single spikes unreliable (Borst, 2010; Branco and Staras, 2009;

Allen and Stevens, 1994). However, rapid bursts of spikes can lead to a build-up

of intracellular Ca2+ in the presynaptic terminal, as Ca2+ levels have insufficient

time to return to their baseline levels between each spike (Thomson, 1997; Wu and

Saggau, 1994; Tank et al., 1995). This increases the probability of neurotransmitter

release and the resultant production of EPSPs with subsequent spikes (Krahe and

Gabbiani, 2004) (Figure 1.13a, left).

This process of ‘facilitation’ has been observed experimentally for a variety of

synapses (Snider et al., 1998; Csicsvari et al., 1998; Thomson, 2000a). This includes

hippocampal CA1 synapses, for which the probability of postsynaptic response caused

by a single spike was found to be 0.2− 0.6 when a neuron was stimulated with closely
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spaced spikes (Stevens and Wang, 1995). In the absence of a response from the first

spike, the probability of neurotransmitter release at the time of the second spike

exceeded 0.9. However, in the case that a postsynaptic response was induced by the

first spike, the probability of a second release of neurotransmitters at the time of the

second spike was < 0.1, suggesting that the synapses were experiencing depression

(Figure 1.13a, right).

Depression caused by bursting activity has also been observed in other synapses that

have high probabilities of neurotransmitter release in response to single spikes, such

as somatosensory thalamocortical synapses (Chung et al., 2002; Gil et al., 1997). It

has been suggested that this interaction of synaptic facilitation and depression could

serve to produce a deterministic postsynaptic response to bursts (i.e. one single

postsynaptic spike produced by each burst), as facilitation increases the probability

of at least one neurotransmitter release, however, depression greatly decreases the

probability of a second release (Lisman, 1997) (Figure 1.13b). In the case that

a second transmitter release does occur during bursting, the evoked postsynaptic

potentials are attenuated, due to depletion of readily releasable neurotransmitters

and previous desensitisation of postsynaptic receptors by the first release of neuro-

transmitters (Thomson, 2000b; Clements, 1996).

As well as being involved in these mechanisms of short term plasticity, bursting

has also been implicated in long term potentiation (LTP) and depression (LTD). In

the hippocampus, postsynaptic bursting at temporally relevant intervals has been

shown to be sufficient to produce long term synaptic changes (Pike et al., 2004;

Froemke et al., 2006; Thomas et al., 1998). Burst-induced LTP and LTD has also

been observed in other brain areas (Birtoli and Ulrich, 2004).

Izhikevich et al. (2003) proposed an additional role for bursting in terms of in-

formation transfer between neurons. Short-term synaptic plasticity has been shown

to play a role in the temporal filtering of spikes, as the effectiveness of high frequency

presynaptic firing at evoking postsynaptic responses is enhanced by facilitation,

while depression filters out high-frequency firing (Fortune and Rose, 2001; Stevens

and Wang, 1995). Synapses capable of exhibiting both depression and facilitation

can thus act as a filter, for which only presynaptic firing in a particular window of

resonant frequencies produces large EPSPs (Izhikevich et al., 2003).



1.7. Bursting in neuronal networks 31

Figure 1.13: Facilitation and depression at synapses plays a role in the filtering of
bursts. (a) Activity at the presynaptic terminal during the arrival of two action
potentials (shown in leftmost column, with the blue bar representing the corre-
sponding time period). Before the arrival of an action potential, ion channels are
closed (‘Facilitation’, top row). Arrival of the action potential results in the open-
ing of these channels, and subsequent Ca2+ influx. At facilitating synapses, most
neurotransmitter-containing vesicles are not released at this point (‘Facilitation’, 2nd
row), however the intracellular Ca2+ from the first action potential can prime the
release machinery (‘Facilitation’, 3rd row) and increase the probability of neurotrans-
mitter release with successive spikes (‘Facilitation’, 4th row). At synapses with a high
release probability, single spikes can cause the release of many vesicles (‘Depression’,
2nd row). If neurotransmitters are not replenished before arrival of the next spike
(‘Depression’, 3rd row), this spike will induce lower levels of neurotransmitter release
(‘Depression’, 4th row). (b) During facilitation (right), EPSP amplitudes increase
during a presynaptic bursts until they trigger a postsynaptic action potential. At
depressing synapses (left), single spikes can produce postsynaptic action potentials,
and EPSP amplitudes tend to decrease over a presynaptic burst. Figure reproduced
from Krahe and Gabbiani (2004).
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Since the value of these resonant frequencies can differ between the various synapses

of the same presynaptic cell, a cell can selectively activate certain postsynaptic cells

by producing bursts with specific intra-burst frequencies (Gupta et al., 2000; Izhike-

vich et al., 2003; Markram et al., 1998). Additionally, at the neuronal level, certain

cell types exhibit resonant properties due to submembrane threshold oscillations

in membrane potential (Lampl and Yarom, 1997; Leung and Yu, 1998). Bursts at

the natural resonant frequency of a cell have the greatest probability of evoking an

action potential (Hutcheon and Yosef, 2000). This again allows a presynaptic neuron

to selective communicate with certain postsynaptic cells by producing bursts with

frequencies that are resonant only for specific cells (Izhikevich et al., 2003).

It has also been suggested that bursts of spikes transmit information with a higher

signal-to-noise ratio than single spikes (Sherman, 2001). Evidence of this has been

seen in a variety of brain regions, such as the hippocampus, where place-fields have

been shown to be more accurately defined by bursts rather than single spikes (Otto

et al., 1991). Bursting has also been shown to produce sharper sensory tuning curves

(Cattaneo et al., 1981; Krahe and Gabbiani, 2004) and more reliable feature extrac-

tion than single bursts (Gabbiani et al., 1996; Sherman, 2001; Krahe et al., 2002).

Livingstone et al. (1996) demonstrated that spikes recorded from the primary visual

cortex of freely viewing monkeys weakly correlated with input stimulus, however,

when only bursts were considered, the stimulus could be more clearly discerned in

the response map of the cells (Figure 1.14).

Some experimental evidence has also suggested that particular features of bursts, such

as their duration or temporal pattern of spikes may also transmit specific information

about particular features of stimuli (Martinez-Conde et al., 2002; Furukawa and

Middlebrooks, 2002; Nelken and Chechik, 2005; Mease et al., 2017), however, more

research in this area is required to deduce unequivocally which, if any, parameters of

bursting activity in different neuronal networks carry additional information.
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Figure 1.14: Spikes recorded from cells in the monkey visual cortex. (a, b) Response
of cells to a flashing bar stimulus, shown in the top right of each panel. (a) All spikes,
and (b) spikes filtered to show only bursts. (c, d) Spikes recorded in response to a
white disc stimulus with (a) no filtering and (b) burst filtering. Spikes in all panels
are mapped according to the position of the receptive field of the neuron from which
the spike was produced. The input stimuli can be more clearly discerned when only
bursts are considered (b, d). Figure reproduced from Livingstone et al. (1996).
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1.7.2 The role of bursting in in vivo behaviours

The importance of neuronal bursting has also been demonstrated through its associa-

tion with a variety of behaviours in vivo, including visual processing and reward and

goal directed behaviour (Cattaneo et al., 1981; Krahe and Gabbiani, 2004; Tobler

et al., 2003; Schultz et al., 1997; Schultz, 1998). Bursting activity has long been

associated with sleep and resting conditions (Evarts, 1964; Barrionuevo et al., 1981;

McCarley et al., 1983; Weyand et al., 2001; Steriade et al., 2001). During slow-wave

sleep in rats, sequences of spikes that were observed during awake behaviour have

been found to be replayed in a temporally compressed manner during sharp-wave

bursts in the hippocampus, suggesting that bursting activity is involved in memory

consolidation (Nádasdy et al., 1999; Ji and Wilson, 2007).

Bursting of hippocampal place cells has also been observed during exploration

of new environments (O’Keefe and Recce, 1993; Epsztein et al., 2011). The presence

of bursting in these, as well as other memory-related behaviours (Burgos-Robles

et al., 2007; Xu et al., 2012), suggests that bursting plays a specific role in memory

and learning in the adult brain (Paulsen and Sejnowski, 2000).

Bursting is also believed to be involved in changes in attention or brain states.

In the thalamus, relay neurons display two modes of firing, tonic firing and bursting

(Sherman, 2001). Bursting has been shown to be more prevalent in states of sleep

or drowsiness, however, irregular bursts have also been observed in awake states

(Ramcharan et al., 2000a; Weyand et al., 2001). Evidence has suggested that these

thalamic bursts are involved in attentional changes, acting as an alerting signal or

‘wake up call’ to the cortex in response to novel stimuli (Sherman, 2001; Swadlow

and Gusev, 2001; Hu and Agmon, 2016; Sherman, 2017). Recently, Li et al. (2009)

also showed that bursting of a single cortical neuron could induce a switch between

states resembling slow-wave and rapid-eye-movement sleep.

Bursting activity has also been seen to be altered in certain pathological condi-

tions (Walker et al., 2008; Jackson et al., 2004; Miller et al., 2011; Singh et al., 2016).

For example, increased bursting activity has been observed in the basal ganglia of

Parkinson’s patients, with correlations between the level of bursting activity and

the progression of the disease (Lobb, 2014; Ni et al., 2001). This suggests that the

study of bursting activity could not only reveal important features of normal brain

function, but also how this is altered in diseased states.
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1.7.3 Cellular mechanisms underlying bursting

A large variety of physiological mechanisms have been observed to play a role in

the generation and maintenance bursting activity in different neuronal networks,

with the precise mechanisms underlying bursting across all cell types yet to be fully

understood (Lisman, 1997; Jasinski et al., 2013). Despite this diversity, a commonal-

ity across cell types is that bursting is generally a result of the interaction of fast

membrane conductances responsible for spiking activity and slower subsystems which

modulate the spiking activity (Krahe and Gabbiani, 2004). The mechanisms of the

slow subsystem vary between different cell types, but generally consist of voltage or

Ca2+-mediated activation/inactivation of an outward/inward current that is required

to sustain spiking activity (Izhikevich, 2007).

In thalamic relay neurons, the cessation of bursting relies on voltage-gated in-

activation of an inward Ca2+ current (IT ). When a strong depolarization proceeds a

period of hyperpolarization in these cells, IT is activated, producing a Ca2+ spike

which generally results in a burst of action potentials. Repetitive spiking during the

burst inactivates IT , and K+ influx repolarizes the cell (Jahnsen and Llinas, 1984;

Sherman, 2001; McCormick, 1991; Ramcharan et al., 2000b).

For CA1 hippocampal neurons, the precise cellular mechanisms of bursting are

not well understood. Much of the research in this area has involved investigating

the mechanisms underlying the afterdepolarizing potential (ADP) that has been

observed in these cells. This is a positive deflection of membrane potential following

an action potential that can trigger burst firing (Yue et al., 2005). Numerous studies

have suggested a contribution of M-type K+ channels, persistent Na+ and transient

Ca2+ channels to this activity (Metz et al., 2005; Azouz et al., 1996; Jensen et al.,

1994; Shuai et al., 2003; Yue et al., 2005; Yue and Yaari, 2004; Chen and Yaari, 2008) .

Other mechanisms have also been implicated in burst generation and moderation in

different neuronal systems, including alternative activation of persistent Na+ currents

and slow repolarizing K+, and ‘ping-pong’ mechanisms caused by interaction of fast

Na+ and K+ conductances in the soma and slower Ca2+ and K+ dendritic currents

(D’Angelo et al., 2001; Lemon and Turner, 2000; Mainen and Sejnowski, 1996; Wang,

1999).
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1.8 Thesis aims and overview

As evidenced in the preceding sections, despite great progress in our understanding

of the development, structure and function of the nervous system and the neurons

from which it is composed, there remain many aspects that are not well understood.

In particular, the precise role and mechanisms of the changing patterns of sponta-

neous activity in neuronal networks over development, and which aspects of these

patterns, in particular bursting behaviour, are essential for the proper development

of functional neuronal circuits remains unclear. Neuronal cell types are also far from

being well-classified, with a lack of agreement regarding how to combine the multiple

characterisations of neurons (electrophysiological, morphological, molecular, etc.)

into a consensus classification.

This thesis aims to address these issues by identifying, evaluating and developing com-

putational techniques for the analysis of recordings of spontaneous neuronal network

activity, as well as experimental characterisations of single neuronal cells. Throughout

this thesis, I critically assess existing computational methods for analysing experi-

mental data from these areas and propose improvements to these techniques and new

applications of analysis methods adopted from other fields. Quantitative analysis

frameworks are also developed and used to extract insights from novel experimental

data sources. An overarching goal of this work is to provide insight on the most

effective methods for collecting and analysing experimental data from these fields, as

well as the limitations of these techniques and possible improvements.

In Chapter 2, I investigate computational techniques for the identification of bursting

activity in recordings of neuronal networks from in vitro MEAs. I first use simulated

data to evaluate the performance of numerous existing burst detection techniques in

relation to a list of desirable properties that an ideal burst detector should possess.

Experimental data is also used to further evaluate these methods under realistic

conditions. The high performing methods from this evaluation are then used to

analyse bursting activity in novel recordings of human induced pluripotent stem

cell-derived neuronal networks. Following this, I propose adaptations to several

existing burst detection techniques, and show that these alterations can improve

their performance at identifying bursts under certain conditions.
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In Chapter 3, I develop a broader quantitative framework for the analysis of spon-

taneous activity patterns in developing neuronal networks and use this framework

to characterise the developmental profiles of neuronal networks recorded in two

experimental contexts. Firstly, I show that by using a number of features to quan-

tify spontaneous activity patterns, significant differences between the activity of

developing neuronal networks produced from hippocampal and cortical cells can be

observed. These features allow for the activity of hippocampal and cortical networks

to be differentiated at a variety of ages with reasonable levels of reliability using

standard classification techniques. Following this, I show that a similar framework

of quantitative features can be used to characterise and differentiate between the

activity of neuronal networks at different developmental ages using recordings from

multi-well MEA devices. I further analyse the major sources of variability in these

recordings and investigate the most appropriate approaches for using these types of

arrays to study multiple experimental conditions in a high-throughput manner.

In Chapter 4, I examine the potential benefits of using multiple characterisations

of neurons for the classification of neuronal cell types. In particular, I investigate

the impact of utilising multi-view clustering techniques that have been developed for

finding the shared cluster structure in data represented by two or more feature sets

or ‘views’, in neuronal classification studies. I perform a thorough literature search

to identify a range of multi-view clustering methods, and apply these techniques to

the analysis of two multi-view data sets consisting of the electrophysiological and

morphological properties of neurons. I show that using both the electrophysiological

and morphological features of neurons can be advantageous for their classification,

compared to the use of a single feature type. I investigate which approaches to

multi-view clustering are the most effective for classifying these types of data sets

and what can be learnt about the underlying cell types present using these methods.

In Chapter 5, I summarise and discuss the key results from this thesis and suggest

directions for future work.
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Chapter 2

Burst analysis

The majority of the material in this chapter has been previously published in the

article ‘A comparison of computational methods for detecting bursts in neuronal

spike trains and their application to human stem cell-derived neuronal networks’

(Cotterill et al., 2016b). Some text has been quoted verbatim from this paper, other

sections have been expanded from the article, and Section 2.7 is additional research

which was not included in the original paper. The burst detection methods outlined

and analysed in Sections 2.4 and 2.5 are the work of others. The experimental

data analysed in Sections 2.5.2 and 2.5.3 were provided by Stephen Eglen and Paul

Charlesworth, respectively. All analysis of burst detection methods and experimental

data presented in this chapter is my own work.

2.1 Summary

Features of neuronal bursts, defined as short periods of high-frequency firing of

neurons, are frequently used to characterise activity patterns in a variety of neu-

ronal networks, and identify variations in network state. Despite its importance for

classifying network activity, no one technique for identifying the bursting activity

of neurons has been widely adopted in the field. Instead, a large variety of burst

detection methods have been developed, many of which have only been evaluated

by their original authors and under a narrow range of specific experimental conditions.

To provide a more robust evaluation of existing burst detection techniques, in

this chapter I conduct an unbiased assessment of eight previously developed burst de-

tectors. I first suggest a list of properties that an ideal burst detection method should

39
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possess, and evaluate each burst detector against these properties using simulated

spike trains. Further assessment of the methods is then achieved by examining the

coherence of the bursts detected by each method with visually annotated bursts in

experimental recordings of mouse retinal ganglion cells. Based on these assessments,

I find that several burst detection techniques perform poorly at accurately classifying

bursting activity in spike trains with a range of properties.

The four most promising burst detection methods from this initial analysis are

then used to detect bursting activity in novel recordings of networks of human

induced pluripotent stem cell-derived neurons, provided by Paul Charlesworth. I

find that no current method can provide ‘perfect’ burst detection, however two

techniques in this study outperform compared to the others. Based on these results,

I provide recommendations regarding the optimal approach for robust burst analysis

of experimental data using existing techniques. Additionally, in an effort to improve

their burst detection performance, I adapt two of the burst detection methods in this

study, and examine the impact of the modifications on their ability to accurately

identify bursting activity.

2.2 Introduction

Bursting activity, defined as brief episodes of rapid spiking of a neuron separated

by periods of relative quiescence (see Figure 2.1), has been observed extensively in

both in vitro and in vivo neuronal networks (Weyand et al., 2001; Chiappalone et al.,

2005; Pasquale et al., 2010).

Figure 2.1: Example of bursting activity in a spike train recorded from mouse retinal
ganglion cells. Horizontal blue lines show the location of bursts. Scale bar represents
1 s.

Bursting activity is believed to play a role in a range of physiological processes,

including synapse formation (Maeda et al., 1995) and long-term potentiation (Lisman,

1997) (see Section 1.7 for details). Analysis of patterns of bursting activity can thus

be used as a proxy for studying the underlying physiological processes and structural

features of neuronal networks. A common method of studying bursting activity in
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vitro involves the use of MEA recordings of spontaneous or evoked neuronal network

activity. This approach has been employed to study changes in spontaneous network

activity over development (Wagenaar et al., 2006a), and the effect of pharmacological

or genetic manipulations (Eisenman et al., 2015; Charlesworth et al., 2016).

Despite the prevalence of bursting as a feature used to analyse neuronal network

activity, there remains a lack of agreement in the field about the definitive formal

definition of a burst (Cocatre-Zilgien and Delcomyn, 1992; Gourévitch and Egger-

mont, 2007). There is also no single technique that has been widely adopted in the

field for identifying the location of bursts in spike trains. Instead, a large variety of

burst detection methods have been proposed, many of which have been developed

and assessed using specific data sets and single experimental conditions. As the

majority of existing studies of bursting activity have been performed on experimental

data from recordings of rodent or feline neuronal networks (Charlesworth et al.,

2015; Mazzoni et al., 2007), this type of data has most often been used to assess the

performance of burst detection techniques (Chiappalone et al., 2005; Mazzoni et al.,

2007; Gourévitch and Eggermont, 2007).

Recently, it has been shown that networks of neurons derived from human stem

cells can be grown successfully on MEAs and exhibit spontaneous electrical activity,

including bursting (Illes et al., 2007; Heikkilä et al., 2009). Human stem-cell derived

neuronal cultures have also been demonstrated to be a suitable alternative to rodent

neuronal networks in applications such as neurotoxicity testing (Ylä-Outinen et al.,

2010). This has lead to a demand for a robust method of analysing bursting in these

networks, which commonly exhibit more variable and complex patterns of bursting

activity than rodent neuronal networks (Kapucu et al., 2012) (see Figure 2.2).

MOUSE HUMAN

Figure 2.2: Examples of spike trains from mouse and human neuronal networks. Each
row represents the spikes recorded from one electrode and the scale bar represents
30 s. Recordings from human neuronal networks often exhibit more variable and
complex spontaneous activity patterns.
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2.3 Previous approaches to burst detection

Since the development of the first methods to identify bursting in neuronal networks

more than three decades ago, a vast number of burst detection techniques have been

proposed. These methods take a variety of approaches, the simplest of which impose

thresholds on values such as the minimum firing rate or maximum allowed interspike

interval (ISI) within a burst, classifying any sequence of consecutive spikes satisfying

these thresholds as a burst. In well-ordered spike trains, these thresholds can be

set as fixed values by visual inspection (Weyand et al., 2001; Chiappalone et al.,

2005). Other methods also incorporate additional thresholds on relevant parameters

such as the minimum interval between two bursts and the minimum duration of a

burst, to restrict detected bursts to those with biologically realistic properties (Nex

Technologies, 2014).

As opposed to having fixed threshold parameters that are chosen by the user,

other burst detection algorithms derive the values of their threshold parameters

adaptively from properties of the data, such as the mean ISI (Chen et al., 2009a)

or total spiking rate (Pimashkin et al., 2011). Commonly, this involves the use of

some form of the distribution of ISIs on a spike train. For spike trains containing

bursting activity, the smoothed histogram of ISIs on the train should have a peak in

the region of short ISIs, which represents within-burst ISIs, and one or more peaks

at higher ISI values, representing intra-burst intervals. A threshold for the maximum

ISI allowed within a burst can be set at the ISI value representing the turning point

in the histogram (Cocatre-Zilgien and Delcomyn, 1992).

Several other adaptive burst detection algorithms also use distributions related

to the ISI histogram. Selinger et al. (2007) and Pasquale et al. (2010) argue that

the histogram of log(ISI)s provides a better separation of within and between-burst

intervals, and use this histogram to set the threshold for the maximum within-burst

ISI at the minimum between the first two well separated peaks. Kaneoke and Vitek

(1996) use the histogram of discharge density rather than ISIs for burst detection,

while Bakkum et al. (2013) employ the ISI histogram between every nth spike in

a network, and Kapucu et al. (2012) derive the threshold parameters for detecting

bursts in their algorithm from the cumulative moving average of the ISI histogram.
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Another category of burst detection techniques are the surprise-based methods, which

use statistical techniques to distinguish periods of bursting from baseline neuronal

firing. The earliest of such methods was developed by Legéndy and Salcman (1985),

and detects bursts as periods of deviation from an assumed underlying Poisson

process of neuronal firing. This method is limited by its assumption of Poisson-

distributed spike trains, which has been shown to be inappropriate for many common

spike trains, in particular because of the refractory period between spikes (Câteau

and Reyes, 2006) (see Section 1.11). Despite this, the Poisson Surprise method has

been one of the most widely used burst detection methods since its development

over thirty years ago (348 citations as at May 2017) and is still commonly used for

analysing bursting activity in experimental studies of numerous neuronal network

types (Singh et al., 2016; Pluta et al., 2015; Senn et al., 2014). More recently, other

surprise-based burst detectors have been developed that replace the assumption that

baseline firing follows a Poisson process with other assumptions about the underlying

distribution of spikes (Ko et al., 2012; Gourévitch and Eggermont, 2007).

Other burst detectors take alternative approaches to separate bursting from back-

ground spiking activity. Turnbull et al. (2005) examine the slope of the plot of

spike time against spike number to detect bursts as periods of high instantaneous

slope. Martinson et al. (1997) require bursts to be separated by intervals at least

two standard deviations greater than their average within-burst ISIs, while Tam

(2002) propose a parameter-free burst detection method, in which sequences of spikes

are classified as bursts if the sum of their within-bursts ISIs is less than the ISIs

immediately before and after the burst.

Numerous studies have also used various forms of Hidden Markov Models to analyse

neuronal activity patterns (Radons et al., 1994; Chen et al., 2009b; Abeles et al.,

1995). These methods assume that a neuron stochastically alternates between two

or more states, characterised by differences in their levels of activity. Tokdar et al.

(2010) apply this idea to burst detection by modelling neuronal activity using hidden

semi-Markov models.
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2.4 Methods

2.4.1 Approach

An approach similar to Cutts and Eglen (2014) was used to perform an unbiased

evaluation of eight burst detection techniques using simulated data. As the burst

detection techniques examined in this study were the work of others, in this case a

blind approach to evaluation was unnecessary, and the identities of the burst detectors

were known throughout. In order to make sure the evaluation was as fair as possible,

efforts were made to ensure the implementation of each of the burst detectors was as

close as possible to the original authors’ implementations. Following this, further

assessment of each of the burst detectors was performed using experimental data.

In these sections, the parameter values for each burst detector were allowed to vary

from their original values to examine the sensitivity and specificity of the methods.

2.4.2 Burst detection methods

Eight burst detection techniques which I believe are representative of the major

approaches to burst detection and have sufficient general applicability to allow for

their use on a wide range of spike trains, were chosen for analysis. This section

provides an outline of each of these methods as applied to a single spike train. A

common parameter in several of the burst detection algorithm is the maximum ISI

allowed within a burst, which I will refer to as maxISI.

Each burst detector was implemented using R statistical software (R Development

Core Team, 2011), using code that was either provided by the original authors

(HSMM, RGS), adapted from code already available in our group (MI, PS, RS)

or developed myself (logISI, CMA, IRT) based on the algorithms or alternative

code provided by the authors. All of this code has been made publicly available at

https://github.com/ellesec/burstanalysis.

To minimise the impact of my implementation, the parameters used for each method

were generally left set to the values suggested by the original authors. The exception

to this was the minimum number of spikes in a burst, which was set to three for all

methods. The minimum surprise value for the three surprise-based burst detectors

was also set to − log(0.01), to ensure consistency across the methods. The parameters

used for burst detection on simulated data are shown in Table 2.1.

https://github.com/ellesec/burstanalysis
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Poisson Surprise method (Legéndy and Salcman, 1985)

The average firing rate, λ, on a spike train is calculated, and the underlying activity

on this spike train is assumed to follow a Poisson process with rate λ. The Poisson

Surprise (PS) statistic for any period of length T containing N spikes is calculated as

S = − logP

where

P = exp

(
−λT

∞∑
n=N

(λT )n

n!

)
is the probability that N or more spikes occur randomly in a period of length T .

A surprise maximization algorithm described in Legéndy and Salcman (1985) is then

used to find the set of bursts that maximises the PS statistic across the entire spike

train. This involves initially identifying bursts as any sequence of three consecutive

spikes separated by ISIs which are less than half of the mean ISI on the spike train.

Spikes are then added to the end and removed from the beginning of each of these

initial bursts until the sequence of spikes with the maximum PS statistic is found.

Finally, any bursts which have a PS statistic below a pre-defined threshold level are

discarded.

Rank Surprise method (Gourévitch and Eggermont, 2007)

The Rank Surprise (RS) burst detection algorithm is a non-parametric adaptation

of the Poisson Surprise approach. To implement this method, all ISIs on a spike

train are ranked by size, with the smallest ISI given a rank of one. Let rn denote

the rank of the nth ISI on the spike train. In the absence of any bursting activity,

the ISI ranks should by independently and uniformly distributed. For any period

containing N spikes separated by N − 1 ISIs with ranks rn, ..., rn+N−1, the Rank

Surprise statistic is defined as

RS = − log(P (DN ≤ rn + ...+ rn+N−1))

where DN is the discrete uniform sum distribution between 1 and N .

Bursts are then chosen to maximise the RS statistic across the entire spike train

using an exhaustive surprise maximisation algorithm, outlined in Gourévitch and

Eggermont (2007). A fixed threshold for maxISI is first calculated from the distri-

bution of ISIs on the spike train. The first sequence of at least three spikes with ISIs
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less than maxISI are found and an exhaustive search of all of the subsequences of

ISIs within this period is performed to find the subsequence with the highest RS

value. If this value is above a fixed minimum significance threshold, chosen a priori,

it is labelled as a burst. This process is repeated on the remaining ISI subsequences

within the period of interest until all significant bursts are found. Following this, the

next sequence of spikes with ISIs below maxISI is examined in a similar fashion,

and this process is continued until the end of the spike train.

Robust Gaussian Surprise method (Ko et al., 2012)

In the Robust Gaussian Surprise (RGS) method, the distribution of log(ISI)s on each

spike train is found and centred around zero. The normalised log(ISI)s from each

spike train in the study are then pooled and the central distribution of this joint

data set is found using a procedure outlined in Ko et al. (2012). A burst detection

threshold for maxISI is set at the 0.5 percentile of this central distribution, which

is estimated as 2.58 times the median absolute deviation of the distribution.

The Gaussian burst surprise value in any interval on a spike train is defined as

GSB = − log(P )

where P is the probability that the sum of normalised log(ISI)s in the interval is

greater than or equal to the sum of an equal number of i.i.d. Gaussian random

variables with mean and variance equal to that of the central distribution.

Any consecutive sequence of spikes separated by intervals less than maxISI are

classified as burst cores. These burst cores are then extended by adding intervals

to the beginning and end of the burst cores until the sequence with the maximum

value of GSB is found. In the case of overlapping bursts, the burst with the largest

GSB value is retained. Finally, any detected bursts with GSB below a predefined

threshold value are discarded. Ko et al. (2012) also propose a similar method for

identifying pauses in spike trains, but for this study, these periods of below average

firing rate were not examined.

LogISI method (Pasquale et al., 2010)

The histogram of log(ISI)s on a spike train is computed, using a bin size of 0.1 in

log(ISI) units. Let Ck denote the ISI count in the kth bin of this histogram, which

corresponds to an ISI size of ISIk, and MCV denote a pre-specified threshold value,

known as the maximum cutoff value. The location of the peaks of this histogram
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are found using a custom peak finding algorithm described in Pasquale et al. (2010).

The largest peak of the histogram corresponding to an ISI less than or equal to MCV

is set as the intraburst peak, CIBP . If no peak is found in the histogram with ISIk ≤
MCV, the spike train is classified as containing no bursts.

In the case that an intraburst peak is present, the minimum value of the histogram

between the intraburst peak and each of the following peaks, Cpi (i = 1, ..., N), is

found. For each minimum, a void parameter is calculated that represents how well

the corresponding peak is separated from the intraburst peak, as

void(i) = 1− Cmini√
CIBP · Cpi

where Cmini
is the minimum value of Ck for IBP < k < pi.

The smallest ISImini
for which void(i) > 0.7 is set as the threshold for the maximum

ISI in a burst, maxISI (see Figure 2.3). Any series of at least three spikes separated

by ISIs less than maxISI are classified as bursts. If no point with a void value above

0.7 is found, or if maxISI > MCV, bursts are detected using MCV as the threshold

for the maximum ISI in a burst and then extended to include spikes within maxISI

of the beginning or end of each of these bursts.
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Figure 2.3: Example of log-adjusted ISI histogram with the threshold for intraburst
and interburst intervals found using the logISI method.
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Cumulative Moving Average (CMA) method (Kapucu et al., 2012)

This method also uses the histogram of ISIs on a spike train. The cumulative moving

average (CMA) at each ISI bin of the histogram is calculated. The CMA of the Nth

ISI bin is defined as

CMAN =
1

N

N∑
k=1

Ck ,

where Ck is the ISI count in the kth bin. The skewness of the CMA distribution

is used to determine the values of two threshold parameters, α1 and α2, based on

the scale given in Kapucu et al. (2012). The maximum of the CMA distribution,

CMAmax, is found and the value of maxISI is set at the ISI bin at which the CMA

is closest in value to α1 · CMAmax (see Figure 2.4). Burst cores are then found as

any sequences of at least three spikes separated by ISIs less than maxISI.

Kapucu et al. (2012) suggest extending these burst cores to include burst-related

spikes. These are found using a second cutoff, set at the value of the ISI bin at which

the CMA is closest to α2 · CMAmax. Spikes within this cutoff distance from the

beginning or end of the existing burst cores are classified as burst-related spikes. For

this study, only the burst cores detected by this method were examined, omitting

any burst related spikes.
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Figure 2.4: Example of ISI histogram with the threshold for intraburst and interburst
intervals found using the CMA method. Red line shows the cumulative moving
average of the ISI histogram.
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ISI rank threshold method (Hennig et al., 2011)

In the ISI rank threshold (IRT) method, the rank of each ISI on a spike train relative

to the largest ISI on the train is calculated, with R(t) denoting the rank of the

ISI beginning at time t. The probability distribution, P (C), of spike counts in

one-second time bins over the spike train is also found. A rank threshold, θR, is set

to a fixed value, and a spike count threshold, θC , is calculated from P (C). A burst

is then defined to begin at a spike at time t if the rank of the proceeding ISI satisfies

R(t) < θR and the spike count in the following second, C(t, t+ 1), exceeds θC . The

burst continues until a spike is found for which C(t, t+ 1) < θC
2

.

Hidden Semi-Markov Model method (Tokdar et al., 2010)

This method is based on the assumption that neurons switch stochastically between

two states: ‘non-bursting’ (state 0) and ‘bursting’ (state 1), that can be modelled

using a Hidden semi-Markov model. The transition times between the two states are

modelled using two gamma distributions, f ITI0 and f ITI1 . Within each of the states,

the ISI times are modelled using two additional gamma distributions, f ISI0 and f ISI1 .

The parameters of these four distributions are learned from the data. A custom

Markov chain Monte-Carlo (MCMC) algorithm described in Tokdar et al. (2010)

is then used to compute the posterior probability that a neuron is in a bursting

state at any given time. A fixed threshold value is chosen a priori, and any pe-

riods during which the posterior probability exceeds this value are classified as bursts.

MaxInterval method (Nex Technologies, 2014)

Bursts are defined using five fixed threshold parameters, shown in Figure 2.5. The

value of these parameters are chosen a priori and any series of spikes that satisfy

these thresholds is classified as a burst.

0 3min inter-
burst 

interval

max ISI 
at start 
of burst

min burst 
duration

min number 
of spikes in 

burst

max ISI 
in burst

Figure 2.5: Illustration of the parameters used by the MaxInterval method.
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Most burst detectors described here separate data sets consisting of multiple spike

trains, such as those recorded from the multiple electrodes of an MEA, into individual

spike trains, and calculate any associated parameter values, such as maxISI, and

the location of bursts on each spike train separately. The MaxInterval method is an

exception to this, as in the standard implementation of this method, the same values

for the threshold parameters are used to detect bursts across all electrodes on an

array to simplify the analysis. The RGS method also analyses multiple spike trains

from the same array simultaneously by combining the ISIs from all electrodes on an

array and using this pooled data to calculate the central distribution of the data and

find the cutoff value used to detect the initial burst cores on all spike trains in the

study.

2.4.3 Analysis of synthetic data

As an initial assessment of the burst detection methods, the performance of each burst

detector was evaluated against a list of eleven properties that I deemed desirable in

a burst detection method, shown in Table 2.2. For the desirable properties D1–D3,

assessment was made based on the details of the burst detector’s implementation,

while testing on simulated data was performed to assess the remaining properties

(D4–D11). I used simulated data to generate spike trains with specific properties

of interest. The output of each burst detector could then be compared with the

‘ground truth’ bursting activity in each of the simulated spike trains. The simulated

spike trains used in this study were generated using the following models, with the

parameter values specified in Table 2.3.

Poisson and Gamma distributions

Two different types of non-bursting spike trains were simulated, with ISIs that were

distributed according to a homogeneous Poisson process, or gamma distributed ISIs,

respectively. For both types of spikes trains, the smallest 10th percentile of ISIs were

removed by omitting the corresponding spikes, to eliminate any burst-like activity

that randomly arose in the simulated spike trains.

Inhomogeneous Poisson distribution

Spike trains with time-varying firing rates and no bursting activity were simulated

using a Poisson process with non-homogeneous intensity, λ(t). To eliminate any

possible bursting activity in each spike train, the spikes corresponding to the smallest

10th percentiles of ISIs were removed.
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Poisson bursting

Spike trains containing bursts were simulated using the Poisson bursting model. The

time of the centre of each burst was modelled as a Poisson process with a fixed

intensity, λ. The number of spikes in each burst was drawn randomly from a Poisson

distribution with mean n. The position of the spikes in each burst relative to the

centre of the burst were then drawn from a uniform distribution on
[
− r

2
, r
2

]
. In the

case that two simulated bursts overlapped, only the first was kept.

To simulate spike trains with non-stationary bursts, the values of n and r were

drawn randomly from uniform distributions for each burst, rather than being held

at fixed values. Only the simulated bursts with within-burst firing rates above 5 Hz

were included in these spike trains.

To simulate noisy spike trains, between-burst spikes were modelled with gamma-

distributed ISIs with the smallest 10th percentile of ISIs removed. These noise spikes

were added to the Poisson bursting spike trains, and to avoid any overlap between

burst and noise spikes, any noise spikes which overlaid or were within 0.5 s of the

beginning or end of any burst were removed.

One hundred spike trains of 300 s duration were simulated for each desirable property

and analysed using each of the burst detectors in this study. Examples of simulated

spike trains used for evaluating properties D5–11 are shown in Figure 2.6. A com-

parison of the ‘ground truth’ bursting activity in each spike train and the results

from each of the methods was then performed.

For spike trains containing both bursts and noise spikes, this involved calculat-

ing the:

1. Fraction of true positive spikes, defined as the proportion of within-burst spikes

correctly identified by the burst detector as being within bursts

2. Fraction of false positive spikes, defined as the fraction of all noise spikes which

were incorrectly identified as being a part of bursts.
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Desirable properties

D1
Deterministic: The method should detect the same bursts over repeated
runs on the same data, to ensure consistency and reproducibility of
results

D2
No assumption of spike train distribution: The method should not
assume ISIs follow a standard statistical distribution, to ensure wide
applicability to a variety of spike trains

D3
Number of parameters: The method should have few parameters, to
reduce the variability inherently introduced through parameter choice

D4
Computational time: The method should run in a reasonable amount
of time using standard personal computers

D5
Non-bursting trains: The method should detect few spikes as being
within bursts in spike trains containing no obvious bursting behaviour

D6
Non-stationary trains: The method should detect few spikes as being
within bursts in spike trains with non-stationary firing rates that
contain no obvious bursting behaviour

D7
Regular short bursts: The method should detect a high proportion of
spikes in bursts in spike trains containing short well-separated bursts

D8
Non-stationary bursts: The method should detect a high proportion of
spikes in bursts in spike trains containing bursts with variable durations
and numbers of spikes per burst

D8
Regular long bursts: The method should detect a high proportion of
spikes in bursts and accurate number of bursts in spike trains containing
long bursts with low within-burst firing rates

D10
High frequency bursts: The method should detect a high proportion of
spikes in bursts and accurate number of bursts in spike trains containing
a large number of short bursts

D11
Noisy train: The method should classify a high number of within-burst
spikes as bursting and a low number of interburst spikes as bursting in
spike trains containing both bursts and noise spikes

Table 2.2: Desirable properties for a burst detector. Table reproduced from Cotterill
et al. (2016b).
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D5: Non−bursting   

5 s

D6: Non−stationary    

D7: Short bursts     

D8: Non−stationary    
       bursts    

D9: Long bursts     

D10: High frequency       

D11: Noisy train      

Figure 2.6: Examples of one-minute subsets of simulated spike trains for evaluating
desirable features D5–D11. Scale bar represents 5 s. Figure reproduced from Cotterill
et al. (2016b).
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2.4.4 Analysis of mouse RGC data

MEA recordings of mouse retinal ganglion cells (RGCs) originally analysed in Demas

et al. (2003) were re-analysed using the eight burst detectors in this study. These

recordings are publicly available at Eglen et al. (2014). Four one hour recordings from

mouse retina in the control group at postnatal days (P) 9, 11, 13 and 15 were chosen

for re-analysis. In each of these recordings, I manually annotated five randomly

chosen spikes trains by visual inspection. Example segments of these annotated spike

trains at each age are shown in Figure 2.7.

P9   
5 s

P11    

P13    

P15    

Figure 2.7: Examples of one minute sections of annotated spike trains from retinal
ganglion cell recorded at postnatal days 9–15. Blue horizontal lines represent the
bursts I annotated by visual inspection. Scale bar represents 5 s. Figure adapted
from Cotterill et al. (2016b).

As recordings from MEAs do not reveal the ‘ground truth’ location of bursts in

spike trains, these visually annotated bursts were used as a proxy ground truth to

assess the performance of each of the burst detectors against. Similar comparison to

visually identified bursts has been employed previously to assess the performance

of burst detection methods (Chen et al., 2009a; Gourévitch and Eggermont, 2007;

Pasquale et al., 2010).

The sensitivity and specificity of each burst detector was then examined by re-

peatedly analysing the annotated spike trains using each method, while varying

the value of a key underlying input parameter. The parameter that was varied in

the HSMM and surprise-based methods (PS, RS, RGS) was the probability cutoff.

For the IRT method, the value of the spike count cutoff, θC , was varied while in
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the logISI method, the limit on the maximum allowed ISI cutoff value, MCV, was

varied from its original value of 100 ms. For the MI method, the majority of the

parameters were kept at the values shown in Table 2.1, with the exception of the

maximum beginning and end ISIs, which were varied so that the difference between

the maximum beginning and end ISIs was maintained at 0.130 s. The CMA method

had no obvious parameters to vary, so for this method only a single value of sensitivity

and specificity was found.

Receiver operating characteristic (ROC) curves were generated which plotted 1−
specificity vs. sensitivity for the various input parameter values for each burst detec-

tion method. The value of 1−specificity, or the false positive rate, was taken as the

number of spikes falsely detected as being within bursts, as a fraction of the total

number of spikes outside of the visually annotated bursts. Sensitivity was defined as

the number of spikes correctly identified as being within bursts, as a fraction of the

total number of within-burst spikes.

