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Matsubara Dynamics and its

Practical Implementation

Michael John Willatt

This thesis develops a theory for approximate quantum time-correlation func-

tions, Matsubara dynamics, that rigorously describes how to combine quantum

statistics with classical dynamics. Matsubara dynamics is based on Feynman’s path

integral formulation of quantum mechanics and is expected to describe the physics of

any system that satisfies quantum Boltzmann statistics and exhibits rapid quantum

decoherence, e.g. liquid water at room temperature.

Having derived the Matsubara dynamics theory and explored the symmetry prop-

erties that it shares with the quantum Kubo time-correlation function, we demon-

strate that two heuristic computational methods, Centroid Molecular Dynamics and

Ring Polymer Molecular Dynamics, are based on quantifiable approximations to the

Matsubara dynamics time-correlation function. This provides these methods with

a stronger theoretical foundation and helps to explain their strengths and short-

comings. We then apply the Matsubara dynamics theory to a recently developed

computational method of Poulsen et al. called the planetary model. We show that

the planetary model is based on a harmonic approximation to Matsubara dynamics

that is engineered to maintain the conservation of the quantum Boltzmann distri-

bution, so quantum statistics and classical dynamics remain harmonised.

By making practical modifications to the planetary model, we were able to calcu-

late infrared absorption spectra for a point charge model of condensed-phase water

over a range of thermodynamic conditions. We find that this harmonic approxima-

tion to Matsubara dynamics provides a good description of bending and vibrational

motions and is expected to be a useful tool for future spectroscopic studies of more

complex, polarisable models of water.
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Chapter 1

Introduction

Computational chemists routinely simulate molecular systems comprising thousands

of atoms.1 The aim of such simulations is ordinarily to calculate static and dynam-

ical properties, e.g. radial distribution functions, chemical reaction rates, infrared

absorption spectra etc., for the discovery of new phenomena and comparison with

experiment.

Often classical molecular dynamics or classical Monte Carlo simulations of molec-

ular systems are capable of reproducing experimental results. However, for systems

containing light atoms or stiff degrees of freedom, or those at low temperature, it is

usually necessary to include nuclear quantum effects (NQEs) like zero-point energy

and tunnelling.2,3 For example, since a classical simulation will not account for the

significant zero-point energy of the stiff OH covalent bond in water (even with a

highly accurate ab initio nuclear potential energy surface), a classical simulation of

room-temperature liquid water will underestimate the acid dissociation constant of

each water molecule by at least an order of magnitude.4

To include NQEs in statistical mechanics simulations, we could solve the time-

independent Schrödinger equation for the nuclear degrees of freedom to construct

the density matrix for the system. For systems where nuclear exchange effects are

unimportant, the appropriate density matrix is the Boltzmann operator. By repre-

senting the Hamiltonian operator in an appropriate basis, e.g. a Discrete Variable

Representation (DVR),5,6 exploiting the sparsity of the Hamiltonian matrix and

focusing only on the lowest-lying eigenstates (with the Lanczos algorithm,7 for ex-

ample), it is feasible to calculate the quantum Boltzmann statistics of small systems.

Nevertheless, such a calculation scales exponentially with the number of nuclear de-

grees of freedom and is therefore prohibitively expensive for systems of moderate

size.

However, it is a remarkable fact that the quantum Boltzmann statistics of any

1



2 Introduction

system is equivalent to the classical Boltzmann statistics of N replicas of the same

system connected by harmonic springs in the N →∞ limit.8 This fact is based on

Feynman’s path integral formulation of quantum mechanics in imaginary time and

was first used to calculate quantum-statistical properties of molecular systems in

the 1980s.9,10 Since classical simulations scale linearly with the number of nuclear

degrees of freedom, this makes the inclusion of NQEs astronomically more affordable.

While the scaling with the number of nuclear degrees of freedom is linear, the

computational expense of such a simulation is clearly dependent on the number of

replicas that are required to converge the quantum Boltzmann statistics as well.

In practice, for systems like liquid water at room temperature, the number of re-

quired replicas is of the order of tens to hundreds.11,4 This makes the inclusion of

NQEs in a statistical mechanics simulation only one to two orders of magnitude

more computationally expensive than a traditional classical simulation. Moreover,

various improvements have been made to statistical mechanics methods like Path

Integral Monte Carlo (PIMC) and Path Integral Molecular Dynamics (PIMD) that

exploit this isomorphism between the quantum and classical Boltzmann distribu-

tions. These include the ring-polymer contraction technique12,13 and time-evolution

algorithms based on the generalised Langevin equation.14,15,16 Such advances have

made statistical mechanics simulations of molecular systems that include NQEs al-

most as cheap as traditional classical simulations, and computational chemists now

routinely include NQEs to study the statistical mechanics of complex molecular

systems.

To simulate the quantum-dynamical properties of molecular systems is signifi-

cantly more challenging than statistical properties, even if the nuclei are restricted to

remain on the potential energy surface associated with the electronic ground state.

The quantum-dynamical properties of systems governed by quantum Boltzmann

statistics are encapsulated in quantum time-correlation functions (TCFs). TCFs

measure the correlation of a pair of observables at two moments in time within the

quantum canonical ensemble. Of course, the observables depend on the application;

for instance, the infrared absorption and Raman spectra are related to the Fourier

transform of the dipole moment and polarisability tensor autocorrelation functions

respectively.17 Likewise, transport coefficients (diffusion constant, shear viscosity

etc.) are related to the zero-frequency components of autocorrelation functions

through what are known as the Green-Kubo relations.18,19

In principle, to reproduce experimental results like the Raman spectrum for

systems where quantum coherence effects are important, e.g. an isolated water

molecule in the gas phase, we must resort to finding approximate solutions to the
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time-dependent Schrödinger equation for the nuclear degrees of freedom. Popular

approaches to this end include the use of a DVR to construct time-dependent solu-

tions from stationary states,5,20,6 or the use of wavepackets, e.g. the Multiconfigu-

ration Time-dependent Hartree method (MCTDH)21,22 and Gaussian wavepacket

methods.23,24,25,26,27 There are also a variety of methods based on semiclassical

approximations to the exact quantum propagator, e.g. the Semiclassical Initial

Value Representation (SC-IVR) and the Forward Backward Initial Value Represen-

tation (FB-IVR) etc.28,29,2 However, owing to their computational expense, these

approaches usually focus on relatively small systems, e.g. the nuclear dynamics of

a single pyrazine molecule.30,22,31

Fortunately, for most large condensed-phase chemical systems at room temper-

ature, we expect quantum coherence effects to be unimportant because the vast

number of thermally-accessible degrees of freedom lead to rapid decoherence.2,28,4

This suggests that, while a quantum description of the thermal statistics is necessary,

the appropriate level of theory for such systems is a classical one for the dynamics.