2.4.5 Experimental details for hiPSC-derived neuronal net-

work recordings

These experimental recordings were all performed by Paul Charlesworth in the

Paulsen lab of the Department of Physiology, Development and Neuroscience, and do

not represent my own work. The following experimental details section (Section 2.4.5)

was partially written by Paul Charlesworth and is copied verbatim from Cotterill

et al. (2016b).

Neuronal networks were grown from late-stage neuronal precursors differentiated

from human induced pluripotent stem cells (hiPSCs) (Axol Bioscience, Cambridge,

UK). hiPSCs were generated by reprogramming of embryonic cord blood cells and

then differentiated to the neural lineage with protocols based on those in Shi et al.

(2012). All of the recordings (447 recordings from 73 MEA platings on 11 plating

dates, 4 thawed vials) were obtained with a single line and neural induction (AX0015;

https://www.axolbio.com/page/neural-stem-cells-cerebral-cortex).

Late-stage neuronal precursors (1 × 106) were thawed and expanded by growing

on six-well tissue culture plates coated with polyornithine and laminin (2 × 105

cells/well) in Neural Maintenance Medium (NM), supplemented with 10µM Y-27632

(rho-associated protein kinase inhibitor) for the first 24 h. After 4-5 days cells were

https:// www.axolbio.com/page/neural-stem-cells-cerebral-cortex
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dissociated with Accutase, centrifuged, resuspended in NM, and either plated to

MEAs (2× 104 − 1× 105) or expanded further on six-well plates as above. MEAs

(60MEA200/30-Ti; Multi Channel Systems, Reutlingen, Germany) were coated with

polylysine followed by laminin as described previously (Charlesworth et al., 2016).

hiPSC-derived neuronal network (hiPSN)-MEA cultures were maintained in NM

medium under zero-evaporation lids (Potter and DeMarse, 2001) housed in tissue

culture incubators maintained humidified at 37◦C and 5% CO2-10% O2-85% N2.

Medium was completely exchanged after 24 h to remove Y-27632. Thereafter, MEA

cultures were fed by exchanging 40-50% medium with fresh NM three times per week.

NM composition was a 1:1 mixture of N2 and B27 supplemented media (N2 medium:

DMEM-F-12 + N2 supplement and 5µg/ml insulin, 1 mM L-glutamine, 100µM

nonessential amino acids; B27 medium: Neurobasal Medium + B27 supplement and

0.5 mM L-glutamine).

Recordings (300 s) of spontaneous extracellular neuronal activity in hiPSN-MEA

cultures were made weekly with an MEA system supplied by Multi Channel Systems

(MEA 1060INV, with 60MEA200/30-Ti arrays; titanium nitride electrodes, 30µm

diameter, 200µm spacing, internal reference electrode). The signal was sampled

at 25 kHz and stored with a 64-channel data acquisition board (MC Card; Multi

Channel Systems) and the acquisition software MCRack (Multi Channel Systems).

Action potentials were detected by crossing of a threshold set to a level of 6 standard

deviations from the baseline noise level. Record samples (1 ms before and 2 ms

after crossing of threshold) confirmed the characteristic action potential waveform.

No spike sorting was performed. Action potential timestamps were extracted to

text file with batch scripts written for NeuroExplorer (Nex Technologies, Littleton,

MA). Recordings made at dates above 16 weeks after plating (WAP) were excluded

from the analysis because of the small number of available recordings at these dates,

resulting in 424 recordings being analysed.

2.5 Results

2.5.1 Performance on synthetic data

To evaluate each of the burst detectors, they were assessed against each of the eleven

desirable properties shown in Table 2.2. An ideal burst detector would possess all of
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these desirable properties. For binary properties D1–D4, each burst detector was

judged to either possess the property or not. For properties D5–D11, the performance

of each burst detector was ranked against all other burst detection methods in the

study, based on the median and variance of their performance at analysing one

hundred synthetic spike trains, as outlined in Section 2.4.3.

The first desirable property for a burst detection method was that it is deterministic

(D1), as this ensures the reproducibility of results and avoids the need to perform

repeated trials to find a ‘consensus’ set of bursts from a spike train, which may

be computationally expensive. The HSMM method was the only non-determinstic

burst detector examined, due to its use of MCMC methods. The bursts detected by

this method vary considerably between trials. For example, repeated analysis of a

single simulated Poisson bursting spike train with burst frequency of 0.2Hz using the

HSMM method found 51± 9.75 (mean ± s.d.) bursts over one hundred trials with

the same parameter settings.

The second desirable property for the burst detectors was that they do not as-

sume that the ISIs from a spike train follow a specific statistical distribution (D2).

Although ISI distributions in spike trains have often classically been modelled as

homogeneous Poisson processes (Legéndy and Salcman, 1985; Gerstein and Mandel-

brot, 1964) (see Section 1.11), non-Poisson spiking activity has also been frequently

observed (DeWeese et al., 2003; Gur and Snodderly, 2006; Amarasingham, 2006).

This can be attributed to various factors, such as the presence of a refractory period

or long range temporal correlations between spikes (Averbeck and Lee, 2003). There

is thus no consensus about which statistical distribution best represents underlying

spiking activity, and imposing an assumption about how ISIs are distributed restricts

the applicability of a burst detector to a narrow range of spike trains.

Three burst detectors (PS, RGS, HSMM) assume a fixed statistical distribution for

the underlying spike trains. These methods assume ISIs can be modelled using a

Poisson process, Gaussian distribution and Gamma distributions respectively. How-

ever, for the RGS and PS methods, bursts are detected as deviations from these

assumed underlying distributions. These methods thus remain somewhat robust

to departures from the distribution assumptions, as ‘surprising’ sequences of spikes

from one distribution, will generally have low probability as measured by other

distributions commonly used to model spike trains (Legéndy and Salcman, 1985).
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A common issue that arises when detecting bursts in sets of spike trains with

high variability in their statistical properties, such as those from MEA recordings

of hiPSC-derived neuronal networks, is how to chose the optimal parameter val-

ues for burst detection. This is further confounded when detecting bursts from

recordings spanning a large range of developmental ages or differing experimental

conditions. An ideal burst detector should thus have a low number of parameters

(D3), to minimise the impact of the choice of parameter values on the resultant

detected bursts. The majority of bursts detectors examined here required only two

or fewer parameters. An exception to this was the MI method, which required five

threshold parameters to be set a priori to implement burst detection. The HSMM

method required the most (n = 23) parameter values to be chosen of all the methods.

However, many of these represent initial values which are optimised by the HSMM

algorithm. These parameters can thus be left set to the values suggested by the origi-

nal authors (Tokdar et al., 2010), with little impact on the effectiveness of the method.

Recently, high density MEAs have been developed, which contain up to several

thousand electrodes (Berdondini et al., 2009; Eversmann et al., 2003). The increasing

use of these arrays for recording of in vitro neuronal network activity (Maccione

et al., 2014; Lonardoni et al., 2015), as well as the prevalence of multi-well MEAs in

applications such as high-throughput neurotoxicity screening (Valdivia et al., 2014;

Nicolas et al., 2014) and drug safety testing (Gilchrist et al., 2015), has meant that

the computational complexity of burst detectors has become increasingly relevant.

To evaluate the computational time of each burst detection method (D4), each

burst detector was used to analyse one hundred simulated non-bursting spike trains

of five minutes duration with an average firing rate of 1 Hz. For most methods, the

average time to analyse one such spike trains using a standard personal computer

was in the order of 10−4 − 10−1 s. The HSMM method was the exception to this,

and had an average computational time over 20 times greater than any other burst

detection method in this study.

Of equal importance to accurately detecting the presence of bursts in spike trains is

a burst detector’s ability to identify their absence. Frequently in MEA recordings,

particularly those of human neuronal networks, many electrodes record sparse or no

bursting activity. An ideal burst detector would find no or few bursts in spike trains

containing this type of activity (D5). The majority of burst detectors in this study

performed reasonably well at detecting a low amount of bursting activity in spike
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trains simulated to contain no bursts (Figure 2.8A). The HSMM and CMA methods,

however, greatly overestimated the amount of bursting activity in these spike trains.

When a non-stationary firing rate was incorporated into spike trains containing

an absence of bursting activity, the amount of erroneous bursting identified by almost

all of the burst detectors increased (Figure 2.8B). The proportion of bursting activity

detected by the PS and CMA methods in these spike trains, in particular, significantly

increased compared to spike trains with a static mean firing rate. These methods

detect bursts as unusual periods of activity relative to baseline spiking activity, and

tended to identify bursts during the periods of relatively high firing rate in these

non-stationary spike trains.
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Figure 2.8: Fraction of spikes in bursts found by each burst detector in 100 synthetic
trains with A no bursting (D5), B no bursting and non-stationary firing rate (D6), C
short regular bursts (D7), D bursts with non-stationary burst lengths and durations
(D8). Dotted line shows desired result from an ideal burst detector; methods close to
this line are deemed to work well. In each ‘box-and-whisker’ plot, boxes show the
median ± inter-quartile range (IQR), and whiskers extend to median ± 1.5× IQR.
Outliers are represented as points. Figure reproduced from Cotterill et al. (2016b).
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Ideal burst detection methods should also accurately identify bursts in spike trains

which consist of only bursting activity, particularly those in which the bursts are

regular and well separated (D7). Most burst detectors in the study possessed this

property, and could correctly detect over 90% of bursting activity in spike trains

simulated to contain only regular bursting (Figure 2.8C). The RS, IRT and RGS

methods, however, detected less than half of the bursting activity in these simu-

lated spike trains. A feature of all three of these methods is that they enforce a

limit on the maximum proportion of ISIs in a spike train that can be classified

as being within bursts. It is thus unsurprising that these methods cannot accu-

rately detect the majority of bursts in spike trains containing no non-bursting activity.

The performance of the burst detectors at analysing spike trains containing ir-

regular bursting activity was also assessed. This included spike trains containing

bursts with varying lengths and durations (D8). As these spike trains again only

contained bursting activity, the RS, IRT and RGS methods detected only a low

proportion of the bursting activity in these synthetic spike trains (Figure 2.8D). Most

other methods were able to detect the majority of the bursting activity in these

spike trains. However, the proportion of within-burst spikes correctly identified by

the CMA method was significantly lower in these spike trains compared to those

containing regular bursting activity.

I also assessed the effectiveness of the burst detectors at analysing spike trains

containing bursts with long durations and relatively low within-burst firing rates

(D9). Of the burst detectors in this study, only the PS and HSMM methods identified

both the fraction of spikes within bursts and number of bursts in these spike trains

with reasonably high levels of accuracy (Figure 2.9A, B). The MI and CMA methods

correctly identified the majority of spikes as being within bursts, but tended to

divide the long bursts in these synthetic spike trains into several short bursts. The

remaining methods greatly underestimated the proportion of bursting activity in

these spike trains.

Another type of non-standard bursting activity observed in recordings of hiPSC-

derived neuronal networks is the presence of short, poorly separated bursts occurring

at a high frequency. The MI, logISI and HSMM methods were able to correctly

detect the majority of within-burst spikes in spike trains containing high-frequency

bursting (D10), however all of these methods tended to combine the short bursts in

these synthetic spike trains into a smaller number of long bursts (Figure 2.8C, D).
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Figure 2.9: Results of each burst detector at analysing 100 synthetic spike trains.
A Fraction of spikes in bursts, and B fraction of true number of bursts in spike
trains with regular long bursts (D9); C fraction of spikes in bursts, and D fraction
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methods. Box plots and dotted line as per Figure 2.8 legend. B and D are presented
on a log-scale. Figure reproduced from Cotterill et al. (2016b).
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The CMA method was the most accurate of the burst detectors at identifying the

correct number of bursts in these spike trains, but tended to underestimate the

total proportion of within-burst spikes. The RS, IRT and RGS methods again

underestimated the bursting activity in these synthetic spike trains, both in terms of

the number of bursts and proportion of spikes in bursts.

Finally, an ideal burst detection method should be able to correctly differenti-

ate between periods of bursting and between-burst spikes in spike trains in which

some spiking occurs outside of bursts (D11). To assess this, I compared the bursts

detected by each of the methods to the ‘ground truth’ bursting activity in spike trains

simulated to contain both bursts and between-burst, or noise, spikes and calculated

the fraction of true positive and false positive spikes in bursts found by each method,

as defined in Section 2.4.3.

The MI, CMA, logISI and HSMM methods all exhibited reasonably high true

positive rates for identifying bursting spikes in the synthetic spike trains, however,

of these methods, the logISI and HSMM methods classified a higher number of noise

spikes as being within bursts (Figure 2.9E, F). The RS, IRT and RGS methods

exhibited low false positive rates, however this came at the expense of very low true

positive rates, giving them low overall recall. The performance of the PS method

was between the extremes of the other methods, with both lower false positive and

true positive rates compared to the highest performing burst detectors on this set of

noisy spike trains.

Tables 2.4 and 2.5 show the performance of each of the burst detection meth-

ods on desirable properties D1–D4 and D5–D11 respectively. Table 2.5 ranks the

burst detectors from best (1), to worst (8), based on the median and range of the box

plots in Figures 2.8 and 2.9, with methods with similar results given equal rankings.

Based on these rankings, three methods, namely the RS, IRT and RGS methods,

clearly underperformed. To further evaluate their performance, each of the burst

detectors were employed to analyse experimental recordings from mouse RGCs in

the following sections.
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Desirable property Burst detection method

PS MI CMA RS IRT RGS logISI HSMM

D1 Deterministic X X X X X X X ×
D2 Distribution assumption × X X X X × X ×
D3 Number of parameters X × X X X X X ×
D4 Computational time X X X X X X X ×

Table 2.4: Summary of the performance of each method on binary desirable properties
D1–D4. Ticks represent a burst detector possessing the stated property. Table
reproduced from Cotterill et al. (2016b).

Desirable property Burst detection method

PS MI CMA RS IRT RGS logISI HSMM

D5 Non-bursting 4 1 7 5 6 3 1 8
D6 Non-stationary 6 2 7 4 5 3 1 8
D7 Regular bursting 4 1 2 7 6 7 5 3
D8 Non-stat bursts 4 3 5 7 6 8 2 1
D9 Long bursts 2 4 3 8 5 7 6 1
D10 High frequency 5 1 4 7 6 8 2 3
D11 Noisy bursts 5 1 2 7 6 8 4 2

Total (Relative rank) 30 (4) 13 (1) 30 (4) 45 (8) 40 (6) 44 (7) 21 (2) 26 (3)

Table 2.5: The relative rank of the performance of each method on desirable properties
D5–D11 (1=best, 8=worst). Table reproduced from Cotterill et al. (2016b).
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2.5.2 Performance on experimental data

Preliminary analysis of mouse RGC data

Demas et al. (2003) used MEA recordings from mouse RGCs to study the changes in

spontaneous activity in the retina of control and dark-reared mice over the first six

weeks of postnatal development. To examine the performance of the burst detectors

at analysing experimental data, four control recordings from Demas et al. (2003)

were re-analysed using each of the burst detection methods, as outlined in Section

2.4.4. The sensitivity and specificity of each burst detection method at a range of

parameter values was calculated, and averaged across the five annotated spike trains

from each recording, to produce the ROC curves in Figure 2.10.

Several of the burst detection algorithms place innate restrictions on the defini-

tion of bursts, for example that bursts must contain a minimum of three spikes, or

restrict the total proportion of ISIs in a spike train that can be within bursts. This

means that many burst detectors do not allocate either no spikes or 100% of spikes

as being within bursts for any choice of parameter values, resulting in ROC curves

that do not span the entire range of sensitivity and specificity values. I thus assessed

each of the burst detection methods based on their minimum distance from the point

of perfect classification at (0, 1) for each ROC curve, rather than the area under the

curve.

The MI method performed well at analysing the RGC recordings, and there exists

specific parameter values at each age for which the MI method exhibited close to

perfect performance. The logISI, PS and CMA methods also displayed high perfor-

mance across most ages, however at P15 the PS and CMA methods exhibited higher

false positive rates than other burst detectors (Figure 2.10D). The performance of

the RGS method did not vary significantly as its parameter value was altered, and

this method did not have high levels of sensitivity or specificity for any choice of the

surprise threshold value. The sensitivity and specificity of the RS and IRT methods

spanned a large range of values, however, neither of these methods were able to

reach the levels of sensitivity of the other burst detectors for any choice of parameter

values. The HSMM method reached high levels of sensitivity, but only at points with

relatively low levels of specificity, and generally performed poorly at detecting bursts

across all four ages of recordings.
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Figure 2.10: ROC curves showing the fraction of true positive (sensitivity) and false
positive (1-specificity) spikes identified as being within bursts by each burst detector
for a variety of input parameter values, for recordings of mouse retinal ganglion
cells at A P9, B P11, C P13 and D P15. The ground truth bursts for hour-long
recordings of five randomly selected electrodes at each age were determined by visual
inspection, examples of which are shown in Figure 2.7, and the mean performance of
each burst detector over the five electrodes at each age is shown.
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Evaluation of the methods

Based on the performance of the methods in relation to the desirable properties

D1-D11, the RS, IRT and RGS methods underperformed compared to the other

methods in this study. This was reinforced by their poor performance when detected

bursts were compared to visually identified bursts in experimental RGC recordings,

where they did not reach the levels of sensitivity of the other methods. These three

methods were thus excluded from any further analysis.

The HSMM method had strong performance in terms of several of the desirable

properties (D7–D11), however performed poorly at analysing simulated spike trains

lacking bursting activity (D5–D6). The complexity of the algorithm’s implementation

also meant that it was the lowest performing of the methods on desirable properties

D1–D4. The failure of the HSMM method to simultaneously achieve high levels of

sensitivity and specificity when analysing experimental RGC recordings at any age

cemented the decision to eliminate this method from further consideration.

2.5.3 Analysis of experimental data using high performing

burst detectors

Based on the evaluation of burst detectors using simulated and experimental data in

the preceding sections, four of the eight burst detectors in this study were seen to be

the most promising candidates for providing high quality burst detection in a range

of contexts. These were the PS, MI, CMA and logISI methods. In the following

sections, these four burst detectors are further used to analyse experimental data.

Firstly, the complete set of spike trains from the mouse RGC recordings from Demas

et al. (2003) are analysed using these methods, and the results compared to those of

the original authors. Following this, the four burst detectors are used to analyse the

novel recordings from hiPSC-derived neuronal networks detailed in Section 2.4.5 and

describe the ontogeny of bursting activity in these networks.

Further analysis of mouse RGC recordings

The complete set of spike trains from the four control RGC recordings from De-

mas et al. (2003) were analysed using the four remaining burst detectors in this

study. For this analysis, the parameter values used for each burst detector were

based on those that resulted in the best performance in the ROC curves in Figure
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2.10, as measured by the minimum distance of the curve from the point of per-

fect classification in the top-left corner. In the original study of this data, Demas

et al. (2003) used the autocorrelation of the spike trains to determine the average

duration of bursts at each age, rather than explicitly identifying the location of

bursts. By explicitly classifying bursting periods in these spike trains using the four

remaining burst detectors, I was able to provide a more detailed description of the

bursting activity in each recording and compare this with the authors’ original results.

The four burst detectors were generally in agreement about the fraction of spikes

in bursts across the four ages. Each method found that the proportion of spikes

occurring within bursts decreases with increasing developmental age (Figure 2.11A).

This is in agreement with the original analysis of Demas et al. (2003), who found

that only very few spikes occurred outside of bursts at early ages, while by P15,

many cells were active outside of bursts.

All four bursts detectors also detected bursts with similar durations over P9–P13,

which resemble the values found by the autocorrelogram method of Demas et al.

(2003) (Figure 2.11B). However, at P15, there was a significant deviation between

the duration of bursts detected by the PS method and the other burst detectors. The

bursts detected by the MI, CMA and logISI methods follow the trend of decreasing

burst duration with increasing developmental age, as in the original analysis. The

PS method, on the other hand, identified bursts with significantly increased duration

at P15. This can be attributed to the fact that at this age, many electrodes recorded

regular ‘bursting episodes’. These are periods of elevated spiking activity generally

spanning around 10–20 s, that consist of a series of shorter bursts (Example in Figure

2.11C). Most burst detection methods identified several short bursts in these bursting

episodes, however, the PS method had a tendency to classify these episodes as one

long burst, as shown in the example spike train in Figure 2.11D.



70 Chapter 2. Burst analysis

140 160 180 200 220 240 260
Time (s)

U
ni

t

PS

MI

CMA

logISI

145 150 155 160
Time (s)

U
ni

t

PS

MI

CMA

logISI

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

9 11−13 15
Postnatal day

F
ra

ct
io

n 
of

 s
pi

ke
s 

in
 b

ur
st

s

Burst detection method

Poisson Surprise

Max Interval

Cumulative Moving Average

logISI

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

0

2

4

6

9 11−13 15
Postnatal day

M
ea

n 
bu

rs
t d

ur
at

io
n 

(s
)

A

B

C

D

Figure 2.11: Detailed analysis of mouse retinal ganglion cell recordings. A Fraction
of spikes in bursts, and B mean burst duration found by each burst detector. Each
electrode was counted as one data point in the box plots. The legend in A applies to
both A and B. C Bursts detected by each burst detector over a 120 s sample of a
P15 spike train, and D 15 s sample showing the first bursting episode from the same
spike train. Horizontal bars in C and D denote the bursts detected by each method.
Blue bars above the spike train represent the bursts annotated by a human observer.
Figure reproduced from Cotterill et al. (2016b).
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Performance at analysing hiPSC-derived neuronal network recordings

A key aim of this study was to identify the most appropriate burst detection methods

for analysing recordings of human neuronal networks. I thus next assessed the

four remaining burst detectors in the study by employing each method to detect

bursts in 424 MEA recordings from 73 cultures of hiPSC-derived neuronal networks.

Recordings from these networks were taken at regular intervals from two to sixteen

weeks after plating (WAP), as described in Section 2.4.5.

The parameter values used for the MI, PS and logISI methods in this case were

chosen by inspection as those that detected bursts which most accurately agreed

with visually identified bursts on five randomly chosen spike trains in this data set

that had mean firing rates close to 1 Hz, which is the minimum firing rate at which

regular bursting activity tends to arise in these recordings. For the CMA method,

the original scale for α1 values from Kapucu et al. (2012) was used, and the author’s

suggestions for post hoc screening were also implemented. This meant that any

analysed spike trains that were found to have an average burst duration above 5 s

or average burst length greater than 50 spikes per burst by the CMA method, were

declared as non-bursting. The resultant parameter values used to implement each of

the burst detectors are shown in Table 2.6.

Method Parameter Value

Poisson Surprise Minimum surprise value − log(0.0025) ≈ 6
MaxInterval Maximum beginning ISI 0.2 s

Maximum end ISI 0.3 s
Minimum interburst interval 0.2 s
Minimum burst duration 0.01 s
Minimum spikes in a burst 3

Cumulative Moving α1 1.0 if skew < 1
Average 0.7 if 1 ≤ skew < 4

0.5 if 4 ≤ skew < 9
0.3 if 9 ≤ skew

Maximum mean burst duration 5 s
Maximum mean spikes per burst 50

LogISI Maximum cutoff value 150 ms

Table 2.6: Parameter values used for burst detection on human induced pluripotent
stem cell-derived neuronal networks. The CMA scale parameters, and most of the
MI parameters, with the exception of the maximum beginning ISI were equivalent
to the values in the original implementation show in Table 2.1, while the remaining
values differ. Table reproduced from Cotterill et al. (2016b).
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There were some differences in the absolute level of bursting activity found by each of

the burst detectors in this data set. However, the general trend from most methods

showed a ‘ramping up’ of bursting, in terms of the fraction of spikes in bursts, with

increasing developmental age (Figure 2.12B). The level of bursting activity in these

human network recordings, as measured by the fraction of spikes in bursts, tended

to be significantly lower than that which has been previously observed in recordings

of rodent hippocampal or cortical networks over equivalent developmental timescales

(Charlesworth et al., 2015; Chiappalone et al., 2005; Cotterill et al., 2016a). Figure

2.12B also suggests that the proportion of bursting activity in these networks may

begin to decrease with age after reaching a peak around 14 WAP. This would be

consistent with a previous study using calcium imaging to record the activity of

human pluripotent stem cell-derived neuronal networks, which found that bursting

activity initially increased with developmental age, before decreasing at later stages

of development, when it is replaced by more complex firing patterns (Kirwan et al.,

2015). However, additional recordings at time points > 16 WAP would be required

to confirm this trend in the data presented here.

Unlike in several previous studies of rodent neuronal networks (Charlesworth et al.,

2015; Demas et al., 2003; Cotterill et al., 2016a; Charlesworth et al., 2016), there

was no obvious trend relating burst duration and culture age in the hiPSC-derived

neuronal network recordings, with bursts detected by most methods remaining short

over the entire developmental period examined (Figure 2.12A). Similarly, the degree

of regularity of the bursting activity, measured by the coefficient of variation of

interburst intervals (CV of IBI), did not appear to vary significantly with increasing

developmental age (Figure 2.12C).

To quantify the similarity between the bursts identified by each burst detection

method in these recordings, I converted each spike train into a time series by dividing

the 300 s recordings into 50 ms time bins. A binary vector was then calculated to

represent the bursts detected by each method. This vector takes a value of one if the

spike train was in a bursting state during a time bin, or zero otherwise. I then used

the Hamming distance to quantify the differences between these binary vectors. The

normalised Hamming distance (Hamming, 1950) represents the fraction of points at

which two binary strings differ, which for vectors u and v of length n is defined as

d(u, v) =
n∑
i=1

1− δ(ui, vi)
n

,
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where δ is the Kronecker Delta. The normalised Hamming distance was calculated

between each pair of burst detectors for every spike train in which bursting activity

was detected by all four methods.

The normalised Hamming distance between the majority of methods was gener-

ally low, remaining below 0.05, or 5% at most WAPs. At 12 WAP, however, there

was a peak in Hamming distances, in particular those measuring the difference

between the bursts identified by the MI method and the other methods in this

study. At 12 WAP, the hiPSC-derived neuronal network recordings exhibited higher

mean firing rates and lower variability of ISIs compared to recordings at other

WAPs, with many electrodes recording tonic spiking or bursting activity at a high

frequency (examples in Figure 2.13E, F). As the MI method detects bursts based

on the absolute size of ISIs, this method tended to classify a large amount of ac-

tivity as bursting in these high frequency spike trains. The other burst detectors,

which are based on identifying bursts as periods of elevated firing rate relative to

background spiking activity, generally found a much lower proportion of bursting

activity in these spike trains. Altering the parameter values of the MI method

at this WAP, to reduce the maximum allowed beginning and end ISIs in a burst,

could bring its results more in line with those of the other burst detectors at this age.

Visual inspection of a subset of spike trains at each WAP was also performed

to gather insight on how bursts were detected in these recordings and the differences

between the results from each burst detector (Figure 2.13). In several spike trains,

the CMA method failed to identify numerous periods which visual inspection and

the other burst detectors generally classified as bursting (Figure 2.13B,C). This may

explain the lower fraction of spikes in bursts found by this method, when compared

to the other burst detectors (Figure 2.12B). The logISI method also found low

proportions of spikes in bursts at many WAPs (Figure 2.12B). This may account for

the generally low Hamming distances between the CMA and logISI methods (Figure

2.12D), indicating a high degree of similarity between the bursts identified by these

two methods.

The PS method exhibited a tendency to combine bursts that other methods identified

as multiple separate bursts in these recordings, and extend bursts to incorporate

additional spikes that visual inspection suggests should not be included in bursts

(Figure 2.13B,D). This may account for the significantly longer burst durations

found by this method up to 12 WAP (Figure 2.12A). In these highly variable spike
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trains, it is unlikely that two human investigators would agree on how to visually

annotate bursts. Similarly, no burst detector agreed perfectly with my own manual

identification of bursts in these spike trains. However, based on visual inspection of

a large subset of spike trains, I found that on average the MI method corresponded

most closely to how I would annotate bursts visually.
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cell-derived neurons. A Mean burst duration, B fraction of spikes in bursts, and
C coefficient of variation of interburst intervals (CV of IBI). Each data point in
the box plots is the mean value across all electrodes from one recording. D Median
normalized Hamming distance between each pairwise combination of burst detection
methods at each week after plating. Figure reproduced from Cotterill et al. (2016b).
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bursts detected by each method. Figure reproduced from Cotterill et al. (2016b).
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2.6 Discussion of existing burst detection tech-

niques

Despite the importance of the accurate identification of bursting activity for the

analysis and classification of neuronal network activity in a range of contexts, a single

consistently widely used method for burst detection has yet to be adopted in the field.

By assessing the performance of eight existing burst detection methods at analysing

both synthetic and experimental data, I found that a number of these burst de-

tectors perform poorly at identifying bursts in spike trains with a variety of properties.

In the previous sections, I have shown that a number of burst detection meth-

ods that were developed based on the analysis of recordings from single experimental

conditions do not necessarily generalise to use on a wide range of spike trains. For

example, the RGS method, which was originally developed to analyse recordings of

dopaminergic neurons, could not detect the majority of bursts in spike trains simu-

lated to contain a range of bursting behaviours. This method also performed poorly

at analysing experimental recordings from mouse RGCs, even when its probabilistic

threshold parameter was varied over a range of values. Other studies have also found

issues using the RGS method to analyse the changes in bursting activity in neuronal

networks resulting from treatment with different compounds (Eisenman et al., 2015).

The IRT method also performed poorly at accurately identifying bursts in a range of

simulated and experimental spike trains. Unlike the other burst detectors studied,

this method was not published in a methods paper, but rather was a heuristic method

developed for the analysis of a specific data set of recordings of mouse retinal waves,

which was not spike sorted (Hennig et al., 2011). The lack of adaptability of this

method is thus not particularly surprising.

I have also shown that the complexity of a burst detection algorithm does not

necessarily correlate with its effectiveness. The burst detector with the most com-

plex implementation in this study, the HSMM method, often performed worse than

simpler methods, particularly at analysing spike trains with sparse bursting activity.

Furthermore, the high computational complexity and non-deterministic nature of this

method severely limits its ability to be scaled up for use in high-throughput analysis

of MEAs, which is becoming increasingly prevalent in applications such as large-scale

neurotoxicity testing (Nicolas et al., 2014). These features also suggest that the

HSMM method may perform poorly at analysing recordings from recently developed



78 Chapter 2. Burst analysis

high-density MEAs, which have far greater numbers of electrodes than traditional ar-

rays, and a tendency to record few bursts on single electrodes (Lonardoni et al., 2015).

The performance of other burst detectors were hindered by their underlying as-

sumptions, such as the RS method, which had the tendency to assign roughly the

same proportion of spikes as being within bursts, regardless of how spikes were

distributed in the spike trains. This resulted in a tendency of the RS method to

both overestimate bursting activity in non-bursting or sparsely bursting trains and

underestimate the proportion of bursting in spike trains in which the majority of

spikes occurred within bursts. This makes the RS method unsuitable for analysing

MEA recordings in which there is not a consistent level of bursting activity across

all electrodes on an array, without manual tuning of the method’s parameter values

on each electrode.

The CMA method, which was designed specifically for analysing recordings of

developing neuronal networks, was a promising burst detector throughout much of

this study. The major limitation of this method was its tendency to erroneously

detect a large amount of bursting activity in spike trains containing sparse or no

bursting activity. This was particularly apparent in spike trains with temporally

varying firing rates. Kapucu et al. (2012) suggest post hoc screening for outliers

to address this issue. However, this can lead to underestimation of the level of

bursting activity in some spike trains, as it does not allow for any shorter bursts to

be identified in spike trains in which long erroneous bursts were initially detected by

the CMA method. In Section 2.7, I investigate an adaptation to the CMA method

aimed at overcoming this limitation.

The PS method had reasonable performance across most of the desirable burst

detector properties identified here, as well as at analysing experimental RGC record-

ings at most ages. The main shortcomings I identified in this method was its

propensity to overestimate bursting in non-bursting spike trains with non-stationary

firing rates, as well as its tendency to combine temporally close short bursts into

single longer bursts. Again, in Section 2.7, I examine the effect of an alteration to

this method, which in this case involves applying the PS method to sliding windows

across a spike train.

Based on this analysis, two existing burst detectors showed the most promise for

robust burst analysis in a range of contexts. These were the MI and logISI methods.
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These methods possessed most properties I deemed desirable for a burst detection

method and were generally able to achieve high coherence with visually detected

bursts in experimental MEA recordings when the values of their input parameters

were chosen optimally. These methods, however, still had limitations. The MI

methods requires the choice of five parameters, the optimal values of which can

be challenging to determine, particularly when analysing recordings from a variety

of experimental conditions. The logISI method had a tendency to underestimate

bursting in some spike trains, particularly those with non-standard bursting activity.

Since I have found no ‘perfect’ burst detector, my advice is to choose a burst

detector based on the number of degrees of freedom the user wishes to control.

The MI method consistently outperformed throughout this analysis, and would be

my first choice recommendation when selecting a robust burst detection method.

Although it has a significant number of parameters which must be set by the user,

unlike burst detectors with probabilistic thresholds, these parameters are easy to

interpret biologically and adjust to achieve the desired burst detection results for the

specific situations in which it is utilised. If appropriate parameters cannot be found

for the MI method, a high performing alternative is the logISI method, which can be

implemented without choosing any input parameters. This method is most effective

when there is a clear distinction between the size of within-burst and between-burst

intervals on a spike train. In cases when this distinction is not apparent, the PS and

CMA methods are reasonably effective alternative burst detection methods. Due to

their tendency to overestimate burst durations in some situations, however, post hoc

screening for outliers in terms of burst durations is advisable when using either of

these methods for burst analysis.

The most robust approach to burst detection would be to use a number of burst

detectors to analyse the data of interest, and compare the results of each method

using summary statistics such as burst rate or duration, or measures such as the

Hamming distance. If the burst detectors are largely in agreement, this provides

confidence in the nature of the bursting activity identified in the experimental data.

Any major discrepancies between the results from the methods can also be used to

identify areas where one or more burst detectors may be performing poorly, which

can be further investigated through inspection of the specific spike trains of interest.

For example, periods in which the bursts identified by the MI method deviate sig-

nificantly from those found by other methods may suggest that the MI parameters

used for analysis were suboptimal for these spike trains. Generally, I found that for
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spike trains in which bursts are easy to annotate by visual inspection, the results

from the high performing burst detectors tend to be in close agreement. However, in

spike trains for which two human observers may not be able to agree on how to best

allocate spikes to bursts, it is likely that the burst detectors will also disagree, and

discretion is required in these cases.

By employing this method of applying a number of burst detectors to the anal-

ysis of recordings of hiPSC-derived neuronal networks over a range of plating ages, I

found that bursting arises in a majority of these networks around eight to ten weeks

after differentiation. This is a similar time frame to the findings from some previous

studies of human stem cell-derived neuronal network activity (Heikkilä et al., 2009;

Kirwan et al., 2015). Although some increase in bursting activity with increasing

developmental age was observed in these recordings, the rate of this increase was

far lower than that which has been commonly seen in developing rodent neuronal

networks (Chiappalone et al., 2005; Wagenaar et al., 2006a), including studies I have

been a part of, which are described in Chapter 3.

There are several avenues through which this work could be extended. One area that

was not explored here is the possibility of improving the results of burst detection

by using a pre-processing step (Martens et al., 2014). Furthermore, to ensure a fair

and unbiased assessment of the available burst detectors, in the previous sections,

the study was restricted to evaluating the original implementation of the authors’

method. In the following section, I implement adaptations to some of the methods

in this study in an attempt to enhance their performance.

2.7 Adapted burst detection methods

2.7.1 Adapted CMA algorithm

As discussed in Section 2.6, the CMA method was a promising method throughout

much of the evaluation of burst detectors. The CMA method possessed all of the

desirable properties D1–D4 which relate to computational complexity and algorithmic

assumptions, and performed reasonably well at detecting bursts in simulated spike

trains containing both regular and irregular bursting activity. The main drawback of

this method was its tendency to overestimate bursting in spike trains in which no

bursting activity was present, especially in the case of spike trains with non-stationary
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firing rates (Figure 2.8A, B). This can be attributed to the approach employed by

the CMA algorithm to calculate the value of the maximum allowed ISI in a burst,

maxISI, for use in the burst detection step.

The value of maxISI is chosen based on the distribution of the cumulative moving

average of the histogram of ISIs (see Section 2.4.2 for details), and is unrestricted in

its absolute value. This can lead to large values being chosen for maxISI in cases

when the histogram of ISIs is clustered around high ISI values. Figure 2.14 shows

ISI histograms for two of the simulated spike trains described in Section 2.4.3. In

both of these cases, the value of maxISI found using the CMA algorithm is above

1.6 s. This is far greater than the maximum intra-burst ISI generally allowed by the

other burst detectors. For example, the default value of maxISI in the MI method

is 0.3 s. Bursts detected with large within-burst intervals > 1 s are unlikely to be

biologically plausible.
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Figure 2.14: Histogram of ISIs from example simulated A non-bursting and B
non-bursting non-stationary spike trains. Dark blue line shows the CMA distribution
of the histogram. Vertical dotted line shows the value of maxISI identified by the
CMA algorithm.

The original authors recognise this limitation of their CMA algorithm, and suggest

a post hoc screening procedure for recordings that are outliers in terms of their

bursting activity (Kapucu et al., 2012). This involves identifying any spike trains in

which the average number of spikes per burst is above 50 or average burst duration

is greater than 5 s, and disregarding any bursting activity identified in these spike

trains. This approach is effective at eliminating excessively long bursts identified

by the CMA method. However, it can also underestimate bursting activity in some
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spike trains, as it does not allow for any bursting activity to be detected in the spike

trains identified as outliers. It also increases the computational time of the CMA

method by requiring an additional computation step after the initial burst detection.

To improve the performance of the CMA method at performing robust burst detection

in a range of contexts, I propose an adaptation to the algorithm which restricts the

allowed value of maxISI to a biologically realistic range. This approach is similar to

that used in the logISI algorithm, which restricts the value of maxISI to be below a

fixed value, set at 100 ms in the original implementation by Pasquale et al. (2010)

(see Section 2.4.2).

The adapted CMA algorithm is explicitly outlined below.

Thresholded CMA method

A fixed maximum cutoff value, MCV , is chosen a priori. The CMA of the histogram

of ISIs on a spike train is calculated, and the skewness of this distribution is used to

determine the values of two threshold parameters, α1 and α2, according to the scale

given in Kapucu et al. (2012). The maximum of the CMA distribution, CMAmax, is

found and the value of maxISI is set at the ISI bin at which the CMA is closest in

value to α1 · CMAmax. If maxISI > MCV , burst cores are found using MCV as

the cutoff for the maximum ISI in a burst. The cutoff for burst related spikes is set

as maxISIbrs = maxISI, and any spikes within maxISIbrs of the beginning or end

of the burst cores are added to the burst cores to define the final bursts (see Figure

2.15, top).

If maxISI ≤ MCV , burst cores are found using maxISI as the cutoff for the

maximum within-burst ISI, and maxISIbrs is set at the ISI value at which the CMA

is closest to α2 · CMAmax. Burst-related spikes within this cutoff distance of the

burst cores are added to the bursts detected by this method (see Figure 2.15, bottom).

A range of values between 50 and 300 ms were trialled for MCV . A value of

200 ms was finally chosen, as it was found to provide an adequate trade-off; prevent-

ing gross overestimation of bursting activity in non-bursting spike trains, without

compromising the ability of the method to accurately detect bursting in spike trains

containing primarily bursting activity.
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CASE 1: maxISI > MCV

CASE 2: maxISI ≤ MCV
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Figure 2.15: Example of ISI histograms with intraburst and interburst intervals
found using the thresholded CMA method, in cases when (top) maxISI > MCV
and (bottom) maxISI ≤MCV . In both cases, initial burst cores are found as any
series of spikes separated by ISIs in the ‘core burst intervals’ range and extended to
included any spikes within ‘BRS’ (burst related spikes) of the initial burst cores.
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2.7.2 Adapted Poisson Surprise method

The Poisson Surprise method also exhibited reasonable performance throughout

much of the evaluation of burst detectors presented in Section 2.5. In terms of

desirable features, the worst performance of the PS method was observed when

this method was applied to the analysis of non-stationary spike trains containing

an absence of bursting activity (D6). The PS method also performed poorly at

analysing experimental spike trains from hiPSC-derived neuronal network recordings

with time-varying firing rates (Figure 2.13D), and tended to detect bursts with far

greater durations than those found by other burst detectors (Figure 2.12A).

Based on a discussion with Professor Simon Tavaré from Cancer Research UK,

an idea was proposed to adapt the PS method by applying the algorithm separately

on windows across the spike train, rather than on the spike train as a whole, to

allow for a time-varying firing rate. To do so, I implemented an adaptation of the

PS method which involves first using a change-point detection algorithm to segment

a spike train into K distinct segments, before applying the PS algorithm to each

segment individually.