Of course, this then raises the question of how to combine quantum statistics and

classical dynamics rigorously in approximate quantum TCFs.

To explore the link between quantum and classical mechanics, Wigner reformu-

lated quantum statistical mechanics in a phase space akin to the classical phase

space.32 The cornerstone of this formulation is an integral transform that takes his

name.33 In the 1940s, Moyal discovered the Moyal series, the quantum analogue of

the Poisson bracket, which governs the time-evolution of observables in the Wigner

phase space.34 The Moyal series is equivalent to what we call the quantum Liouvillian

in this thesis, which is the Wigner phase space analogue of the classical Liouvillian.

As is well known, if we formulate the quantum TCF in the Wigner phase space

and make a semiclassical approximation for the quantum Liouvillian, we reach the

Linearised Semiclassical Initial Value Representation (LSC-IVR).35,36 LSC-IVR has

been regarded as the pre-eminent theory for combining quantum statistics with

classical dynamics in approximate quantum TCFs that exclude quantum coherence

effects. The classical dynamics in LSC-IVR is, however, inconsistent with the quan-

tum statistics since it does not conserve the quantum Boltzmann distribution. This

inconsistency leads to spurious predictions related to the erroneous redistribution of

energy over time. For example, the significant zero-point energy in the intramolec-

ular degrees of freedom in an LSC-IVR description of liquid water can leak into the

intermolecular degrees of freedom.37 In principle, this could predict the spontaneous

boiling of the liquid at room temperature.2

Despite this shortcoming of LSC-IVR, various approximate dynamical methods
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have been heuristically developed since the end of the last century that success-

fully combine quantum statistics and classical mechanics in the sense that they

conserve the quantum Boltzmann distribution. The most popular methods are Cen-

troid Molecular Dynamics (CMD) and Ring Polymer Molecular Dynamics (RPMD),

both of which are based on the path-integral isomorphism between the quantum

and classical Boltzmann distributions.38,39 While approximate, these methods al-

low the computational chemist to include NQEs in dynamical simulations of large

molecular systems without needing to worry about spurious results related to the

non-conservation of the quantum Boltzmann distribution. However, it has been un-

clear how each of these methods relates to LSC-IVR, and thus how they relate to

the quantum TCFs that they approximate at finite time.40,41

Furthermore, CMD and RPMD are known to poorly describe TCFs involving

observables that are non-linear in position (often called the ‘non-linear operator

problem’).42,39 They also possess well-known shortcomings for the calculation of in-

frared absorption spectra for systems like room-temperature liquid water. In CMD,

the OH stretch band exhibits a spurious, temperature-dependent redshift (the ‘cur-

vature problem’). In RPMD, the temperature-dependent coupling between the in-

ternal modes of the ring polymer can lead to the presence of spurious peaks and

splitting of the genuine bands (the ‘spurious resonance problem’).

In this work we develop Matsubara dynamics, a theory that rigorously com-

bines quantum Boltzmann statistics with classical dynamics in approximate quan-

tum TCFs. Matsubara dynamics derives from the Wigner phase space represen-

tation of the quantum TCF through an approximation to the quantum Liouvillian

that, unlike LSC-IVR, maintains the conservation of the quantum Boltzmann dis-

tribution.43 Matsubara dynamics suffers from the sign problem so the Matsubara

dynamics TCF is in general just as difficult to compute as an exact solution to the

time-dependent Schrödinger equation.

However, using the content of the Matsubara dynamics theory, we are able to

demonstrate that CMD and RPMD are related to Matsubara dynamics via quantifi-

able approximations.44 This provides the missing theoretical link to exact quantum

dynamics for these popular methods and helps to explain the origin of the non-

linear operator, curvature and spurious resonance problems. We are also able to

demonstrate that a more recently-developed approximate method that conserves

the quantum Boltzmann distribution, the planetary model of Poulsen et al., is re-

lated to Matsubara dynamics via several quantifiable approximations that do not

lead to the non-linear operator problem.45,46

The thesis culminates in a spectroscopic study of condensed-phase water over
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a range of thermodynamic conditions. We develop a more practical version of the

planetary model and compare with CMD and a thermostatted version of RPMD

(TRPMD) which was developed to remedy the spurious resonance problem.47 We

find that the planetary model provides a faithful representation of the high-frequency

portion of the water infrared absorption spectra, which for hexagonal ice at 150K is

undoubtedly more realistic than the CMD and TRPMD results. Using a stochastic

theory of lineshape that was developed by Kubo, we are able to rationalise the

success of the planetary model for the condensed-phase simulations on the basis of

a motional narrowing argument.48

We are ultimately led to speculate that the planetary model is likely to be a use-

ful computational tool for future spectroscopic studies of condensed-phase systems

and also a useful theoretical tool to assess the validity of centroid-based approxi-

mate methods (namely CMD and RPMD) for the calculation of non-linear quantum

TCFs. We also expect that the theoretical framework that Matsubara dynamics pro-

vides will lead to the development of new, approximate quantum dynamics methods

to complement CMD, RPMD and the planetary model in the future.
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Chapter 2

Background Theory

2.1 Thermal expectation values and

time-correlation functions

In classical statistical mechanics, the canonical partition function is given by a phase

space integral over the Boltzmann factor,

Z =
1

2π~

∫
dq

∫
dp e−βH(q,p), (2.1)

where β = 1/kT is the inverse temperature, H(q, p) = p2

2m
+ V (q) is the classical

Hamiltonian and the integrals are taken over the entire real line. We assume the

system is one-dimensional in this and the following sections but the multidimensional

generalisation is straightforward in every case. For the partition function written in

Cartesian coordinates (2.1), the momentum may be integrated out at once to give

Z =

√
m

2πβ~2

∫
dq e−βV (q), (2.2)

which is often called the configuration integral.1 The thermal expectation value of an

observable A(q, p) is given by a phase space integral over the normalised probability

distribution e−βH(q,p)/Z (the classical Boltzmann distribution),

〈A〉 =
1

Z

1

2π~

∫
dq

∫
dp e−βH(q,p) A(q, p). (2.3)

It is these expectation values that provide the link between the statistical mechanics

theory and static equilibrium properties. For example, the constant-volume heat

capacity is related to the variance of the total energy,49

7



8 Background Theory

CV (T ) =
〈H2〉 − 〈H〉2

kT 2
. (2.4)

For dynamical properties, it is time-correlation functions (TCFs) that provide

the link between theory and experiment. The classical TCF for two observables

A(q, p) and B(q, p) is defined by

CAB(t) =
1

2π~

∫
dq

∫
dp e−βH(q,p) A(q, p)eL0tB(q, p) (2.5)

=
1

2π~

∫
dq

∫
dp e−βH(q,p) A(q, p)B(qt, pt), (2.6)

where L0 is the classical Liouvillian,

L0 =
p

m

∂

∂q
− V ′(q) ∂

∂p
, (2.7)

and the coordinates (qt, pt) result from (q, p) after classical evolution for time t.

For example, for A(q, p) = B(q, p) = µ(q) where µ(q) is the dipole moment of the

system, the Fourier transform of the dipole moment autocorrelation function,

Cµµ(t) =
1

2π~

∫
dq

∫
dp e−βH(q,p) µ(q)µ(qt), (2.8)

has a simple relationship with the infrared absorption spectrum.17 By expanding the

classical propagator eL0t as a Taylor series in t and repeatedly applying integration

by parts in the position and momentum coordinates, it is straightforward to show

that the classical TCF satisfies the important detailed balance relation,

CAB(t) =
1

2π~

∫
dq

∫
dp e−βH(q,p)B(q, p)A(q−t, p−t) (2.9)

=CBA(−t), (2.10)

where we have exploited conservation of the classical Boltzmann distribution,

L0
e−βH(q,p)

Z
= 0, (2.11)

which results from conservation of energy H(q, p). For the special case of A(q, p) = 1,

the detailed balance relation implies

C1B(t)

Z
= 〈B〉 , (2.12)

which provides the link between classical TCFs and thermal expectation values.
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In quantum statistical mechanics, the canonical partition function is given by

the trace of the Boltzmann operator,

Z = Tr
[
e−βĤ

]
, (2.13)

where Ĥ = T̂ + V̂ is the Hamiltonian operator. The quantum counterpart to the

classical Boltzmann distribution is the following normalised density matrix,

ρ̂ =
e−βĤ

Z
, (2.14)

with which we can neatly write the thermal expectation value of an operator Â as

〈A〉 = Tr
[
ρ̂Â
]
. (2.15)

Ostensibly this expectation value has a fundamentally different form to its classical

counterpart (2.3). However, by using the Trotter factorisation50 of an exponentiated

operator, the quantum thermal expectation value can be brought into a form that

resembles the classical one. Without approximation, the Boltzmann operator can

be written as follows for any positive integer N ,

e−βĤ =
N∏

l=1

e−βN Ĥ , (2.16)

where βN = β/N . Now, in the N →∞ limit we have

e−βĤ = lim
N→∞

N∏

l=1

e−βN V̂ /2e−βN T̂ e−βN V̂ /2, (2.17)

owing to the Trotter factorisation of each e−βN Ĥ in the product. If we insert this

form into the definition of the quantum canonical partition function, expand the

trace in position states and insert N − 1 copies of the identity operator,

Î =

∫ ∞

−∞
dx |x〉 〈x| , (2.18)

we find8

Z = lim
N→∞

(
m

2πβN~2

)N/2 ∫
dq exp

[
−βN

N∑

l=1

V (ql) +
1

2
m

(ql − ql−1)2

(βN~)2

]
, (2.19)
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where
∫

dq is shorthand for
∏N

l=1

∫∞
−∞ dql and the coordinates are cyclic (so q0 = qN

etc.). It is clear that for a given N , the right-hand side of (2.19) has the same form

as the classical configuration integral (2.2) but at a temperature that is elevated

by a factor of N in a configuration space that has N -fold as many dimensions. If

we interpret the content of the right-hand side of (2.19) from a classical point of

view, the system in this extended configuration space is a ‘ring polymer’ composed

of N ‘beads’ (each coordinate ql represents the position of a bead). Each bead

experiences the external potential V (ql) as well as harmonic forces from each of its

two neighbours in the ring polymer.

By inserting N copies of the following identity,10

1 =

√
βN

2πm

∫ ∞

−∞
dp e−βN

p2

2m , (2.20)

we may rewrite the quantum canonical partition function (2.19) as a phase space

integral over the unnormalised ring-polymer representation of the quantum Boltz-

mann distribution e−βNR(q,p),

Z = lim
N→∞

1

(2π~)N

∫
dq

∫
dp e−βNR(q,p), (2.21)

where we have defined the ring-polymer Hamiltonian,

R(q,p) =
N∑

l=1

p2
l

2m
+ V (ql) +

1

2
m

(ql − ql−1)2

(βN~)2
. (2.22)

Quantum thermal expectation values can be evaluated in this extended ring-polymer

phase space. For an operator Â = A(q̂) we have

〈A〉 = lim
N→∞

1

Z

1

(2π~)N

∫
dq

∫
dp e−βNR(q,p)A(q), (2.23)

where

A(q) =
1

N

N∑

l=1

A(ql). (2.24)

This isomorphism between the quantum and classical Boltzmann distributions is

used to calculate thermal expectation values according to (2.23) in Path Integral

Monte Carlo (PIMC) and Path Integral Molecular Dynamics (PIMD). In PIMC,

Monte Carlo sampling is used to generate ring-polymer configurations that are con-

sistent with the quantum Boltzmann distribution. In PIMD, the classical dynamics
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of the ring polymer, as governed by the Hamiltonian in (2.22), is used to generate

the configurations instead.9,51,52,53

As for the classical theory, it is quantum TCFs that provide the link between

theory and experiment for dynamical properties. The standard quantum TCF for

two operators Â and B̂ is defined by

CAB(t) = Tr
[
e−βĤÂB̂(t)

]
, (2.25)

where B̂(t) is the operator B̂ at time t in the Heisenberg picture,

B̂(t) = e+iĤt/~B̂e−iĤt/~. (2.26)

Many practical methods approximate the quantum Kubo TCF (also known as the

quantum canonical TCF54) instead. This is defined by19

CAB(t) =
1

β

∫ β

0

dλ Tr
[
e−(β−λ)ĤÂe−λĤB̂(t)

]
. (2.27)

In common with the classical TCF (2.5), the quantum Kubo TCF satisfies the de-

tailed balance relation (2.10) while the standard quantum TCF (2.25) does not.