The multiple change-point detection problem assumes that in a set of ordered random

variables Yt = {Y1, ..., Yn}, there are K − 1 distinct changes in the distribution of Yt

(Braun and Müller, 1998). That is,

Yt ∼ G(θt, φ), 1 ≤ t ≤ n ,

where G is a probability distribution with parameters φ, which is constant, and

θt, which a is piece-wise constant with K − 1 changes, one between each segment

(Cleynen and Lebarbier, 2014). For the Poisson distribution,

G(θt, φ) = Pois(λt).

The optimal segmentation is the partition of Yt into K segments which minimises

the negative log-likelihood of the model.

To find the optimal segmentation, I employed the approach of Cleynen and Lebarbier

(2014) in the R package Segmentor3IsBack (Cleynen et al., 2014). This involves

using a pruned dynamic programming algorithm to find the optimal segmentation

for each value of K from 1 to Kmax by minimising the contrast over the K partitions.

Segmentor3IsBack
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The optimal value of K is then found using a penalised maximum-likelihood estimator

which satisfies an oracle inequality (Cleynen and Lebarbier, 2014).

Details of the adapted PS method are given below.

Segmented PS method

The underlying activity on a spike train is assumed to follow a Poisson process with

a piece-wise constant rate, λt, which undergoes K − 1 abrupt changes. The spike

train is divided into K segments, using the multiple change-point detection approach

of Cleynen et al. (2014), with the value of K chosen using the oracle penalty (see

Figure 2.16 for example).

P(λ1) P(λ2) P(λ3) P(λ4) P(λ5) P(λ6)Pois(λ6)Pois(λ1) Pois(λ2) Pois(λ3) Pois(λ4) Pois(λ5) Pois(λ6)

Figure 2.16: Example segmented spike train.

Within each of the K segments, the PS statistic in any period of length T containing

N spikes is defined as

S = − logPt

where

Pt = exp

(
−λtT

∞∑
n=N

(λtT )n

n!

)
and λt is the average spike rate in the tth spike train segment.

Bursts are then detected in each segment using the surprise maximisation algo-

rithm outlined in Legéndy and Salcman (1985). First, any sequence of at least three

spikes separated by ISIs less than half of the mean ISI in the spike train segment are

found. Spikes are then removed from the beginning and added to the end of these

initial bursts until the spike sequence with the maximum PS statistic is found, with

the restriction that the bursts cannot cross any of the K − 1 change points. This is

repeated until the end of each segment, and any bursts with a PS statistic below a

pre-defined threshold level, which is constant across all segments, are discarded.
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2.7.3 Performance of adapted burst detectors

The performance of the adapted burst detectors compared to the standard implemen-

tations of the PS and CMA methods was assessed by repeating much of the analysis

from Section 2.5.

Results of adapted methods on simulated data

To assess the adapted burst detection methods against the desirable properties in Ta-

ble 2.2, they were each used to analyse the synthetic spike trains described in Section

2.4.3. For the implementation of the segmented PS method, the minimum surprise

value was set equal to that of the original PS method used in this study (-log(0.01)),

and the maximum possible number of segments was set at 1/60th of the duration of

the spike train in seconds i.e. 5 segments in the 300 s simulated spike trains. The

value of MCV in the thresholded CMA method was set at 200 ms and the scale val-

ues for α1 and α2 proposed by Kapucu et al. (2012) and shown in Table 2.1 were used.

The performance of the burst detectors with regards to the desirable properties

D1–D4 did not change significantly with the adaptations presented here. The seg-

mented PS method still makes an assumption about Poisson distributed spikes (D2),

however, this assumption is more flexible than in the original PS method, as it allows

for the Poisson rate to vary across the spike train. Due to the additional segmentation

step, the computational time of the segmented PS method was found to be over

50 times greater than the standard PS method when applied to the analysis of 100

simulated spike trains. The average computational time of this method was still less

than one second per 300 s spike train, however, this vast increase in computational

complexity may be of relevance when analysing larger data sets e.g. from high-density

MEAs. The adaptation of the CMA method did increase the number of parameters

in the CMA method from zero to one, however, this is still amongst the lowest

number of parameters of all of the burst detectors. The adaptation was not found to

increase the computational time of the CMA method.

Figures 2.17 and 2.18 show the performance of the two adapted methods in re-

gards to desirable properties D5–D11. For comparison, the results from the original

PS and CMA methods, as well as the CMA method with burst related spikes (BRS)

included (see Section 2.4.2 for details), are also shown.
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Figure 2.17: Fraction of spikes in bursts found by each burst detector in 100 synthetic
trains with A no bursting (D5), B no bursting and non-stationary firing rate (D6), C
short regular bursts (D7), D bursts with non-stationary burst lengths and durations
(D8). Box plots and dotted line as per Figure 2.8 legend.

There was a noticeable reduction in the proportion of erroneous bursting activ-

ity detected by the segmented PS method, as compared to the standard PS method,

particularly in spike trains with a non-stationary firing rate (Figure 2.17A, B). There

was also a slight reduction in the proportion of correctly identified bursting activity

by the segmented PS method in spike trains containing only bursting activity (Figure

2.17C, D, Figure 2.18A, C). However, this reduction in accuracy was less than

the improvement in accuracy achieved by the adapted PS method when analysing

non-stationary non-bursting spike trains.

Adapting the CMA method greatly improved the performance of this method at

analysing simulated spike trains lacking bursting activity (Figure 2.17A, B). In

particular, introducing a threshold on the value of maxISI reduced the median

proportion of spikes in bursts found in non-bursting non-stationary spike trains

by the CMA method from almost 75%, or over 85% when burst related spikes are

included, to zero (Figure 2.17B).
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Figure 2.18: Results of each burst detector at analysing 100 synthetic spike trains.
A Fraction of spikes in bursts, and B fraction of true number of bursts in spike
trains with regular long bursts (D9); C fraction of spikes in bursts, and D fraction
of true number of bursts in spike trains with high frequency bursting (D10); E
fraction of true positive, and F fraction of false positive spikes in bursts in spike
trains containing both bursting and noise (D11). Values calculated as outlined in the
methods. Box plots and dotted line as per Figure 2.8 legend. B and D are presented
on a log-scale.

There was a small reduction in the ability of the thresholded CMA method to

accurately identify bursting activity in spike trains containing long bursts, compared

to the standard CMA method (Figure 2.18A). However, because this method also

incorporates burst related spikes into the detected bursts, the thresholded CMA

method actually correctly identified a higher proportion of bursting activity in the

simulated spike trains containing non-stationary or high frequency bursts, compared

to the original method (Figure 2.17D, Figure 2.18C). The thresholded CMA method
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also exhibited a small increase in false positive rate when analysing noisy spike trains

compared to the original CMA method, however, this was offset by a greater increase

in the true positive rate (Figure 2.18E, F). The standard CMA method with the

inclusion of burst related spikes slightly outperformed the thresholded method in

some cases (Figure 2.17D, Figure 2.18A), however its very poor performance at

analysing non-bursting spike trains (Figure 2.17A, B) makes it an unsuitable method

for detecting bursts in experimental MEA recordings.

The adaptation of the PS method did not significantly change its ranking compared

to other existing burst detectors in Section 2.5.1 (Table 2.5). However, introducing

the threshold into the CMA method reduces its total rank from 30 to 22, which

places it as the third highest rated burst detection method based on its performance

at analysing synthetic data, only one point behind the logISI method (Table 2.5).

Performance of adapted methods on RGC recordings

The adapted CMA and PS methods were further used to analyse the mouse RGC

recordings described in Section 2.4.4. In the original analysis in Section 2.5.2, the

CMA and PS methods had strong performance at analysing spike trains from P9–P13,

however at P15, these two methods exhibited higher false positive rates than many

of the other burst detectors (Figure 2.10D). The same spike trains were analysed

using the adapted methods, while altering the value of the maximum number of

segments in the segmented PS method and the threshold cutoff value, MCV, in the

thresholded CMA method. Compared to the standard PS method, the segmented

PS method exhibited higher levels of specificity at equivalent levels of sensitivity

when analysing the P15 spike trains (Figure 2.19). However, the performance of this

method was still lower than that of the logISI and MI methods on this data (Figure

2.10D).

Introducing the threshold into the CMA method allows this method to achieve

a range of levels of sensitivity and specificity, compared to the original CMA method

which was represented as a single point in the ROC curves in Figure 2.10. However,

the minimum distance of the ROC curve of the thresholded CMA method from the

point of perfect classification at (0, 1) is only slightly smaller than the distance of

the single sensitivity/specificity value of the standard CMA method, indicating that

the adapted method does not offer a significant improvement in performance in this

case (Figure 2.19).
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Figure 2.19: ROC curves showing the fraction of true positive (sensitivity) and false
positive spikes (1-specificity) identified as being within bursts by each burst detector
for a variety of input parameter values, for recordings of mouse retinal ganglion cells
at P15.

The original PS method identified bursts with far greater durations than the other

burst detectors when used to analyse the full set of spike trains from the mouse RGC

recordings at P15 (Section 2.5.3, Figure 2.11). When the segmented PS method was

used to analyse these P15 spike trains, the median duration of bursts found was

0.62 s. This is much more in line with that of the other burst detectors, compared

to the original PS method, which found bursts with a median duration of 1.90 s.

The adaptation of the CMA method did not significantly alter the properties of the

bursts identified in the RGC recordings, compared to those found by the original

CMA method.
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Performance of adapted methods on hiPSC-derived neuronal network

recordings

Next, the adapted burst detectors were applied to the analysis of the recordings

of hiPSC-derived neuronal networks described in Section 2.4.5. As can be seen in

Figure 2.20, the segmented PS method detected bursts with lower median durations

and percentage of spikes in bursts in these recordings than the original PS method.

This is also evident in the example spike trains shown in Figure 2.21, in which the

segmented PS method can be seen to detect a lower amount of overly long bursts

than the standard PS method. The results from the segmented PS method are more

in line with those of other burst detectors, although the durations of bursts identified

at early developmental ages by the segmented method still remained higher than

those found by the other high performing burst detection methods examined in

Section 2.5.3 (Figure 2.12A).

The adapted CMA method tended to detect lower proportions of spikes in bursts

and shorter burst durations than the standard CMA methods in these recordings at

all ages except 14 WAP, although the difference between the statistics of these bursts

is far lower than those between the PS method and its adaptation. The properties of

the bursts identified by the adapted CMA method are more in line with those found

by the MI and logISI methods on this data, compared to those from the original

CMA method (Section 2.5.3, Figure 2.12). Again, no relationship between CV of

IBI and developmental age was evident in these recordings using the adapted burst

detection methods (Figure 2.20C).

As can be seen in Figure 2.20D, the Hamming distances between the original PS

and CMA methods and their adaptations were generally much lower than those

between the different burst detections examined previously (Section 2.5.3, Figure

2.12D), remaining below 2% over the entire developmental period. The Hamming

distances between the CMA and thresholded CMA method are particularly low,

indicating that there are only small differences in the bursts detected by these two

methods. This is also apparent in the example spike trains, in which the only major

deviation between the bursts detected by the two methods is in the spike train in

Figure 2.21F. In this example spike train, the adapted CMA method detects bursts

with significantly longer durations than the original CMA method. This can be

attributed to the fact that burst related spikes are included in the bursts detected by

the thresholded CMA method, but not in the implementation of the original CMA

method used in this analysis.
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Figure 2.20: Analysis of recordings of networks of human induced pluripotent stem
cell-derived neurons. A Mean burst duration, B fraction of spikes in bursts, and
C coefficient of variation of interburst intervals (CV of IBI). Each data point in
the box plots is the mean value across all electrodes from one recording. D Median
normalized Hamming distance between each pairwise combination of burst detection
methods at each week after plating.
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2.7.4 Discussion of adapted burst detection techniques

In this section, I implemented adaptations to two existing burst detection techniques,

namely the PS and CMA methods and assessed their performance using both syn-

thetic and experimental data. Although the adaptation of the PS method presented

here reduced its tendency to detect overly long bursts, particularly in spike trains

with non-stationary firing rates, it also increased the computational complexity of the

method, and decreased its accuracy at detecting bursts in other types of synthetic

spike trains. The small improvement offered by this adaptation thus does not justify

its inclusion amongst the top methods for burst detection.

The adaptation I developed for the CMA method, however, is conceptually simple

and does not increase the computational time of the method. In fact, by removing

the need for a post-processing step to eliminate outliers, the adaptation presented

here can decrease the computational time required to apply the CMA method. My

adaptation significantly improves the performance of this method at analysing spike

trains with no or sparse bursting activity. Additionally, restricting the allowed values

for maxISI in the CMA algorithm allows for burst related spikes to be incorporated

into the detected bursts without causing significant overestimation of the level of

bursting activity in non-bursting spike trains. This improves the accuracy of the

adapted method at detecting bursts in spike trains containing primarily bursting

activity. The introduction of a threshold into the CMA method also increases its

flexibility by allowing the user to alter MCV , which provides some control over the

sensitivity of the method at detecting bursts. However, as with all burst detectors,

there are some limitations of the adapted CMA method, and this method was seen

to underestimate bursting in some spike trains with non-standard bursting activity.

2.8 Conclusions

In this chapter, I have evaluated a variety of existing and adapted burst detection

methods to assess their performance at performing robust and accurate identifica-

tion of bursting activity in both synthetic spike trains and experimental recordings

containing diverse bursting behaviour. The purpose of this study was to provide im-

plementable advice to researchers for analysing experimental recordings, particularly

those from human neuronal networks, which have been observed to exhibit more

variable bursting activity than previously studied rodent neuronal networks.
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Based on this analysis, I recommend three burst detectors, namely the MaxIn-

terval, logISI and the thresholded CMA methods. These methods were able to detect

bursts accurately in both bursting and non-bursting synthetic spike trains, and had

strong performance at analysing experimental data. The most appropriate method

for a specific analysis situation can be chosen based on the properties of the data

to be analysed and the aims of the researcher. The MI method offers the most

flexibility, with numerous parameters which can be adjusted by the user to identify

bursts with specific properties of interest. The logISI and thresholded CMA methods

provide more objective approaches to burst detection which adapt to the properties

of the spike trains with little intervention by the user. The logISI method may be

preferred when there is a clear separation of within and between burst intervals,

while the thresholded CMA method is a high performing alternative when this is

not the case. In situations where computational time is not a key concern, the most

robust approach to burst detection would be to use all three of these burst detectors

to characterise the bursting activity, and compare the results from each method.

2.8.1 Limitations and future work

One limitation of this analysis of burst detection methods was the limited number

(eight) of burst detectors examined. This was a deliberate choice, as the extensive

number of burst detectors available makes an exhaustive analysis of all methods

impossible. Instead of providing a brief analysis of all burst detection methods, the

scope of the study was restricted in order to provide a thorough assessment of what

I judged as the most promising existing burst detection algorithms, and to offer

implementable recommendations and software to researchers working in this area.

The eight burst detectors in this study were chosen to represent a broad sample of

the major approaches to burst detection, and many of the burst detectors that were

not included in this study take similar approaches. For example, there are many

variations on the use of the ISI histogram or log-adjusted ISI histogram to determine

the value of threshold parameters for burst detection.

The results presented in this chapter were also influenced by how the ‘ground

truth’ bursts were chosen by visual inspection in the experimental RGC recordings

analysed in Sections 2.5.2 and 2.7.3, which is necessarily a subjective choice. However,

the relatively high degree of coherence between the manually annotated bursts and

those identified by a number of bursts detectors, suggests that my definition of bursts

largely agreed with that of other investigators who have previously developed burst

detection techniques.
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Given the observed prevalence of ‘network bursts’, or synchronised bursting ac-

tivity across many electrodes, in developing neuronal networks recorded on MEAs

(see Section 1.5.4), an area of future interest would be to investigate if information

gathered from observing the array-wide activity could be used to improve the de-

tection of bursts on single channels. Martens et al. (2014) showed that the peaks

corresponding to intra and interburst spikes in an ISI histogram were better separated

when pooled ISIs from multiple electrodes of an MEA were used, rather than a

single spike train, with further separation achievable through the use of return map

analysis. Using network-level information to inform the choice of threshold parameter

values in single-electrode burst detection techniques thus has the potential to improve

their performance, compared to just considering the features of individual spike trains.

The use of autonomous methods, either based on single-electrode or array-wide

activity, to set some of the key parameters of the MI method is also an area of

future interest. This would reduce the level of manual intervention required to use

this method and the subjectivity inherently introduced through manual parameter

selection. It would also allow the threshold parameters of this method to be more

easily adjusted for each individual electrode, rather than using fixed array-wide values,

which may be of particular relevance when analysing recordings from high-density

arrays.

Another area for consideration relates to which features of bursts are the most

informative to extract from recordings of neuronal network activity. In other studies

of rodent neuronal networks, I have shown that the temporal structure of bursting

activity, measured by features such as the CV of within-burst or between-burst

ISIs, can be important for distinguishing between different types of network activ-

ity (see Chapter 3). However, in the recordings from human neuronal networks

examined in this chapter, I found no strong relationship between the CV of IBI

and the developmental age of arrays. A greater understanding of which are the

most distinguishing features of bursting activity in human neuronal networks may

inform future approaches to burst detection in these networks. The protocols for

recording from hiPSC-derived neuronal networks are also still in their infancy, and

the refinement of these experimental methods may lead to more stable recordings

with clearer developmental profiles of activity in the future.
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As well as its relevance for analysing the activity of neurons, the detection of

‘bursts’, or events with usually high frequency, is also a more general problem in

time series analysis, with applications in a variety of fields. For example, identifying

bursts of gamma rays can aid in the detection of black holes and other astronomical

phenomena and detection of periods of high trading volume of a stock is of relevance

to regulators looking for insider trading (Zhu and Shasha, 2003). A recent area of

interest in this field is the detection of bursts in streams of information that arrive

continuously over time (He and Parker, 2010).

An influential model of bursting in this field was developed by Kleinberg (2002) to

identify periods of elevated frequency of certain words in an incoming email stream.

This method uses an infinite state automaton, in which each state represents a

certain arrival rate and the cost of a change in state is proportional to the increase

in state number, to produce a time series of burst ‘weights’ or levels of burstiness

by finding the optimal state transition sequence. Versions of this method have been

used for detecting bursts in a variety of contexts, such as finding surges of interest

in certain topics in scientific publications over time (Boyack et al., 2004; Mane and

Börner, 2004) and identifying bursty communities of blogs (Kumar et al., 2003).

Another approach to burst detection in data streams is to detect bursts as pe-

riods in which the frequency of an event in a sliding window exceeds a threshold

value (Zhu and Shasha, 2003). Zhang and Shasha (2006) developed an elastic burst

detection approach based on this idea, which uses specialised data structures called

Shifted Aggregation Trees and a heuristic algorithm to efficiently identify bursts in

all possible window sizes in a data stream.

Ideas from these burst detection techniques developed in other domains may be

useful for informing future approaches to burst detection in a neuroscience context.

Although the spike trains analysed in this chapter were fixed and short in duration,

the use of such real-time burst detection techniques could be relevant for other neuro-

science applications. These include the analysis of neuronal network recordings made

over extended continuous time periods, studies of real time learning in embodied

cultured networks or applications involving bidirectional communication between

biological tissue and computer interfaces (Wagenaar et al., 2005; Bakkum et al.,

2004).
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Postscript

In July 2017 I became aware of Välkki et al. (2017), published on 31st May 2017.

Citing the issues with the CMA method reported in our paper (Cotterill et al.,

2016b), which are discussed in Section 2.6, this article presents an adaptation to the

CMA method, called multi-CMA, to address these issues. As discussed in this section

as a possible future approach to burst detection, the multi-CMA method utilises

network-wide activity to set the threshold for maxISI used for burst detection.

Based on the results in Välkki et al. (2017), the adapted method does appear to

address the issues I raised in this chapter, however, further analysis would be required

to confirm this and assess the performance of this new burst detection method against

the other burst detectors in this study.



Chapter 3

Analysis of spontaneous neuronal

activity on microelectrode arrays

The majority of the material in this chapter has been published in two journal

articles. The study in Section 3.2 has been previously published in the article ‘Quan-

titative differences in developmental profiles of spontaneous activity in cortical and

hippocampal cultures’ (Charlesworth et al., 2015). All analyses presented in this

section are my own work, and the joint first author on this paper, Paul Charlesworth,

was involved solely in the collection of experimental data for this study.

The analysis presented in Section 3.3 was performed in collaboration with Diana

Hall and Timothy Shafer from the US Environmental Protection Agency and ideas

regarding the analysis approach were developed through discussions with these

collaborators. This work has been previously published in ‘Characterization of

early cortical neural network development in multiwell microelectrode array plates’

(Cotterill et al., 2016a). This article contains analysis which was performed by our

collaborators as well as myself. However, any analysis in the article which was not

performed by myself personally has not been included in this thesis.

3.1 Summary

The presence of spontaneous neuronal activity during development has been observed

in numerous parts of the nervous system, and is thought to play an important

role in shaping the structure of neuronal networks (see Section 1.5 for details).

Recordings of the spontaneous activity of in vitro neuronal networks have been

99
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used extensively to study the time course development of neuronal networks in both

control and genetically or chemically manipulated states (Wagenaar et al., 2006a;

Charlesworth et al., 2016; Valdivia et al., 2014). A common method of recording this

activity in vitro is through the use of microelectrode arrays (MEAs), which allow

the spiking activity of large networks of neurons to be recorded simultaneously and

in a non-invasive manner (see Section 1.5.3 for details). Due to their prevalence, a

variety of MEA devices have been developed. These include single-well MEAs, with

electrodes numbers ranging from values in the order of tens to thousands, as well as

multi-well microelectrode arrays (mwMEAs), which consist of multiple independent

wells containing generally a lower number of electrodes per well than their single-well

counterparts (Spira and Hai, 2013; Valdivia et al., 2014). In this chapter, I present

the analysis of two independent experiments involving recordings of spontaneous

neuronal network activity on in vitro MEAs.

The first study uses experimental data collected by Paul Charlesworth, formerly of

the Department of Physiology, Development and Neuroscience. These recordings

are from hippocampal and cortical networks cultured on single-well MEAs, which I

employ to characterise and compare the ontogeny of spontaneous activity in these

two brain regions. I develop a framework for quantitatively characterising the ac-

tivity observed in these recordings at a variety of ages using a number of common

properties of spontaneous neuronal activity. This includes the analysis of bursting

activity, informed by the results from the evaluation of burst detectors in Chapter

2. Using this framework, I show that spontaneous activity in both network types

appeared within a few days of plating and strengthened over early development,

before reaching a plateau around 21 days in vitro. A number of features were shown

to differ significantly between hippocampal and cortical networks. In particular, the

activity of neurons in hippocampal networks was more correlated, exhibited higher

rates of theta-bursting and had lower variability in the size of interburst intervals

compared to cortical networks of equivalent age. I further show that the quantitative

features used in this study are sufficient to differentiate cortical and hippocampal

recordings at each age using common supervised classification methods.

The second study in this chapter employed experimental recordings of neuronal

networks on multi-well MEAs (mwMEAs) generated by Timothy Shafer, Kathleen

Wallace and William Mundy at the US Environmental Protection Agency. The

analysis was conducted in collaboration with Diana Hall and Timothy Shafer. Using

a similar quantitative framework as in the first study in this chapter, I examine the
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development of spontaneous activity in these mwMEA recordings and find that it

resembles the activity patterns of similar cultured networks recorded on single-well

MEAs. I also demonstrate that the recordings can be classified by age with rea-

sonable levels of accuracy using the quantitative features in our study. Further, I

develop a re-sampling approach for determining the optimal experimental protocol

for using mwMEAs to simultaneously study cultured networks under a number of

experimental conditions, which has applications in areas such as investigating the

effects of chemical manipulations on neuronal network activity in a high-throughput

manner.

3.2 Comparison of developmental spontaneous ac-

tivity in cortical and hippocampal cultures

3.2.1 Introduction

As outlined in Section 1.5, spontaneous activity has been associated with a range of

physiological processes in developing neuronal networks, and the study of the nature

of these temporally changing activity patterns has the potential to increase our

understanding of the structural and functional development of the nervous system.

Commonly, MEA recordings of cultured neurons are used to study developmental

spontaneous activity in vitro (see Section 1.5.3). Although many common features

of developmental spontaneous activity patterns in such in vitro systems have been

documented (Wagenaar et al., 2006a; Chiappalone et al., 2006; Rolston et al., 2007),

a systematic understanding of how these properties vary across developmental time

and which features are the most informative for describing the activity patterns

remains lacking. Greater understanding of these aspects of spontaneous activity

could aid in revealing which features of the activity patterns are essential for the

proper development of functional neuronal circuits across the nervous system.

To address these issues, I performed an analysis of the developmental profiles of

spontaneous activity in cultured networks from two well studied areas of the nervous

system, the hippocampus and the cortex. As outlined in Section 1.3.1, the cerebral

cortex is the thin outer layer of the cerebral hemispheres, and consists of a variety

of regions, responsible for such functions as the processing of sensory information,

motor functions, perception and thought. The hippocampus is located underneath

the cerebral cortex, inside the temporal lobe and is primarily associated with memory
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and spatial navigation (Purves et al., 2001).

Although the presence of spontaneous activity during neuronal development has

been previously observed in hippocampal and cortical regions both in vitro and in

vivo (Garaschuk et al., 1998; Leinekugel et al., 2002; Seelke and Blumberg, 2010;

Wagenaar et al., 2006a), a comprehensive quantitative description and comparison

of the developmental profile of activity in these two brain regions has yet to be

performed. In this section, I present the results from a quantitative analysis of MEA

recordings of cultured networks composed of dissociated neurons from embryonic

mouse hippocampus, as well as networks consisting of cortical neurons obtained

using identical experimental protocols. As well as offering insights about the differ-

ences between spontaneous activity patterns in hippocampal and cortical regions

specifically, this work also provides a framework for examining the differences in the

spontaneous activity of cultures under different conditions, for example wild type

versus mutant or control versus chemically treated networks.

3.2.2 Methods

MEA recordings

The neuronal networks used in this analysis were prepared from cultures of dissociated

hippocampal and cortical neurons at embryonic day 17–18, and plated on 60-channel

single well MEAs from MultiChannel Systems. In the four weeks after plating, two

15-minute recordings of each array were made each week. A fixed threshold of -20

µV was used for spike detection, and action potential waveforms were confirmed

using 1ms pre and 2ms-post threshold record samples. Spikes were not sorted to

separate signals produced by individual neurons, and so the spikes from each electrode

represent multi-unit activity. A total of 214 recordings from 32 arrays of cortical

neurons, and 329 recordings from 61 hippocampal networks at various days from 7

to 28 days in vitro (DIV) were produced for use in this analysis. All experimental

procedures were performed by Paul Charlesworth and further experimental details

are available from Charlesworth et al. (2015).
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Data analysis

To quantify the activity in each of the 15-minute MEA recordings, the value of eleven

features were calculated. These features were chosen to capture commonly observed

properties of the spontaneous electrophysiological activity of developing neuronal

networks, such as bursting, correlated network activity and theta bursting. The

majority of features were calculated individually for each electrode and a summary

array-wide value was computed from all of the electrode values on a single MEA.

The eleven features are defined as below:

1. Firing rate - The number of spikes on an electrode divided by the length of

the recording period. The array value was the median of all electrode values.

2. Within burst firing rate - Bursts were detected on each electrode using the

MaxInterval Method (Nex Technologies, 2014), with parameter values shown in

Table 3.1 (see Section 2.4.2 for details). The firing rate within each burst was

calculated, and averaged across all bursts on an electrode. The array value was

calculated as the median of within-burst firing rates on all electrodes, excluding

those electrodes that recorded no bursting activity.

Parameter Value

Maximum beginning ISI 0.1 s
Maximum end ISI 0.25 s
Minimum IBI 0.8 s
Minimum burst duration 0.05 s
Minimum number of spikes in a burst 6

Table 3.1: MaxInterval method burst detection parameters.

3. Burst rate - The number of bursts on an electrode, divided by the length of the

recording period in minutes. The array value was calculated as per feature 2.

4. Burst duration - The electrode value was calculated as the mean duration of

all bursts on an electrode. The array value was calculated as per feature 2.

5. Fraction of spikes in bursts - The electrode value was calculated as the total

number of spikes classified as being within a burst, divided by the total number

of spikes recorded on the electrode. The array value was calculated as per

feature 2.
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6. Coefficient of variation of interburst intervals (CV of IBI) - The electrode value

was the standard deviation of all interburst intervals (IBIs) on an electrode

divided by the mean of all IBIs on the electrode. The array value was calculated

as per feature 2.

7. Network spike rate - Network spikes (Eytan and Marom, 2006) were defined as

any period in which 10 or more electrodes were active within a 3 ms time bin.

The array value was calculated as the number of network spikes detected on

the array divided by the length of the recording period in minutes.

8. Network spike peak - The maximum number of active electrodes during each

network spike was found. The array value was calculated as the median of the

peak values from all network spikes observed on an array.

9. Network spike duration - The duration of a network spike was defined as the

length of time during which the number of active electrodes exceeded the

threshold of 10. The array value was calculated as per feature 8.

10. Mean correlation - The correlation between the activity on each pair of elec-

trodes was calculated using the spike time tiling coefficient (Cutts and Eglen,

2014). This is defined as

STTC =
1

2

(
P1 − T2
1− P1T2

+
P2 − T1
1− P2T1

)
where P1 is the proportion of spikes on electrode 1 that occur within ±∆t of

a spike on electrode 2, and T1 is the fraction of the total recording time that

lies within ±∆t of the spikes on electrode 1. P2 and T2 are defined similarly

for electrode 2. A coincidence window of ∆t = 5 ms was used. Windows of

∆t = 50 ms and ∆t = 0.5 ms were also trialled, with qualitatively similar results.

The array value was calculated as the mean of the correlation values between

each distinct pairwise combination of electrodes on an array.

11. Fraction of electrodes exhibiting theta bursting - For each electrode, the his-

togram of log-adjusted ISIs was calculated and smoothed using a Gaussian

kernel density estimation routine (Venables and Ripley, 2002). An electrode

was classified as theta bursting if a peak was found in the region of 4 to 10 Hz of

this histogram (see Figure 3.1). The array value was calculated as the fraction

of electrodes on the array that were classified as exhibiting theta bursting.
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Figure 3.1: Detection of theta bursting on an electrode. Plot shows the smoothed
log-adjusted ISI histogram from an electrode with peaks marked. Blue box shows
the frequency region representing theta bursting. An electrode was classified as
theta bursting if one of the peaks falls within this region. Figure adapted from
Charlesworth et al. (2015).

Classification of network types

Classification of the MEA recordings by their culture type was performed using two

common supervised learning techniques. For each technique, ten separate binary

classifiers were built, one for each age, to predict the brain region of origin of the

recordings (cortex or hippocampus) using the eleven features detailed above.

The first classification approach involved the use of bagged classification trees

(Breiman, 1996) with 500 bootstrapped training sets. The second approach was

to use Support Vector Machines (SVMs) (Boser et al., 1992) with a radial kernel.

A separate SVM was built to classify the recordings at each age, using parameter

values that were chosen by 10 fold cross-validation on the entire data set. For both

types of classifiers, two-thirds of the recordings were used as training data and the

remaining one-third used to calculate test accuracy. Five hundred repetitions with

random choices of test and training sets were performed, and the mean classification

accuracy across these trials is reported.
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3.2.3 Results

Developmental profile

Activity rate

Spontaneous spiking activity emerged in both hippocampal and cortical cultures

around 7 DIV, and generally increased in frequency as the cultures matured (Figure

3.2). Over early development, the rate of increase in spiking activity was greater in

hippocampal cultures compared to cortical cultures. However, by maturity, there

was no significant difference between the activity levels in the two types of networks

(Figure 3.3A).

DIV 7

H
ip
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ca

m
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s

DIV 14 DIV 21

C
or
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x

Figure 3.2: Examples of MEA recordings of spontaneous activity in one (top)
hippocampal and (bottom) cortical culture at 7, 14 and 21 days in vitro (DIV). In
each plot, each row is the spike train from one electrode. Six electrodes are shown
from each MEA. The scale bar represents 10 s of recording time. Figure reproduced
from Charlesworth et al. (2015).

Bursting

Based on the results from Chapter 2, the MaxInterval method was chosen to detect

periods of bursting in these MEA recordings. Using this method, the rate of bursting

activity in both network types was found to increase over early development before

stabilising around 14–17 DIV (Figure 3.3C). Two properties of bursting activity dif-

fered significantly between the two types of cultured networks. Firstly, over the first

24 DIV, the proportion of spikes in bursts was significantly higher in hippocampal

cultures compared to cortical cultures of an equivalent age (Figure 3.3E). Secondly,

hippocampal networks exhibited more regularly spaced bursting activity than cortical

networks, as indicated by the lower CV of IBI in these networks (Figure 3.3F). Weaker

differences were observed between the two network types for the other features of

bursting examined, namely the burst rate, duration and within burst firing rate,

which were significant only at certain DIVs.
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Correlated network activity

Two types of features were used to measure the degree of correlated network activity

in the cultured networks. Firstly, the presence of network spikes (Eytan and Marom,

2006), which are defined as events in which a number of neurons are simultaneously

active, was examined. Network spike activity is thought to represent the activation

of neuronal assemblies, which are densely connected groups of neurons believed to

be the basic functional unit in the mammalian nervous system (Buzsáki, 2010). In

vivo, neuronal assemblies have been associated with various physiological processes,

including learning and memory encoding and recall (Holtmaat and Caroni, 2016).

In these recordings, network spikes were generally more prevalent in hippocampal

networks compared to cortical cultures of the same age (Figure 3.3G). Hippocampal

cultures also exhibited larger network spikes than cortical networks, indicated by

the value of the network spike peak, which was significantly higher in hippocampal

networks over the entire developmental period (Figure 3.3H). Network spikes also

tended to be longer in hippocampal networks, however, this difference was not

consistent across the entire period studied (Figure 3.3I).

As another measure of correlated network activity, the correlation coefficient between

each distinct pair of electrodes on an array was calculated using the spike time

tiling coefficient (Cutts and Eglen, 2014). Initially, it was investigated if there

was any relationship between the distance separating electrodes and their pairwise

correlation. Previous studies in the retina have observed an exponentially decaying

relationship between correlation values and the distance between neurons (Wong

et al., 1993; Cutts and Eglen, 2014), however no significant distance dependence

between correlation values was found in both the hippocampal and cortical network

recordings (examples in Figure 3.4).

The mean pairwise correlation of electrodes on an array was instead used as a

measure of the overall level of correlation of network activity. Both types of networks

exhibited an increase in their level of correlated activity over early development,

before stabilising around 17 DIV. However, mean correlation in hippocampal cul-

tures was found to be consistently stronger than in cortical networks over the entire

developmental period (Figure 3.3J). Together, the results from the features used

to measure network correlation suggest that hippocampal cultures tend to exhibit

more highly correlated activity and contain larger networks of simultaneously active

neurons compared to cortical cultures of equivalent ages.
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Figure 3.4: Pairwise electrode correlation values from MEA recordings from one A
cortical and B hippocampal culture at 21 DIV. Blue lines show an exponential fit to
the data.

Theta bursting

Theta bursting is a phenomenon involving regular oscillations of a neuronal network

in a frequency range of 4 to 10Hz. Theta bursting has been observed in various

mammalian neuronal networks both in vivo and in vitro (Bocian and Konopacki,

2004; Cappaert et al., 2009; Konopacki et al., 2006) and has been associated with

numerous behaviours, including spatial navigation (Caplan et al., 2003), REM sleep

(Vanderwolf, 1969), locomotor activity (Buzsáki, 2002) and learning (Leondopulos

et al., 2012).

Here, theta bursting was identified by examining the log-adjusted ISI histogram of a

spike train. An electrode was classified as theta bursting if there was a peak in this

histogram in the range of 0.1–0.25 s. The level of theta bursting in the network was

then measured as the fraction of all electrodes exhibiting theta bursting. Using this

definition, a significant level of theta bursting was detected in hippocampal networks

from DIV 11 onwards, however, the level of theta bursting in cortical networks

remained low across the entire developmental period (Figure 3.3K).
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Differentiation of network types

From Figure 3.3, it is evident that there are significant differences between the

activity of hippocampal and cortical cultured networks across a range of features. In

particular, hippocampal networks exhibit more prevalent and more regular bursting

activity, higher levels of correlated network activity and an increased presence of

theta bursting compared to cortical networks of equivalent developmental age. To

assess which of the features best discriminate between hippocampal and cortical

networks, and the degree to which the recordings could be correctly classified by

their network types, I employed two common classification techniques, outlined in

Section 3.2.2.

Initially, bagged classification trees were used to assign the recordings at each

developmental age to either the hippocampal or cortical network type. Using this

approach, I found that the recordings could be assigned to their correct network type

with above 75% accuracy at each DIV. I then investigated which features were the

most dominant in driving the classification using the measure of the mean decrease

in Gini Index. The Gini Index is defined as

G =
C∑
c=1

pmc(1− pmc) ,

where pmc is the fraction of training observations in the mth node that are from class

c (James et al. (2014), p. 312). The mean decrease in Gini index associated with

a feature is thus a measure of the degree of the contribution of the feature to the

homogeneity of the nodes in the tree-based classification.

At each age, different features were found to dominate the classification, however

some features were consistently important across several DIVs. By averaging the rel-

ative importance of each feature over the classifiers from the ten separate ages, three

features were found to be particularly dominant (Figure 3.5). The most informative

feature as identified by this method was the CV of IBI. As seen in Figure 3.3, CV

of IBI values were consistently lower in hippocampal cultures across development,

indicating that these networks tend to exhibit more regularly spaced bursts than

cortical networks. The degree of theta bursting in a network was also an important

feature. From 14 DIV, the majority of electrodes in hippocampal cultures recorded

the presence of theta bursting, whereas generally less than half of the electrodes

in cortical cultures detected theta bursting across the entire developmental period.
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Mean correlation, which was significantly higher in hippocampal compared to cortical

networks at all DIVs, was the third most informative feature for classification.
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Figure 3.5: Importance of each feature, calculated using the mean decrease in Gini
Index, relative to the top score.

This bagged classification tree approach was used because it is easily interpretable

and allowed for the most informative features in the classification to be examined.

Although bagged classification trees achieved reasonable levels of accuracy, I found

that using SVMs to perform the binary classification generally outperformed the

tree-based classification, achieving 81–96% classification accuracy over the ten ages

studied (Table 3.2, bottom row). The lowest classification accuracies were apparent

for the more mature networks in the study. At these ages, the values of many of

the features plateau, after initially growing over development, and there are often

less significant differences between the values from hippocampal and cortical networks.

The change in classification performance with reduced numbers of features was

then examined by removing each feature successively from the feature set in order of

their increasing importance and re-examining the accuracy of the SVM classifiers

built using this reduced feature set (Table 3.2, columns 3–12). Classification accu-

racy generally remained high as the size of the feature set was gradually reduced.

However, use of multiple features was essential to achieve high classification accuracy

at most ages, with four features the minimum number required to achieve above 70%

classification accuracy across all DIVs.
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Classification accuracy at given DIV

Feature Impt. 7 10 11 14 17 18 21 24 25 28

CV of IBI 1.00 65 87 94 89 82 75 64 68 71 67
Theta bursting 0.84 64 86 95 84 88 88 85 85 75 67
Mean correlation 0.50 67 90 94 91 85 93 88 87 75 78
Burst duration 0.33 73 88 96 92 91 89 87 81 73 79
Burst rate 0.32 77 86 98 91 93 96 89 93 77 82
% spikes in bursts 0.25 80 87 93 93 91 95 89 89 78 82
Firing rate 0.21 84 85 95 94 90 94 91 89 77 81
Network spike peak 0.19 82 86 96 94 91 96 91 90 77 82
Network spike duration 0.19 81 90 97 94 91 95 91 82 75 81
Within burst firing rate 0.16 84 87 97 92 91 96 93 88 80 79
Network spike rate 0.11 85 89 96 92 91 96 93 89 81 81

Table 3.2: Classification performance using a reduced number of features. Features
are listed according to their decreasing importance, as judged by the mean decrease
in Gini index (shown in Figure 3.5), shown relative to the top feature (Impt., column
2). The value of the classification accuracy in row n = 1, ..., 11 is the mean percentage
of correctly classified recordings using the top n features.

3.2.4 Discussion

In this section, I have described the development of a quantitative framework for

analysing spontaneous activity in recordings of neuronal cultures on MEAs, and

the use of this framework to analyse and compare the changes in activity patterns

observed in hippocampal and cortical networks over the first 28 days of development.

Using this framework, I identified quantitative differences in the spontaneous activity

patterns of these two network types. Specifically, activity in hippocampal networks

was shown to be more strongly correlated, with more regular bursting behaviour and

a higher prevalence of theta bursting compared to cortical networks at corresponding

stages of development.

I also found that the eleven quantitative features employed in this study contained

sufficient information to discriminate between cortical and hippocampal networks

of equivalent ages with reasonable levels of reliability. In particular, three features

were found to dominate the classification, namely the CV of IBI, proportion of theta

bursting and mean correlation, which were shown to differ significantly between the

two network types at many DIVs.
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The choice of simple quantitative features to describe the spontaneous activity

in these cultures was deliberate, as it allowed me to examine whether these features

were sufficient to differentiate between hippocampal and cortical network activity.

The reasonably high classification accuracy achieved using this feature set suggests

that there are significant differences between the two network types that can be

captured using these simple features. More complex features may also exhibit

significant differences between the network types. These could include measures

of the functional connectivity of the network in different frequency bands, or the

spatiotemporal features of periods of repetitive bursting (Ito et al., 2014; Wagenaar

et al., 2006b). However, introducing unnecessary complexity into the feature set may

lead to greater variance and increased computational time, the later of which is of

particular concern in high-throughput contexts, or when analysing recordings from

high-density MEAs.

One unknown factor in this study is the degree to which the in vitro activity

in these recordings reflects in vivo neuronal activity in cortical and hippocampal

brain regions. It may be the case that use of a different experimental protocol, such

as brain slices rather than cultures of dissociated neurons, may generate recordings

which more closely mimic in vivo spontaneous activity (Mao et al., 2001). However,

some recent studies have suggested that spontaneous activity in cultured networks

shows greater similarity to in vivo network activity compared to that from acute

brain slices (Okamoto et al., 2014). The results from this study are not used to infer

any differences between activity in hippocampal and cortical regions in vivo. Instead,

the focus here is on providing a framework for analysing cultured neuronal network

activity, which can also be applied to the study of in vitro networks under a range of

experimental conditions.
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3.3 Analysis of developmental spontaneous activ-

ity in cortical networks on multi-well MEAs

The work in this section was performed in collaboration with Diana Hall and Timothy

Shafer from the US Environmental Protection Agency (EPA). However, all analysis,

figures and text presented here are my own work.

3.3.1 Introduction

As evidenced in Section 3.2, MEAs provide a useful tool for recording and studying

the simultaneous electrophysiological activity of networks of cultured neurons. Al-

though single-well MEAs have been used extensively for the analysis of spontaneous

and evoked neuronal network activity in vitro (Chiappalone et al., 2008; Van Pelt

et al., 2005; MacLaren and Charlesworth, 2011), they offer limited throughput,

making them inadequate for applications such as large-scale assessment of the effect

of pharmacological or genetic manipulations on neuronal network activity.

Recently, multi-well MEAs (mwMEAs) have been developed. These consist of

several (6–96) independent wells, with each well generally containing a lower number

(3–64) of electrodes compared to single-well MEAs. The cultures on each well behave

independently, but can be recorded from simultaneously, allowing for a number

of replicates or different experimental conditions to be studied concurrently. The

increased throughput provided by these mwMEAs has expanded their use in applica-

tions such as large scale toxicity screening (Nicolas et al., 2014; Valdivia et al., 2014),

and for studying the impact of various disease states on neuronal network activity

(Woodard et al., 2014; Wainger et al., 2014). As well as improving throughput, the

use of mwMEAs also has the potential to decrease the variability observed in MEA

recordings by increasing the number of recordings that can be made from a single

culture (Johnstone et al., 2010).

An area of particular concern to the EPA is the assessment of the effect of po-

tentially neurotoxic compounds on early neuronal network development, given that

such chemicals have been implicated in several neurodevelopmental disorders (Grand-

jean and Landrigan, 2014). mwMEAs have the potential to facilitate high-throughput

screening of large numbers of compounds and their impact on developmental network
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activity. However, before mwMEAs can be employed for such purposes, the ontogeny

of cultured network activity on such arrays and the ability of the functional features

of this activity to be reliably recorded by the lower number of electrodes present

in mwMEAs must be examined. In this study, analysis of recordings of rat cortical

neuronal networks cultured on mwMEAs were used to address these questions, as

well as to examine the optimal experimental protocol for using mwMEAs to study

multiple experimental conditions simultaneously.

3.3.2 Methods

MEA recordings

The data set used in this study consisted of recordings of mixed primary cortical

cultures from newborn rat cortex. The neurons were cultured and recorded on 48-well

MEA plates with 16 electrodes per well. These cultures contained both excitatory

and inhibitory neurons and glia. Recordings of at least 15 minutes were taken from

each plate on DIV 5, 7, 9 and 12 and spikes were detected using a threshold of 8 times

the root mean square of noise on each electrode. All experimental procedures were

performed by Kathleen Wallace and William R. Mundy, and further experimental

details are available from Cotterill et al. (2016a).

Data Analysis

Sixteen MEA plates produced from 15 primary cortical cultures were recorded from

at DIV 5, 7, 9 and 12. A recording from one of the plates at DIV 12 was missing from

the data set, and one recording at DIV 7 was excluded from the analysis, because its

mean firing rate (1.2 Hz) was above 2 SD higher than the mean firing rate of other

DIV 7 arrays (mean = 0.6 Hz, SD = 0.3 Hz). This resulted in 62 array recordings,

composed of 2976 individual well recordings, being included in the analysis. Because

many of these arrays were used at later DIVs for other experimental procedures,

short recording times of 15–30 min were used to minimise the impact of repeated

removal of cells from the incubator during development. As there was some variation

in the length of each recording, to ensure consistency, only the last 15 minutes of

each recording was analysed.
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Twelve features were used to quantify the activity patterns in each well record-

ing. Ten of the features were equivalent to Features 1-10 from Section 3.2.2, however,

as each well on these mwMEAs represent independent networks, the feature values

were calculated for each well separately, rather than an array-wide value being found.

The feature relating to the presence of theta bursting (Feature 11 in Section 3.2.2)

was excluded from this study, as the proportion of theta bursting remains low in

cortical networks over development (Section 3.2.3). A low level of theta bursting was

again apparent in this cortical data set. Based on discussions with our collaborators

at the EPA, two additional features were included in the analysis of this data set.

These were:

11. Fraction of bursting electrodes - An electrode was classified as bursting if the

burst rate over the recording period equalled or exceeded one burst per minute.

The well value was calculated as the number of bursting electrodes as a fraction

of the total number of active electrodes in the well.

12. CV of within burst ISIs - The electrode value was calculated as the ratio of

the standard deviation to the mean of all within burst ISIs on the electrode.

The well value was the median value from all electrodes in a well, excluding

those that recorded no bursting activity.

Again, the MaxInterval method was utilised to detect bursts in these recordings,

using equivalent parameters to those in Section 3.2.2 (Table 3.1). Due to the smaller

number of electrodes present in each well of the mwMEAs, for these recordings

network spikes were defined as any period in which five or more electrodes were

active within a 3 ms time bin.

Classification

A similar approach to Section 3.2.2 was used to classify the well recordings using

the twelve quantitative features in this study. As all of the cultures were composed

of the same type of neurons, the recordings were classified by their developmental

age rather than their region of origin. First, bagged classification trees were built

and interrogated to investigate the importance of each of the twelve features for

classification.
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Next, SVMs were used to examine the classification accuracy using reduced subsets

of features. Since this classification problem involved classifying each well recording

as one of four ages (5, 7, 9 or 12 DIV), a ‘one-against-one’ approach was employed.

To implement this, six SVMs, one for each pairwise combination of ages, were built,

each of which performed a binary classification of each recording into one of two

ages. The class to which a recording was most frequently assigned across these six

binary classifications was taken as its correct class.

Radial kernels were used for the SVMs because it was found that they had su-

perior performance at classifying this data set compared to linear or polynomial

kernels. The optimal parameter values for the radial kernel
(
γ = 1

10
, C = 10

)
were

found using a grid search across a range of parameter values and 10-fold cross

validation on the entire data set. For both the bagged classification tree and SVM

approaches, two thirds of the well recordings were used as training data, and the

remainder as a test set to assess the accuracy of the classification. The average

accuracy across 100 repetitions with random choices of training and test sets is

presented.

Due to the small number of electrodes in each well, bursting and network spike

activity was absent in a number of well recordings, particularly at early stages of

development. For any electrodes that recorded no bursting activity, the within burst

firing rate and burst duration were set to zero. Similarly, for all wells that recorded

no network spike activity, zero values were used for the features of network spike

peak and duration. Wells for which the other features, CV of IBI, CV of within

burst ISI or mean correlation, had null values were excluded from the data set used

for classification. After these adjustments, the data set employed for classification

consisted of 2606 well recordings, which represents 87.6% of the original number of

recordings.

3.3.3 Results

Developmental profile

Spontaneous spiking activity was observed in the majority of recordings from 5 DIV.

As development progressed, the overall spike rate and degree of correlation of activity

across the networks tended to increase in most well recordings (example in Figure

3.6).
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DIV 5

Active electrodes  4         Firing rate  0.06 Hz

DIV 7

Active electrodes  14         Firing rate  0.49 Hz

DIV 9

Active electrodes   16         Firing rate  0.66 Hz

DIV 12

Active electrodes   16         Firing rate  0.74 Hz

Figure 3.6: Raster plots of 5 min of activity recorded from the same well at each DIV.
Each row represents the activity recorded one electrode. The scale bar represents
60 s.

Similar to the activity observed in single well MEA recordings in Section 3.2.3, the

average firing rate in these cortical cultures increased monotonically over development

(Figure 3.7A). The prevalence of bursting, as measured by the burst rate, fraction of

bursting electrodes and proportion of spikes in bursts, also increased with increasing

developmental age (Figure 3.7B, D, F). The firing rate within bursts also increased

over development, while burst duration did not exhibit strong developmentally re-

lated changes (Figure 3.7C, E). This is similar to the relationships observed between

culture age and bursting properties over early developmental time periods in my

previous analysis of cortical cultures in Section 3.2.3. The regularity of within and

between burst intervals both decreased over time, as indicated by the increasing CV

of within burst ISIs and IBIs (Figure 3.7G, H).

Similar to the cortical cultures in Section 3.2.3, both the rate of network spikes and

mean pairwise correlation between electrodes exhibited strong growth over devel-

opment (Figure 3.7I, L). The duration and peak number of electrodes involved in

network spikes also increased over very early development, but tended to plateau by

7 DIV (Figure 3.7J, K).
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Figure 3.7: Feature values of cortical network recordings over development. A Mean
firing rate, B burst rate, C burst duration, D fraction of bursting electrodes, E
within burst firing rate, F percentage of spikes in bursts, G CV of IBI, H CV of
within burst ISI, I network spike rate, J network spike duration, K network spike
peak, and L mean pairwise correlation. Box plots show the median and interquartile
range for the n = 16 plates at each DIV. Stars show significant differences between
median values at consecutive ages (5 vs 7, 7 vs 9, 9 vs 12) at p< 0.05. Significance
calculated using a Mann-Whitney test, with correction for multiple comparisons
using the Benjamini & Hochberg procedure. Figure based on figure from Cotterill
et al. (2016a).
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Classification by developmental age

The classification approach outlined in Section 3.3.2 was used to assess the extent

to which the twelve features in this study could differentiate between recordings of

different network types. Since this data set contained only control recordings from

cortical networks, developmental age was used as a proxy for network type. Two

classification approaches, bagged classification trees and SVMs, were used to examine

the accuracy with which the recordings from each well could be classified by their

age using the twelve features from Section 3.3.2.

The bagged classification tree approach was able to differentiate between recordings

of the four developmental ages with approximately 72% accuracy, which greatly

exceeds the 25% classification accuracy that could be expected by random chance.

Using the measure of the mean decrease in Gini index, the two features related to

the regularity of bursting structure, namely the CV of within burst ISIs and CV of

IBI, were found to be the most informative for classifying the cultures according to

their developmental age (Table 3.3, column 2). The values of these two features were

shown to grow monotonically over development in the recordings (Figure 3.7G, H).

A slightly higher classification accuracy of ∼ 73% was achieved using SVMs and

all twelve of the features for classification. Using the ranking of feature importance

obtained from the bagged classification trees, the variation in the classification

accuracy of SVMs built using only a subset of the twelve features was examined.

The classification accuracy generally gradually declined as the number of features

included in the feature set was reduced (Table 3.3, column 3). Using just one feature,

namely the CV of within burst ISI, well recordings could be differentiated by their

developmental age with almost 50% accuracy, while four features was the minimum

number required to achieve a classification accuracy of at least 65%.

Next, the accuracy of SVMs at performing a binary classification of the well recordings

from each pair of ages was examined. This was achieved by building six individual

SVM classifiers, one for each pairwise combination of ages (5 vs 7, 5 vs 9, etc.). Table

3.4 shows the average classification accuracy attained for each pair of ages using all

twelve features, as well as subsets of the feature set.
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Feature removed Importance Accuracy (%)

CV of within burst ISI 1.00 49.2
CV of IBI 0.70 58.3
Network spike rate 0.50 62.0
Burst rate 0.49 65.0
Burst duration 0.44 66.0
% Spikes in bursts 0.39 68.3
Within burst firing rate 0.36 69.5
Firing rate 0.35 71.4
Correlation 0.31 72.7
Bursting electrodes 0.22 73.0
Network spike duration 0.18 73.5
Network spike peak 0.09 73.4

Table 3.3: Classifier performance at predicting age of arrays from the four ages
used in the study. Features are listed in decreasing order of importance (score in
column 2, normalised to the top score), and the value in each row n = 1, . . . , 12 is
the mean percentage of correctly classified recordings using the top n features. Table
reproduced from Cotterill et al. (2016a).

The classification accuracy was the highest for pairs of recordings with the greatest

difference in their ages. For example, the classifier could differentiate between DIV 5

and DIV 12 recordings with over 96% accuracy using all twelve features. Even when

only one feature, CV of within burst ISI, was used in the classification, these wells

could be separated by age with almost 92% accuracy.

The classification of arrays with small differences in age, particularly those at the

later end of the developmental period studied, had the lowest accuracy. The accuracy

of the SVM classifier at distinguishing between DIV 9 and DIV 12 well recordings

was approximately 82% using all twelve features, and decreased to just above chance

when only one feature was used for classification.
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Feature Classification accuracy %

5 vs 7 5 vs 9 5 vs 12 7 vs 9 7 vs 12 9 vs 12

CV of within burst ISI 75.0 87.5 91.8 69.9 78.1 57.4
CV of IBI 77.4 89.5 93.6 76.8 85.5 64.7
Network spike rate 79.3 90.3 95.5 79.6 88.0 68.7
Burst rate 79.3 90.3 95.3 81.0 88.4 72.8
Burst duration 79.7 90.8 95.3 81.0 88.6 74.0
% Spikes in bursts 81.6 91.3 95.6 81.5 90.4 76.4
Correlation 82.2 92.1 95.6 82.3 90.9 77.1
Firing rate 82.3 91.7 95.7 82.3 90.9 80.2
Within burst firing rate 84.2 92.7 96.2 82.4 91.3 81.2
Bursting electrodes 83.6 92.5 96.2 82.6 91.8 81.5
Network spike duration 83.7 92.9 96.8 82.9 92.8 82.0
Network spike peak 82.2 92.5 96.8 82.6 93.0 82.1

Table 3.4: Classifier performance at predicting the age of arrays for each pairwise
combination of ages. Features are listed in decreasing order of importance, and the
value in each row n = 1, . . . , 12 is the mean percentage of correct classifications using
the top n features, as described in Table 3.3. Table reproduced from Cotterill et al.
(2016a).

Classification with reduced numbers of wells

In the recordings analysed in this study, all 48 wells on each array were used as

replicates for the control experimental condition. However, mwMEAs can also be

employed for high throughput screening by applying different experimental condi-

tions to the individual wells across the array. When using this method, the optimal

approach for assigning different experimental conditions to the wells on an array

must be considered, taking into consideration the trade-off between the number

of experimental conditions that can be tested simultaneously, and the inevitable

reduction in power that stems from using a reduced number of replicates of each

condition.

To examine the robustness of the classification to variations in replicate number, I

simulated an experiment in which a only a fraction of wells on each plate are used

for each condition by repeating the SVM classification from section 3.3.3 using only

the data from n < 48 randomly selected wells from each array. This was repeated for

a range of values of n, and the mean classification accuracy across 100 repetitions

with random choices of wells is shown in Figure 3.8.
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Figure 3.8: Accuracy of classification of wells by their developmental age, using
n ≤ 48 wells per plate. Points show mean classification accuracy and vertical bars
show the variability across 100 trials with random choices of wells. Dotted red line
shows the baseline accuracy expected by chance.

The classification accuracy remained relatively stable as the number of wells used in

the analysis was reduced to a third of the original value (16 wells, ∼ 70% accuracy).

When data from eight wells per plate were included in the classification, the mean

accuracy remained above 65%, albeit with higher variance. This suggests that for

the particular problem of classifying cultures according to their four ages in this

data set, 1
6

to 1
3

of each mwMEA could be used for each separate condition without

a large reduction in the reliability of the results.

Variability across cultures

By allowing for increased numbers of recordings to be made from a single culture,

the use of mwMEAs also has the potential to reduce the variability observed across

multiple replicate MEA recordings (Johnstone et al., 2010). To assess the degree

to which this approach could reduce variability, the major sources of variability

in cultured mwMEA recordings was next investigated. In particular, I examined

whether there was a significant effect of the culture-of-origin of each network on their

observed activity patterns.

In the data set examined in the previous sections, 15 of the 16 arrays were produced

from different cultures. A separate data set was thus employed for this analysis,

which consisted of recordings from 21 mwMEAs produced from 7 cultures. Each
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culture was used to produce three of the arrays, and recordings were made from each

array at DIV 5, 7, 9 and 12 DIV. Two recordings were missing from the data set, one

from culture four at DIV 5 and another from culture seven at DIV 12. Hence only

two recordings from arrays produced from these cultures were available on these days.

The mwMEAs in this data set consisted of both control and dosed wells, however,

only the six control wells from each plate were used in this analysis.

The inter- and intra-culture variability of the features in Section 3.3.2 were ex-

amined by comparing the values of these features between the three plates produced

from the same cultures, as well as between the groups of plates produced from each

of the seven cultures (see Figure 3.9). Figure 3.10 shows the inter and intra-culture

variability of mean firing rate across the recordings at each DIV. The points show the

mean firing rate from each of the six control wells on each plate. A plate value was

then calculated as the median of these values from all of the wells on a plate. The

box plots in Figure 3.10 show the median and interquartile range (IQR) of the plate

values from each culture (each culture consisting of 2–3 plate recordings, depending

on recording age). It can be seen that the variability of firing rate values between

different cultures is generally far greater than between networks produced from the

same culture.

C1

P1 P2 P3

C2

P4 P5 P6

C3

P7 P8 P9

DIV 5

DIV 7

Figure 3.9: Schematic of the relationship between cultures and plates used for analysis
of inter- and intra-culture variability. Three plates (P) are produced from each culture
(C) and recorded from at each DIV. Intra-culture variability was measured between
the plates encircled in the same ring (represented by the box plots in Figures 3.10,
3.11). Inter-culture variability was measured between the groups of ringed plates
(represented by the horizontal lines in Figures 3.10, 3.11). This was repeated at
each DIV. Only three of the seven cultures used in this analysis are shown in this
schematic.
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Figure 3.10: Firing rate per well at A 5 DIV, B 7 DIV, C 9 DIV and D 12 DIV.
Dots show the value of the firing rate on the control wells from each plate. Box plots
show the range of median plate values per culture. Horizontal lines show the median
and IQR of the median values from all cultures at each DIV.

In this case, culture four appeared to produce the most active networks. At DIV

7–12, recordings from all of the wells from plates produced from culture four (plates

10–12) exhibit higher mean firing rates than almost any well produced from cultures

one, two or seven (plates 1–6, 19–21) (Figure 3.10). At DIVs above 5, the IQR across

the cultures (dotted lines in Figure 3.10) is greater than the IQR of values from any

individual culture.

A similar relationship between inter- and intra-cluster variability was observed

for a number of other features. The variability of the network spike rate shown in

Figure 3.11 suggests that in this data set, correlated network activity develops at

earlier ages in networks produced from certain cultures compared to others. At 5

DIV, only plates produced from three cultures (cultures 4–6, consisting of plates

11–18) exhibited network spiking activity. Network spikes were observed on every

plate produced from these three cultures, and not on any plates produced from other

cultures. By DIV 7, network spikes are present on all plates, however, network spikes

generally remain more prevalent on plates from cultures 4–6 compared to the other

cultures over the entire developmental period.
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Figure 3.11: Network spike rate per well at A 5 DIV, B 7 DIV, C 9 DIV and D 12
DIV. Formatted as per Figure 3.10.

3.3.4 Discussion

In this section, I have presented a quantitative analysis of the ontogeny of sponta-

neous activity patterns in neuronal networks cultured on 48-well mwMEAs, which

showed a rapid increase in overall spiking, bursting and synchronous activity in

these networks over the first 12 DIV. The developmental profile of this activity is

qualitatively similar to activity observed in single-well MEAs, both from our own

experimental studies (Charlesworth et al. (2015), Section 3.2.3) and those of others

(Kamioka et al., 1996; Chiappalone et al., 2006; Robinette et al., 2011; Van Pelt

et al., 2005). These studies describe a progression of spontaneous activity from

random infrequent spiking to more temporally structured and correlated activity,

characterised by bursts of synchronised network activity, over the first 4 weeks in vitro.

The emergence of spiking activity by DIV 5 in the recordings studied here is con-

sistent with several previous studies of rat cortical cultures, which have detected

spiking activity beginning from 3–6 DIV (Wagenaar et al., 2006a; Kamioka et al.,

1996). At DIV 5, a low level of synchronous network activity was observed in the

recordings, as evidenced by the very low rate of network spikes and low mean pairwise

correlation between electrodes. This can be physiologically attributed to the relative
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lack of connectivity between neurons at DIV 5 in this culture model, for which

synaptogenesis has been shown to begin after approximately 6 DIV and continue

to around DIV 12 (Harrill et al., 2011). An increase in the values of the features

relating to network connectivity was observed from DIV 7, reflecting this change in

the underlying morphology of the network.

Despite exhibiting qualitatively similar developmental trends, spontaneous activity

developed more rapidly in these network recordings than that observed in some previ-

ous studies of rat cortical neurons recorded on MEAs (Hogberg et al., 2011; Bakkum

et al., 2008; Chiappalone et al., 2006). This can be attributed to several factors,

including the later age of cells when initially cultured (postnatal day 0 compared

to embryonic day 18) and the higher plating density used in this study compared

to others (150 000 vs 50 000 cells/well), which has been shown to have an effect on

the speed of maturation of cultured networks (Wagenaar et al., 2006a; Chiappalone

et al., 2006; Valdivia et al., 2014; Biffi et al., 2013). This earlier development of

spontaneous activity in the cultured networks may in fact be beneficial in some

applications such as chemical screening, offering increased throughput and reduced

assay times (Biffi et al., 2013).

As well as providing a characterisation of the ontogeny of spontaneous activity

patterns in cortical networks recorded on mwMEAs, this study also has implications

for applications such as drug development or neurotoxicity screening of compounds

using MEAs. In the past, researchers have commonly used only one feature, mean

firing rate, to describe the effect of different compounds on neuronal network activity

(Nicolas et al., 2014; Johnstone et al., 2010). I have shown that the accuracy of the

classification of the recordings in this study by developmental age was improved

from ∼ 49% using just one feature to 65% when four features were used, or above

70% when a feature set of eight or more features was used. This suggests that using

an increased number of features may allow chemical-induced effects on neuronal

network activity to be detected with greater sensitivity, and facilitate compound

‘fingerprinting’ approaches (Mack et al., 2014).

I have also shown that network type can be reliably determined using data from a

fraction of wells from each mwMEA, suggesting that a single array can be used to

record from networks under multiple experimental conditions. In this case, reducing

the size of the data set to between 1
6

and 1
3

of the number of wells from each array did

not greatly decrease the average reliability with which networks could be classified
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by age using SVMs, however there was some increase in the variability of results. In

other experimental studies, the optimal number of conditions per mwMEA will vary

depending on the the gross level of difference between the activity patterns in each

of the network types being studied. However, the approach developed in Section

3.3.3 can be applied to any data set to determine the appropriate number of wells

per condition that should be employed by experimentalists to ensure the reliability

of results. As far as I am aware, this study is the first to address the issue of how

to most appropriately use the wells on a mwMEA for a variety of experimental

conditions.

Further, by analysing an additional mwMEA data set, I have shown that culture-to-

culture variability in network activity tends to be greater than the variability between

plates produced from the same culture. This suggests that when using mwMEAs

to record from networks under different experimental conditions, maximising the

number of wells produced from the same culture may be advantageous compared to

using replicates from different cultures.

In summary, as part of this collaborative study, I have shown that the ontogeny

of spontaneous activity in neuronal networks cultured on mwMEAs is qualitatively

equivalent to network activity in single-well MEAs. Using a number of quantitative

features, this activity can be characterised, and different network states reliably

differentiated using either data from all or only a fraction of wells from each ar-

ray. Together, these results suggest that mwMEAs are a suitable tool for studying

the effects of chemical or genetic manipulations on neuronal network activity in a

high-throughput manner.

3.4 Conclusions

Recordings of the electrophysiological activity of neurons on MEAs have been used

extensively to study network activity in a variety of contexts. In this chapter, I

have described the development of a quantitative framework for analysing MEA

recordings. By applying it to the analysis of two separate data sets, I have shown

that the simple features in this framework are sufficient to characterise the network

activity recorded on both single-well and multi-well MEAs, as well as to classify

recordings according to their network types. In both studies, features related to

the regularity of interburst or interspike intervals were shown to be important in
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differentiating between network types, suggesting that these features of spontaneous

activity patterns may play an important role in neuronal network development.

Using the framework developed in this chapter, I described the ontogeny of sponta-

neous activity in both cortical and hippocampal networks in vitro and showed that

the activity patterns in these networks can be reliably differentiated using a small

number of quantitative features. I also demonstrated the suitability of multi-well

MEAs for the high-throughput study of the activity of networks under multiple

experimental conditions, and proposed an approach for determining the most ap-

propriate allocation of conditions to wells in these circumstances. Although in this

chapter, only recordings of spontaneous activity in untreated neuronal networks were

examined, the frameworks presented here could also be applied to a wide range of

applications, such as analysing recordings of stimulated network activity, studying

models of disease or predicting the neurotoxicity of compounds (Brown et al., 2016;

Jimbo et al., 1999; Chong et al., 2011).
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Chapter 4

Multi-view neuronal cell type

classification

4.1 Summary

Comprehensive classification of the numerous categories of neuronal cell types is an

essential step in understanding and accessing neuronal networks. Previous classifica-

tion studies have generally employed only one type of feature, such as the anatomical,

electrophysiological, molecular or genetic properties of neurons, to identify their

underlying cell types. This fails to take advantage of experimental advances which

allow for electrophysiological recordings and morphological reconstructions to be

obtained from the same cells (Armañanzas and Ascoli, 2015).

In this chapter, I utilise two neuronal data sets to examine the potential bene-

fits of using both the electrophysiological and morphological characterisations of

neurons for their classification. In particular, I consider the use of multi-view clus-

tering techniques that are specifically designed to find the shared cluster structure

in two or more ‘views’ or feature sets obtained from the same data. I first explore

the relationship between the electrophysiological and anatomical properties of the

cells in the two multi-view neuronal data sets in this study, before examining the

performance of single and multi-view techniques at clustering the data. Several

multi-view techniques are shown to outperform hierarchical clustering applied to

either an individual view or the concatenated views from these data sets, as judged

by standard evaluation measures. The high performing clustering techniques are

then used to investigate the cell types present in each neuronal data set. As far as

I am aware, this is the first study to use multi-view clustering techniques for the

purpose of classifying neuronal cell types.

131
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4.2 Introduction

Classification of neuronal cell types has recently become a major focus of modern

neuroscience, as evident from its inclusion as one of the key goals of the BRAIN

initiative (BRAIN Working Group, 2014), as well as a priority in the European

Human Brain Project. Completing a census of neuronal cell types is important for

several reasons. Firstly, identifying the numerous cell types present in a neuronal

network is an essential first step to understanding the connectivity of the network,

and how each cell type contributes to overall network function (Hosp et al., 2014).

From a developmental perspective, being able to identify a cell type before it reaches

its final form would also allow researchers to study the functional and structural de-

velopmental processes of different neurons (Sanes and Masland, 2015). Additionally,

classification of cell types is important for differentiating the effect of certain diseases

on specific cell types (Della Santina et al., 2013), as well as in the development of

therapeutics (Lagali et al., 2008).

Although there remains lacking a consensus about what constitutes a specific neu-

ronal ‘cell type’ and the level of granularity of cells to which this term should be

applied, it is commonly thought that the definition should be multimodal, taking

into account the morphological, physiological and molecular features of cells (Ascoli

et al., 2008; Seung and Sümbül, 2014; Armañanzas and Ascoli, 2015). However, most

studies that have worked on the problem of classifying neuronal cell types have used

only a single type of property of neurons for their classification (Karagiannis et al.,

2009; Li et al., 2012; Helmstaedter et al., 2009; Druckmann et al., 2013; Cauli et al.,

1997; Sümbül et al., 2014; Helmstaedter et al., 2013; Tasic et al., 2016).

Recent experimental advances have increased the prevalence of data sets consisting

of multiple modalities of neuronal features, such as electrophysiological and morpho-

logical characterisations of the same cells. Several such data sets have been used for

the classification of neuronal cell types. However, most studies using such multi-view

data sets for neuronal classification have taken the simplistic approach of performing

single-view clustering on a concatenation of the feature sets to identify the underlying

cell types (Marx and Feldmeyer, 2013; Helmstaedter et al., 2009; McGarry et al.,

2010; Hosp et al., 2014; Karagiannis et al., 2009). This approach fails to take into

account the unique statistical properties of the different representations as well as

the correlations between data modalities.
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Data sets consisting of multiple representations or ‘views’ are also common outside

of neuroscience, such as images with text captions or web pages represented by

their text and in/out links. A number of machine learning techniques have been

specifically designed to find the shared cluster structure in such multi-view data sets.

These algorithms take a variety of approaches, including using weighted combinations

of kernels, joint graphical representations or shared latent subspaces for clustering

(Tzortzis and Likas, 2012; de Sa, 2005; Guo, 2013). Multi-view clustering methods

have been employed extensively in applications such as image, document and web

page clustering (Gao et al., 2005; Rege et al., 2007; Kolda and Bader, 2006; Liu

et al., 2009; Cai et al., 2011), however they have rarely been used for the analysis of

neuroscientific data.

In this chapter, I conduct a thorough literature search to identify a number of

multi-view clustering techniques that can be applied to the classification of data sets

consisting of the morphological and electrophysiological features of neurons. These

techniques are then used to investigate the cell types present in two such multi-view

neuronal data sets. Several multi-view methods are shown to outperform single-view

clustering techniques on these data sets, and are used to characterise the cell types

present in the data. As well as its relevance for neuronal cell type classification,

results from this study may also have implications for the analysis of other biological

multi-view data sets, such as joint microRNA and mRNA data (Qin, 2008), genomic

and transcriptomic data from tumour samples (Ali et al., 2014) and joint diffusion

tensor imaging and fMRI recordings (Zhu et al., 2014).

4.2.1 Previous work in neuronal classification

Classification of neuronal cells has been of interest to neuroscientists for more than a

century, since the early work of Golgi and Cajal revealed a diversity in the structure

of neurons (De Carlos and Borrell, 2007). A common approach to classifying neuronal

cell types since this time has been to manually classify cells based on features of their

size, shape and activity, and standardised terminology for describing different cell

types has been developed (Ascoli et al., 2008). These types of manual approaches

have been used to identify numerous cell types, however much of the diversity of the

nervous system remains uncharacterised. Although the number of neuronal cell types

is unknown, by extrapolating from classification studies in small brain regions, it has

been estimated that the number of distinct cell types in the cortex alone may exceed

one thousand (Stevens, 1998), making manual approaches to neuronal classification

at this scale untenable.
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Most previous studies that have used computational approaches for cell type classi-

fication have generally utilised one single type of property of neurons. Commonly

these are either electrophysiological (Druckmann et al., 2013; Farrow et al., 2011;

Zaitsev et al., 2012; Helm et al., 2013; Baden et al., 2013; Li et al., 2012; Suzuki

and Bekkers, 2010), transcriptomic (Cahoy et al., 2004; Sugino et al., 2006; Zeisel

et al., 2015; Tasic et al., 2016) or morphological (Karube et al., 2004; Guerra et al.,

2011; Lu et al., 2015; Mihaljević et al., 2015) features. The most common approach

to identifying the underlying cell types in these studies has been to use hierarchical

clustering of the feature set (Karube et al., 2004; Cahoy et al., 2004; Sugino et al.,

2006; Zaitsev et al., 2012; Helm et al., 2013; Li et al., 2012).

The electrophysiological features commonly used to classify neurons include both

their passive properties, such as resting membrane potential and input resistance, as

well as active cell properties, which include features of the spike trains and single

spikes invoked by input injections of current (see Figure 4.1 for examples). Cluster

analysis using these types of features has been successful at identifying electrophysio-

logical classes of cells in a range of brain regions.

�

Figure 4.1: Examples of electrophysiological features of (left) spike trains and (right)
single spikes commonly used for neuronal classification. Figures adapted from Allen
Institute for Brain Science (2016).

Recent advances in single cell transcriptomic profiling have also facilitated neu-

ronal classification studies using information from single-cell RNA-seq (Zeisel et al.,

2015; Tasic et al., 2016). Such studies have identified a number of molecularly distinct

classes of neuronal cells, however it is still unclear whether some transcriptomic

differences between cells simply reflect the state or activity level of the cell, rather

than being characteristic of a specific cell type (Tasic et al., 2016; Dehorter et al.,

2015).
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Morphological features have also commonly been used for classification of neu-

rons. Generally morphological classification is performed using quantitative features

extracted from the computational reconstruction of cells, such as the somatic surface

area and the length and number of branch points of axons and dendrites. Software

tools have been developed that have allowed for the calculation of a comprehensive

catalogue of morphological parameters in a standardised fashion across a range of

classification studies (Scorcioni et al., 2008) (see Figure 4.2 for examples).

Remote 
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Figure 4.2: Example of morphological features of dendrites calculated using the
standardised software, L-measure (Scorcioni et al., 2008).

Recently, alternative approaches to quantifying the morphological similarity of cells

have been developed. NBLAST (Costa et al., 2016) quantises the branching patterns

of neurons by assigning a coordinate and tangential vector to each small segment of

the neuronal morphology. This allows the similarity of two neurons to be measured

using a probabilistic score calculated between each pair of nearest neighbour segments

of the neurons. Using this approach and a combination of affinity propagation and

hierarchical clustering, Costa et al. (2016) identified 1052 clusters in a data set of

∼ 16000 Drosophila neurons, several of which were previously identified cell types.

Alternatively, Sümbül et al. (2014) take the approach of representing each neuron

according to its voxel-wise arbor density. The dissimilarity between cells is then

measured as the Euclidean distance between the vector representations of their arbor

densities. This method was utilised to identify 15 cell types in a dataset of ∼ 300

mouse RGCs, many of which mapped to molecularly identified cell types.

Rather than taking a purely computational approach, other studies have combined

both manual and machine learning methods to classify cells. DeFelipe et al. (2013)

proposed an approach in which neurons are manually characterised by experts based

on six pre-defined characteristics. The majority vote across the experts is then taken

as the ‘ground truth’ label of each cell and used to train supervised algorithms to
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classify cells based on their morphological features. López-Cruz et al. (2014) use

the same manually classified data set to build a Bayesian multinet representing the

opinion across the group of experts. Inference on this multinet is then used to find

the consensus definition of different GABAergic interneuron types.

4.2.2 Neuronal classification using multiple feature types

A small number of recent studies have used data sets consisting of multiple types of

features of neurons for cell type classification. Commonly, these data sets consist

of the morphological and electrophysiological properties of cells. Santana et al.

(2013) used affinity propagation to cluster a concatenated data set comprised of

electrophysiological and morphological features of n = 50 GABAergic cortical neu-

rons, previously identified as containing four neuronal cell types. This method was

highly effective at distinguishing PV from SST-expressing neurons and achieved

78% accuracy at separating the four cell types in the data set. Dumitriu et al.

(2007) used the morphological and electrophysiological features of n = 18 cells and

hierarchical clustering to identify three interneuron types in the mouse visual cortex,

which match molecularly defined cell types. In this case, they found that the mor-

phological properties of axons were the most informative feature type for classification.

McGarry et al. (2010) utilised Ward’s hierarchical clustering on a partially over-

lapping data set consisting of morphological and electrophysiological features from

SST-expressing neocortical interneurons. This study found high levels of similarity

between the clusters identified using morphological and electrophysiological features

alone, with only one of n = 16 cells in the joint data set allocated to different groups

when clustered using the two separate feature sets. In this case, clustering using the

concatenated feature set produced less compact cluster structures than using the

morphological or electrophysiological features alone. Conversely, Hosp et al. (2014)

found that morphological features were more informative than electrophysiological

features for the classification of a data set of n = 22 GABAergic neurons in the den-

date gyrus, however, both types of features were required to achieve an unequivocal

classification of the neurons into five well-separated classes. Other studies have also

used hierarchical clustering on concatenated feature sets obtained from whole-cell

patch clamp recordings and morphological reconstructions of biocytin stained cells to

classify larger data sets of n > 90 L6b somatosensory barrel cortical neurons (Marx

and Feldmeyer, 2013) and cells from layers 2–6 of the rat medial prefrontal cortex

(Van Aerde and Feldmeyer, 2015).



4.2. Introduction 137

There are also several studies that have used multi-view data sets consisting of

different types of features of cells for neuronal classification. Perrenoud et al. (2012)

used electrophysiological, morphological and molecular properties and hierarchical

clustering to characterise n = 42 interneurons from mouse barrel cortex. Karagiannis

et al. (2009) employed a combined data set consisting of laminar location, electrophys-

iological and molecular features of n = 200 neurons, as well as morphological features

for a subset (n = 68) of these neurons. In this case, which studied NPY-expressing

neocortical interneurons, the authors found that the morphological features were the

least informative and molecular features were the most informative for classification.

Subsets of this data have also been used in other classification studies (Battaglia

et al., 2013; Pohlkamp et al., 2014).

Despite the diversity of these studies that have used multiple characterisations

of neurons for their classification, a commonality is their use of single-view clustering

techniques applied to either the individual or concatenated feature sets to identify

the underlying cell types present. None of these studies have taken a multi-view

approach to clustering of neuronal data sets.

4.2.3 Overview of multi-view clustering

The field of multi-view learning is a growing area of interest in modern machine

learning, motivated by a rise in the number of real world applications producing

data sets composed of multiple views (Sun, 2013). The term multi-view learning has

been used to refer to a variety of situations in the literature. In this thesis, I use

the term ‘multi-view’ to denote a data set consisting of two or more distinct feature

sets that were produced from the same underlying samples. For example, for a set of

video clips, features of the still visual frames could compose one view of the data

while features of the audio track could be used as a second view (see Figure 4.3 for

schematic of multi-view clustering).

Data sets consisting of multiple representations or ‘views’ arise commonly from

real world data sources, such as marketing data from multiple databases, 3D objects

captured from several camera angles and documents translated into multiple lan-

guages. These views can vary between being completely compatible to having a high

level of disagreement, complicating the task of finding a common cluster structure

between the views (Greene and Cunningham, 2009).
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Figure 4.3: Schematic of (top) single-view and (bottom) multi-view clustering. Multi-
view clustering techniques can produce different clustering solutions to single-view
methods applied to the same data set.

A number of multi-view clustering techniques have been developed to deal with

these kinds of representations. These methods take a variety of approaches, with the

general aim of reconciling the discordance and maximising the agreement between

the partitioning of the multiple views.

To understand the diversity of multi-view clustering techniques, I conducted an

extensive literature search of multi-view clustering algorithms. In doing so, I identi-

fied four main approaches to clustering that multi-view approaches take, and classified

each method into one of these categories. These four approaches are represented in

Figure 4.4, and outlined below:

1. Early integration: Information from the multiple views is combined before

clustering, often by combining kernels or through graphical approaches.

2. Latent subspace: A latent subspace is found using the multiple views of the

data. Clustering is then performed within this latent subspace.

3. Bootstrapping: Information obtained in the process of clustering one view is

used to inform clustering in the alternate views, often in an iterative manner.
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4. Post-clustering combination: The multiple solutions obtained from single-

view clustering of each of the individual views are combined post-clustering.

V1 V2+

Joint  
matrix or 
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Intermediate 
clustering step

V1 V2

Intermediate 
clustering step

V1 V2

Latent 
subspace

V1 V2

Early integration Latent subspace

Bootstrapping Post-clustering

Figure 4.4: Representation of four approaches to multi-view clustering.
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Early integration clustering methods use a variety of approaches to integrate

information from the multiple views of the data prior to clustering. A common

approach is combining the kernels of each view, generally with some weighting

of the kernels and/or individual features (Tzortzis and Likas, 2012; Chen et al.,

2013; Liu et al., 2009). Graph-based early integration clustering techniques have

also been proposed. de Sa et al. (2010) developed a method in which a multipar-

tite graph is constructed that connects nodes representing the same data points

in the multiple views, while Zhou and Burges (2007) proposed combining transi-

tion probability matrices derived from each view using a Markov mixture. In both

cases, spectral clustering techniques are employed to partition these combined graphs.