However, it is straightforward to show by writing the quantum Kubo TCF as
1
β

∫ β
0

dλ CAB (t+ iλ~) (i.e. analytic continuation of the standard quantum TCF)

that the Fourier transforms of these two quantum TCFs are in the ratio

f(ω) =
β~ω

1− e−β~ω , (2.28)

so each can be inferred from the other. This function of the frequency is often called

the harmonic correction factor. In the harmonic limit, the Fourier transforms of the

classical position autocorrelation function (A(q, p) = B(q, p) = q) and the standard

quantum position autocorrelation function are in the ratio (2.28).55

2.2 The centroid potential of mean force

The canonical partition function is related to the Helmholtz free energy as follows,1

Z = e−βF , (2.29)

which is of course related to the internal energy 〈H〉 and entropy S through

F = 〈H〉 − TS. (2.30)
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By introducing the definition of the centroid of the bead positions {ql} (note that

since all the beads have the same mass, this is the same as the ring-polymer centre

of mass),

Q0 =
1

N

N∑

l=1

ql, (2.31)

and by associating a free energy with a given centroid configuration space point (c.f.

the global free energy in (2.29)), we may write the quantum canonical partition

function as an integral over the centroid position and momentum,

Z =
1

2π~

∫
dQ0

∫
dP0 e

−βH(Q0,P0), (2.32)

where H(Q0, P0) =
P 2

0

2m
+ F (Q0) and the centroid free energy F (Q0), or centroid

potential of mean force (so named for reasons to become clear shortly), is defined

implicitly by

e−βH(Q0,P0) = lim
N→∞

1

(2π~)N−1

∫
dq

∫
dp e−βNR(q,p)

× δ
(
Q0 −

1

N

N∑

l=1

ql

)
δ

(
P0 −

1

N

N∑

l=1

pl

)
. (2.33)

With this representation we may evaluate the quantum thermal expectation value

of a position-dependent operator Â = A(q̂) as follows,

〈A〉 =
1

Z

1

2π~

∫
dQ0

∫
dP0 e

−βH(Q0,P0) A(Q0), (2.34)

which is exact for Â linear in q̂. Note that such an operator is often called a linear op-

erator in this context and we follow this convention throughout the thesis. The equal-

ity (2.34) does not hold if Â is a non-linear operator since A(Q0) 6= 1
N

∑N
l=1 A(ql)

in that case (c.f. (2.23)).

2.3 The Feynman-Kleinert approximation

It follows from the Gibbs-Bogoliubov inequality that the centroid potential of mean

force F (Q0) is bounded from above by56

F (Q0) ≤W (Q0), (2.35)
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where

W (Q0) =
1

β
ln

(
sinh(β~Ω/2)

β~Ω/2

)
− 1

2
mΩ2a2 + Va2(Q0), (2.36)

and Va2(Q0) is the convolution of a Gaussian of width a with the external potential,

Va2(Q0) =
1√
2πa

∫
dq e−

q2

2a2 V (Q0 + q). (2.37)

Note that the Gibbs-Bogoliubov inequality is a simple application of Jensen’s in-

equality from probability theory:
〈
eX
〉
≥ e〈X〉 for any random variable X.8 The

function W (Q0) is the Feynman-Kleinert approximation56 to the exact centroid po-

tential of mean force. (While this approximation carries Feynman and Kleinert’s

names, it was also developed independently by Giachetti and Tognetti.57,58) For the

right-hand side of the inequality (2.35) to be a minimum, it must be independently

minimised with respect to a2 and Ω2. This leads to the following pair of simultane-

ous equations that define a2 = a2(Q0) and Ω2 = Ω2(Q0) as functions of the centroid

position (though we suppress this explicit dependence in what follows to maintain

a clear notation),

a2 =
β~Ω coth

(
β~Ω

2

)
− 2

2βmΩ2
, (2.38)

and

mΩ2 =
1√
2πa

∫
dq e−

q2

2a2 V ′′(Q0 + q). (2.39)

In other words, for the trial centroid potential of mean force (2.36) to be a minimum

with respect to the parameters a2 and Ω2, the squared frequency Ω2 must be the

convolution of the mass-weighted Hessian with a Gaussian whose width is dictated

by (2.38). It is important to note that a2 must be positive for (2.39) to be well

defined. From (2.38), a2 is positive for Ω2 > −(2π/β~)2 and for any bound system

this inequality is guaranteed.56 Therefore, for any bound system there is always a

solution to the simultaneous equations (2.38) and (2.39). In practice, the equations

are solved by fixed-point iteration.

These considerations allow us to approximate the quantum thermal expectation

value of an operator Â = A(q̂) as follows (c.f. (2.34)),

〈A〉 ≈ 1

Z0

1

2π~

∫
dQ0

∫
dP0 e

−βH0(Q0,P0) A(Q0), (2.40)
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where H0(Q0, P0) =
P 2

0

2m
+W (Q0) and

Z0 =
1

2π~

∫
dQ0

∫
dP0 e

−βH0(Q0,P0). (2.41)

Equality holds in (2.40) in the harmonic limit provided Â is a linear operator.

2.4 Centroid Molecular Dynamics (CMD)

Returning to (2.34), for two operators Â = A(q̂) and B̂ = B(q̂) it is straightforward

to show that

CAB(0) =
1

2π~

∫
dQ0

∫
dP0 e

−βH(Q0,P0) A(Q0)B(Q0), (2.42)

where CAB(0) is the zero-time value of the quantum Kubo TCF,

CAB(0) =
1

β

∫ β

0

dλ Tr
[
e−(β−λ)ĤÂe−λĤB̂

]
, (2.43)

and equality holds provided Â and B̂ are linear in q̂. Note that CAB(0)
Z

6= 〈AB〉
unless A(q̂) commutes with the Boltzmann operator.

In the Centroid Molecular Dynamics method (CMD), this observation (2.42) is

used to approximate the quantum Kubo TCF for operators Â = A(q̂) and B̂ = B(q̂)

at t ≥ 0. The CMD TCF is defined by38

CAB(t) =
1

2π~

∫
dQ0

∫
dP0 e

−βH(Q0,P0) A(Q0) eL0tB(Q0), (2.44)

where the CMD Hamiltonian is H(Q0, P0) =
P 2

0

2m
+F (Q0), as defined before, and its

corresponding classical Liouvillian is the CMD Liouvillian,

L0 =
P0

m

∂

∂Q0

− F ′(Q0)
∂

∂P0

. (2.45)

It is straightforward to show by differentiation of (2.33) that the centroid force is

given by

−F ′(Q0) = eβH(Q0,P0) lim
N→∞

1

(2π~)N−1

∫
dq

∫
dp e−βNR(q,p) 1

N

N∑

l=1

−V ′(ql)

× δ
(
Q0 −

1

N

N∑

l=1

ql

)
δ

(
P0 −

1

N

N∑

l=1

pl

)
. (2.46)
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In other words, it is a centroid-constrained ring-polymer average over the force

on each ring-polymer bead, hence the name ‘potential of mean force’ for F (Q0).

Note that the factor eβH(Q0,P0) normalises the integral. Of course, action of the

CMD Liouvillian on the CMD Hamiltonian gives zero, L0H(Q0, P0) = 0, so the

distribution is conserved. This ensures that CMD satisfies the detailed balance

relation (2.10) in accordance with the quantum Kubo TCF that it approximates.

In practice, CMD TCFs are calculated using the classical dynamics of ring poly-

mers. The mass of the ring-polymer centroid is fixed at the physical mass, while

the other masses are decreased so the fluctuation modes (the non-centroid inter-

nal ring-polymer modes) become adiabatically separated from the centroid. This

means that the centroid-constrained ring-polymer average (2.46) can be calculated

on the fly. To aid the sampling of this integral, the fluctuation modes are usually

thermostatted with Nosé-Hoover chains. Such an implementation of CMD is called

Partially Adiabatic CMD (PA-CMD).59

CMD has been successfully applied to many condensed phase systems for the cal-

culation of, for example: reaction rates, diffusion constants, infrared absorption and

Raman spectra.60,61,62,63 However, CMD is known to suffer from the ‘curvature prob-

lem’ in some multidimensional systems, as first described by Marx et al.64,65 This

problem is characterised by a temperature-dependent redshift of high frequency vi-

brations in infrared absorption spectra, which is particularly troublesome for molec-

ular systems with stiff vibrations (e.g. water). The temperature-dependent redshift

is ultimately caused by the breakdown of the mean-field approximation at low tem-

peratures for these systems.

For some one-dimensional systems where quantum coherence effects are impor-

tant (e.g. the quartic oscillator), CMD is known to become increasingly accurate in

the T → 0 limit. This is because in the T → 0 limit, the thermally-accessible por-

tion of the centroid potential of mean force becomes increasingly harmonic with a

frequency ω ≈ (E1−E0)/~ that captures the coherent dynamics of the cold quantum

system. We direct the reader to a series of papers concerning this theory presented

by Ramirez and López-Ciudad66 and other theory concerning CMD, including its

practical implementation and its multidimensional generalisation.67,38

2.5 Feynman-Kleinert CMD

The Feynman-Kleinert approximation was developed for the approximation of static

properties. However, since the approximation amounts to a particular form for the

centroid potential of mean force, the methodology is immediately applicable to CMD
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for dynamical properties as well. The CMD TCF within the Feynman-Kleinert

approximation is (c.f. (2.44))

CAB(t) =
1

2π~

∫
dQ0

∫
dP0 e

−βH0(Q0,P0)A(Q0) eL0tB(Q0), (2.47)

where

L0 =
P0

m

∂

∂Q0

−W ′(Q0)
∂

∂P0

. (2.48)

Given that the Feynman-Kleinert centroid potential of mean force is minimised with

respect to a2 and Ω2, it is clear that the centroid force is given by

−W ′(Q0) = − 1√
2πa

∫
dq e−

q2

2a2 V ′(Q0 + q), (2.49)

i.e. it is the convolution of a Gaussian of width a with the external force.67

2.6 Ring Polymer Molecular Dynamics (RPMD)

In Section 2.1, we demonstrated that the quantum thermal expectation value of an

operator Â = A(q̂) can be calculated as the N →∞ limit of a ring-polymer average,

〈A〉 = lim
N→∞

1

Z

1

(2π~)N

∫
dq

∫
dp e−βNR(q,p)A(q). (2.50)

For two operators Â = A(q̂) and B̂ = B(q̂) it is straightforward to show that

CAB(0) = lim
N→∞

1

(2π~)N

∫
dq

∫
dp e−βNR(q,p)A(q)B(q), (2.51)

where CAB(0) is the zero-time value of the quantum Kubo TCF, as defined before

(2.43), and the equality holds for any Â and B̂ dependent on the position operator

only. In the same spirit as CMD, this last observation is used in the Ring Polymer

Molecular Dynamics method (RPMD) to approximate the quantum Kubo TCF for

t ≥ 0. The RPMD TCF for two observables A(q) and B(q) is55

C
[N ]
AB(t) =

1

(2π~)N

∫
dq

∫
dp e−βNR(q,p) A(q) eL

[RP]tB(q), (2.52)

where A(q) is as defined before (2.24) and B(q) is defined equivalently. The RPMD

Liouvillian is the classical Liouvillian for the ring-polymer Hamiltonian,
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L[RP] =
N∑

l=1

pl
m

∂

∂ql
−
[
V ′(ql) +m

2ql − ql+1 − ql−1

(βN~)2

]
∂

∂pl
. (2.53)

Of course, from the definition of the RPMD Liouvillian we have L[RP]R(q,p) = 0,

so the distribution is conserved. This ensures that, in common with CMD, RPMD

also satisfies the detailed balance relation (2.10). As highlighted previously for the

classical TCF (see (2.12)), for the special case of Â = Î the detailed balance relation

implies

CIB(t)

Z
= 〈B〉 . (2.54)

In other words, thermal expectation values are time-independent in the RPMD

framework. It is precisely this quality that is exploited in PIMD to calculate a

phase space average as a time average instead (provided the system is ergodic).