Latent subspace multi-view clustering methods perform clustering within a sub-

space found using information from the multiple views. These methods take a variety

of approaches to estimate this subspace, including non-negative matrix factorization

(Li et al., 2014), linked matrix factorization (Tang et al., 2009), tensor analysis (Liu

et al., 2013) and low-rank and sparse decomposition (Xia et al., 2014). Guo (2013)

formulate the problem of learning the optimal subspace as a min-max optimisation

problem with a sparsity inducing norm, while Mo et al. (2013) extend the latent

variable model for finding cancer subtypes originally developed by Shen et al. (2009)

to allow it to be applied to variety of data types. This method uses a Monte Carlo

algorithm to estimate the values of underlying latent variables, which are then

partitioned using k-means clustering.

As an alternative latent subspace approach, Chaudhuri et al. (2009) proposed a

method that employs Canonical Correlation Analysis (CCA) to find the subspaces in

which the projections of the features from the multiple views are maximally correlated.

Clustering is then performed on the projection of one of the views into its correspond-

ing subspace. Numerous variations of clustering using CCA have also been proposed.

These include a random non-linear extension of CCA (Lopez-Paz et al., 2014), and the

correlational spectral method (Blaschko and Lampert, 2008), which performs k-means

clustering in a subspace found by implementing kernel CCA on a training subset of

the data, and assigns tests points to the closest cluster centroid in the projected space.

The bootstrapping clustering techniques were defined as those that use infor-

mation obtained in clustering of one of the views to influence clustering in the

alternative views, generally in an iterative manner across the multiple views. A

general expectation-maximisation algorithm for multi-view learning was developed
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by Bickel and Scheffer (2004) and uses a maximum likelihood approach to iteratively

update the model parameters in one view, taking into account the expected values of

the hidden variables in the other view. Several other bootstrapping approaches adapt

the spectral clustering algorithm into a multi-view setting. Kumar et al. (2011) and

Cai et al. (2011) both developed co-regularization approaches to spectral clustering

which utilise an objective function containing the Laplacians from the multiple views.

Co-training approaches for two-view data sets have also been proposed by Kumar and

Daumé (2011) and Zhao et al. (2014). Kumar and Daumé (2011) developed a method

that uses information from spectral clustering in one view to alter the similarity

matrix in the alternate view, while in Zhao et al. (2014) discriminant subspaces are

learned iteratively in each view using cluster labels obtained from k-means clustering

in the other view. Wang et al. (2013) take an alternative approach to clustering with

two views, which involves using Pareto optimisation to find the normalized min-cut

on two graphs which represent the two views of the data. This technique produces a

set of Pareto optimal cuts that represent equally good partitions of the data, which

can be consolidated into a single clustering solution using k-means clustering on the

Pareto embedding of the data.

A final category of techniques for the clustering of multi-view data are the post-

clustering combination methods. Many of these methods were not specifically

developed for use in multi-view settings, and also have applications in other areas

such as distributed clustering, clustering with multiple solutions and knowledge

reuse (Li and Ding, 2008; Strehl and Ghosh, 2002). Li and Ding (2008) proposed

a non-negative matrix factorisation-based approach to cluster combination, with

optimal weights for each clustering solution found using L1 norm regression. Greene

and Cunningham (2009) also employ matrix factorisation to assign data points to one

of k meta-clusters. Strehl and Ghosh (2002) proposed multiple post-clustering com-

bination algorithms that combine clusters in such a way as to maximise the average

normalised mutual information between the individual cluster solutions. Bruno and

Marchand-Maillet (2009) employ Probabilistic Latent Semantic Analysis to combine

multiple clustering solutions, while other algorithms use voting mechanisms to find

consensus clusterings (Ayad and Kamel, 2008; Fred and Jain, 2005).
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4.2.4 Aims of this chapter

As seen in the previous sections, a limited number of studies have utilised joint

electrophysiological and morphological feature sets for neuronal cell type classification.

Those studies that have used such multi-view feature sets have generally utilised

data sets that are small in size and have taken simplistic approaches to classification,

leading to conflicting conclusions about the usefulness of multi-view neuronal data

sets for cell type classification. In particular, none of these studies have used multi-

view clustering techniques for the classification of neuronal cell types. Given this,

in this chapter I present a more comprehensive analysis of the use of multi-view

neuronal data sets for cell type classification, with the aim of addressing the following

questions:

1. Is using both the electrophysiological and morphological features of neurons

advantageous for classification, compared to using only a single feature type?

2. Which approach to clustering using multi-view information achieves the greatest

accuracy at classifying neuronal cell types? Do multi-view clustering techniques

offer an improvement over single-view approaches in this context?

3. Can anything be learnt about the relationship between the electrophysiology

and morphology of neurons from this study?

To address these questions, I examined the performance of single-view and several

multi-view clustering techniques at identifying the cell types present in two existing

data sets consisting of the morphological and electrophysiological features of neurons.

4.3 Methods

4.3.1 Multi-view clustering methods

Twelve methods that are representative of the four approaches to multi-view clustering

outlined in Section 4.2.3 were chosen for use in this study. Since the focus of this

work was to provide advice and useable tools for the analysis of neuronal data, only

methods for which open-source code was available or for which code was provided by

the authors upon request were included. A brief description of each of the methods

is given here. Although some methods are applicable to data sets with more than

two views, here I limit the description to their application to two-view datasets.
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Early integration methods

Kernel-based weighted multi-view clustering (Tzortzis and Likas, 2012)

This method performs single-view kernel-based clustering on the weighted sum of

the kernels from each individual view, defined as

Ksum =
N∑
n=1

wpnKn,

where Kn is the kernel from view n, wn is the weight of the nth kernel, and p is a fixed

sparsity inducing parameter, chosen a priori. Tzortzis and Likas (2012) propose two

options for the clustering step, which are kernel k-means and spectral clustering. For

each approach, the algorithm iterates between clustering using Ksum and updating

the kernel weights, wn, using a closed form update rule that minimises intra-cluster

variance. These two steps are repeated until convergence.

TW–k–means (Chen et al., 2013)

This method is an extension of the standard k-means algorithm, with additional

steps to calculate the optimal weights for both the views and the individual features

in each view. The view weights are chosen according to the compactness of the

cluster structures in each view. Within each view, the individual feature weights

reflect the importance of each variable in the clustering, and are calculated in an

equivalent fashion to a single-view variable weighting method. The view and feature

weights are incorporated into the objective function for k-means clustering, and the

weights and clusters are iteratively updated until convergence.

Spectral Minimizing-Disagreement algorithm (sMD) (de Sa et al., 2010)

This method constructs a multipartite graph in which each node represents a data

point in one view. This graph contains edges only between nodes representing the

same data point in the two views, which are weighted to reflect the neighbourhood

relationships within each of the views using the product of the Gaussian kernels of

the views. The affinity matrix of this graph is then used as input to the single-view

spectral clustering algorithm. The final clusters are found using k-means clustering

on either the singular values corresponding to the more reliable of the two views, or

the average of the singular values from both views.
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Latent subspace methods

Linear Canonical Correlation Analysis (LCCA) (Chaudhuri et al., 2009)

This method finds a set of basis vectors for each view, such that the correlation

between the views projected onto their corresponding set of basis vectors is mutually

maximised. The projection of one of the views into the space spanned by these vectors

is then used as input to a single-view clustering algorithm. In the implementation of

linear CCA in this study, the partition around medoids (PAM) approach was used

to find the final clusters (Kaufman and Rousseeuw, 1990).

Randomised non-linear CCA (RCCA) (Lopez-Paz et al., 2014)

This method involves performing linear CCA on randomised non-linear mappings

of the two views. For each view, consisting of feature vectors (x1, ..., xm), the i

components of the random non-linear mapping are calculated as the vectors

zi =
[
cos(wTi x1 + bi), ..., cos(wTi xm + bi)

]
,

where wi are randomly sampled weights wi ∼ 1
σn
N (0, 1), σn is the Gaussian kernel

width of view n and bi are random uniformly distributed bias vectors. The linear

CCA approach described above is then applied to the mapped feature sets to partition

the data.

Partial multi-view clustering (Li et al., 2014)

The partial multi-view clustering algorithm was developed for the clustering of data

sets in which information is missing in one or more views, but can also be applied to

multi-view data sets with no missing information. This method finds a subspace in

which there is a small distance between data points representing the same example in

the two different views, and a good grouping of similar data points. This is achieved

by using non-negative matrix factorization to estimate the common latent subspace

and latent representation of the data in an iteratively updating procedure. k-means

clustering is then performed on the latent representation to obtain the final clustering

solution.

Robust multi-view spectral clustering (Xia et al., 2014)

For each view, a transition probability matrix is constructed from the Gaussian

kernel of the feature matrix. Each of these matrices is assumed to consist of the sum

of a shared low-rank latent transition probability matrix, and a sparse error matrix

unique to each view. Low-rank and sparse decomposition are used to estimate the
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joint transition probability matrix between the views. Clusters are then found using

the Markov chain method for spectral clustering (Zhou et al., 2005) with this matrix

as input.

iCluster+ (Mo et al., 2013)

The iCluster+ algorithm was originally developed to identify breast cancer subtypes

using multi-view genomic data sets. This method involves finding a common set of

k − 1 latent variables for the views that span a lower dimensional joint subspace.

For continuous data, a standard linear regression of the features with respect to

the latent variables is performed, with sparsity introduced using the lasso penalty

(Tibshirani, 2007). A Monte Carlo Newton-Raphson algorithm is used to maximise

the penalised log-likelihood in this regression and find the expected values of the

latent variables. k-means clustering is then used to divide the data set into k clusters

using the values of the k − 1 latent variables.

Bootstrapping methods

Co-regularized spectral clustering (Kumar et al., 2011)

This method modifies single view spectral clustering to include the Laplacians from

each view in the clustering objective function, and regularises on the eigenvalues of

both Laplacians to enforce consistency in the cluster structures in the two views.

Two methods are proposed for co-regularisation:

1. Pairwise co-regularisation: This method minimises the pairwise disagreement

between the clustering solutions in the two views. This is achieved by replacing

the graph Laplacian, Lv, in the spectral clustering objective of view v,

max
Uv

tr(UT
v LvUv) s.t. UT

v Uv = I, (4.1)

with Lv + λUv′U
T
v′ , where Uv is the matrix of the eigenvectors of Lv, Uv′ is the

equivalent matrix for the alternate view v′, and λ is a hyperparameter. This is

solved by alternatively updating Uv and Uv′ until convergence. The U from

the most important view chosen a priori, or the average of Uv and Uv′ is then

used as input to the k-means algorithm for clustering.

2. Centroid-based co-regularization: In this method, the set of eigenvectors in

each view are regularized towards a common consensus set of eigenvectors. This

is equivalent to replacing the graph Laplacian, Lv, in the spectral clustering

objective of view v (Equation 4.1) with Lv + λvU
∗U∗T , where U∗ is a matrix
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consisting of a consensus set of eigenvectors and the λv s are hyperparameters,

set separately for each view according to its level of noise. The algorithm then

proceeds by alternatively updating Uv in each view, followed by optimising U∗,

which is repeated until convergence. Clusters are then found using the final U∗

matrix as input to the k-means clustering algorithm.

Co-training for spectral clustering (Kumar and Daumé, 2011)

For each view, an initial similarity matrix is calculated as the Gaussian kernel of

the feature matrix. Spectral clustering is performed on each similarity matrix to

find the discriminative eigenvectors in each view. A new similarity matrix for each

view is then calculated by projecting the original similarity matrix onto the top

k× p eigenvectors from the alternate view, and then back-projecting into the original

space, where k, the number of clusters, and p ≥ 1 are constants set a priori. This is

repeated for a fixed number of iterations. Clusters are then found using the k-means

algorithm, utilising as input the top k eigenvectors of the final similarity matrix from

either the most informative of the two views, chosen a priori, or a concatenation of

the final similarity matrices from the two views.

Post-clustering combination

These algorithms take as input clustering solutions obtained from single-view cluster-

ing in each view individually, and find an optimal combined clustering solution. In

this study, both k-means and hierarchical clustering were used to obtain the cluster

solutions from the individual views for input to the post-clustering combination

algorithms, and the results from both are presented.

Cluster ensembles (Strehl and Ghosh, 2002)

This method seeks the combined clustering solution that has the maximum average

normalised mutual information with each of the individual clustering solutions. Three

algorithms are proposed to find this solution:

1. Cluster-based Similarity Partitioning Algorithm (CPSA) : This method calcu-

lates a binary similarity matrix for each clustering solution, in which points in

the same cluster have a similarity of one, and zero otherwise. Re-clustering is

then performed on the average of the similarity matrices from all individual

clustering solutions.

2. HyperGraph-Partitioning Algorithm (HGPA): This method represents the

clustering solutions as a hypergraph, in which each node represents a data
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point and each equally-weighted hyperedge represents a cluster in one view.

The final clustering solution is chosen as the partition of this graph into k

components which cuts the minimal number of hyperedges.

3. Meta-CLustering Algorithm (MCLA): As in the HGPA method, in this ap-

proach each cluster from each view is represented as a hyperedge in a hypergraph.

Graph-based clustering of the hyperedges is then performed to find k meta-

clusters. The set of hyperedges in each meta-cluster is collapsed into a single

meta-hyperedge. Each data point is then assigned to the meta-cluster with

which it is most strongly associated.

The cluster ensemble method applies each of these three algorithms to the clusters

found in the individual views, and outputs the combined clustering solution from

the algorithm that achieves the highest average normalised mutual information with

the single-view clustering solutions.

Probabilistic Latent Clustering (PLC) (Bruno and Marchand-Maillet, 2009)

This method employs Probabilistic Latent Semantic Analysis (PLSA), which was

originally developed for the analysis of document-term matrices. The clustering solu-

tion from each view is represented as a k ×N binary matrix. The joint cluster-data

point probability is then given by the row-wise concatenation of these matrices, with

appropriate normalisation. This is used to derive the joint cluster-cluster probability,

P (cj, cj′), defined as the fraction of data points allocated to clusters cj and cj′ in

the clustering solutions from the two views. It is assumed that there exist k binary

latent variables, zi, in the process of generating this joint cluster-cluster probability,

and clustering of each data point, d, is achieved by assigning to it the latent variable

that maximises the posterior probability P (zi|d).

A preliminary investigation of each of the multi-view clustering techniques was

first performed by using each method to cluster well-established labelled data sets

from fields outside of neuroscience (see Appendix A.1). This was used to gain a

greater understanding of each of the methods, and their performance and scalability

when applied to data sets with a variety of properties. The focus of this study was

then on the application of these techniques to the clustering of multi-view neuronal

data sets.
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4.3.2 Neuronal data sets

An ideal approach for assessing each of the multi-view clustering techniques for the

purpose of neuronal cell type classification would be to evaluate their performance at

clustering a variety of labelled multi-view neuronal data sets. However, as the precise

identity of all neuronal cell types is still unknown, multi-view neuronal datasets

with ‘ground truth’ labelled cell types are not available. However, there do exist

experimental data sets consisting of multiple types of features of unlabelled neurons.

These generally contain some basic information about the cell types present, such

as their layer of origin or a broad classification of the cells into two or more basic

types. This information can be used as a proxy for ‘ground truth’ labels, to provide

some indication of the quality of the clustering solutions produced by each clustering

technique. In this study, two unlabelled multi-view data sets consisting of the

morphological and electrophysiological features of neurons were used to analyse the

performance of the clustering techniques at classifying neuronal cell types. These

two data sets are detailed below.

Rat medial prefrontal cortex data set

The first neuronal data set studied consisted of features of cells from rat medial

prefrontal cortex (mPFC), collected and previously published by Van Aerde and

Feldmeyer (2015). Slices were obtained from the prefrontal cortex of P24–46 rats,

and select pyramidal cells from these slices were chosen for study based on their

morphology and pattern of firing. In vitro whole-cell patch clamp recordings were

utilised to measure the electrophysiological characteristics of cells, using hyperpolar-

izations and stepped depolarizations. Cells were then filled with biocytin and imaged,

and their three-dimensional morphology was computationally reconstructed using

Neurolucida (MBF Bioscience) (examples in Figure 4.5). Morphological properties

were then extracted from the reconstructions using NeuroExplorer (Nex Technologies,

Littleton, MA).

The cells in this data set were from cortical layers (L) 2, 3, 5 and 6, with layer

borders determined microscopically based on cytoarchitectural features. The feature

set used in my analysis consisted of the same features employed for the cluster

analysis of pyramidal neurons in L2–L6 in the original article (Table 8 in Van Aerde

and Feldmeyer (2015)). These were comprised of thirteen morphological and nine

electrophysiological features, detailed in Appendix A.2. All experimental procedures

and calculation of feature values were performed by Karlijn I Van Aerde and Dirk
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Figure 4.5: Example morphological reconstructions from the mPFC data set, showing
cells from various layers. The dotted grey lines show the experimentally defined layer
borders. Images obtained from Van Aerde and Feldmeyer (2015).

Feldmeyer, and the processed feature matrix used in my analysis was kindly provided

by them. Further experimental details are available from their paper (Van Aerde

and Feldmeyer, 2015).

Only cells for which both morphological and electrophysiological properties were

available were included in the data set used for clustering, resulting in n = 103

neurons. For pyramidal cells in the cortex, each cortical layer is thought to contain

distinct populations of neurons (Harris and Shepherd, 2015) (see Section 1.4.1).

Cortical layer (2, 3, 4 or 6) was thus used as a proxy ‘ground truth’ label to assess

the quality of each clustering of this data set.

Allen Cell Types Database data set

The second neuronal data set examined consisted of electrophysiological and morpho-

logical features of cells from mouse visual cortex collected by the Allen Institute and

made publicly available through the Allen Brain Atlas Cell Types Database (Allen

Cell Types Database (2015)).

Slices were obtained from P45–P70 mice from either interneuron-specific or layer-

specific Cre driver lines crossed to an Ai14 tdTomato reporter line, and imaged to

allow for brain region identification. Whole cell current clamp recordings were taken

from selected neurons, with various stimulation waveforms used to examine a variety

of electrophysiological properties of the cells (examples in Figure 4.6). This included

injected currents with ramped intensities, short and long square pulses and noise.
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High temporal resolution measurements of the membrane potential of the clamped

cell were obtained during each stimulation period, and the derivative of the voltage

trace was used to detect action potentials. Numerous properties of single action

potentials as well as features of the induced spike trains were calculated from this

data (Allen Institute for Brain Science, 2016).

Neurons were filled with biocytin during the whole-cell patching procedure (Allen

Institute for Brain Science, 2017a). The quality of the possible morphological re-

construction of each cell was first assessed using high resolution image stacks of the

filled neurons. For neurons which passed this quality control, the image stack was

processed and subjected to multi-scale enhancement. Automatic reconstruction of

the morphology of the cells from the enhanced images was then performed using

the Neuron Crawler tool (Zhou et al., 2015), followed by extensive manual curation.

The dendritic tree and initial part of the axon were reconstructed for all cells, with

the full axon reconstruction available for a subset of inhibitory neurons (examples in

Figure 4.6).

The dendritic morphology of the cells was labelled as either aspiny, sparsely spiny

or spiny by manual inspection of the 63× image. The aspiny and sparsely spiny

morphologies were assumed to correspond to interneurons, while cells with spiny

morphologies were assumed to be pyramidal or spiny stellate neurons. Cells were

assigned to a cortical region and layer using manual annotations of the slices and

blockface images. Further experimental details are available from the Allen Cell

Types Database Technical White Papers (Allen Institute for Brain Science, 2016;

Allen Institute for Brain Science, 2017a; Allen Institute for Brain Science, 2017b).

Electrophysiological features and morphological variables were downloaded for all

cells for which both of these properties were available from the Allen Cell Types

Database. After processing and removal of uninformative variables, n = 280 cells

remained that were described by thirty six electrophysiological and twenty mor-

phological features. Explicit descriptions of the features in this data set are given

in Appendix A.3. The ‘ground truth’ variables used to assess the quality of the

clustering solutions were the classification of the cells into two categories based on

their dendrite types, aspiny, which also included the n = 5 sparsely spiny cells in

the data set, and spiny. As previously mentioned, these two groups are assumed to

correspond to predominately inhibitory interneurons and excitatory pyramidal or

spiny stellate cells respectively, and so were labelled ‘inhibitory’ and ‘excitatory’ for

the rest of this study.
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Figure 4.6: Example morphological reconstructions (left) and spiking responses (right)
of cells from the Allen Cell Types Database to a 1 s long square stimulus current of
150 pA (shown in bottom right). A L5 excitatory neuron, B L6b excitatory neuron,
C L5 SST-expressing interneuron, and D L2/3 5HT3aR-expressing interneuron.
Scale bar in A and key in bottom left applies to all reconstructions. Figures produced
using the Allen Brain Atlas API and Software Development Kit (Allen API (2015);
Allen SDK (2015)).
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Overview of neuronal data sets

The major features of the two neuronal data sets in this study are summarised below.

Data set Age range Species Region # cells # E feats # M feats

mPFC P24–46 Rat mPFC 103 9 13
Allen P45–70 Mouse Visual cortex 280 36 20

Table 4.1: Summary of the major features of the mPFC and Allen Cell Types
Database data sets.

4.3.3 Clustering of multi-view neuronal data sets

To evaluate the performance of the clustering techniques at analysing multi-view

neuronal data sets, the multi-view methods outlined in Section 4.3.1 were applied to

the clustering of the two neuronal data sets described in Section 4.3.2. As a baseline,

single-view hierarchical clustering using Ward’s method and Euclidean distances was

also performed on the individual views as well as a concatenation of the two views

from each data set. To examine the robustness of the partitions found by hierarchical

clustering, the re-sampling method BagClust2 (Dudoit and Fridlyand, 2003) was

used to repeat hierarchical clustering on a number of bootstrap samples of the data

sets, and the mean and standard deviation of several evaluation measures across the

bootstrap samples are presented.

As the true number of classes in each of the neuronal data sets is unknown, for each

clustering technique the optimal number of clusters was chosen using the gap statistic

(Tibshirani et al., 2001). This method estimates the number of clusters in a data set

by comparing the pooled within-cluster dispersion of clustering solutions at a range

of values of k with the expected dispersion, found using a null reference distribution.

For the clustering methods which required the tuning of hyperparameters, this was

achieved using a grid search and 10-fold cross validation. The hyperparameter values

were chosen as those that minimised the average distance of the left-out data points

to their closest cluster centre.
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Evaluation measures

In the case of data sets that possess ‘ground truth’ class labels, the performance of

clustering techniques can be measured by comparing the similarity of the clusters

generated by each method to the correct class structure. Several measures can be

used to assess the degree of this similarity, and I employ a number of these in this

study. However, as the ground truth cell type labels are unknown for the two neuronal

data sets examined, in the place of complete class labels, the labels used were the

cortical layer of origin for the cells in the mPFC data set and the classification of

the neurons into inhibitory or excitatory type for the Allen Cell Types Database cells.

Firstly, I examined the purity of the split of the known class labels across the

clusters identified by each clustering method. Purity is defined as

P =
1

N

k∑
i=1

max
j
|ci ∩ wj|

where N is the number of data points, C = {c1, ..., ck} is the set of k predicted

clusters and W = {w1, ..., wl} is the set of l labelled classes.

However, purity is a biased measure which favours clustering solutions with higher

numbers of clusters. In fact, a clustering solution containing N singleton clusters

has a purity of one, while providing no useful information about the underlying

structure of the data set. As the number correct number of classes in the two

neuronal data sets in this study is unknown, the value of k found by each cluster-

ing method is a variable that can be optimised, and will generally vary between

different clustering techniques. For this reason, two chance-adjusted measures were

also used to evaluate the clustering solutions from each of the multi-view clustering

techniques. These were the Adjusted Rand Index and Adjusted Mutual Informa-

tion, both of which are not obviously biased towards any value of k (Vinh et al., 2010)

An adjusted index is defined as

Adjusted index =
Index− Expected index

Max index− Expected index
.

Adjusted indices have an upper bound of one, and take the value zero when the index

is equal to its expected value (Hubert and Arabie, 1985). Two types of adjusted

indices were used to evaluate the clustering solutions. The first was the Adjusted
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Rand Index (ARI), which was developed by Hubert and Arabie (1985) and based on

the Rand Index (Rand, 1971).

The Rand Index (RI) is a measure of the pairwise agreement between two sets

of clusters. For two clustering solutions, C and W containing N data points, the RI

is defined as

RI(C,W ) =
N11 +N00(

N
2

)
where N11 is the number of pairs of elements that are in the same cluster in both C

and W , and N00 is the number of pairs of elements that are in different clusters in

both C and W . Since the expected value of RI is not constant, the Rand Index has

a variable and often high baseline value. By reducing the expected baseline value,

the adjusted RI provides a more sensitive measure of cluster similarity.

A permutation model is used to derive the expected value of the Rand Index, based

on the assumption that the elements of the contingency table follow a generalised

hypergeometric distribution (Hubert and Arabie, 1985). The resultant definition of

the ARI between sets of clusters C and W is:

ARI(C,W ) =
2(N11N00 −N01N10)

(N11 +N01)(N00 +N01) + (N11 +N10)(N00 +N10)
,

where N01 is the number of pairs of elements in the same cluster in C but different

clusters in W , N10 is the number of pairs of elements in different clusters in C but the

same cluster in W , and N11 and N00 are defined as previously. Due to its numerous

desirable properties, the ARI has become one of the most widely used measures of

cluster quality (Vinh et al., 2010).

The third measure used to evaluate clustering quality was a chance-corrected measure

of mutual information called Adjusted Mutual Information (AMI). Mutual infor-

mation measures the shared information between two sets of clusters. The mutual

information (Cover and Thomas, 2006) between the set of k clusters, C = {c1, ..., ck},
and l classes, W = {w1, ..., wl}, is defined as

I(C,W ) =
l∑

j=1

k∑
i=1

|ci ∩ wj|
N

log
N |ci ∩ wj|
|ci||wj|

,

where N is the number of data points.
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The normalised form of this measure, normalised mutual information, is commonly

used as a cluster evaluation measure, however it is not unbiased to the value of k,

and increases with increasing k. For this reason, the unbiased measure of Adjusted

Mutual Information, AMImax, developed by Vinh et al. (2010) was instead employed

for cluster evaluation. AMImax is defined as

AMImax =
I(C,W )− E{I(C,W )}

max{H(C), H(W )} − E{I(C,W )}

where the entropy of C, H(C), is defined as

H(C) = −
k∑
i=1

|ci|
N

log
|ci|
N

and similarly for W .

Although ARI and AMI are not biased towards higher values of k, they take their

maximum value of one only when the clustering solution is identical to the true class

structure, and thus penalise solutions in which the ground truth classes are split into

a greater number of subclasses. To examine the variability of the three evaluation

measures outlined above at different values of k, preliminary hierarchical and k-means

clustering was performed on the concatenated mPFC data set described in Section

4.3.2 for a range of values of k. The value of each of the evaluation measures was

calculated by comparing the output clusters with the four proxy ‘ground truth’ labels

represented by the layer of origin of each cell in this data set (L2, 3, 5 or 6).
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Figure 4.7: The values of AMI, ARI, purity and precision from A hierarchical and
B k-means clustering of the mPFC data set for various values of k. Dotted vertical
line shows the number of classes in the ‘ground truth’ labels.
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As expected, the value of the purity measure generally increased with increasing k in

the clustering results from both hierarchical and k-means clustering (Figure 4.7). For

the k-means solution, this was not a strictly monotonic increase, however, this can

be attributed to the k-means algorithm converging to different clustering solutions

at different values of k. AMI and ARI values were very low for low values of k and

initially increased rapidly with increasing k (Figure 4.7). The values of these measures

generally peaked at the value of k equal to the number of proxy ‘ground truth’ classes,

before decreasing gradually at higher values of k. However, for the hierarchical cluster-

ing solution, there was a second peak in ARI at values of k around 8–10 (Figure 4.7A).

For both of the neuronal data sets in this study, the ‘ground truth’ labels take

on a smaller number of values than the expected number of cell types in the data.

For example, in the mPFC data set, the variable used as the proxy ‘ground truth’

label takes on four values, representing the cortical layer of origin of the cells, however

the number of cell types in this data set is expected to exceed four. The clustering

methods that identify large numbers of cell types in this data set may thus be

disadvantaged by using AMI and ARI to measure the similarity of the clusters found

by these methods to the four-class solution provided by the proxy ground truth

variables. Due to this, I introduced one additional measure to assess the clustering

quality of each method on the multi-view neuronal data sets.

In the case of the neuronal data sets, for a good clustering solution, the num-

ber of data points in the same cluster but different ‘ground truth’ classes i.e. N10,

should be minimal. For example, for the mPFC data set, N10 signifies cells from

different layers that are allocated to the same cell type, which should be minimised

in a quality clustering solution. But in this case we are unconcerned with the number

of data points that are in the same ‘ground truth’ classes but different clusters, i.e.

N01, as this simply represents different cell types being present in the same layer. A

good clustering solution in this case would have a low value of the following measure:

N10

N10 +N11

,

which decreases as N10 decreases and N11, the number of pairs of data points assigned

to the same cluster that have the same ‘ground truth’ labels, increases. This measure

is simply 1 − precision, so precision was used as the fourth measure to evaluate

the clusters identified in the two neuronal data sets, with a higher precision value

representing a better clustering solution. As can be seen in Figure 4.7, the value of
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precision for the clustering solutions from the mPFC data set initially increased with

increasing k. However, this was not a monotonic increase like the purity measure,

and further subdivision of the hierarchical clustering solution resulted in a decrease

in the precision measure for some values of k, which is a reflection of the underlying

structure of the clusters identified (Figure 4.7A).

As most of the clustering methods used in this study were non-deterministic, cluster-

ing of each of the data sets was repeated 100 times using each clustering method,

and the mean and standard deviation of the four evaluation measures outlined above

across the 100 trials were calculated. The median values of the evaluation measures

across the 100 trials were also examined, however these were largely similar to the

mean values and thus are not presented here. The weighted kernel k-means method

is deterministic, as is the linear CCA method using PAM clustering, so only a single

value for each of the evaluation measures is presented for these techniques.

4.4 Results

4.4.1 Analysis of the mPFC data set

Relationship between electrophysiological and morphological features

Previous studies have shown that there often exist strong correlations between the

electrophysiological and morphological properties of neuronal cells (Hosp et al., 2014;

Dumitriu et al., 2007). In their original analysis, Van Aerde and Feldmeyer (2015)

describe correlative relationships between some features for subset of cells in the

mPFC data set, however, a comprehensive analysis of the correlation between the

morphological and electrophysiological variables in the entire data set is not pre-

sented. Figure 4.8 shows the Pearson correlation between the 13 morphological and

9 electrophysiological variables in the mPFC data set, as well as their asymptotic p

values. Strong correlations are evident between numerous features.

In particular, significant negative correlations were observed between input resistance

and several morphological properties, particularly those relating to somatic surface

area and the length and number of branches of dendrites. Physiologically, the input

resistance of a neuron is inversely proportional to its membrane surface area (see

Section 1.2.3), so these correlations are unsurprising from a biological standpoint.

The voltage sag, which measures the difference between the initial and sustained

response of a cell to a 1 s injection of current that causes hyperpolarization, was
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Figure 4.8: Correlation between electrophysiological and morphological features in
the mPFC data set. Colours show the sign and magnitude of the Pearson correlation.
Stars represent asymptotic p values, at levels p< 0.005 (∗) and p< 0.001 (∗∗), with
the null hypothesis of the independence of the feature distributions. p values have
been adjusted for multiple comparisons using the Benjamini & Hochberg procedure.

strongly positively correlated with morphological variables relating to dendrite length

and somatic area. The value of the voltage sag represents the level of expression

of HCN channels in a neuron, which have been shown to increase in density with

increasing distance from the soma (see Section 1.2.3). This could explain the larger

voltage sags observed in neurons with greater dendritic lengths in this data set.

HCN channels are also believed to play a role in regulating the resting membrane

potential (RMP) of a neuron (Robinson and Siegelbaum, 2003), which may account

for fact that RMP exhibited similar correlations with morphological features related

to dendritic length.

The degree of correlation between the morphological and electrophysiological features

in this data set varied for cells in different layers. For the cells in L2, there were no

significant correlations between their morphological and electrophysiological prop-
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erties. For L3 cells, significant positive correlations were observed between apical

dendrite length and several electrophysiological parameters such as rheobase, RMP,

voltage sag and the membrane time constant at p=0.01.

The cells in L5 exhibited the strongest correlations between their morphological and

electrophysiological features. Similar to the relationships found in the entire mPFC

data set, there were significant negative correlations between input resistance and

properties relating to dendritic length and branch numbers, and positive correlations

between these dendritic properties and voltage sag and rheobase evident for L5

cells. There were also significant positive correlations between ISI 2 and ISI 3 and

features of dendritic morphology. The ISI features measure the rate of spike frequency

adaptation of a neuron to an input current. This suggests that the fast-adapting L5

neurons in this data set had larger dendritic arbours than L5 neurons that adapt

slowly to input current injections. Considerable morphological diversity existed

across the L6 cells in the mPFC data set, and no significant correlations between

the morphological and electrophysiological properties of these cells were found.

Clustering of the mPFC data set

The single and multi-view methods outlined in Section 4.3.1 were applied to the clus-

tering of the mPFC data set, and the four evaluation measures described in Section

4.3.3 used to assess the output of each method. In order to most closely replicate the

original analysis by Van Aerde and Feldmeyer (2015), the full electrophysiological

and morphological feature sets listed in Table 8 of Van Aerde and Feldmeyer (2015)

and described in Appendix A.2 were used as input to each of the clustering methods.

The impact of performing principal components analysis to reduce the dimensionality

of the feature sets before clustering was also investigated, but this produced similar

results to the use of the full feature set, so the results are not presented here.

In their original paper, Van Aerde and Feldmeyer (2015) present the results from

hierarchical clustering of the concatenated morphological and electrophysiological

feature sets from the mPFC cells. In this study, I also perform hierarchical clus-

tering using the same concatenated feature set. However, to ensure consistency in

the implementation of all of the clustering methods in this study, the gap statis-

tic was used to find the optimal number of clusters from hierarchical clustering

in this case, resulting in some differences in the results presented here and those

in the original paper. I also describe the results from hierarchical clustering of
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the individual morphological and electrophysiological feature sets, which was not

examined in the original analysis of this data set by Van Aerde and Feldmeyer (2015).

Although the expected values of AMI and ARI from a random clustering are zero

due to the way in which they are defined, there is no fixed expected value for the

purity and precision measures. To investigate this, as well as the variability of each

measure, I calculated the 95th percentile value of the four evaluation measures from

hierarchical clustering of 100 randomly shuffled versions of the concatenated mPFC

feature set. This acts as a baseline, used to assess the significance of the clustering

solutions from each method compared to a random clustering of the data set. The

95th percentile values varied for different values of k, and the top line of Table 4.6

shows the maximum 95th percentiles of each measure for k ≥ 5.

4.4.2 Single-view clustering of the mPFC data set

First, the clustering results from single-view hierarchical clustering of the individual

and concatenated mPFC feature sets were examined. Bagged hierarchical clustering

of the concatenated feature set identified twelve clusters with a 86.6% purity in the

spilt of cells by cortical layer, as well as reasonably high values of AMI, ARI and

precision (Table 4.6). Using only the thirteen morphological variables, eleven clusters

were identified, with purity of over 89%, as well as higher AMI and ARI than the

clustering solution from the concatenated feature set. Using only the electrophysio-

logical feature set, on the other hand, produced a lower quality clustering solution,

with ∼74% purity in the split of cells by layer and also low values for AMI, ARI

and precision. This suggests that the electrophysiological characteristics are less

informative for separating the neurons by cell type in this data set.

Table 4.2 shows the level of similarity between the clusters found using each set of

features, as measured by both the AMI and ARI. There was a low level of similar-

ity between the clusters from the morphological feature set and those found using

electrophysiological features only. Higher levels of similarity were observed between

the clusters from the concatenated feature set and those found using either the

morphological or electrophysiological features alone. However, these two values are

comparable, suggesting that hierarchical clustering of the concatenated feature set

does not just find the dominant clusters in one of the views, but identifies a different

set of clusters using both morphological and electrophysiological information.
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AMI ARI

Morph Ephys Concat Morph Ephys Concat

Morph 1 - - 1 - -
Ephys 0.193 1 - 0.298 1 -
Concat 0.414 0.506 1 0.585 0.523 1

Table 4.2: Similarity between the cluster solutions from hierarchical clustering of the
morphological, electrophysiological and concatenated mPFC feature sets, measured
by AMI and ARI.

Next, the three explicit hierarchical clustering solutions of this data set are ex-

amined. A common notation is used throughout, in which CA,Bi refers to the ith

cluster produced from data set A using clustering method B. i.e. CM,H
1 refers to the

first cluster produced from hierarchical clustering (H) of the morphological feature

set (M). For each clustering solution, the importance of each of the features for dif-

ferentiating between the clusters was assessed by performing pairwise Mann-Whitney

tests to compare the distribution of each feature between each of the pairs of clusters,

with p-values adjusted for multiple comparisons using the Benjamini & Hochberg

procedure. The features that exhibited the highest number of pairwise significant

differences at p=0.05 for each clustering solution are given in Tables 4.3, 4.4 and

4.5, along with the breakdown of the cells by layer in each cluster. Note here that

the absolute values of these p values do not represent the true level of statistical

significance, as the cluster solutions have been derived using the same feature set.

The relative p values, however, are informative for indicating which features differ

the most between clusters.

Layer 2

In the solution from hierarchical clustering of the concatenated feature set, L2 cells

were split over two clusters, one containing purely L2 cells (CC,H1 ), while the other

contained a mixture of L2 and L3 cells (CC,H2 ), which had lower apical lengths and

higher rheobase values compared to the cells in CC,H1 (Table 4.3). Clustering using

the morphological features alone was slightly more effective at separating L2 cells

from cells in other layers (Table 4.4), while electrophysiological features alone could

not separate L2 and L3 cells effectively (Table 4.5).
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Cluster Cells per layer Feature values

L2 L3 L5 L6 Basal length Basal span Rheobase
(µm) (µm) (pA)

CC,H1 6 0 0 0 1527 ± 269 183 ±12 162 ± 12

CC,H2 5 6 0 0 2455 ± 203 235 ±11 232 ± 11

CC,H3 0 11 0 0 2887 ± 188 275 ±9 121 ± 8

CC,H4 0 3 10 0 3629 ± 213 342 ±20 85 ± 6

CC,H5 0 1 5 0 4835 ± 335 384 ±33 177 ± 12

CC,H6 0 0 19 0 5624 ± 261 406 ±9 111 ± 6

CC,H7 0 0 2 5 1933 ± 231 231 ±15 77 ± 13

CC,H8 0 0 3 3 3043 ± 346 722 ±116 55 ± 7

CC,H9 0 0 19 0 4580 ± 208 323 ±8 173 ± 11

CC,H10 0 0 0 2 1563 ± 154 173 ± 22 65 ± 5

CC,H11 0 0 0 1 2317 293 70

CC,H12 0 0 0 2 2445 ± 531 304 ±31 160 ±20

Table 4.3: Solution from hierarchical clustering using the concatenated feature set
from mPFC cells. Columns 2–5 show the number of cells from each layer in each
cluster. Bold values show the dominant layer in each cluster. Columns 6–8 show the
values of various features in each cluster (mean ± standard error of the mean).

Cluster Cells per layer Feature values

L2 L3 L5 L6 Span Sum length Total branches
(µm) (µm)

CM,H
1 1 0 10 0 298 ± 10 10397 ± 357 74 ± 2

CM,H
2 8 0 0 0 188 ± 10 5047 ± 137 47 ± 2

CM,H
3 2 19 0 0 250 ± 8 5260 ± 176 39 ± 2

CM,H
4 0 2 19 0 390 ± 20 8100 ± 163 47 ±1

CM,H
5 0 0 8 0 410 ± 20 10052 ± 235 58 ± 2

CM,H
6 0 0 9 2 357± 17 6068 ± 348 37 ± 2

CM,H
7 0 0 3 4 232 ± 16 5770 ± 419 44 ± 3

CM,H
8 0 0 7 0 352 ± 15 12454 ± 568 79 ± 4

CM,H
9 0 0 2 2 884 ± 82 4831 ± 358 24 ± 3

CM,H
10 0 0 0 4 238 ± 41 3471 ± 562 36 ± 3

CM,H
11 0 0 0 1 293 6634 36

Table 4.4: Solution from hierarchical clustering using the morphological features of
mPFC cells. Table formatted as per Table 4.3.
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Cluster Cells per layer Feature values

L2 L3 L5 L6 Time constant Resistance Rheobase
(ms) (MΩ) (pA)

CE,H1 3 4 1 0 25.0 ± 1.6 150 ± 13 154 ± 8

CE,H2 7 6 1 0 18.4 ± 0.5 148 ± 10 223 ± 10

CE,H3 1 0 0 5 17.5 ± 1.4 264 ± 34 123 ± 16

CE,H4 0 1 5 3 32.0 ± 0.9 235 ± 17 79 ± 6

CE,H5 0 7 3 0 27.3 ± 1.4 135 ± 8 126 ± 7

CE,H6 0 1 16 0 33.8 ± 1.3 156 ± 9 108 ± 5

CE,H7 0 2 10 0 44.2 ± 1.7 209 ± 14 71 ± 5

CE,H8 0 0 21 0 21.4 ± 0.9 93 ± 5 178 ± 9

CE,H9 0 0 1 4 33.8 ± 1.7 396 ± 32 48 ± 4

CE,H10 0 0 0 1 27.3 473 70

Table 4.5: Solution from hierarchical clustering using the electrophysiological features
of mPFC cells. Table formatted as per Table 4.3.