Like CMD, RPMD has been successfully applied to many condensed phase sys-

tems for the calculation of reaction rates, diffusion constants, infrared absorption

spectra, among other dynamical properties.68,69,70,71,72,73 RPMD has found most suc-

cess in the calculation of reaction rate constants through the flux-side TCF.74,75 This

success has been explained by recent theoretical developments. Firstly, Richardson

and Althorpe established the theoretical connection between RPMD rate theory and

semiclassical instanton (Im F) rate theory.76 Their analysis shows that in the deep

tunnelling regime (temperatures satisfying T ≤ ~ωb/2π where ωb is the harmonic

frequency at the top of the reaction barrier), RPMD will slightly underestimate the

rate of a reaction with a symmetric barrier and slightly overestimate with an asym-

metric barrier. More recently, Hele and Althorpe proved that RPMD Transition

State Theory (RPMD-TST), which is the t → 0+ limit of RPMD rate theory, is

identical to Quantum Transition State Theory (QTST).77,78,79,80 This means that in

the absence of quantum-dynamical recrossing of the transition state dividing surface,

RPMD-TST will give the exact quantum reaction rate.

Despite the special success of RPMD for reaction rate calculation, it is known to

suffer from the ‘spurious resonance problem’, as first described by Habershon et al.

and developed further by Marx et al.69,64,65 As for the curvature problem in CMD,

this phenomenon is particularly pronounced for the infrared absorption spectroscopy

of water. Its origin is the temperature-dependent coupling of the internal modes

of the ring polymer. At certain temperatures, the fluctuation modes come into

resonance with the centroid mode which leads to spurious resonances and splittings

in infrared absorption spectra.
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We direct the reader to a comprehensive review of RPMD by Habershon et al.39

which describes, among other developments, its practical implementation (including

the powerful ring-polymer contraction technique12), rate theory,74,75 the spurious

resonance problem and its multidimensional generalisation. The non-adiabatic ex-

tension of RPMD is discussed in a variety of articles,81,82 and its non-equilibrium

extension is discussed in Ref. 83.

2.7 Thermostatted Ring Polymer Molecular

Dynamics (TRPMD)

Thermostatted Ring Polymer Molecular Dynamics (TRPMD) is an extension of

RPMD that was developed heuristically to mitigate the spurious resonance problem.

The equations of motion that correspond to the RPMD Liouvillian are

q̇ =
p

m
(2.55)

ṗ =FFF (q), (2.56)

where the elements of the force vector FFF (q) are given by

Fl(q) = − V ′(ql)−m
2ql − ql+1 − ql−1

(βN~)2
. (2.57)

In TRPMD, the ring-polymer beads are subjected to a Langevin thermostat,47

q̇ =
p

m
(2.58)

ṗ =FFF (q)− γp−
√

2m

βN
γ1/2ξξξ(t), (2.59)

where γ is a real, symmetric, positive semi-definite N × N friction matrix and

ξξξ(t) is a vector of uncorrelated normal deviates with unit variance and zero mean:

〈ξl(t)〉 = 0 and 〈ξlξj(t)〉 = δljδ(t). This is the same scheme that is used in stochastic

implementations of PIMD.51,14 The friction matrix is chosen to satisfy the following

relation,

N∑

l=1

γjl = 0, (2.60)

which ensures that the centroid is not coupled to the thermostat.
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In practice, the friction matrix is constructed from

(
T TγT

)
lk

= δlk |ωk|, (2.61)

where ωk = 2 sin(πk/N)/βN~ are the free ring-polymer normal mode frequencies

and the matrix of orthonormal vectors,

Tlk =





√
1
N

k = 0√
2
N

sin(2πlk/N) 0 < k ≤ N√
2
N

cos(2πlk/N) −N ≤ k < 0,

(2.62)

where N = (N − 1)/2 and N is odd, corresponds to the N -dimensional real dis-

crete Fourier transform.84 In the free-particle limit, this choice of the friction matrix

(2.61) corresponds to underdamping of all the fluctuation modes of the ring poly-

mer. Nevertheless, it has been found strong enough to remove spurious resonances

from infrared absorption spectra in simulations of liquid water, albeit with a slight

broadening of the lineshapes at room temperature.47 More rigorously, this choice

of the friction matrix can be justified with arguments concerning optimal sampling

of the ring-polymer space47 and the best approximation to the non-linear position

(Â = B̂ = q̂2) quantum Kubo autocorrelation function in the harmonic limit.85

2.8 The Wigner phase space representation

By inserting the following identity operator,

Î =

∫ ∞

−∞
dy |y〉 〈y| , (2.63)

the standard quantum TCF for two operators Â and B̂ (2.25) may be written in the

basis of position states as

CAB(t) =

∫
dx

∫
dy 〈x| e−βĤÂ |y〉 〈y| B̂(t) |x〉 . (2.64)

Making the following change of variables,

q + ∆/2 = x (2.65)

q −∆/2 = y, (2.66)
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gives the following for the TCF,

CAB(t) =

∫
dq

∫
d∆ 〈q + ∆/2| e−βĤÂ |q −∆/2〉

× 〈q −∆/2| B̂(t) |q + ∆/2〉 , (2.67)

where we have recognised the Jacobian of the transformation as unity,

dx dy = dq d∆. (2.68)

By using the following identity for the Dirac delta function,

δ(∆ + ∆′) =
1

2π~

∫ ∞

−∞
dp eip(∆+∆′)/~, (2.69)

we may rewrite (2.67) as

CAB(t) =
1

2π~

∫
dq

∫
dp
[
e−βĤÂ

]
(q, p)