Layer 3

Clustering using only the electrophysiological feature set also performed very poorly

at separating L3 cells from cells in all other layers, with L3 cells present in six

of the ten clusters identified in this feature set (Table 4.5). Clustering using the

concatenated or morphological feature sets achieved a clearer separation of L3 cells

from cells in other layers. These two clustering solutions disagreed on the number of

cell types present in L3, with the morphological features identifying one cell type

in L3 (CM,H
3 ), while the concatenated clustering solution split the L3 cells primarily

into two main clusters (CC,H{2,3}) (Tables 4.3, 4.4).

Layer 5

L5 cells were split over a number of clusters in the solutions from each of the three

feature sets. In the predominantly L5 clusters from the concatenated feature set

(CC,H{4,5,6,8,9}), morphological properties showed the most significant variations (Table

4.3). In particular, the basal dendrite length, total dendrite length and total number

of dendritic branches varied greatly between these L5 clusters.

Several L5 cells with low basal lengths (CC,H7 ) or high basal span (CC,H8 ) were

incorporated into clusters with L6 cells with similar properties in the concatenated

clustering solution. Similar combined L5 and L6 clusters were also present in the

clustering solution from the morphological feature set (CM,H
{7,9}) (Table 4.4). In the
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clusters found using electrophysiological features only, L5 cells were largely split over

four clusters which varied significantly in terms of their input resistance, rheobase

and time constant (Table 4.5).

Layer 6

L6 cells were also split across numerous clusters in all three clustering solutions. In

the solution from the concatenated feature set, L6 cells were commonly clustered with

L5 cells with similar features (CC,H{7,8}) (Table 4.3). There were also three small clusters

containing purely L6 cells in this solution (CC,H{10,11,12}), which were well separated

by the morphological feature of their apical dendrite length. The pure L6 clusters

found in the morphological feature set were similar to those identified using the

concatenated feature set, however two of the concatenated clusters (CC,H{10,12}) were

combined into a single cell type in this solution (CM,H
10 ) (Table 4.4).

One of the L6 clusters identified in the concatenated feature set (CC,H11 ) contained a

single L6 cell, which was identical to cluster CM,H
11 found using only morphological

features. This cell was an outlier in terms of the span of its apical tuft dendrites,

which at 839µm was the largest of all the cells in the data set, and significantly

greater than that of the cell with the next longest span (642µm). This cell was

not an outlier in terms of its electrophysiological features, and when clustered using

electrophysiological features only, was incorporated into a cluster with other L3, 5

and 6 cells (CE,H4 ) (Table 4.5).

4.4.3 Multi-view clustering of the mPFC data set

The multi-view methods described in Section 4.3.1 were next used to cluster the

mPFC data set, and the clustering quality assessed using the four evaluation mea-

sures. The evaluation measure scores from all of the clustering methods exceeded

the baseline values given by the 95th percentiles from hierarchical clustering of 100

random shuffled versions of the mPFC data set (Table 4.6, top row), indicating that

all of the clustering methods considerably outperformed random clustering of the

data set.

Excluding the iCluster+ algorithm and cluster ensemble method using k-means

clustering, all of the multi-view methods outperformed hierarchical clustering of the

electrophysiological feature set according to the majority of the evaluation measures.

Additionally, a number of multi-view methods outperformed hierarchical clustering

of the morphological or concatenated feature set (Table 4.6).
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Two of the highest performing methods belonged to the latent subspace category

of multi-view techniques, namely the linear CCA and RCCA methods, which both

achieved higher scores than the three hierarchical clustering solutions according to all

of the evaluation measures. The RCCA method outperformed the linear CCA method

according to the purity and precision measures. This method identified thirteen

clusters with the highest purity (0.912) and precision (0.854) of all of the clustering

methods, as well as high values for AMI and ARI. The linear CCA method identified

nine clusters with the highest AMI and ARI values (0.396 and 0.277 respectively) of

any clustering solution. The purity and precision values from this method were also

amongst the top three of any clustering method on this data set.

Two of the bootstrapping clustering techniques, the spectral centroid and spec-

tral pairwise methods, produced clustering solutions which scored highly across the

evaluation measures. Of these two methods, the spectral centroid method produced

the highest quality clusters, and in particular achieved high values of AMI (0.367) and

ARI (0.274). The eight clusters found by this method, however, were not amongst

the highest performing methods according to their purity and precision scores, which

were both below 0.86.

The early integration clustering methods exhibited reasonable performance at cluster-

ing the mPFC data set, and often outperformed simple hierarchical clustering of the

concatenated feature set, however, their performance was generally not comparable

to the highest performing multi-view clustering methods on this data set. Of these

methods, the weighted kernel k-means method, which found 14 clusters with pu-

rity of 87.4% and a high precision value of 0.846, exhibited the strongest performance.

The post-clustering combination methods were the poorest performing multi-view

techniques according to the evaluation measures. The tendency of the cluster en-

semble method to find relatively equally sized clusters could account for the poor

performance of this technique at clustering the mPFC data set, in which the number

of cells are not evenly distributed across layers. The clusters identified by the PLC

method using k-means or hierarchical initial clusterings scored reasonably according

to the AMI and ARI measures, but had relatively low purity and precision compared

to the other multi-view techniques.
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4.4.4 Cell types from multi-view clustering of the mPFC

data set

Based on the results in Table 4.6, two methods stood out as the highest performing

multi-view clustering techniques on the mPFC data set. These were the RCCA

and linear CCA (LCCA) methods. These two methods identified clusters which

had higher scores than hierarchical clustering of any of the single or concatenated

feature sets and were also amongst the top four multi-view methods according to all

four evaluation measures. The RCCA method found a greater number of clusters

(n = 13) compared to the LCCA method and outperformed according to the purity

and precision measures, while the LCCA method found a smaller number (n = 9) of

clusters, with the highest AMI and ARI values of all of the clustering methods.

The cell types found by these two high performing methods are next explicitly

examined. Due to the use of PAM to partition the projected feature set in the LCCA

method, a single clustering solution was produced for LCCA, which is examined

below. Because of the random projection element of RCCA, the solutions varied

between trials of this method. To find a single clustering solution to use for the

analysis of the cell types in the data set, clustering of the data was repeated 100

times using the RCCA method, and the solution with evaluation scores closest to

the median values was chosen for examination.

Cell types from the RCCA method

The RCCA method identified thirteen cell types in the mPFC data set (Table 4.7).

The clusters found by this method were more similar to those found by hierarchical

clustering of the concatenated feature set (AMI =0.679, ARI=0.594) than those from

clustering of the morphological feature set alone (AMI=0.553, ARI =0.384) or using

electrophysiological features only (AMI=0.382, ARI=0.295).

Layer 2

The RCCA method achieved a clearer separation of L2 cells from cells of other layers

than hierarchical clustering of either of the single or concatenated feature sets. This

method found one cell type in L2 (CMV,RC
1 ), which was characterised by cells with

low basal dendrite lengths and resting membrane potentials.
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Cluster Cells per layer Feature values

L2 L3 L5 L6 Total length Soma area Total branches
(µm) (µm2)

CMV,RC
1 11 3 0 0 5341 ± 229 202 ± 7 49 ± 2

CMV,RC
2 0 10 0 0 5430 ± 265 172 ± 8 38 ± 2

CMV,RC
3 0 5 0 0 5536 ± 413 247 ± 8 37 ± 2

CMV,RC
4 0 2 14 0 6486 ± 306 318 ± 10 41 ± 2

CMV,RC
5 0 1 4 0 7680 ± 285 193 ± 21 45 ± 3

CMV,RC
6 0 0 19 0 9167 ± 255 306 ± 10 52 ± 2

CMV,RC
7 0 0 5 0 13178 ± 349 395 ± 35 82 ± 5

CMV,RC
8 0 0 12 0 10676 ± 230 375 ± 19 74 ± 2

CMV,RC
9 0 0 3 3 4495 ± 330 208 ± 17 26 ± 3

CMV,RC
10 0 0 1 5 5876 ± 407 192 ± 18 45 ± 3

CMV,RC
11 0 0 0 2 2505 ± 37 167 ± 14 32 ± 4

CMV,RC
12 0 0 0 2 4437 ± 169 252 ± 51 40 ± 4

CMV,RC
13 0 0 0 1 6634 188 36

Table 4.7: Solution from clustering using the RCCA method on the multi-view mPFC
data set. Table formatted as per Table 4.3.

Layer 3

The RCCA method was also able to better separate L3 cells from cells in other layers

compared to hierarchical clustering of the concatenated feature set. The RCCA

method identified two clusters containing primarily L3 cells (CMV,RC
{2,3} ). These cell

types were well separated in terms of their apical length, somatic surface area and

voltage sag, with CMV,RC
2 containing cells with greater apical dendrite lengths, lower

soma surface areas and lower voltage sag.

Layer 5

The RCCA method identified five clusters containing a majority of L5 cells, which

had very high purity in terms of cell layer. Significant variation was observed between

both the morphological and electrophysiological features of cells in these L5 clusters.

In particular, the total dendrite length, input resistance and rheobase showed high

levels of pairwise significant difference between the L5 clusters.

There was also a cluster that contained equal numbers of L5 and L6 cells in the

RCCA solution (CMV,RC
9 ). This cluster was very similar to the clusters CM,H

9 and

CC,H8 from the hierarchical clustering solutions. The majority of cells in this cluster

were also combined into a single cell type labelled ‘L5 wide’ in the original analysis

by Van Aerde and Feldmeyer (2015).



4.4. Results 169

Layer 6

The RCCA method identified four cell types containing a majority of L6 cells. The

vertical span was an important feature for separating these clusters, with one cluster

containing cells with long range projections to L1 or L3 (CMV,RC
10 ), while three cluster

contained cells which project to local layers (L5 or L6) (CMV,RC
{11,12,13}).

One of the L6 clusters (CMV,RC
13 ) contained a single cell, which is an outlier in

terms of its apical tuft span. This is the same cell that was allocated to a single-

cell cluster in the solutions from hierarchical clustering of the morphological and

concatenated feature sets (CC,H11 , CM,H
11 ). The other two L6 clusters in this solution,

which contained cells with short range projections, were well separated in terms of

their total dendritic lengths, with CMV,RC
12 containing larger cells. Using a similar

naming scheme to the original analysis by Van Aerde and Feldmeyer (2015), these

cell types (CMV,RC
{10,11,12,13}) could be labelled as L6 tall, L6 small, L6 short and L6 wide

respectively.

Cell types from the LCCA method

The LCCA method identified nine cell types in the mPFC data set (Table 4.8).

These clusters had a reasonable level of similarity to the clusters found by the RCCA

method (AMI=0.641, ARI=0.576). The LCCA solution also again had higher levels

of similarity to the clustering solution from the concatenated feature set (AMI=0.643,

ARI = 0.569) than the clusters found using morphological features alone (AMI =

0.581, ARI =0.441), or just the electrophysiological feature set (AMI=0.419, ARI

=0.347).

Layer 2

The LCCA method produced a clearer separation of L2 cells from cells of other

layers than in the RCCA or hierarchical clustering solutions, allocating all L2 cells

to one cluster (CMV,LC
1 ), which contained cells with low basal dendrite lengths and

low cortical depth.

Layer 3

The LCCA method found one cell type in L3 (CMV,LC
2 ). These cells had relatively

low voltage sag and low basal spans. The L3 cells in this data set with high voltage

sag or larger basal spans tended to be allocated to two clusters containing primarily

L5 cells in this solution (CMV,LC
{3,4} ).
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Cluster Cells per layer Feature values

L2 L3 L5 L6 Cortical Basal length Total length
location (%) (µm) (µm)

CMV,LC
1 11 1 0 0 19.8 ± 1.2 1739 ± 148 5199 ± 241

CMV,LC
2 0 15 1 0 28.1 ± 1.7 2941 ± 145 5514 ± 182

CMV,LC
3 0 4 12 0 42.9 ± 2.0 3593 ± 209 6312 ± 322

CMV,LC
4 0 1 12 0 50.5 ± 2.6 4642 ± 228 8312 ± 300

CMV,LC
5 0 0 13 0 48.6 ± 2.1 6117 ± 260 9173 ± 289

CMV,LC
6 0 0 17 0 51.5 ± 1.9 4622 ± 206 11412 ± 341

CMV,LC
7 0 0 3 8 73.5 ± 2.3 2359 ± 287 5131 ± 334

CMV,LC
8 0 0 0 4 83.3 ± 7.8 1999 ± 338 3471 ± 562

CMV,LC
9 0 0 0 1 75.0 2317 6634

Table 4.8: Solution from clustering using the LCCA method on the multi-view mPFC
data set. Table formatted as per Table 4.3.

Layer 5

The LCCA method identified four clusters containing a majority of L5 cells. Both

morphological and electrophysiological features varied across the L5 clusters found by

the LCCA method. In particular, total dendritic length, basal length, total number of

branches, soma surface area and input resistance showed significant variance between

the L5 clusters.

Layer 6

The LCCA method found three cell types in L6. One cluster contained the L6 cells

with long range projections, as well as three L5 cells (CMV,LC
7 ). This cluster contained

most of the cells allocated to the combined L5/6 clusters CC,H8 and CM,H
9 , plus some

additional L6 cells.

The LCCA method identified the same single-cell L6 cluster found by the RCCA

and hierarchical clustering methods, containing the cell with the highest apical tuft

span (CMV,LC
9 ). The other short range projection cells in L6 were combined into one

cluster in this solution (CMV,LC
8 ), as opposed to the RCCA solution, in which they

were separated into ‘small’ and ‘short’ L6 cell types (CMV,RC
{11,12} ).
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Robustness of multi-view clustering solutions

To examine the robustness of the above cluster solutions found by the RCCA and

LCCA methods, I took a leave-one-out cross-validation (LOOCV) approach similar

to Sümbül et al. (2014). For each method, this involved removing each neuron from

the data set in turn, and using the method to cluster the remaining 102 neurons.

The removed neuron was then allocated to the closest cluster centre in the projected

space. The similarity between the LOOCV solution for each left-out data point and

the original cluster solution examined in the preceding sections was measured using

the Rand Index (RI).

Using this approach, the RI for LOOCV of the RCCA solution was found to be 0.930

± 0.015 (mean ± sd) across the 103 LOOCV trials, and 0.939 ± 0.019 for the LCCA

method. This suggests that there is some variability in the clustering solutions from

both of these methods caused by small changes to the data set. Given the small size

of some of the clusters identified in this data set, some variation caused by leaving

out single data points is unsurprising.

4.4.5 Overview of cell types in the mPFC data set

Reclassification of cell layer of origin

Although the layer of origin of the pyramidal cells in the mPFC data set was used to

assess the performance each of the clustering techniques in this study, all deviations

from this proxy ‘ground truth’ may not necessarily reflect errors in the clustering, but

could instead be of biological significance. For example, although pyramidal cell types

in the cortex have a general laminar distribution, it has been seen that these distribu-

tions do not necessarily precisely match layer borders defined using cytoarchitectonic

criteria, and cell types may intermingle at the borders between layers (Oberlaender

et al., 2012). In their original analysis, Van Aerde and Feldmeyer (2015) reclassi-

fied six cells in this data set into layers different to their experimentally identified

layers based on the results from hierarchical clustering of the concatenated feature set.

The clustering solutions from the multi-view techniques presented here also suggest

that several neurons in this data set may belong to cell types that are in opposition to

their experimentally classified layer. Firstly, of the three L3 cells that were allocated

to the predominantly L2 cluster in the RCCA solution (CMV,RC
1 ), two of these were
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located very close (within 8% of the total width of L3) to the layer border with L2.

One of these cells, which was 3% from the L2 border, was also classified into the

primarily L2 cluster CMV,LC
1 using the LCCA method. This strongly suggests that

this cell may actually represent a L2 cell type that was misclassified as a L3 cell

based on cytoarchitectonic criteria.

There were also several cells near the L3/L5 border that the clustering results

indicate may be experimentally misclassified. The one L3 cell in the predominantly

L5 cluster CMV,RC
5 found by the RCCA method was located within 5% of the layer

border with L5. This cell was also allocated to a predominantly L5 cluster by the

LCCA method and hierarchical clustering of the morphological and concatenated

feature sets (CMV,LC
4 , CC,H5 , CM,H

4 ), as well as being reclassified in the original study

by Van Aerde and Feldmeyer (2015) to an L5 cell type. This strongly suggests that

this is in fact a L5 cell type. The other L3 cell that was reclassified as L5 by the

original authors was also allocated to a predominantly L5 cluster using the LCCA

method and hierarchical clustering of the morphological or concatenated feature sets

(CMV,LC
3 , CC,H4 , CM,H

4 ), so its reclassification to a L5 cell type is likely correct.

Location in the cortex was included as a parameter in the morphological feature

set used to cluster these cells, and thus cortical depth influenced the clusters found

using the multi-view methods and hierarchical clustering of the morphological or

concatenated feature sets. However, even when clustering was repeated with this

feature removed, the results still suggested that the cells identified above belonged

to different layers than their experimentally classified layer. This indicates that it is

intrinsic properties of these cells, rather than just their laminar location, that has

prompted their reclassification.

Van Aerde and Feldmeyer (2015) also proposed the existence of a rare subclass

of cells in this data set they label as ‘L5 wide’, which contains cells located in both

L5 and L6 that are not close to the layer border, but are sufficiently similar to be

classified as a single cell type. The two L6 cells that were allocated to this ‘L5

wide’ subtype were also classified into combined L5/L6 clusters in the results from

the LCCA and RCCA methods (CMV,RC
9 , CMV,LC

7 ). This provides confidence in the

existence of a cell type in this data set that contains both L5 and L6 cells.
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Other results from the multi-view clustering methods presented here, however,

disagree with the reclassification of some cells suggested in the original paper. A

neuron that was experimentally labelled as L6 but reclassified as ‘L5 slender high

resistance’ by Van Aerde and Feldmeyer (2015) based on their hierarchical clustering

results, was allocated to clusters containing primarily L6 cells in the RCCA and

LCCA solutions (CMV,RC
10 , CMV,LC

8 ). This suggests that in this case, this cell may

actually be a L6 cell type that was incorrectly classified by Van Aerde and Feldmeyer

(2015) due to their use of single-view clustering techniques. The same is true of an

experimentally identified L2 cell that was relabelled as a L3 cell type by Van Aerde

and Feldmeyer (2015), but was allocated to clusters containing predominantly L2

cells by both the RCCA and LCCA methods (CMV,RC
1 , CMV,LC

1 ).

Summary of mPFC cell types

Given the innate heterogeneity of biological neurons, and the fact that the layer

of origin of these pyramidal cells does not necessarily reflect the absolute ‘ground

truth’ of how cells should be separated, a definitive classification of neurons in the

rat mPFC into their underlying cell types using the data set given here can not

be expected. However, based on the results from the high-performing clustering

methods, several conclusions about the identity of the cell types in this data set can

be drawn.

Firstly, the mPFC data set appears to contain one type of L2 neurons, which

consists of cells with low basal dendrite lengths and resting membrane potentials.

Two cell types can be identified in L3, one consisting of neurons with greater apical

dendrite lengths and lower voltage sag. L5 contains 4–5 cell types, which vary in

both their morphological and electrophysiological properties. Two cells in this data

set located in L3 based on cytoarchitectonic criteria but near the border with L5 are

most likely L5 cell types. A rare subtype that contains both L5 and L6 cells is also

apparent in this data set, and a single cell in L6 with a large apical tuft dendrite

span appears to belong to its own class of cells. Three other cell types exist in L6

in this data set, one ‘tall’ cell type that have projections to L1 or L3, and two cell

types with projections to local layers that can be classified as ‘short’ or ‘small’ based

on the total length of their apical dendrites.



174 Chapter 4. Multi-view neuronal cell type classification

4.4.6 Conclusions from clustering of the mPFC data set

Analysis of this data set of cells from rat mPFC revealed correlations between numer-

ous morphological and electrophysiological features, several of which can be explained

by known physiological properties of neurons. Based on hierarchical clustering of

the single feature sets, I concluded that the morphological features were the most

informative for clustering of this data set, and that cell types could not be identified

with a high level of accuracy using the electrophysiological features alone. Although

using only the morphological variables can achieve a reasonably good clustering of

this data set, as measured by the separation of cells by their cortical layer, the best

cluster solutions were produced by using both types of features, in a more informed

manner than simple hierarchical clustering of the concatenated feature set.

In particular, the LCCA and RCCA methods, which cluster multi-view data sets

by first projecting the features into a latent subspace, achieved the most accurate

classification of cell types in the mPFC data set. These two methods produced

clustering solutions of higher quality than the single and concatenated hierarchical

clustering solutions and were also amongst the top four multi-view methods according

to all of the evaluation measures. Analysis of the solution from a single iteration of

these methods revealed clusters that were often better separated by cortical layer

than those from hierarchical clustering of the single or concatenated feature sets,

and generally showed variation in both their morphological and electrophysiological

properties.

The RCCA method identified clusters with the highest purity of split of cells by layer,

and in particular performed very well at separating L5 and L6 cells from the cells

in other layers. With its lower number of clusters, the purity of the LCCA method

solution was not as high, and in particular had lower performance at separating L3

cells from other cell types. This method also tended to combine some of the RCCA

clusters into a smaller number of cell types, for example combining two L6 cell types

identified by the RCCA method into a single cluster.

Some of the cell types in the RCCA and LCCA solutions map well to the cell

types found by hierarchical clustering in the original analysis by Van Aerde and

Feldmeyer (2015), but there were also differences. For example, the RCCA method

identified the ‘small’ and ‘short’ L6 cell type from the original analysis, but had

different allocations of L5 cells. There were also several cells that were reclassified
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into different layers from their experimentally identified layers by Van Aerde and

Feldmeyer (2015) that the RCCA and LCCA methods identified as indeed belonging

to their originally experimentally labelled layer. This suggests that these multi-view

methods may be able to provide a more accurate classification of cells that represent

edge cases than simple hierarchical clustering of the concatenated feature set.

As well as performing hierarchical clustering on the complete mPFC data set,

Van Aerde and Feldmeyer (2015) used the results from hierarchical clustering of

the cells from each layer independently to obtain the descriptive cell labels in the

original study. For each layer, ANOVA tests were used to find the parameters

that significantly differed between the clusters, and clustering was repeated using

only these parameters. The result of this procedure was that different parameters

were used to cluster the cells in each layer. As well as producing cluster solutions

with a clearer separation of cells by cortical layer, the LCCA and RCCA methods

are also a more automated and unbiased method for classifying cells compared to

the approach used in Van Aerde and Feldmeyer (2015), as cells from all layers are

clustered simultaneously using the same feature set.

Based on the coherence of the identified clusters with the ‘ground truth’ cell labels, as

well as explicit analysis of the cases in which the clustering results deviated from these

labels, the RCCA method was judged to produce the most appropriate classification

of cell types in the mPFC data set. However, there was some variation in the solution

from this method with small variations to the data set, so the cell types identified by

this method should be treated with caution and may not generalise to other data

sets of mPFC cells.

In conclusion, for the given data set of mPFC cells I have shown that there appears to

be no advantage to using both the electrophysiological and morphological properties

of cells for their classification if only single-view clustering techniques are considered,

as hierarchical clustering of the morphological feature set outperformed that of the

concatenated feature set. However, clustering of the electrophysiological feature

set alone outperformed what would be expected by random chance, indicating that

there is some signal relevant to cell type classification in this feature set. Multi-view

techniques allowed the electrophysiological features to inform the clustering in a

more effective manner than hierarchical clustering of the concatenated feature set.

In particular, the RCCA and LCCA methods outperformed hierarchical clustering of

the morphological and concatenated feature sets of this data set, and demonstrate

that use of both types of features can improve the clustering results in this case.
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4.4.7 Analysis of Allen Cell Types Database data set

Relationship between electrophysiological and morphological features

As in the mPFC data set, correlations were evident between several morphological

and electrophysiological variables in the Allen Cell Types Database data set described

in Section 4.3.2. In particular, the morphological features relating to dendritic size

such as the number of branches, nodes, tips and bifurcations, as well as total branch

length were strongly correlated with a number of electrophysiological features, par-

ticularly those relating to upstroke-downstroke (UD) ratios and peak and fast trough

voltages (Figure 4.9).
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Figure 4.9: Correlation between electrophysiological and morphological features in
the Allen Cell Types Database data set. Colours show the level of Pearson correlation.
Stars represent asymptotic p values, at levels p< 0.005 (∗) and p< 0.001 (∗∗). p
values have been adjusted for multiple comparisons using the Benjamini & Hochberg
procedure.
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Similar to the mPFC data set, these morphological properties were also signifi-

cantly positively correlated with voltage sag and negatively correlated with input

resistance. Combined, these relationships suggest that the neurons with longer and

more branched dendrites in this data set produce larger spikes with faster rates of

depolarization, and have lower resistance and more active HCN channels. Other

similarities between the correlations in this data set and those in the mPFC data set

were also evident. For example, the FI curve slope was negatively correlated with

features relating to dendritic size, however the correlation between these features

had higher levels of significance in this data set compared to the mPFC data set.

Reduction to principal components

As well as significant correlations between the morphological and electrophysiological

features in this data set, there were also strong correlations between the features

within each of the two views. Principal components analysis (PCA) was thus used to

reduce the dimensionality of the feature sets prior to clustering. Figure 4.10 shows

the projection of the data onto the first two principal components of each of the two

individual feature sets as well as the concatenation of the feature sets. By visual

inspection, there appears to be a clearer division of cells by dendrite type in the

concatenated and electrophysiological features sets, compared to the morphological

feature set, although there is no linear separation of the cells by dendrite type in any

of the feature sets.

Figure 4.10 also shows the cumulative fraction of variance explained by the prin-

cipal components (PCs) of each of the three feature sets. For the morphological

feature set, over 50% of the variance of the data is captured by the first PC. For the

electrophysiological feature set, a lower amount of variance is explained by the first

principal component, however, there is a steep increase in the cumulative proportion

of explained variance as additional components are added. The cutoff for the number

of PCs to use for further analysis was chosen as the PC at which at least 90% of

cumulative variance was explained, and adding an additional PC explained less than

a further 1% of variance. These values were 11, 12 and 16 for the morphological,

electrophysiological and concatenated feature sets respectively.
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Figure 4.10: Each column represents the PCA from one feature set from the Allen Cell
Types Database data set. A, B Morphological features, C, D electrophysiological
features, and E, F concatenated feature set. The first row shows the data projected
onto the first two PCs of each feature set. Data points are coloured by dendrite
type, with the legend in A applicable to all three plots. Spiny dendrites correspond
to excitatory cells and sparsely spiny and aspiny dendrites represent inhibitory cell
types. The second row shows the cumulative fraction of variance explained by each
PC. The grey dotted line shows the number of PCs chosen for use in future analysis.

4.4.8 Single-view clustering of the Allen Cell Types Database

data set

First, the results from single-view hierarchical clustering of the individual and con-

catenated feature sets were examined. Bagged hierarchical clustering was performed

on the top PCs from each of the individual views and the concatenated feature set,

and the quality of each clustering solution judged by comparing them against the

‘ground truth’ inhibitory or excitatory label of each cell type. Hierarchical clustering

of the concatenated feature set identified 21 clusters with an average purity of over

95% in the separation between inhibitory and excitatory cells, as well as reasonably

high values of AMI, ARI and precision (Table 4.11). Hierarchical clustering of

either of the individual views produced clusters of lower quality than those found

by clustering of the concatenated feature set (Table 4.11). This is in contrast to
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the previously analysed mPFC data set, for which clustering of the morphological

view of the data alone produced clusters that scored higher according to the evalua-

tion measures than the clusters identified in the concatenated data set (Section 4.4.2).

For the Allen Cell Types Database data set, electrophysiological features appeared

to be more informative for separating cells by their excitatory and inhibitory cell

type compared to their morphological properties. Hierarchical clustering of the

electrophysiological features alone identified 21 clusters with ∼ 94% purity, compared

to the ∼ 88% purity of the 23 clusters found using hierarchical clustering of the

morphological feature set. As seen in Table 4.9, the similarity between the clusters

found using the individual feature sets was very low, and the cluster solution from the

concatenated feature set had higher a level of similarity to the electrophysiological

clusters than the morphological clusters.

AMI ARI

Morph Ephys Concat Morph Ephys Concat

Morph 1 - - 1 - -
Ephys 0.155 1 - 0.060 1 -
Concat 0.307 0.495 1 0.150 0.301 1

Table 4.9: Similarity between the cluster solutions from hierarchical clustering of
the morphological, electrophysiological and concatenated feature sets from the Allen
Cell Types Database, measured by AMI and ARI.

For brevity, here I will focus on examining the cell types found using hierarchical

clustering of the concatenated feature set, which produced the highest quality clus-

ters of any of the single-view approaches. Twenty-one clusters were found in the

concatenated feature set, thirteen of which consisted primarily of excitatory cells and

eight of which contained a majority of inhibitory cells (Table 4.10). The inhibitory

and excitatory clusters were well separated by a number of electrophysiological

and morphological features. For example, cells in the inhibitory clusters generally

had lower UD ratios and were smaller than excitatory cells, with lower maximum

Euclidean distances of their dendritic branches (Figure 4.11). As pyramidal cells

comprise the majority of excitatory neurons in the cortex (see Section 1.4.1), the bulk

of excitatory cells in this data set would be expected to have pyramidal morphologies.

The larger maximum Euclidean distances of neurons in the excitatory clusters can

thus be attributed to the presence of apical dendrites in these pyramidal cells.
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Figure 4.11: Several features differentiated the inhibitory and excitatory clusters
found using hierarchical clustering of the concatenated Allen Cell Types Database
feature sets. A Upstroke/downstroke ratio with a short square input was generally
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Clusters are coloured based on the majority cell type in each cluster, either excitatory
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As in the mPFC data set, the excitatory cell types in this data set would be expected

to be well separated by layer. Although some inhibitory cell types display a degree of

laminar enrichment, they are generally not as layer-specific as excitatory cells (Tasic

et al., 2016). However, previous studies have shown that somatostatin (SST), par-

valbumin (PV) and ionotropic serotonin receptor 5HT3a (5HT3aR)-expressing cells

divide GABAergic interneurons into three major subtypes with little overlap between

classes (see Section 1.4.2). The cells in the Allen Cell Types Database were extracted

from a set of Cre recombinase-driver mouse lines, and the majority of inhibitory

cells in this data set were Cre-positive for one of these three molecular markers

(Allen Institute for Brain Science, 2017b). Assuming that Cre expression reflects
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the expression of the corresponding endogenous molecular marker, the inhibitory

clusters found in this data set should be well separated by these three markers if

they identify true pure cell types.

The excitatory clusters from hierarchical clustering of the concatenated Allen Cell

Types Database feature sets exhibited some degree of separation of cells by layer

(Table 4.10 rows 1–13, columns 4–9). L2/3 excitatory cells were generally not well

separated from cells in other layers and were spread mostly over three clusters, all

containing primarily L4 cells (CC,H{1,2,3}). Four clusters were identified that consisted

of a majority of L4 excitatory cells. These clusters did not have a high level of

purity by layer (∼ 68% average purity across the four clusters), however, they largely

contained only cells from neighbouring layers i.e. L2/3–L5.

Five clusters contained primarily excitatory cells from L5. These clusters had

reasonably high levels of purity in terms of layer, however, there were also L5 excita-

tory cells allocated to a number of other excitatory clusters in this solution. One of

the L5 clusters (CC,H9 ) contained a single cell, which had the highest trough and fast

trough voltages evoked by a ramp input current of all of the cells in the Allen Cell

Types Database data set.

The L6a excitatory neurons were the most cleanly separated from cells in other

layers in this clustering solution. Two clusters containing L6a cells were identified

by hierarchical clustering of the concatenated feature set, both of which contained

few cells from other layers (CC,H{10,11}). The L6b cells in this data set were allocated

to two clusters in the hierarchical clustering solution, one which had a high level of

purity (CC,H13 ), while the other contained cells from a range of layers (CC,H12 ).

The importance of each of the electrophysiological and morphological features for

differentiating between the clusters was again assessed by finding the features with

the highest number of significant pairwise differences between the clusters. The

features that exhibited the greatest number of pairwise significant differences at

p=0.05 between the excitatory clusters in this solution included both morphological

and electrophysiological features, such as the UD ratio with a ramp input, total

length, maximum branch order and the number of bifurcations, tips and branches of

dendrites.
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Cluster Cells per Cells per layer Cells per molecular
E/I type marker

I E L1 L2/3 L4 L5 L6a L6b PV 5HT3aR SST Other

CC,H1 0 20 0 5 12 3 0 0 – – – –

CC,H2 0 30 0 4 23 3 0 0 – – – –

CC,H3 7 30 0 8 21 6 2 0 – – – –

CC,H4 0 13 0 0 12 1 0 0 – – – –

CC,H5 1 11 0 1 3 7 1 0 – – – –

CC,H6 0 15 0 0 6 9 0 0 – – – –

CC,H7 0 18 0 0 2 16 0 0 – – – –

CC,H8 0 2 0 0 1 1 0 0 – – – –

CC,H9 0 1 0 0 0 1 0 0 – – – –

CC,H10 0 9 0 0 0 2 7 0 – – – –

CC,H11 0 11 0 0 0 2 9 0 – – – –

CC,H12 1 7 0 0 2 1 2 3 – – – –

CC,H13 0 7 0 0 0 0 1 6 – – – –

CC,H14 9 0 0 0 1 6 2 0 7 0 0 2

CC,H15 9 0 0 4 0 4 1 0 5 0 1 3

CC,H16 34 1 0 4 7 18 6 0 20 3 6 6

CC,H17 5 0 0 5 0 0 0 0 0 5 0 0

CC,H18 14 0 1 5 1 7 0 0 0 7 7 0

CC,H19 13 0 0 3 3 6 1 0 2 2 7 2

CC,H20 3 0 0 0 0 2 1 0 0 0 2 1

CC,H21 9 0 0 3 3 3 0 0 0 0 8 1

Table 4.10: Solution from hierarchical clustering using the concatenated feature set
from the Allen Cell Types Database. Columns 2–3 show the number of cells that
were either inhibitory (I) or excitatory (E) in each cluster. Columns 4–9 show the
number of cells per layer in each cluster. Columns 10–13 show the number of cells
per molecular marker, only for the clusters containing a majority of inhibitory cells.
Bold values show the dominant values in each cluster.
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Table 4.10 also shows the split of cells by their expression of the three major inhibitory

molecular markers in the data set (PV, 5HT3aR and SST), only for the clusters

that contained a majority of inhibitory cells (Table 4.10 rows 14–21, columns 10–13).

There was some separation of cells by molecular marker across the nine inhibitory

clusters found by hierarchical clustering of the concatenated feature set.

The purest of the inhibitory clusters contained only L2/3 5HT3aR-expressing cells

(CC,H17 ). There were also another three clusters that contained cells expressing only

one of the three major molecular markers (CC,H{14,20,21}). However, several of the other

clusters were quite mixed in terms of molecular marker, with an average purity of

∼ 63% across the eight inhibitory clusters. The features that showed the highest

level of pairwise significant difference between the inhibitory clusters in this solution

were all electrophysiological features, including the input resistance, trough time

with a long square input current and UD ratios with ramp and long square inputs.

4.4.9 Multi-view clustering of the Allen Cell Types Database

data set

Next, the multi-view methods from Section 4.3.1 were used to cluster the Allen

Cell Types Database data set. For most of the methods, the top PCs from each

view identified in Section 4.4.7 were used as input. The exceptions to this were the

RCCA, iCluster+ and TW-k-means methods. Since the RCCA method achieves

dimensionality reduction by random projection of the features followed by CCA,

the full multi-view feature set was used as input to this method. I also used the

full feature sets as input to the iCluster+ method, as this method was designed to

cluster high-dimensional genomics data sets and uses a Lasso penalty to reduce the

contribution of uninformative variables, as well as the TW-k-means method, which

performs weighting of individual features as part of the clustering procedure. Using

the full feature set for TW-k-means clustering also allowed the contribution of each

feature to the final clustering solution to be examined explicitly.

Again, baseline clustering performance was measured by calculating the 95th per-

centile values of each of the evaluation measures from clustering of the randomly

shuffled concatenated data set (Table 4.11, top row). All of the clustering methods

outperformed this baseline. Although the clusters found from hierarchical clustering

of the concatenated feature set scored reasonably highly across the four evaluation

measures, a number of the multi-view clustering techniques outperformed this ap-

proach according to several of the evaluation measures (Table 4.11).
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Several high performing clustering methods on this data set belonged to the la-

tent subspace category of multi-view techniques. The clusters found by the RCCA

method achieved the highest scores of all of the clustering methods across the ma-

jority of the evaluation measures. This method identified 19 clusters, with a purity

of over 96%, as well as very high values of AMI, ARI and precision. The partial

multi-view method also exhibited strong performance at clustering this data set, and

was amongst the top three clustering techniques according to most of the evaluation

measures. This method identified 20 clusters with the highest ARI (0.107) of any

of the clustering methods, as well as high AMI and precision. Additionally, the

LCCA method had reasonably high performance at clustering the Allen data set,

identifying twenty clusters with comparable evaluation measure scores to hierarchical

clustering of the concatenated feature set. The other subspace-based methods in

the study exhibited reasonable performance at clustering the Allen data set, but did

not consistently outperform single-view hierarchical clustering of the concatenated

feature set.

Several early integration multi-view clustering methods also had strong perfor-

mance at clustering this data set. The highest performing of these methods was

the TW-k-means method, which identified 25 clusters with over 96% purity in the

split of cells by excitatory and inhibitory type, and outperformed concatenated

hierarchical clustering according to most of the evaluation measures. The weighted

kernel k-means and sMD methods also exhibited strong performance at clustering

this data set, whereas the weighted kernel spectral method generally underperformed

hierarchical clustering of the concatenated feature set or either individual view.

Of the bootstrapping approaches to multi-view clustering, the spectral centroid

and pairwise methods exhibited the strongest performance at clustering this data

set. These methods generally outperformed hierarchical clustering of the individual

views of the data, but underperformed hierarchical clustering of the concatenated

feature set and the other high performing multi-view methods.

Finally, none of the post-clustering combination methods identified clusters of high

quality in the Allen Cell Types Database data set. The clusters found by these

methods had purity values generally below 90%, and ARI and AMI values comparable

to or lower than those from clustering of the morphological feature set alone.
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4.4.10 Cell types from multi-view clustering of the Allen

Cell Types Database data set

As discussed in Section 4.4.8, as well as the division of cells by their inhibitory and

excitatory type, the split of excitatory cells by layer and inhibitory cells by molecular

marker offers another measure of the quality of each clustering solution. Table 4.12

shows the purity levels of these values in the clusters produced from hierarchical

clustering of the concatenated feature set, as well as the three multi-view methods

that outperformed hierarchical clustering according to at least three of the evaluation

measures. These were the RCCA, TW-k-means and partial multi-view methods. The

single values from the deterministic hierarchical solution are presented, alongside the

mean and standard deviation across 100 runs of the multi-view methods.

Method Excitatory purity Inhibitory purity

Hierarchical 0.694 0.629
RCCA 0.700 (0.016) 0.596 (0.025)
TW-k-means 0.700 (0.024) 0.664 (0.034)
Partial multi-view 0.626 (0.018) 0.500 (0.026)

Table 4.12: Purity of excitatory clusters by layer and inhibitory clusters by molecular
marker from the top performing clustering methods on the Allen Cell Types Database
data set.

The RCCA, TW-k-means and hierarchical clustering solutions achieved comparable

levels of purity in the split of excitatory cells by layer, of 69− 70%, while the partial

multi-view solution exhibited lower levels of layer specific separation amongst its

excitatory clusters. The TW-k-means solution exhibited the highest purity in the

split of inhibitory cells by molecular marker, although a degree of the high purity

scores from this method may be attributable to the larger number of clusters found

by this method (n = 25) compared to the other high performing clustering techniques

(n ≤ 21). The inhibitory clusters from the RCCA method had slightly lower purity

compared to the hierarchical clustering solution, while the partial multi-view method

achieved a far poorer separation of inhibitory cells by molecular marker than the

other high performing clustering techniques.

Based on these results and those in Table 4.11, the TW-k-means and RCCA methods

appeared to be the multi-view clustering techniques that achieved the most accurate

clustering of the Allen Cell Types Database data set. The explicit cell types identified

by a single iteration of these methods are next examined. As these methods are both
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non-deterministic, the single solutions chosen for examination were those that had

evaluation measure scores closest to the median values from 100 repetitions of each

method. The explicit break down of cells by layer and molecular marker in each of

these clustering solutions are given in Appendix A.4 (Tables A.4, A.5).