[
B̂(t)

]
(q, p), (2.70)

where the Wigner transform of any operator Â is defined to be33

[
Â
]

(q, p) =

∫
d∆ 〈q + ∆/2| Â |q −∆/2〉 eip∆/~. (2.71)

The TCF in (2.70) is the Wigner phase space representation of the standard quantum

TCF, which was first presented in the 1930s.32

There are two special types of operator for which the Wigner transform is trivial

to evaluate. For B̂ = B(q̂) we have

[
B̂
]

(q, p) =B(q), (2.72)

and for B̂ = B(p̂),

[
B̂
]

(q, p) =B(p). (2.73)

Of course, since the Wigner transform is a linear transform, the same relations also

hold for any linear combination B̂ = f(q̂) + g(p̂),

[
B̂
]

(q, p) = f(q) + g(p). (2.74)

However, for any operator involving products of q̂ and p̂ (e.g. e−βĤ or q̂(t) for t > 0),



Background Theory 21

the Wigner transform is more difficult to evaluate in general.

2.9 The quantum Louvillian

It is straightforward to show that the kth time derivative of the Wigner phase space

representation of CAB(t) is34,36

dkCAB(t)

dtk
=

1

2π~

∫
dq

∫
dp
[
e−βĤÂ

]
(q, p)L̂k

[
B̂(t)

]
(q, p), (2.75)

where L̂ is the quantum Liouvillian (also known as the Moyal series),

L̂ =
p

m

∂

∂q
− V (q)

2

~
sin

(
~
2

←−
∂

∂q

−→
∂

∂p

)
, (2.76)

and the arrows over the partial derivatives describe the direction in which the deriva-

tives are to be taken. Formally, we can express CAB(t) as an infinite Taylor series

in t,

CAB(t) =
∞∑

k=0

dkCAB(t)

dtk

∣∣∣∣∣
t=0

tk

k!
(2.77)

=
1

2π~

∫
dq

∫
dp
[
e−βĤÂ

]
(q, p) eL̂t

[
B̂(0)

]
(q, p), (2.78)

which leads to the appearance of the quantum propagator eL̂t for the Wigner phase

space. The Wigner phase space representation of the quantum TCF (2.78) is an

exact rewriting of the quantum TCF but resembles its classical counterpart (2.5).

However, there are important differences between the two. Firstly, we cannot asso-

ciate the time-evolved Wigner transform with its t = 0 value at some other point in

the phase space,

eL̂t
[
B̂(0)

]
(q, p) 6=

[
B̂(0)

]
(eL̂tq, eL̂tp), (2.79)

(see Appendix A.1). This is in contrast to the classical TCF, where the observable

B(q, p) at time t is simply eL0tB(q, p) = B(qt, pt). Secondly, the Wigner transform

of the Boltzmann operator (commonly called the Wigner function),

[
e−βĤ

]
(q, p) =

∫
d∆ 〈q + ∆/2| e−βĤ |q −∆/2〉 eip∆/~, (2.80)

whose classical analogue is the Boltzmann factor e−βH(q,p), is not positive defi-

nite.86,33 It is therefore difficult to interpret it as a regular probability distribution.
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2.10 The Linearised Semiclassical Initial Value

Representation (LSC-IVR)

In the Linearised Semiclassical Initial Value Representation (LSC-IVR), also known

as the classical Wigner approximation, the quantum Liouvillian (2.76) is truncated

to zeroth order in powers of ~2 to give the classical Liouvillian,

L̂ ≈ p

m

∂

∂q
− V ′(q) ∂

∂p
(2.81)

=L0. (2.82)

As for any semiclassical approximation, this truncation can be justified by appeal-

ing to arguments concerning the relative smallness of ~ as the classical limit is

approached (i.e. as the mass or temperature is increased). However, such argu-

ments are known to be problematic in LSC-IVR since at least one of the Wigner

transforms contains derivatives that scale as ~−1.87 Nevertheless, this approximation

gives the following for the LSC-IVR TCF,

CAB(t) ≈ 1

2π~

∫
dq

∫
dp
[
e−βĤÂ

]
(q, p) eL0t

[
B̂(0)

]
(q, p) (2.83)

=
1

2π~

∫
dq

∫
dp
[
e−βĤÂ

]
(q, p)

[
B̂(0)

]
(qt, pt), (2.84)

where (qt, pt) is the phase space point (q, p) after classical evolution for time t.

For the Kubo TCF (2.27), the LSC-IVR approximation is

CAB(t) =
1

2π~

∫
dq

∫
dp
[
ÂK(β)

]
(q, p)

[
B̂(0)

]
(qt, pt), (2.85)

where ÂK(β) is the Kubo transform of the operator Â,

ÂK(β) =
1

β

∫ β

0

dλ e−(β−λ)ĤÂ e−λĤ . (2.86)

By expanding the classical propagator eL0t as a Taylor series in t and repeatedly

applying integration by parts in the position and momentum coordinates, we find

CAB(t) =
1

2π~

∫
dq

∫
dp
[
ÂK(β)

]
(q−t, p−t)

[
B̂(0)

]
(q, p). (2.87)

However,

CAB(t) 6= 1

2π~

∫
dq

∫
dp
[
B̂K(β)

]
(q, p)

[
Â(0)

]
(q−t, p−t), (2.88)
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so, unlike CMD and RPMD, the LSC-IVR Kubo TCF fails to satisfy the detailed

balance relation (2.10). For the special case of Â = Î, this implies

CIB(t)

Z
6= 〈B〉 . (2.89)

In other words, thermal expectation values are generally time-dependent in LSC-

IVR.