Cell types from the RCCA method

The RCCA method identified 19 cell types in the Allen data set, ten of which

consisted primarily of excitatory cells and nine consisting of a majority of inhibitory

cells (Table A.4). As in the hierarchical clustering solution, L2/3 excitatory cells

were not well separated from cells from other layers in this solution, and were spread

over five clusters containing primarily L4 cells (CMV,RC
{1,2,3,4,5}). Similar to the hierarchical

clustering solution, these primarily L4 clusters generally only contained cells from

neighbouring layers.

As in the hierarchical clustering solution, L5 excitatory cells were present in a

large number of the excitatory clusters, primarily those dominated by L4 cells. How-

ever, there were also three clusters in this solution that consisted of a majority of L5

cells, two of which had high levels of purity (CMV,RC
{6,8} ). As opposed to the hierarchical

clustering solution, in which two L6a excitatory cell types were identified, excitatory

L6a cells were primarily allocated to one cluster, which also contained several L5

cells (CMV,RC
9 ). L6b cells were more cleanly separated from cells in other layers by

the RCCA method compared to the hierarchical clustering solution, with one cluster

containing almost all of the L6b excitatory cells in the data set (CMV,RC
10 ). The

features with high pairwise significant difference between these excitatory clusters

were all morphological features, including the overall height, and number of dendritic

branches and tips.

In the inhibitory clusters from the RCCA method, PV-expressing cells were generally

not well separated from cells expressing the other molecular markers (Table A.4, rows

11–19, columns 10–13). However, 5HT3aR-expressing cells were generally better

separated from other inhibitory cell types than in the hierarchical clustering solution.

An almost identical cluster to cluster CC,H17 from the hierarchical clustering solution

was identified by the RCCA method (CMV,RC
15 ), which contained the same five L2/3

5HT3aR-expressing cells as in the hierarchical cluster CC,H17 , plus the single L1 cell in

the data set. As in the hierarchical clustering solution, SST-expressing cells were

present in a number of inhibitory clusters. Several electrophysiological features
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showed high rates of pairwise significant difference between these inhibitory clusters,

including the input resistance, threshold current, threshold time, trough and fast

trough time and UD ratio with a ramp input.

Cell types from the TW-k-means method

The TW-k-means method identified a larger number (n = 25) of clusters in the Allen

Cell Types Database data set than the other high performing clustering methods,

eighteen of which consisted of a majority of excitatory cells, and seven of which

contained primarily inhibitory cells (Table A.5). L2/3 excitatory cells were again

not well separated from cells in other layers in this solution, with L2/3 excitatory

cells present in six clusters. Eight clusters in this solution contained a majority

of L4 excitatory cells. Although several of these clusters contained only cells from

neighbouring layers, there were also two clusters in which L4 excitatory cells were

clustered with cells from L6b (CMV,TW
{1,7} ).

There were seven clusters containing a majority of L5 excitatory cells in this solution,

which had reasonable levels of purity by layer. L6a and L6b excitatory cells were less

well separated from cells from other layers by the TW-k-means method compared

to the clustering solutions from the hierarchical and RCCA methods, and were

spread across several clusters. The features that showed the highest levels of pairwise

significant difference between the excitatory clusters identified by the TW-k-means

method were all morphological features, including the overall height, maximum path

distance, maximum Euclidean distance and number of dendritic tips.

The TW-k-means method achieved a higher purity of split of cells by molecu-

lar marker across its inhibitory clusters than the hierarchical clustering or RCCA

solutions, and in particular was more effective at separating PV-expressing neurons

from other cells. The TW-k-means method did not find the same pure cluster of

L2/3 5HT3aR-expressing cells as was found in the hierarchical clustering solution

(CC,H17 ), however four of the five cells in this cluster were allocated to the same cluster

in the TW-k-means method solution (CMV,TW
23 ). The fact that this cluster was mostly

conserved across the three clustering solutions provides confidence that this may

represent a pure cell type. The features that most frequently significantly differed

between the inhibitory clusters from the TW-k-means method were all electrophysio-

logical features, such as the UD ratio with a short square input, threshold current,

threshold time and trough time with a ramp input current.
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As well as generating a clustering solution, the TW-k-means method also finds

optimal weights for each of the views and the individual features as part of the

clustering procedure. For the Allen Cell Types Database data set, the view weights

found by the TW-k-means method were approximately equal. The distribution of

feature weights within each of the two views, however, varied (Figure 4.12). In

the electrophysiological view, a small number of features were very highly weighted

compared to other features (Figure 4.12A). These included latency, the slope of the

FI curve, membrane time constant and fast trough time with a short square input.

The top morphological features were more equally weighted, and consisted mostly of

features relating to the length and degree of branching of dendrites (Figure 4.12B).
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Figure 4.12: Feature weights from TW-k-means clustering of the Allen Cell Types
Database data set. A Electrophysiological features and B morphological features.
Within each feature set, the weights sum to one.

Robustness of the multi-view clustering solutions

The LOOCV procedure described in Section 4.4.4 was also performed on the solutions

from the RCCA and TW-k-means methods for the Allen Cell Types Database data

set. For the RCCA solution, the LOOCV RI was 0.922± 0.005, and 0.936± 0.06 for

the TW-k-means method. This suggests that both methods show some variability in

their clustering output with alterations to the data set, however some of this can be

attributed to the non-deterministic nature of these two clustering methods.
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4.4.11 Overview of cell types in the Allen Cell Types Database

data set

Comparison of Allen Cell Types Database clustering solutions

Table 4.13 shows the similarity between the hierarchical clustering and two multi-

view clustering solutions examined previously. The highest levels of similarity were

observed between the results from the TW-k-means method and concatenated

hierarchical clustering solution, whereas the RCCA and TW-k-means methods

solutions were the most dissimilar. Despite not being large in absolute value, the

similarities between these solutions were all significantly higher than those between

the hierarchical clustering solutions from the individual views of the Allen Cell Types

Database data set (Table 4.9).

AMI ARI

Concat RCCA TW-k-means Concat RCCA TW-k-means

Concat 1 - - 1 - -
RCCA 0.469 1 - 0.271 1 -
TW-k-means 0.505 0.397 1 0.321 0.215 1

Table 4.13: Similarity between the clustering solutions of the Allen Cell Types
Database data set, measured by AMI and ARI.

Reclassification of Allen Cell Types Database cells

As discussed in Section 4.4.5, the points at which the clustering solutions deviate

from the proxy ‘ground truth’ labels may be of biological significance. As in the

mPFC data set, for the excitatory cells in the Allen Cell Types Database data set,

some intermingling of cell types at the layer borders would be expected. However,

for this data set, no feature relating to the cortical depth was included in the feature

set used for clustering, so the cell types identified were completely independent of

their cortical location. The cortical depth of the cells, however, was reported and

can be used to analyse which cells were likely to be located close to layer borders. As

can be seen in Figure 4.13, there was some overlap between the normalised cortical

depth from cells allocated to different layers in this data set.

Based on the results from hierarchical clustering and the high-performing multi-view

methods, one neuron in this data set that has a high probability of being experimen-

tally mislabelled is the L6a excitatory cell with the highest cortical depth of all L6a
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Figure 4.13: Normalised cortical depth of cells by layer in the Allen Cell Types
Database data set.

cells in the data set (∼0.96). This cell was allocated to a cluster containing primarily

L6b cells in the solutions from hierarchical clustering of the concatenated feature set

and the RCCA and TW-k-means methods (CC,H13 , CMV,RC
10 , CMV,TW

18 ). There is thus a

high chance that this cell belongs to a L6b cell type, rather than L6a as it was experi-

mentally labelled. The L5 excitatory cell with the highest cortical depth of all L5 cells

(∼ 0.81) was also clustered with predominantly L6a cells in all three clustering solu-

tions (CC,H10 , CMV,RC
9 , CMV,TW

15 ), and so is likely to be a true L6a cell type. Additionally,

the two L4 cells in the predominantly L5 cluster CC,H7 from the hierarchical clustering

solution had high cortical depth relative to other L4 cells (> 0.50), and were both

allocated to primarily L5 clusters in the multi-view clustering solutions (CMV,RC
6 ,

CMV,TW
10 ). These may also represent neurons that do not correspond to cell types from

their experimentally identified layer, and are actually better classified as L5 cell types.

For inhibitory cells, there has been shown to be minimal overlap between cells

expressing the three molecular markers PV, 5HT3aR and SST (see Section 1.4.2).

For this data set, I have assumed that cells that are Cre-positive for a particular

molecular marker endogenously express the corresponding marker. However, it has

been observed that Cre lines do not perfectly coincide to the expression of molecular

markers and co-expression of these interneuron-specific markers has been detected in

some Cre driver lines (Nassar et al., 2015; Hu et al., 2013). For example, SST-IRES-

Cre has been seen to be expressed in some PV interneuron types (Tasic et al., 2016).

It is thus possible that some of the inhibitory cells in this data set co-express these

molecular markers.



192 Chapter 4. Multi-view neuronal cell type classification

Several 5HT3aR expressing cells in the combined SST/5HT3aR cluster found using

hierarchical clustering of the concatenated feature set (CC,H17 ) were also allocated to

clusters containing predominantly SST-expressing cells in the two multi-view cluster-

ing solutions examined (CMV,RC
{19,17} , CMV,TW

24 ). There is thus a possibility that these cells

form a subclass of inhibitory cells that express both SST and 5HT3aR. Some of the

neurons in the combined PV/SST clusters from the three high performing clustering

solutions (CC,H16 , CMV,RC
{12,13,14}, C

MV,TW
21 ) may also represent double-positive cells, however,

additional molecular characterisation of the cells would be required to confirm this.

Given the low numbers of cells co-expressing these molecular markers that have been

observed in previous studies, it is probably more likely that these clusters primarily

contain several similar cell types which the feature set and clustering methods used

here are insufficient to separate.

Since the classification of neurons in this data set into inhibitory and excitatory type

was performed by visual assessment of the spiny/aspiny nature of the dendrites, there

is also a possibility that the inhibitory or excitatory nature of some cells has been

mislabelled. The cluster with the lowest purity in terms of its inhibitory/excitatory

split amongst the single and multi-view clustering solutions examined was the clus-

ter CC,H3 found using hierarchical clustering of the concatenated feature set, which

contained 7/37 inhibitory cells. Four of these cells were allocated to predominantly

excitatory clusters in the TW-k-means clustering solution, however they were all

allocated to primarily inhibitory clusters in the RCCA solution (CMV,RK
{16,18} ). These

two RCCA clusters, however, did contain a mix of inhibitory and excitatory cells.

Visual inspection of the reconstructions of these neurons revealed that some had more

pyramidal-like morphologies than other inhibitory cells. These cells may represent

mislabelled excitatory neurons, however, investigation of the experimental microscopy

images would be required to more definitely decide if this is the case, or if these cell

simply represent a class of inhibitory neurons with similar properties to excitatory

cells. The fact that they were not consistently assigned to excitatory clusters across

all three clustering solutions suggests that the later may be more likely, and their

allocation to an excitatory cluster in the hierarchical clustering solution may be due

to the clustering method chosen.
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Summary of cell types in the Allen Cell Types Database data set

A definitive classification of the cell types in the Allen Cell Types Database data set

was not evident using the available feature sets and clustering methods, however some

conclusions can be drawn from the hierarchical and multi-view clustering solutions

examined in the previous sections. Firstly, L2/3 excitatory cells were generally not

well separated from L4 cells in any clustering solution, suggesting that the features

present in the Allen Cell Types Database data set may be insufficient to separate

these cell types. There were at least four excitatory cell types present in L4 in this

data set, which had reasonable degrees of similarly to L2/3 and L5 cells. L5 contained

at least three excitatory cell types, which were morphologically larger than cells in

other layers, with greater overall heights, widths and total dendritic lengths. L6b

appeared to contain a largely homogeneous group of cells that can be assigned to

one class, consisting of cells with higher UD ratios than other cell types. Finally, L6a

excitatory neurons in this data set likely consisted of two cell types, one containing

cells with greater overall heights.

This data set contained cells from the two major morphological categories of ex-

citatory neurons, pyramidal and spiny stellate. Unlike pyramidal cells, which are

found across a range of cortical layers, spiny stellate cells are located primarily

in L4 and are characterised by their star-like dendritic arbours and absence of a

prominent apical dendrite (see Section 1.4.1). In the three clustering solutions from

this data set examined in the previous sections, there was no obvious separation

of spiny stellate cells from other cell types. This suggests that the data set is in-

sufficient to distinguish this cell type from other cortical cells. This could be due

to the features used, or the possibly small number of spiny stellate cells present

in the data set, which represents a random sample of cortical cells for which the

experimental reconstructions were determined to be of high quality (see Section 4.3.2).

For the inhibitory cells in this data set, the clustering solutions strongly suggested

the existence of a cell type of L2/3 5HT3aR-expressing inhibitory interneurons, which

was mostly well conserved across the three clustering solutions. The clustering results

also suggested the presence of one other 5HT3aR-expressing inhibitory cell type, two

to three SST-expressing interneuron types and at least three cell types consisting of

PV-expressing interneurons. Although a small number of cells in this data set may

have mislabelled ‘ground truth’ variables, the lack of a clear separation of cells by

layer or molecular marker in any of the clustering solutions suggests that this data

set is yet insufficient to correctly classify all of the cell types present.
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4.4.12 Conclusions from clustering of the Allen Cell Types

Database data set

Analysis of the Allen Cell Types Database data set revealed significant correlations

between many of the morphological and electrophysiological properties of these

neurons, several of which resembled the relationships between features in the mPFC

data set. Based on the results from hierarchical clustering, the electrophysiological

features of this data set appeared more informative than morphological features for

separating the neurons into their excitatory and inhibitory types, however, using

the concatenated feature set produced clusters of superior quality than either of

the single views. Similar to the results from analysis of the mPFC data set, sev-

eral multi-view methods exhibited comparable or superior performance to single

view hierarchical clustering of the concatenated Allen Cell Type Database feature sets.

The RCCA method exhibited strong performance at clustering the Allen Cell Types

Database data set. When judged by its separation of cells into their inhibitory

and excitatory type, the clustering solution from the RCCA method scored highly

across the four evaluation measures in this study. Analysis of a single iteration

of this method revealed that the excitatory cell types found had reasonable levels

of separation by cortical depth. The inhibitory cell types identified by the RCCA

method exhibited some separation by molecular marker, but did not display the high

level of purity that would be expected from previous studies, which have found little

overlap between SST, PV and 5HT3aR-expressing cells in the cortex (Urban-Ciecko

and Barth, 2016; Lee et al., 2010).

The TW-k-means method was also a high performing method at clustering the

Allen Cell Types Database data set. The excitatory clusters identified by this

method had a reasonable level of separation by cortical layer, however there was

a greater tendency to allocate cells from non-neighbouring layers into the same

clusters by this method, compared to the other high performing clustering methods.

Despite identifying the lowest number of inhibitory clusters of all the high performing

clustering methods on the Allen Cell Types Database data set, this method achieved

the highest level of purity in the separation of these cells by molecular marker.

Compared to the similarity between the multiple clustering solutions of the mPFC

data set, there were lower levels of similarity between the clusters identified in the

Allen Cell Types Database data set by the single-view and high performing multi-view
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clustering methods. The cells in this data set were also not purely separated by layer

or molecular marker by any of the clustering methods. These factors resulted in a

coarser classification of cell types than what was possible for the mPFC data set,

and the choice of a single ‘best’ classification of cell types from the high-performing

clustering methods would require a more thorough examination of the cells in each

cluster and their relationship to previously identified cortical cell types than what

was relevant for this study.

The less definitive classification of the Allen Cell Types Database data set can

be attributed to the increased complexity of this data set, which contains a wider va-

riety of neurons (both inhibitory and excitatory cells over a number of cortical layers)

compared to the previously analysed mPFC data set. Additionally, the neurons for

which both morphological and electrophysiological information was available in this

data set were those that were judged to have morphological reconstructions of high

quality during experimental data collection (Allen Institute for Brain Science, 2017a),

and thus represent a random selection of neurons from which electrophysiological

recordings were taken.

This randomness may mean that the 280 neurons in the data set used in this

study are insufficient to characterise all of the cell types present, and many cortical

cell types may be missing from the data. In the results from the three high-performing

clustering methods on this data set, the number of excitatory cell types exceeded

the number of inhibitory cell types identified in each case. Given that inhibitory

interneurons are widely believed to be more diverse than excitatory cells in the

cortex (Ascoli et al., 2008; Kelsom and Lu, 2013; Toledo-Rodriguez et al., 2003),

this suggests that the full spectrum of cortical neuronal diversity has not yet been

captured in this data set.

A recent study of n = 1654 neurons in the mouse visual cortex identified seven

inhibitory cell types in L2/3 and six inhibitory cell types in L5 using sparse logistic

regression classifiers based on both the morphological and electrophysiological prop-

erties of the neurons (Jiang et al., 2015). Extrapolating this to include excitatory

cell types and the additional layers in this data set, there could be > 50 cell types

present in this brain region alone, which are unlikely to be identified correctly using

280 data points. More data points or additional features may lead to an improved

classification of the neurons in this region.
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One area that was not examined here was the use of partial multi-view information for

clustering. Several multi-view clustering techniques in this study, for example the par-

tial multi-view clustering, LCCA and RCCA methods, can be used when both views

are available for only a subset of the total data points. As well as morphological and

electrophysiological information for close to 300 cells, the Allen Cell Types Database

also contains just electrophysiological characterisations of an additional ∼ 650 cells,

collected using the same experimental protocol. For the RCCA, LCCA and partial

multi-view methods, the subspace used for feature projection can be learnt using

the data points with both morphological and electrophysiological features in this

data set, and clustering performed on the representation of the electrophysiological

features of the larger data set in this space. This type of analysis of the larger

electrophysiology-only data set may be able to provide a more definitive classification

of the cell types present in the Allen Cell Types Database. The performance of

partial multi-view clustering techniques on this data set could also inform future

experimental approaches, as to whether full multi-view characterisations of cells are

necessary for their classification, or if equivalent classification performance can be

achieved by collecting multi-view information from a subset of cells.

4.5 Discussion and conclusions

Previous work in neuronal cell type classification has generally been restricted to the

use of single types of features, predominantly the electrophysiological, morphological

or molecular properties of neurons, for their classification. The few studies that have

utilised multi-view feature sets for neuronal cell type classification have generally

taken simplistic approaches to the use of this information, applying single-view

clustering techniques to the individual or concatenated feature sets.

In this chapter, I have performed a thorough investigation of the application of

multi-view clustering techniques to two two-view neuronal data sets, to address the

three questions posed in Section 4.2.4:

1. Is using both the electrophysiological and morphological features of neurons

advantageous for classification, compared to using only a single feature type?

I have shown that utilising both the electrophysiological and morphological

characterisations of neurons is advantageous for the classification of cell types

in the two data sets in this study, compared to using a single type of feature.

In the case of the mPFC data set, superior clustering results could be obtained
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from hierarchical clustering of just the morphological features, compared to

hierarchical clustering of the concatenated feature set. However, the best

classification of cell types was achieved using both feature types and multi-view

clustering techniques. For the Allen Cell Types Database data set, hierarchical

clustering of the concatenated feature set and several multi-view methods

outperformed single-view clustering using either the electrophysiological or

morphological features alone.

2. Which approach to clustering using multi-view information achieves the greatest

accuracy at classifying neuronal cell types? Do multi-view clustering techniques

offer an improvement over single-view approaches in this context?

For both neuronal data sets in this study, several multi-view clustering tech-

niques provided an equivalent or more accurate classification of cell types than

single-view clustering methods applied to either the individual feature sets

or a concatenation of the feature sets, as measured by the separation of cells

according to some known ‘ground truth’ variable in each clustering solution.

The performance of the specific multi-view techniques varied across the two

neuronal data sets in this study, however, the RCCA method exhibited strong

performance at clustering both of the data sets.

3. Can anything be learnt about the relationship between the electrophysiology and

morphology of neurons from this study?

Correlative relationships were evident between numerous morphological and

electrophysiological properties of the cells in the two data sets in this study,

several of which could be explained by the known physiology of neurons. By

examining the features which significantly differed between the cell types

identified by clustering of the Allen Cell Types Database data set, I found that

in general, electrophysiological features appeared to be more informative for

differentiating between inhibitory cells whereas morphological features generally

showed higher levels of significant difference between excitatory cell types.

Despite not identifying a specific clustering technique that definitively achieves the

best separation of cell types in data sets composed of the electrophysiological and

morphological properties of neurons, several insights can be gathered from this study.

Firstly, for both neuronal data sets in this study, relatively low levels of simi-

larity were observed between the clustering solutions produced from the individual

electrophysiological and morphological feature sets. Some previous studies have simi-

larly found significant variation between the clusters identified using morphological
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and electrophysiological feature sets independently (Hosp et al., 2014). In contrast,

others have shown high degrees of agreement between neuronal cell types classified

using morphological or electrophysiological features alone (McGarry et al., 2010;

Dumitriu et al., 2007), however, these two studies utilised only very small numbers

of cells (n ≤ 18).

One reason for the observed variation between the single-view clustering solutions

in this study may be that the electrophysiological and morphological features had

different levels of relevance for classifying cells of different types in these data sets.

For example, morphological features appeared to be more informative for separating

excitatory cell types in the Allen Cell Types Database data set, while electrophys-

iological features tended to show greater variation between inhibitory cell types.

Additionally, in the mPFC data set, significant correlations were evident between

several electrophysiological and morphological properties of cells in layers 3 and

5, however, this was not the case for layer 2 and 6 cells. This suggests that it

is important to utilise both morphological and electrophysiological information to

accurately identify the various cell types in these data sets.

Secondly, the two forms of clustering using canonical correlation analysis in this study,

namely the LCCA and RCCA methods, were found to be high performing methods

for clustering multi-view electrophysiological and morphological neuronal data sets.

For both data sets, the RCCA method was amongst the top three performing cluster-

ing methods, and the LCCA method exhibited equivalent or superior performance to

hierarchical clustering of the single or concatenated feature sets. These two methods,

however, are not without their limitations. For the LCCA method, one disadvantage

is that the dimensionality of the CCA subspace found by this method cannot exceed

min(p1, ..., pn), where pi, i = 1, ..., n is the number of features in the ith view of the

data. This may be an issue when clustering data sets with large differences in the

dimensionality of the views, such as those that contain high-dimensional genomic

feature sets as well as electrophysiological or morphological views, which are generally

more limited in their number of features.

The RCCA method overcomes this disadvantage by randomly mapping the fea-

tures in each of the views to generate new feature sets with dimensionality chosen by

the user. The non-linear nature of this mapping also allows the non-linear relation-

ships between the features in each view to be considered, whereas LCCA can only

take into account linear relationships. The RCCA method may thus be preferred for
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clustering of more complex data sets with large differences in the dimensionality of the

multiple views. Given its strong performance at clustering the two neuronal data sets

in this study, the RCCA method would be my current first choice recommendation

for a multi-view clustering technique when approached with the task of classifying

cell types using data sets consisting of the electrophysiological and morphological

properties of neurons.

Other multi-view methods that exhibited reasonable performance at clustering

the neuronal data sets in this study included the TW-k-means, weighted kernel

k-means and spectral centroid methods, however, these were not amongst the highest

performing clustering methods on both of the neuronal data sets. Further analysis of

additional multi-view neuronal data sets may provide a more definitive assessment

of their performance at classifying neuronal cell types.

At the other end of the scale, the results from analysis of the two multi-view

neuronal data sets in this study suggest that post-clustering combination approaches

to multi-view clustering, such as the cluster ensemble method, are not appropriate

for clustering these types of two-view data sets. These post-clustering combination

methods generally only achieved similar or poorer performance than hierarchical

clustering of a single view of the data.

The scalability of each of the multi-view clustering techniques in this study was also

examined by utilising each method to cluster non-neuronal multi-view data sets with

numbers of data points and features in O(103) (see Appendix A.1.1). Apart from

the iCluster+ method, which exhibited computational times in the order of hours

when analysing such data sets, the other multi-view techniques in this study did not

have significantly higher implementation times than simple single-view hierarchical

clustering, suggesting that these techniques are also suitable for analysing multi-view

neuronal data sets of greater size and complexity than those examined in this chapter.

For the RCCA method, the computational time was dependant on the number of

random feature projections utilised, and the original authors suggest setting this

value based on the computational budget of the project (Lopez-Paz et al., 2014).
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4.5.1 Limitations and future work

A limitation of this study was the lack of full ‘ground truth’ cell labels for the neuronal

data sets, which introduced a degree of ambiguity into assessing the performance of

the clustering methods on these data sets. A number of measures were thus used to

assess each of the clustering methods, some of which favoured solutions with high

numbers of clusters, and others that tended to punish methods that divided the data

into larger numbers of clusters than the proxy ‘ground truth’ labels. The value of

these evaluation measures was thus influenced by both the value of k as well as the

innate quality of the clustering solutions found by each method. However, the best

performing clustering techniques on each of the data sets generally scored highly

across all four of the evaluation measures, providing confidence in the quality of these

clustering solutions. Having more substantial ground truth labels, particularly for

the Allen Cell Types Database data set, in which the binary split into excitatory and

inhibitory types was used to assess the clustering of the data set into > 15 cell types,

could allow for a clearer assessment of the performance of the multi-view methods

in this context. Another possible proxy ‘ground truth’ label that could be used in

future studies is the projection target of excitatory cells.

As the actual number of cell types in the cortical regions represented by the two

multi-view neuronal data sets in this study are unknown, the gap statistic was used

to chose the optimal value of k for each of the clustering methods. This meant

that the clustering techniques often identified different numbers of cell types in the

neuronal data sets. An area of consideration is thus the level of granularity at which

a cell type should be defined, and how to assess whether the appropriate number of

cell types have been identified in a given brain region. This problem has somewhat

been addressed in the retina using the principle of ‘tiling’ (Wassle et al., 2009). It

has been shown that in the retina, the receptive fields of different types of bipolar

cells ‘tile’ the retina with minimal overlap of the receptive fields of cells of the same

type (Seung and Sümbül, 2014; Wassle et al., 2009). This concept has been used

in classification studies to decide the optimal level at which to define cell types,

and if further separation of clusters is required (Light et al., 2012; Wassle et al., 2009).

The tiling property, however, does not extend to all types of cells in the retina,

such as some classes of retinal ganglion cells, which show extensive overlap of their

dendritic fields (Borghuis et al., 2008; Masland, 2012). These cell types have been

shown to adhere to a more general mosaic property. In these networks, the soma of



4.5. Discussion and conclusions 201

cells of the same type are regularly arranged with even spacing between cells, but

are positioned randomly with respect to the soma of cells of other types (Rockhill

et al., 2000). There is also some evidence that this mosaic patterning of cells extends

beyond the retina, to regions such as the cerebellum and tectum (Cook and Chalupa,

2000). However, it is still unknown whether a similar concept applies to the entire

cortex, and more work in this area is required before the actual number of cell types

present in cortical regions can be deduced.

Although in this chapter, I have restricted my analysis to multi-view data sets

consisting of the electrophysiological and morphological features of cells due to the

availability of these data sets, the same frameworks could be applied to other types

of multi-view neuronal data. Recently, Patch-seq methodology has been developed,

which allows electrophysiological characterisations and transcriptomic data to be ob-

tained from the same cells through a combination of whole cell patch-clamp recordings

and single-cell RNA-sequencing (Cadwell et al., 2015; Fuzik et al., 2016). Researchers

at the Allen Institute are also developing techniques which allow morphological recon-

structions to be obtained from cells that are processed using Patch-seq methodology,

producing three-view morphological, electrophysiological and transcriptomic data

sets1. This type of three-view data has the potential to provide a more definitive

classification of cell types than what is possible using currently available data sets.

Also, although only incremental increases in clustering quality were produced by

the multi-view methods for the electrophysiological and morphological data sets

examined in this study compared to single-view clustering techniques, the larger

variability in the nature and dimensionality of the features in such three view data

sets may result in greater benefits from the use of multi-view techniques in such

contexts. The high-dimensional nature of the transcriptomic view in this data set may

also influence which multi-view techniques are the most appropriate for clustering of

these types of data sets.

Although in this study, I have assessed the performance of the clustering tech-

niques based on their ability to produce the ‘best’ separation of neurons by type,

the idea of achieving a ‘perfect’ classification of neuronal cell types is problematic

in itself. Unlike, for example, the clustering of handwritten digits, for which there

exists distinct discrete classes into which the data can be allocated, due to the innate

continuous variation that is apparent in all biological systems, there may not be

1Presentation at Allen Institute Showcase Symposium, video available at https://www.youtube.
com/watch?v=QxTJeSao8Uo&list=PLN-QyZNMh3PvA3M1nTlDDAaBjWm5VYDcc&index=6

https://www.youtube.com/watch?v=QxTJeSao8Uo&list=PLN-QyZNMh3PvA3M1nTlDDAaBjWm5VYDcc&index=6
https://www.youtube.com/watch?v=QxTJeSao8Uo&list=PLN-QyZNMh3PvA3M1nTlDDAaBjWm5VYDcc&index=6
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any natural classification of the entire spectrum of neurons in all brain regions into

distinct categories or cell types. Given this, the current purpose of neuronal classifi-

cation is to categorise neurons into cell types that are defined in such a way as to be

functionally significant and useful for understanding how different neurons contribute

to computation and cognition. Although cell types have been shown to be generally

governed by several overarching principles, for example the laminar distribution of

pyramidal cell types in the cortex, in rare cases, functionally useful definitions of cell

types may not precisely adhere to these rules. As the role of individual cells within

neuronal networks is dictated by a variety of their intrinsic properties, including their

morphological, electrophysiological and molecular features, utilising multiple char-

acterisations of neurons is important for achieving a functional definition of cell types.

In this chapter, I have shown that multi-view clustering is a useful tool for in-

corporating multiple characterisations of cells into neuronal classification studies.

Several multi-view clustering methods have been shown to allocate neurons to cell

types that correspond more closely to their broad neuronal class than what was

achievable using only a single type of feature of neurons. These techniques can

also suggest cases in which the experimental labels of neurons disagree with their

underlying cell types and offer improved classification of neurons compared to clus-

tering approaches that treat multi-view data as a single feature set, particularly for

edge cases. Several multi-view techniques also have added benefits over single-view

approaches to clustering, such as being able to provide a multi-view classification

of neuronal data sets for which multiple characterisations are only available for a

subset of cells.

Since it is still unknown whether all neurons can be unambiguously allocated to a

unique cell type, the fact that the clustering techniques in this study did not produce

a definitive classification of cell types in the analysed data sets is unsurprising. In

the future, a clearer understanding of the true identities of neuronal cell types and

the level of separation or overlap between them may be possible using improved

data sets of increased size and diversity, and I believe that multi-view clustering

techniques will have an important role to play in gaining insights from such data.
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Discussion and conclusions

The aim of this thesis has been to investigate and develop techniques and frameworks

for the statistical analysis of neuronal data in two main contexts. Firstly, tools for the

analysis of the spontaneous electrophysiological activity, and in particular bursting

activity, of developing neuronal networks recorded on MEAs. And secondly, methods

for classifying neurons into their underlying cell classes based on multiple types of

neuronal properties. To this end, throughout this thesis I have evaluated existing

analysis algorithms, proposed adaptations to improve existing methods, investigated

the applicability of methods from other fields to the analysis of neuronal data sets

and developed frameworks that can be applied to the analysis of experimental data

and inform experimental practices. In this chapter, I summarise the key contributions

of this thesis and provide some suggestions for future work.

5.1 Summary of key contributions

In this section, I summarise the main results from this thesis:

1. A thorough evaluation of existing methods for detecting bursts in MEA record-

ings of neuronal networks revealed that no existing burst detection technique

possesses all of the desired properties for accurate analysis of bursting activity in

highly variable network recordings such as those from human stem cell-derived

neuronal networks (Section 2.5).

2. Of the existing burst detection techniques, the MaxInterval and logISI methods

are the recommended techniques for analysing bursting in neuronal network

recordings (Section 2.5).

203



204 Chapter 5. Discussion and conclusions

3. An adaptation of the Cumulative Moving Average method to restrict its

maximum allowed ISI cutoff improves its performance and makes it a suitable

method for accurately detecting bursts in a range of contexts (Section 2.7)

4. Analysis of novel recordings of hiPSC-derived neuronal networks revealed an

increase in levels of bursting activity in these networks over early development,

but to a lesser extent than in developing rodent neuronal networks (Section

2.5.3).

5. Using a quantitative framework for analysing spontaneous activity patterns,

hippocampal and cortical cultured networks were shown to exhibit differences

in their spontaneous activity over development that can be characterised using

a number of features. In particular, hippocampal networks were shown to

exhibit higher levels of synchronous activity, more regular bursting activity and

higher rates of theta bursting than cortical cultures at equivalent ages (Section

3.2.3).

6. Recordings of hippocampal and cortical networks can be differentiated over the

first month of development with reasonable levels of reliability using a small

number of quantitative features and standard classification techniques (Section

3.2.3).

7. Recordings from multi-well MEAs can be used to characterise the differences

in spontaneous neuronal network activity patterns across developmental time,

and are a suitable tool for studying a variety of experimental conditions on the

same array (Section 3.3.3).

8. Greater levels of variability can be observed between MEA recordings of

neuronal networks produced from different cultures compared to the intra-

culture variability between networks recorded on different arrays (Section

3.3.3).

9. Clustering of two multi-view neuronal data sets showed that utilising both the

electrophysiological and morphological properties of neurons is advantageous

for the classification of cell types, compared to use of a single feature type

(Section 4.4).

10. Several multi-view clustering techniques can provide a more accurate classifica-

tion of neuronal cell types when multiple characterisations of cells are available,

compared to single-view clustering of individual or concatenated feature sets

(Section 4.4).
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5.1.1 Methods of burst detection

In Chapter 2, I performed an evaluation of existing techniques for detecting bursting

activity in recordings of the spontaneous activity of neuronal networks on MEAs. A

particular focus of this study was to identify burst detection techniques that are ap-

propriate for the analysis of recordings of human stem cell-derived neuronal networks,

which have been shown to exhibit highly variable firing activity. This was achieved by

first developing a list of desirable properties that a burst detection technique should

possess in order to accurately detect bursting in spike trains with a range of features

commonly observed in recordings of developing human neuronal networks. Simu-

lated data was then used to evaluate the performance of numerous burst detectors

against each of these desirable properties. Based on these results, as well as further

investigation of the burst detectors using experimental recordings from mouse RGCs,

I found that no existing method for detecting bursts possessed all of the desirable

properties deemed necessary for accurate burst detection in a wide range of contexts.

Several methods, however, exhibited strong performance across a number of de-

sirable properties and four of these were chosen to analyse bursting activity in novel

recordings from hiPSC-derived neuronal networks across a range of developmental

ages (Recordings made by Paulsen Lab, Department of Physiology, Development

and Neuroscience). Using these techniques, bursting activity in these networks was

shown to increase over early development, however, at a far lower rate than what has

been commonly observed in rodent neuronal networks over equivalent developmental

timescales.

Next, I proposed adaptations to two of the existing burst detectors in this study,

the cumulative moving average (CMA) and Poisson surprise (PS) methods (Kapucu

et al., 2012; Legéndy and Salcman, 1985), and re-evaluated these methods using both

simulated and experimental data. An adaptation of the CMA method that restricts

its maximum allowed ISI cutoff was shown to improve the ability of this method to

accurately detect bursts in a range of contexts, and bring its performance in line

with other high performing burst detectors. Based on these results, I concluded

that the existing MaxInterval and logISI methods (Nex Technologies, 2014; Pasquale

et al., 2010) as well as the adapted CMA method are the most appropriate currently

available tools for analysing bursting activity in a range of spike trains.
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5.1.2 Frameworks for the analysis and classification of de-

velopmental spontaneous activity

In Chapter 3, I developed a framework for analysing the ontogeny of spontaneous ac-

tivity patterns recorded from cultured neuronal networks on MEAs. By applying this

framework to novel experimental recordings from in vitro hippocampal and cortical

neuronal networks, I showed that the spontaneous activity patterns of hippocampal

and cortical cultured neuronal networks exhibited quantifiable differences over devel-

opment. In particular, hippocampal networks tended to exhibit higher degrees of

correlation, more regular bursting activity and higher rates of theta bursting than

cortical networks at equivalent ages. I further demonstrated that these recordings of

hippocampal and cortical networks could be differentiated over the first month of

development with reasonable levels of reliability using a small number of quantitative

features and standard supervised classification techniques.

Next, I applied a similar framework to recordings of rat cortical neurons on multi-well

MEAs, obtained through a collaboration with researchers at the US Environmental

Protection Agency. By analysing the developmental profile of spontaneous activity

in these recordings and applying a similar classification scheme to the previous

study, I demonstrated that these multi-well recordings provide sufficient levels of

granularity to capture the differences in network activity at various developmental

ages. This suggests that multi-well MEAs are a suitable tool for studying a variety of

experimental conditions in a high-throughout manner on a single array, and I further

presented a sampling method that can be used to deduce the most appropriate

allocation of experimental conditions to the multiple wells in such arrays. Using a

separate data set, I was also able to investigate the major sources of variability in

multi-well MEA recordings of cultured networks, and showed that the level of vari-

ability between networks produced from different cultures exceeded the intra-culture

variability across different recording plates.

5.1.3 Multi-view clustering and its application to neuronal

cell type classification

In Chapter 4, I investigated the potential advantages of using multi-view data sets

consisting of electrophysiological and morphological features of neurons for classifica-

tion of these cells into classes or ‘types’. Previously, combined electrophysiological

and morphological neuronal data sets have typically been analysed using single-view
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clustering techniques applied to the individual or concatenated feature sets. This fails

to take into account the unique statistical representations of the cells in each view.

In this study, I examined the impact of utilising multi-view clustering techniques

for the analysis of such data sets. I first performed a thorough literature search to

identify a range of methods that have been developed for finding cluster structure

in data represented by two or more distinct feature sets or ‘views’, before applying

these methods to the clustering of two multi-view neuronal data sets. As far as

I am aware, this is the first study to use multi-view clustering techniques for the

classification of neuronal cell types.

I first examined the relationship between the electrophysiological and morphological

features of the cells in the two multi-view neuronal data sets in this study, and showed

that several correlative relationships exist. By applying several clustering techniques

to these data sets, I found that using both electrophysiological and morphological

properties was advantageous for classification of both neuronal data sets, compared to

utilising only one of the feature types. I also showed that using multi-view techniques

to cluster these data sets can lead to improved classification of cell types, as measured

by the separation of cells by some known underlying variable across the clusters. By

interrogating the explicit clustering solutions from high performing methods on these

data sets, I observed general trends in how cell types were separated. For example, I

found that electrophysiological properties were generally the most informative for

differentiating between different types of inhibitory neurons, while morphological

features tended to differ most significantly between classes of excitatory neurons.

The results from this chapter suggest that the use of multi-view clustering techniques

may allow for a more comprehensive classification of neuronal cell types in future

experimental data sets.

5.2 Future work

As specific suggestions for future work have been proposed in the discussion and

conclusions section of each relevant chapter, here I present an overview of the key

points and general future directions for the field.
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5.2.1 Analysis of additional MEA recordings

The availability of additional recordings of spontaneous neuronal network activ-

ity, in particular those recorded on high-density MEAs, over longer developmental

timescales or from treated neuronal cultures, would provide several avenues for

future research. Chapters 2 and 3 of this thesis involved the analysis of bursting

and spontaneous activity patterns of cultured neuronal networks recorded on MEAs

with ≤ 64 electrodes per well or array. Although the resolution of these arrays were

sufficient to differentiate between recordings made from different network types and

ages, recordings from high-density MEAs, which can contain over 4000 electrodes,

would allow for the precise dynamics of neuronal network activity and bursting to

be studied at higher spatial resolutions (Berdondini et al., 2009).

Recordings of spontaneous neuronal activity from high-density MEAs have been

shown to exhibit similar overall dynamics to networks recorded on standard low-

density arrays, however in some cases, a lower proportion of bursting activity and

higher numbers of random spikes have been observed in these recordings (Maccione

et al., 2014; Lonardoni et al., 2015). This could have implications for the performance

of burst detection techniques at analysing data recorded from high-density arrays.

For example, the presence of a large number of electrodes recording low levels of

bursting activity would complicate the task of choosing fixed threshold parameters for

burst detection methods such as the MaxInterval method, and reduce the likelihood

that single fixed parameters would be appropriate for detecting bursts across all

of the electrodes on the array. An extension of the evaluation of burst detection

techniques presented in Chapter 2 to spike trains recorded from these high-density

arrays would be an interesting area of future research. This could also involve an

investigation of the possibility of incorporating methods to automatically tune the

parameters of certain burst detection techniques, which could facilitate the setting of

parameter values separately for each electrode, rather than on an array-wide basis.

The finer spatial resolution offered by high-density MEAs could also influence the

features used to characterise the developmental profile of spontaneous activity pat-

terns, which was the focus of Chapter 3 of this thesis. For example, these types of

arrays allow for the source of bursts of network activity to be identified, and their

spatial propagation to be tracked (Maccione et al., 2010; Gandolfo et al., 2010).

Thus, instead of treating network spikes as a binary event as I did in Chapter 3,

additional features such as the average speed of propagation of single spikes within a
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network spike as well as their spatial dynamics could be included in the quantitative

profiling spontaneous activity patterns. This could reveal additional ways in which

the nature of spontaneous activity patterns vary over development.

High-density arrays are also a more effective tool for recording the activity of

low density neuronal cultures compared to standard MEA devices (Maccione et al.,

2010; Maccione et al., 2012). The sparse nature of these cultures allows for their

morphology to be imaged with greater clarity than cultures containing high densities

of cells (Ullo et al., 2014). Combined imaging and electrophysiological studies of

low density cultures on high-density MEAs thus have the potential to provide an

improved tool for studying the correlation between the morphological and electro-

physiological development of neuronal networks (Maccione et al., 2012).

The availability of MEA recordings that span greater developmental time frames

could also facilitate improved study of developmental spontaneous activity patterns,

particular in human derived networks. In Chapter 2, I investigated the developmental

patterns of bursting activity in hiPSC-derived neuronal networks over the first 16

weeks after plating. Some studies published since we completed this work have

suggested that hiPSC-derived neurons at this age may still be relatively immature,

and that longer recording time frames may be required to ensure that the activity

of functional and mature human neuronal networks is captured (Amin et al., 2016;

Odawara et al., 2016). Future studies could investigate the ontogeny of bursting

activity in these networks over longer time scales and address questions such as if

the decrease in the proportion of bursting activity observed in the final time point

of the data presented in Chapter 2 (Section 2.5.3) is a trend that continues over

development or simply an artefact of this data set.

In the second half of Chapter 3, I presented the results of a project conducted

in collaboration with the EPA, the purpose of which was to inform their ongoing

work in developing a high-throughput framework for screening potential develop-

mental neurotoxins using multi-well MEAs. In the absence of recordings from drug

treated neuronal networks, network age was used as a proxy for different experimen-

tal conditions in this study. However, it is difficult to know how the gross levels

of activity pattern changes between the different network ages would compare to

those between networks under different pharmacological conditions. Replicating the

analysis from this section on recordings from drug treated networks could address

this question, as well as allow for the investigation of other issues, such as how to
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deduce the significance of observed changes to developmental spontaneous activity

patterns caused by pharmacological treatments, given the innate variability in the

activity of control networks.

On a larger timescale, the analysis methods from Chapters 2 and 3 could be expanded

to applications with clinical implications. This includes large scale toxicity screening

of novel compounds on human neuronal networks as well as personalised optimisation

of therapeutic treatments using recordings of patient-specific iPSC-derived neuronal

networks (Inoue et al., 2014).

5.2.2 Increased size and diversity of multi-view neuronal

data sets

The application of the multi-view clustering techniques examined in Chapter 4 to ad-

ditional multi-view neuronal data sets is also an area of future interest. The collection

of electrophysiological and morphological characterisations of cells in the mouse visual

cortex by the Allen Institute is an ongoing project, with regular data releases. Given

the vast diversity of cell types in this brain region, larger data sets would be expected

to allow for a more definitive classification of cell types than what is currently possible.

The release of the Patch-seq data set containing electrophysiological, morphological

and transcriptomic characterisations of single cells from the Allen Institute that is

expected at the end of the year (personal communication with the Allen team) would

also provide interesting data for future study. In particular, the high-dimensional na-

ture of the transcriptomic component of this data set may have an impact upon which

multi-view clustering techniques are the most appropriate for the analysis of this data.

Given the experimental effort involved in collecting these multi-view neuronal data

sets, another area of future interest is the effectiveness of using partial multi-view data

sets for neuronal classification. Several multi-view techniques outlined in Chapter 4

can be applied to data sets in which complete multi-view information is only avail-

able for a subset of data points. If the effectiveness of these methods at classifying

neuronal cell types were shown to be equivalent to that which can be achieved using

full multi-view data sets, it would allow for the cell types in large data sets of neurons

for which only one set of features e.g. their electrophysiological properties, have

been measured, to be classified by collecting multi-view representations of a smaller

subset of cells. This would greatly reduce experimental time and expense compared

to generating complete multi-view data sets from neurons.
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5.2.3 Multi-modal neuronal models

In Chapter 4, I applied several clustering techniques to the task of identifying cell

types in multi-view neuronal data sets. The lack of availability of experimental

multi-view neuronal data sets with complete ‘ground truth’ class labels lead to

difficulties in assessing which clustering methods achieved a good separation of cell

types. A potential future area of investigation would be the use of simulated data,

for which the ground truth cell types are known, for this purpose.

Models that can replicate certain neuronal activity dynamics of single cells based on

their morphology are available, but these have generally been developed to simulate

the activity of specific well studied cell types, such as neocortical layer V pyramidal

cells (Hay et al., 2011; Bahl et al., 2012). Biophysical models tuned to replicate

experimental data are also available, for example the Allen Institute have built such

models for cells in their combined morphological and electrophysiological database1.

However, since these models simply replicate the experimentally observed dynamics,

they do not provide a more useful data set for cell type classification compared to

simply using the underlying experimental data for clustering. Improved diversity of

models that can simulate realistic electrophysiological activity of cells of different

types would increase the availability of labelled simulated data that could be used in

multi-view neuronal classification studies, to assess the performance and aid in the

development of new clustering techniques.

Conversely, a greater understanding of the relationships between the morphologi-

cal and electrophysiological features of different cell types, such as that provided

through multi-view classification studies, would also allow for the development of

improved cell type-specific models that can predict and simulate electrophysiol-

ogy from morphological representations. Increasing availability of experimental

data sets which additionally include gene expression profiles of neurons could also

allow for the incorporation of these factors into predictive models of neuron behaviour.

These ideas could also be extended to studying the combined morphological and

electrophysiological properties of different cell types during their development us-

ing modelling approaches. Although there has been some success in tracking and

recording the electrophysiological activity of specific single cells over long develop-

mental time courses, it is an experimentally challenging task, leading to low success

1http://celltypes.brain-map.org

http://celltypes.brain-map.org
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rates and sampling densities (Cohen et al., 2013; McMahon et al., 2014). Several

computational models have been developed that successfully synthetically replicate

dendritic development in numerous cell types (Donohue and Ascoli, 2008; Graham

and Ooyen, 2006; Cuntz et al., 2010). A greater understanding of the relationship

between morphological properties of different cell types and their electrophysiology

would allow these or similar models to be extended to facilitate the simulation

of the electrophysiological features of neurons during development alongside their

morphological properties. Given the challenges of collecting experimental data in this

area, these models would allow for the improved study of the combined morphological

and electrophysiological profiles of developing neuronal cells and networks.

5.2.4 Concluding remarks

Progress in neuroscience research requires a close interplay between experimental

data collection and the computational techniques required to analyse this data.

Throughout my research I have encountered a frequent disconnect between these two

areas, resulting in the slow adoption of new computational methods in favour of the

‘tried and true’ techniques. For example, the oldest and most widely used method

for burst detection, the Poisson Surprise method (Legéndy and Salcman, 1985),

remains the most commonly used method for analysing bursting activity in a range

of in vitro and in vivo experimental studies to this day, despite the development

of a large variety of alternative burst detection algorithms in the proceeding thirty

years. Computational techniques are also often applied to the analysis of data in

contexts far removed from those for which they were originally designed, with a lack

of awareness of their limitations.

This thesis has attempted to address these issues by providing unbiased investi-

gations and evaluations of computational methods that can be applied to the analysis

of experimental neuroscience data in a range of contexts. I believe that the work

presented in this thesis has suggested improvements to the way in which experimental

data is analysed, and provided practical advice and tools for the analysis of this data.

Given the painstaking effort that goes into collecting experimental data in the neuro-

sciences, I hope that the adoption of ideas presented here can lead to improvements

in the clarity and completeness of the conclusions drawn from experimental data,

and contribute to future progress in this field.
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Supplementary information for

Chapter 4

A.1 Multi-view clustering of labelled data sets

A.1.1 Labelled data sets

A preliminary investigation of the multi-view clustering techniques described in

Section 4.3.1 was performed using the following data sets:

1. Handwritten digits data set: Also known as the UCI Multiple features

data set1, this data set consists of handwritten digits ‘0’ to ‘9’ extracted from

Dutch Utility maps. The 2000 data points consist of 200 samples per class. Six

feature sets are available, two of which were used in this study. The first of

these was a feature set consisting of 76 Fourier coefficients of the shapes of the

digits, and the second consisted of 240 pixel averages in windows of size 2 × 3

across the images of the digits.

2. BBC segmented data set: This data set consists of 2225 documents from

the BBC news website from 2004–2005, partitioned into five topic categories

which are used as the ground truth labels (Greene and Cunningham, 2006).

This data set was made multi-view synthetically by dividing each document into

segments and randomly assigning each segment to a view, with the restriction

that at most one segment from a document can be assigned to each view

(Greene and Cunningham, 2009). The segmentation of the documents into two

1https://archive.ics.uci.edu/ml/datasets/Multiple+Features
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views was used, with only documents present in both views included in this

study, resulting in a total of 2012 documents. The features in each view were

the term frequencies (6838 in view one, 6790 in view two), after pre-processing.

This data set is available online2.

3. Reuters Multilingual data set: This is a subset of the Reuters Corpus

Volume 1 Multilingual data set, which is a set of Reuters documents from six

major categories. A sample consisting of 200 documents from each of the six

classes, produced by Clément Grimal, was used3. For the two views, the original

English documents and their French translations were utilised in this study.

The 2000 features in each view were the term frequency–inverse document

frequency (TF-IDF) scores for each document, after standard pre-processing.

Pre-calculated feature matrices provided by the specified authors were used for the

clustering of each data set, with no further calculation of features performed by

myself. Each data set was clustered using each of the multi-view techniques with

the number of partitions, k, set to the correct number of classes. For the clustering

methods which required the tuning of hyperparameters, this was achieved using a

grid search and 10-fold cross validation. The hyperparameter values were chosen as

those that minimised the average distance of the left-out data points to their closest

cluster centre. The mean and standard deviation of the AMI, ARI and purity values

were calculated across 10 repetitions of clustering of each data set.

2http://mlg.ucd.ie/datasets/segment.html
3http://membres-lig.imag.fr/grimal/data.html

http://mlg.ucd.ie/datasets/segment.html
http://membres-lig.imag.fr/grimal/data.html
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A.1.2 Results from clustering of labelled data sets

Method AMI ARI Purity

S
in

gl
e Hierarchical (View 1) 0.603 (0.009) 0.487 (0.019) 0.646 (0.016)

Hierarchical (View 2) 0.804 (0.011) 0.728 (0.018) 0.815 (0.011)
Hierarchical (Concatenated) 0.811 (0.011) 0.737 (0.016) 0.822 (0.010)

E
ar

ly
in

t Weighted kernel k-means 0.842 (*) 0.817 (*) 0.911 (*)
Weighted kernel spectral 0.727 (0.002) 0.658 (0.003) 0.792 (0.002)
TW–k–means 0.826 (0.010) 0.783 (0.021) 0.889 (0.023)
sMD 0.756 (0.001) 0.704 (0.001) 0.841 (0.001)

S
u
b
sp

ac
e

Linear CCA 0.669 (*) 0.568 (*) 0.738 (*)
RCCA 0.760 (0.004) 0.673 (0.005) 0.786 (0.002)
Partial multi-view 0.482 (0.002) 0.401 (0.002) 0.463 (0.001)
Robust multi-view spectral 0.792 (0.006) 0.757 (0.005) 0.878 (0.003)
iCluster+ 0.681 (0.020) 0.662 (0.028) 0.701 (0.013)

B
o
ot

st
r. Spectral centroid 0.771 (0.019) 0.732 (0.034) 0.861 (0.031)

Spectral pairwise 0.768 (0.001) 0.725 (0.001) 0.857 (0.001)
Spectral co-training 0.746 (0.031) 0.694 (0.053) 0.824 (0.052)

P
os

t
cl

u
st Cluster ensemble k-means 0.527 (0.036) 0.392 (0.045) 0.560 (0.046)

Cluster ensemble hierarchical 0.563 (0.046) 0.419 (0.051) 0.565 (0.053)
PLC k-means 0.612 (0.075) 0.520 (0.090) 0.678 (0.076)
PLC hierarchical 0.658 (0.032) 0.571 (0.048) 0.734 (0.032)

Table A.1: Results of the single and multi-view clustering techniques on the hand-
written digits data set. The mean and standard deviation of each measure from
10 iterations of each method are shown. Bold values show the top three perform-
ing methods according to each evaluation measure. (*= N/A sd, since method is
deterministic)
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Method AMI ARI Purity

S
in

gl
e Hierarchical (View 1) 0.408 (0.049) 0.312 (0.056) 0.604 (0.046)

Hierarchical (View 2) 0.363 (0.056) 0.259 (0.041) 0.564 (0.045)
Hierarchical (Concatenated) 0.541 (0.039) 0.427 (0.066) 0.700 (0.041)

E
ar

ly
in

t Weighted kernel k-means 0.463 (*) 0.309 (*) 0.641 (*)
Weighted kernel spectral 0.755 (0.000) 0.779 (0.001) 0.906 (0.000)
TW–k–means 0.353 (0.068) 0.187 (0.096) 0.467 (0.069)
sMD 0.773 (0.001) 0.804 (0.001) 0.916 (0.001)

S
u
b
sp

ac
e

Linear CCA 0.684 (*) 0.686 (*) 0.857 (*)
RCCA 0.655 (0.035) 0.652 (0.064) 0.845 (0.032)
Partial multi-view 0.759 (0.001) 0.792 (0.001) 0.910 (0.001)
Robust multi-view spectral 0.777 (0.000) 0.806 (0.001) 0.917 (0.001)
iCluster+ 0.001 (0.000) 0.000 (0.001) 0.243 (0.003)

B
o
ot

st
r. Spectral centroid 0.721 (0.001) 0.732 (0.000) 0.884 (0.001)

Spectral pairwise 0.749 (0.001) 0.781 (0.001) 0.907 (0.001)
Spectral co-training 0.713 (0.001) 0.723 (0.001) 0.879 (0.001)

P
os

t
cl

u
st Cluster ensemble k-means 0.247 (0.055) 0.192 (0.069) 0.453 (0.073)

Cluster ensemble hierarchical -0.003 (0.000) -0.002 (0.000) 0.240 (0.000)
PLC k-means 0.478 (0.087) 0.402 (0.113) 0.671 (0.094)
PLC hierarchical 0.487 (0.044) 0.452 (0.044) 0.709 (0.054)

Table A.2: Results of the single and multi-view clustering techniques on the BBC
data set. Table formatted as per Table A.1.
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Method AMI ARI Purity

S
in

gl
e Hierarchical (View 1) 0.217 (0.020) 0.135 (0.019) 0.389 (0.022)

Hierarchical (View 2) 0.251 (0.018) 0.156 (0.008) 0.421 (0.015)
Hierarchical (Concatenated) 0.255 (0.021) 0.165 (0.014) 0.433 (0.014)

E
ar

ly
in

t Weighted kernel k-means 0.217 (*) 0.136 (*) 0.414 (*)
Weighted kernel spectral 0.252 (0.001) 0.195 (0.001) 0.488 (0.001)
TW–k–means 0.181 (0.021) 0.129 (0.010) 0.385 (0.024)
sMD 0.248 (0.004) 0.192 (0.003) 0.487 (0.003)

S
u
b
sp

ac
e

Linear CCA 0.240 (*) 0.168 (*) 0.466 (*)
RCCA 0.207 (0.012) 0.127 (0.008) 0.392 (0.009)
Partial multi-view 0.257 (0.001) 0.217 (0.001) 0.508 (0.001)
Robust multi-view spectral 0.254 (0.004) 0.197 (0.001) 0.490 (0.004)
iCluster+ -0.001 (0.001) -0.000 (0.001) 0.197 (0.001)

B
o
ot

st
r. Spectral centroid 0.266 (0.001) 0.209 (0.001) 0.504 (0.001)

Spectral pairwise 0.261 (0.001) 0.203 (0.001) 0.497 (0.000)
Spectral co-training 0.239 (0.015) 0.192 (0.008) 0.478 (0.016)

P
os

t
cl

u
st Cluster ensemble k-means 0.170 (0.031) 0.136 (0.027) 0.399 (0.040)

Cluster ensemble hierarchical 0.192 (0.003) 0.112 (0.003) 0.400 (0.005)
PLC k-means 0.210 (0.036) 0.160 (0.028) 0.426 (0.043)
PLC hierarchical 0.195 (0.027) 0.139 (0.014) 0.418 (0.025)

Table A.3: Results of the single and multi-view clustering techniques on the multilin-
gual data set. Table formatted as per Table A.1.
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A.2 mPFC data set features

A.2.1 Morphological features

1. Location in the cortex (%): Location of the soma between the pia (0%) and

white matter (100%).

2. Field span tuft apical dendrites (µm): Widest distance between the apical

dendrites, measured parallel to the pia.

3. Field span basal dendrites (µm): Widest distance between the basal dendrites,

measured parallel to the pia.

4. Vertical span apical dendrite (end layer): Layer of termination of the furthest

apical branch from the soma.

5. Ratio field span apical/basal dendrites: Ratio of features 2 and 3.

6. Total length apical dendrites (µm): Total path length of all apical dendrites.

7. Total length basal dendrites (µm): Total path length of all basal dendrites.

8. Ratio length apical/basal dendrites: Ratio of features 6 and 7.

9. Sum length apical + basal dendrites (µm): Sum of features 6 and 7.

10. Soma (µm2): The maximal soma circumference after projection to the 2D

plane.

11. Number of apical branches: The total number of compartments between branch

points or between branch and terminal points of the apical dendrites.

12. Number of basal branches: The total number of compartments between branch

points or between branch and terminal points of the basal dendrites.

13. Total number of branches: Sum of features 11 and 12.

A.2.2 Electrophysiological features

1. Ratio ISI-1/ISI-9: Ratio of the first interspike interval to the 9th interspike

interval of the spiking activity evoked by the current step which produced at

least 10 action potentials. This is a measure of spike-time adaptation.

2. Ratio ISI-2/ISI-9: Ratio of the second to the 9th interspike interval, as per

feature 1.
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3. Ratio ISI-3/ISI-9: Ratio of the third to the 9th interspike interval, as per

feature 1.

4. Increase in firing frequency (Hz/100 pA): Slope of the linear fit to the plot of

firing rate against injected current for 0− 300 pA.

5. Resting membrane potential (mV): Pre-stimulus membrane potential of the

neuron.

6. Input resistance (MΩ): Slope of the linear fit to the current-voltage curve

between -60 mV to -70 mV.

7. Rheobase (pA): The minimum level of current required to produce an action

potential. Calculated using a step size of 10 pA.

8. Time constant (ms): Calculated from the exponential fit of the voltage response

curve after a -50 pA current step.

9. Voltage sag (%): The difference between the initial and sustained response

to a 1 s current injection that produced a hyperpolarization of approximately

-7.5 mV.

A.3 Allen Cell Type Database data set features

A.3.1 Morphological features

1. Number of nodes: The total number of nodes in the neuron reconstruction. A

node is a single sample point of the reconstruction.

2. Soma surface area: The surface area of the soma, computed either by assuming

the soma is spherical (if the soma is one node) or as the sum of the external

cylindrical surfaces of the multiple nodes comprising the soma.

3. Number of stems: The total number of stems attached to the soma.

4. Number of bifurcations: The total number of bifurcation points of the neuron.

A bifurcation point is defined as any point with two daughter branches.

5. Number of branches: The total number of branches of the neuron. A branch

is any compartment between two bifurcation points or between a bifurcation

point and a terminal point.

6. Number of tips: Number of terminal end points of the neuron.
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7. Overall height: Difference between the minimum and maximum y-coordinates

of the morphological reconstruction after removing outer points using the 95%

approximation of y-values.

8. Overall width: Calculated as per feature 7, on the x-coordinates of the neuron.

9. Overall depth: Calculated as per feature 7, on the z-coordinates of the neuron.

10. Average diameter: The average of the diameter of all of the compartments of

the neuron.

11. Total length: The sum of the length of all branches of the neuron. Branches

are defined as per feature 5.

12. Total surface area: The total surface area of the neuron.

13. Total volume: The sum of the volume of all compartments of the neuron.

14. Maximum Euclidean distance: The straight line distance between the soma

and the furthest node from the soma.

15. Maximum path distance: The maximum path distance of all nodes of the

neuron. The path distance of a node is the sum of the length of all of the

connected compartments between the soma and the node.

16. Maximum branch order: The maximum branch order of all branches of the

neuron. Branch order is defined based on the number of compartments between

the branch and the soma, where the soma has branch order zero, the first

bifurcation has branch order 1, the second bifurcation has branch order 2, etc.

17. Average contraction: The average contraction value of all neuronal branches.

The contraction of a branch is the ratio of its Euclidean distance from the

soma to its path length from the soma.

18. Average fragmentation: The average number of compartments between two

bifurcation points or between a bifurcation point and a terminal end point of

the neuron.

19. Average parent-daughter ratio: The average parent-daughter ratio of all bifur-

cation points of the neuron. One value is calculated for each daughter at a

bifurcation point, as the ratio between the diameter of the daughter and its

parent branch.

20. Average bifurcation angle local: The average angle between the daughter

branches at all bifurcation points of the neuron.
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A.3.2 Electrophysiological features

1. Threshold voltage short square: The threshold voltage of the first action

potential evoked with a ‘short square’ 3 ms injection of current at the lowest

amplitude that reliably produced action potentials. The threshold voltage was

defined as the voltage at the point at which dV/dt was equal to 5% of the

maximal dV/dt across all action potentials in a sweep.

2. Threshold time short square: The time of the threshold defined in feature 1.

3. Threshold current short square: The level of injected current that produced

the threshold defined in feature 1.

4. Peak voltage short square: The maximum value of the membrane potential

between the time of the first action potential threshold and the time of the

next action potential or the end of the recorded response, evoked by the short

square injected current described in feature 1.

5. Peak time short square: The time of the peak voltage defined in feature 4.

6. Trough voltage short square: The minimum of the membrane potential in

the period between the peak of the first action potential and the time of the

next action potential evoked by the short square injected current described in

feature 1.

7. Trough time short square: The time of the trough described in feature 6.

8. Fast trough voltage short square: The minimum membrane potential in the

5 ms after the first action potential peak evoked by the short square injected

current described in feature 1.

9. Fast trough time short square: The time of the trough described in feature 8.

10. Upstroke/downstroke ratio short square: The upstroke/downstroke ratio of the

first action potential produced by the short square current described in feature

1. Upstroke/downstroke ratio is defined as

Upstroke/downstroke ratio =
|Action potential peak upstroke|
|Action potential peak downstroke|

where the action potential peak upstroke is the maximum value of dV/dt

between the action potential threshold and peak and the action potential peak

downstroke is the minimum value of dV/dt between the action potential peak

and trough (See Figure A.1).
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Figure A.1: Examples of single action potential features. Figure reproduced from
Allen Institute for Brain Science (2016).

11. Threshold voltage long square: The threshold voltage defined as per feature 1

produced by a ‘long square’ 1 s current injection at the minimum amplitude

which evoked reliably evoked action potentials.

12. Threshold time long square: Defined as per feature 2, with the injected current

described in feature 11.

13. Threshold current long square (rheobase): Defined as per feature 3, with the

injected current described in feature 11.

14. Peak voltage long square: Defined as per feature 4, with the injected current

described in feature 11.

15. Peak time long square: Defined as per feature 5, with the injected current

described in feature 11.

16. Trough voltage long square: Defined as per feature 6, with the injected current

described in feature 11.

17. Trough time long square: Defined as per feature 7, with the injected current

described in feature 11.

18. Fast trough voltage long square: Defined as per feature 8, with the injected

current described in feature 11.

19. Fast trough time long square: Defined as per feature 9, with the injected

current described in feature 11.
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20. Upstroke/downstroke long square: Defined as per feature 10, with the injected

current described in feature 11.

21. Threshold voltage ramp: The threshold voltage defined as per feature 1 pro-

duced by a ‘ramp’ injected current with an amplitude beginning at 0 pA and

increasing linearly at 25 pA/sec, that is terminated after a series of action

potentials are evoked.

22. Threshold time ramp: Defined as per feature 2, with the injected current

described in feature 21.

23. Threshold current ramp: Defined as per feature 3, with the injected current

described in feature 21.

24. Peak voltage ramp: Defined as per feature 4, with the injected current described

in feature 21.

25. Trough voltage ramp: Defined as per feature 6, with the injected current

described in feature 21.

26. Trough time ramp: Defined as per feature 7, with the injected current described

in feature 21.

27. Fast trough voltage ramp: Defined as per feature 8, with the injected current

described in feature 21.

28. Fast trough time ramp: Defined as per feature 9, with the injected current

described in feature 21.

29. Upstroke/downstroke ratio ramp: Defined as per feature 10, with the injected

current described in feature 21.

30. Voltage rest: The average pre-stimulus membrane potential across all of the

sweeps using a long square input current pulse described in feature 11.

31. Input resistance: The slope of the linear fit to the plot of the minimum

membrane potentials during the response of the neuron to a long square input

current pulse of 1 s against the level of injected current, for a range of negative

current amplitudes > −100 pA (Figure A.2A, left).

32. F-I curve slope: The F-I curve was found by plotting the average firing rate

of the neuron to long square 1 s input current stimuli against the stimulus

amplitude. The F-I curve slope was the slope of the straight line fit to the

suprathreshold part of this curve (Figure A.2C).
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33. Membrane time constant (τ): The voltage response curve of the neuron to

an injected long square input current of 1 s was fit with an exponential curve

between 10% of the maximum voltage deflection and the minimum membrane

potential during the response. This was repeated for a range of input currents

and the time constant of the fits to the multiple curves were averaged to find

the overall membrane time constant (Figure A.2A, centre and right).

34. Sag: The voltage sag was calculated from the response of the neuron to an

injected current that produced a minimum membrane potential closest to

-100 mV. The sag was defined as

Sag =
Minimum resting potential− Steady state resting potential

Peak deflection

during the stimulus (see Figure A.2B)

35. Membrane voltage for sag: The membrane potential at which the sag was

calculated.

36. Latency: The time between the beginning of a stimulus and the first action

potential evoked by the stimulus at the lowest long square stimulus amplitude

that was between 40 pA–60 pA higher than rheobase.
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Figure A.2: A (left) Plot of minimum membrane potential values (shown as red
dots in centre figure) against the level of injected current. Linear fit (red line on left
plot) is used to estimate the input resistance of the neuron. Exponential fits are
made to the current steps (blue lines on centre plot) and the time constants of these
fits are averaged to find the membrane time constant (blue line on right plot). B
Variables used to calculate the voltage sag. C F-I curve with the linear fit to the
suprathreshold component that is used to calculate the F-I curve slope shown in red.
Figure reproduced from Allen Institute for Brain Science (2016).
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A.4 Cell types from multi-view clustering of the

Allen Cell Types Database data set

A.4.1 Cell types from the RCCA method

Cluster Cells per Cells per layer Cells per molecular
E/I type marker

I E L1 L2/3 L4 L5 L6a L6b PV 5HT3aR SST Other

CMV,RC
1 0 29 0 3 25 1 0 0 – – – –

CMV,RC
2 0 26 0 5 18 3 0 0 – – – –

CMV,RC
3 1 11 0 2 7 3 0 0 – – – –

CMV,RC
4 0 27 0 3 13 9 2 0 – – – –

CMV,RC
5 0 18 0 2 12 3 0 1 – – – –

CMV,RC
6 0 12 0 0 2 10 0 0 – – – –

CMV,RC
7 0 7 0 0 2 3 2 0 – – – –

CMV,RC
8 0 9 0 0 0 9 0 0 – – – –

CMV,RC
9 1 21 0 0 1 6 15 0 – – – –

CMV,RC
10 0 9 0 0 0 0 1 8 – – – –

CMV,RC
11 9 0 0 0 0 7 2 0 7 1 0 1

CMV,RC
12 23 1 0 6 5 12 1 0 11 1 4 8

CMV,RC
13 18 0 0 1 1 10 6 0 10 1 5 2

CMV,RC
14 10 0 0 4 2 3 1 0 6 0 2 2

CMV,RC
15 6 0 1 5 0 0 0 0 0 6 0 0

CMV,RC
16 11 2 0 6 4 3 0 0 0 11 0 2

CMV,RC
17 6 0 0 0 2 4 0 0 0 1 5 0

CMV,RC
18 7 3 0 2 0 5 3 0 0 2 5 3

CMV,RC
19 13 0 0 3 3 7 0 0 0 3 9 1

Table A.4: Solution from clustering of the multi-view Allen Cell Types Database
data set using the RCCA method. Table formatted as per Table 4.10.
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A.4.2 Cell types from the TW-k-means method

Cluster Cells per Cells per layer Cells per molecular
E/I type marker

I E L1 L2/3 L4 L5 L6a L6b PV 5HT3aR SST Other

CMV,TW
1 0 6 0 2 2 0 0 2 – – – –

CMV,TW
2 0 9 0 3 6 0 0 0 – – – –

CMV,TW
3 4 6 0 4 5 0 1 0 – – – –

CMV,TW
4 1 28 0 2 23 4 0 0 – – – –

CMV,TW
5 0 28 0 1 23 3 1 0 – – – –

CMV,TW
6 2 15 0 4 7 5 1 0 – – – –

CMV,TW
7 0 9 0 0 7 0 0 2 – – – –

CMV,TW
8 0 6 0 0 3 3 0 0 – – – –

CMV,TW
9 0 9 0 0 3 6 0 0 – – – –

CMV,TW
10 0 18 0 0 2 16 0 0 – – – –

CMV,TW
11 1 5 0 0 1 4 1 0 – – – –

CMV,TW
12 0 2 0 0 0 1 1 0 – – – –

CMV,TW
13 1 3 0 0 0 4 0 0 – – – –

CMV,TW
14 0 3 0 0 0 2 1 0 – – – –

CMV,TW
15 0 8 0 0 1 1 6 0 – – – –

CMV,TW
16 0 10 0 0 0 2 8 0 – – – –

CMV,TW
17 0 1 0 0 0 0 1 0 – – – –

CMV,TW
18 0 7 0 0 0 1 1 5 – – – –

CMV,TW
19 15 0 0 2 5 5 3 0 10 1 2 2

CMV,TW
20 26 0 0 5 1 17 3 0 17 2 1 6

CMV,TW
21 14 0 0 1 2 7 4 0 7 0 4 3

CMV,TW
22 8 2 1 5 2 2 0 0 0 7 1 2

CMV,TW
23 8 0 0 8 0 0 0 0 0 5 3 0

CMV,TW
24 17 0 0 4 4 9 0 0 0 3 12 2

CMV,TW
25 8 0 0 1 0 6 1 0 0 1 6 1

Table A.5: Solution from clustering of the multi-view Allen Cell Types Database
data set using the TW-k-means method. Table formatted as per Table 4.10.
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Buzsáki, G. (2002). “Theta oscillations in the hippocampus”. Neuron 33, 325–340.
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Fuzik, J., Zeisel, A., Máté, Z., Calvigioni, D., Yanagawa, Y., Szabó, G.,
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Kirischuk, S., and Kilb, W. (2016). “Spontaneous neuronal activity in developing
neocortical networks: From single cells to large-scale interactions”. Front. Neural
Circuits 10, 1–14.

Ma, Y., Hu, H., Berrebi, A. S., Mathers, P. H., and Agmon, A. (2006). “Distinct
subtypes of somatostatin-containing neocortical interneurons revealed in
transgenic mice”. J. Neurosci. 26, 5069–5082.

MacLaren, E. and Charlesworth, P. (2011). “Knockdown of mental disorder
susceptibility genes disrupts neuronal network physiology in vitro”. Mol. Cell. . . .
47, 93–99.

Maccione, A., Gandolfo, M., Tedesco, M., Nieus, T., and Imfeld, K. (2010).
“Experimental investigation on spontaneously active hippocampal cultures
recorded by means of high-density MEAs: analysis of the spatial resolution
effects”. Front. Neuroeng. 3, 1–12.

Maccione, A., Garofalo, M., Nieus, T., Tedesco, M., Berdondini, L., and
Martinoia, S. (2012). “Multiscale functional connectivity estimation on
low-density neuronal cultures recorded by high-density CMOS Micro Electrode
Arrays”. J. Neurosci. Methods 207, 161–171.

Maccione, A., Hennig, M. H., Gandolfo, M., Muthmann, O., van Coppenhagen, J.,
Eglen, S. J., Berdondini, L., and Sernagor, E. (2014). “Following the ontogeny of
retinal waves: pan-retinal recordings of population dynamics in the neonatal
mouse”. J. Physiol. 592, 1545–1563.

Mack, C. M., Lin, B. J., Turner, J. D., Johnstone, A. F. M., Burgoon, L. D., and
Shafer, T. J. (2014). “Burst and principal components analyses of MEA data for
16 chemicals describe at least three effects classes”. Neurotoxicology 40, 75–85.

Maeda, E., Robinson, H. P., and Kawana, A. (1995). “The mechanisms of
generation and propagation of synchronized bursting in developing networks of
cortical neurons”. J. Neurosci. 15, 6834–6845.



Bibliography 245

Mainen, Z. F. and Sejnowski, T. J. (1996). “Influence of dendritic structure on firing
pattern in model neocortical neurons”. Nature 382, 363–382.

Mane, K. K. and Börner, K. (2004). “Mapping topics and topic bursts in PNAS”.
Proc. Natl. Acad. Sci. U.S.A. Vol. 101, 5287–5290.

Mao, B. Q., Hamzei-Sichani, F., Aronov, D., Froemke, R. C., and Yuste, R. (2001).
“Dynamics of spontaneous activity in neocortical slices”. Neuron 32, 883–898.

Markram, H., Wang, Y., and Tsodyks, M. (1998). “Differential signaling via the
same axon of neocortical pyramidal neurons”. Proc. Natl. Acad. Sci. U.S.A. 95,
5323–8.

Markram, H., Toledo-Rodriguez, M., Wang, Y., Gupta, A., Silberberg, G., and
Wu, C. (2004). “Interneurons of the neocortical inhibitory system”. Nat. Rev.
Neurosci. 5, 793–807.

Marom, S. and Shahaf, G. (2002). “Development, learning and memory in large
random networks of cortical neurons: Lessons beyond anatomy”. Q. Rev. Biophys.
35, 63–87.

Martens, M. B., Chiappalone, M., Schubert, D., and Tiesinga, P. H. E. (2014).
“Separating burst from background spikes in multichannel neuronal recordings
using return map analysis”. Int. J. Neural Syst. 24, 1450012.

Martinez-Conde, S., Macknik, S. L., and Hubel, D. H. (2002). “The function of
bursts of spikes during visual fixation in the awake primate lateral geniculate
nucleus and primary visual cortex”. Proc. Natl. Acad. Sci. U.S.A. 99,
13920–13925.

Martinson, J., Webster, H. H., Myasnikov, A. A., and Dykes, R. W. (1997).
“Recognition of temporally structured activity in spontaneously discharging
neurons in the somatosensory cortex in waking cats”. Brain Res. 750, 129–140.

Marx, M. and Feldmeyer, D. (2013). “Morphology and physiology of excitatory
neurons in layer 6b of the somatosensory rat barrel cortex”. Cereb. Cortex 23,
2803–2817.

Masland, R. H. (2012). “The neuronal organization of the retina”. Neuron 76,
266–280.

Mazzoni, A., Broccard, F. D., Garcia-Perez, E., Bonifazi, P., Ruaro, M. E., and
Torre, V. (2007). “On the dynamics of the spontaneous activity in neuronal
networks”. PLoS One 2, e439.

McCarley, R. W., Benoit, O., and Barrionuevo, G. (1983). “Lateral geniculate
nucleus unitary discharge in sleep and waking: State- and rate-specific aspects”. J.
Neurophysiol. 50, 798–818.

McCormick, D. A. (1991). “Functional properties of a slowly inactivating potassium
current in guinea pig dorsal lateral geniculate relay neurons”. J. Neurophysiol. 66,
1176–1189.

McGarry, L. M., Packer, A. M., Fino, E., Nikolenko, V., Sippy, T., and Yuste, R.
(2010). “Quantitative classification of somatostatin-positive neocortical
interneurons identifies three interneuron subtypes”. Front. Neural Circuits 4, 1–19.

McMahon, D. B. T., Bondar, I. V., Afuwape, O. A. T., Ide, D. C., and
Leopold, D. A. (2014). “One month in the life of a neuron: Longitudinal
single-unit electrophysiology in the monkey visual system”. J. Neurophysiol. 112,
1748–1762.



246 Bibliography

Mease, R. A., Kuner, T., Fairhall, A. L., and Groh, A. (2017). “Multiplexed spike
coding and adaptation in the thalamus”. Cell Rep. 19, 1130–1140.

Meister, M., Wong, R. O. L., Baylor, D. A., and Shatz, C. J. (1991). “Synchronous
bursts of action potentials in ganglion cells of the developing mammalian retina”.
Science 252, 939–943.

Metz, A. E., Jarsky, T., Martina, M., and Spruston, N. (2005). “R-type calcium
channels contribute to afterdepolarization and bursting in hippocampal CA1
pyramidal neurons”. J. Neurosci. 25, 5763–5773.
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Seung, H. S. and Sümbül, U. (2014). “Neuronal cell types and connectivity: Lessons
from the retina”. Neuron 83, 1262–1272.

Shen, R., Olshen, A. B., and Ladanyi, M. (2009). “Integrative clustering of multiple
genomic data types using a joint latent variable model with application to breast
and lung cancer subtype analysis”. Bioinformatics 25, 2906–2912.

Sherman, S. M. (2001). “Tonic and burst firing: Dual modes of thalamocortical
relay”. Trends Neurosci. 24, 122–126.

Sherman, S. M. (2017). “Functioning of circuits connecting thalamus and cortex”.
Compr. Physiol. 7, 713–739.

Shi, Y., Kirwan, P., and Livesey, F. J. (2012). “Directed differentiation of human
pluripotent stem cells to cerebral cortex neurons and neural networks”. Nat.
Protoc. 7, 1836–1846.

Shipp, S. (2007). “Structure and function of the cerebral cortex”. Curr. Biol. 17,
443–449.

Shuai, J., Bikson, M., Hahn, P. J., Lian, J., and Durand, D. M. (2003). “Ionic
mechanisms underlying spontaneous CA1 neuronal firing in Ca2+-free solution”.
Biophys. J. 84, 2099–2111.

Singh, A., Mewes, K., Gross, R. E., DeLong, M. R., Obeso, J. A., and Papa, S. M.
(2016). “Human striatal recordings reveal abnormal discharge of projection
neurons in Parkinson’s disease”. Proc. Natl. Acad. Sci. U.S.A. 113, 9629–9634.

Smith, D. R. and Smith, G. K. (1965). “A statistical analysis of the continual
activity of single cortical neurones in the cat unanaesthetized isolated forebrain”.
Biophys. J. 5, 47–74.



Bibliography 251

Snider, R. K., Kabara, J. F., Roig, B. R., and Bonds, A. B. (1998). “Burst firing
and modulation of functional connectivity in cat striate cortex”. J. Neurophysiol.
80, 730–744.

Spira, M. E. and Hai, A. (2013). “Multi-electrode array technologies for
neuroscience and cardiology”. Nat. Nanotechnol. 8, 83–94.

Spitzer, N. C. (2012). “Activity-dependent neurotransmitter respecification”. Nat.
Rev. Neurosci. 13, 94–106.

Spruston, N. (2008). “Pyramidal neurons: Dendritic structure and synaptic
integration”. Nat. Rev. Neurosci. 9(3), 206–221.

Squire, L., Berg, D., Bloom, F., Du Lac, S., Ghosh, A., and Spitzer, N., eds. (2008).
Fundamental Neuroscience. Burlington, MA: Academic Press.

Staiger, J. F., Flagmeyer, I., and Schubert, D. (2004). “Functional diversity of layer
IV spiny neurons in rat somatosensory cortex: Quantitative morphology of
electrophysiologically characterized and biocytin labeled cells”. Cereb. Cortex 14,
690–701.

Steriade, M., Timofeev, I., and Grenier, F. (2001). “Natural waking and sleep states:
a view from inside neocortical neurons”. J. Neurophysiol. 85, 1969–1985.

Stevens, C. F. (1998). “Neuronal diversity: Too many cell types for comfort?” Curr.
Biol. 8, R708–R710.

Stevens, C. F. and Wang, Y. (1995). “Facilitation and depression at single central
synapses”. Neuron 14, 795–802.

Strehl, A. and Ghosh, J. (2002). “Cluster ensembles – A knowledge reuse framework
for combining multiple partitions”. J. Mach. Learn. Res. 3, 583–617.

Sugino, K., Hempel, C. M., Miller, M. N., Hattox, A. M., Shapiro, P., Wu, C.,
Huang, Z. J., and Nelson, S. B. (2006). “Molecular taxonomy of major neuronal
classes in the adult mouse forebrain”. Nat. Neurosci. 9, 99–107.
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