The Wigner phase space and the truncation of the quantum Liouvillian in LSC-

IVR provide a theory for how quantum statistics and classical dynamics can be

combined in approximate quantum TCFs. This theory has led to many practical

methods that rely on some approximation to the Wigner transform involving Â and

the Boltzmann operator. As stated earlier, for B̂ = B(q̂) the Wigner transform of

B̂ is trivial to evaluate and the LSC-IVR Kubo TCF adopts the following form,

CAB(t) =
1

2π~

∫
dq

∫
dp
[
ÂK(β)

]
(q, p)B(qt). (2.90)

The only remaining difficulty is the evaluation of
[
ÂK(β)

]
(q, p), for which a vari-

ety of computational schemes have been developed.88,89,90,91,92 These methods have

been applied to many condensed-phase systems to calculate dynamical properties

including diffusion constants, the dynamic structure factor and infrared absorption

spectra.93,94,91,95

Of course, the non-conservation of the quantum Boltzmann distribution (2.89)

has important ramifications for quantities like the diffusion constant that are depen-

dent on the long-time behaviour of the TCF. Habershon and Manolopoulos found

that the LSC-IVR diffusion constant for a model of liquid water gave a value in error

with other methods by a factor of three at room temperature.37 This error is the

result of the degradation of the velocity autocorrelation function at long time, owing

to the leakage of intramolecular zero-point energy into the intermolecular modes of

the liquid.

While this shortcoming in the LSC-IVR theory gives rise to unphysical predic-

tions, the LSC-IVR TCF (for any partitioning of the Boltzmann operator about

Â) is exact in the important harmonic limit. Without approximation, the quantum

Liouvillian (2.76) in the harmonic limit is the classical (LSC-IVR) Liouvillian. This

exactness in the harmonic limit is in contrast to the CMD and RPMD methods,

both of which are inexact for non-linear Â and B̂, even for a harmonic system.

An interesting recent development for LSC-IVR has been presented by Liu

and Miller to address the non-conservation of the quantum Boltzmann distribu-
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tion.96,97,98 Their approach is to propagate the phase space points (q, p) not accord-

ing to the classical Liouvillian, but rather along the level sets of the Wigner function[
e−βĤ

]
(q, p). The effective force in this dynamics is given by the ratio of partial

derivatives of the Wigner function, and generally depends on both the position and

momentum. We direct the reader to a recent review by Liu35 which describes this

and other developments in LSC-IVR.

Note that the derivation of LSC-IVR presented here is but one of many deriva-

tions. The LSC-IVR TCF is perhaps most naturally derived from the Van-Vleck

SC-IVR approximation to the real-time propagator.99 Linearisation of the differ-

ence in forwards and backwards paths in the SC-IVR TCF gives LSC-IVR as first

described by Miller et al.100 We have focused on the quantum Liouvillian deriva-

tion of LSC-IVR since this route is traced in the Matsubara dynamics derivation in

the following chapter. We direct the reader to a comprehensive review of SC-IVR

(including LSC-IVR) by Miller.28 We also direct the reader to Appendix A.2 for

another perspective on the LSC-IVR approximation.



Chapter 3

Matsubara Dynamics

3.1 Introduction

In the previous chapter we presented CMD and RPMD, two practical methods

for calculating approximate quantum Kubo TCFs. We also presented LSC-IVR,

a theory for combining quantum statistics and classical dynamics in approximate

quantum TCFs. As stressed before, the classical dynamics in LSC-IVR does not

conserve the quantum Boltzmann distribution which renders the theory inadequate

for describing any method that does, e.g. CMD and RPMD. Before our development

of Matsubara dynamics in Ref. 43 and Ref. 44, the relation between CMD, RPMD

and the quantum Kubo TCF for t > 0 was unknown, since a classical approximation

to the quantum Liouvillian that conserves the quantum Boltzmann distribution was

not forthcoming. As a result, these methods were generally considered to be ad hoc

approximations to the quantum Kubo TCF.

In this chapter we develop Matsubara dynamics, a theory for combining quan-

tum statistics and classical dynamics that does conserve the quantum Boltzmann

distribution. The starting point is a rewriting of the quantum Kubo TCF as a dis-

cretised imaginary-time path integral. We consider the behaviour of the TCF if the

imaginary-time paths remain smooth functions of imaginary time for all t ≥ 0. We

find that in this limit the quantum Liouvillian reduces to the classical Liouvillian

associated with a set of ‘Matsubara modes’, the Fourier coefficients of the smooth

imaginary-time paths. The quantum Boltzmann distribution adopts the classical

Boltzmann distribution of the Matsubara modes with a complex phase factor that

couples positions and momenta. The resulting classical (Matsubara) dynamics con-

serves the quantum Boltzmann distribution.

The Matsubara dynamics TCF suffers from the sign problem and is thus pro-

hibitively difficult to calculate for all but simple one-dimensional systems. However,

25
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we are able to use its content as a rigorous theory for combining quantum statistics

and classical dynamics to derive the CMD and RPMD methods as approximations

to it. This gives a stronger theoretical justification for these methods and helps to

explain their successes and shortcomings too.

3.2 Derivation

3.2.1 The quantum Kubo time-correlation function

The generalised quantum Kubo TCF for two operators Â = A(q̂) and B̂ = B(q̂) is

C
[N ]
AB(t) =

∫
dq

∫
d∆

∫
dz A(q)B(z)

×
N∏

l=1

〈ql−1 −∆l−1/2| e−βN Ĥ |ql + ∆l/2〉

× 〈ql + ∆l/2| eiĤt/~ |zl〉 〈zl| e−iĤt/~ |ql −∆l/2〉 , (3.1)

where βN = β/N , the indices are cyclic (so q0 = qN etc.),
∫

dq is shorthand for∏N
k=1

∫∞
−∞ dqk and likewise for the variables ∆ and z. The function A(q) is defined

by

A(q) =
1

N

N∑

l=1

A(ql), (3.2)

with B(z) defined equivalently. We assume the operators have this form, but the

following derivation also holds for operators that are dependent on p̂ only as well.43

Likewise, we present a derivation for the one-dimensional case for the sake of clarity

but the multidimensional generalisation is straightforward. It is straightforward to

show that77 (see Appendix B.1)

CAB(t) = lim
N→∞

C
[N ]
AB(t), (3.3)

where CAB(t) is the conventional form of the quantum Kubo TCF,

CAB(t) =
1

β

∫ β

0

dλ Tr
[
e−(β−λ)ĤÂe−λĤB̂(t)

]
. (3.4)

In other words, the generalised quantum Kubo TCF is, in the N → ∞ limit, just

an alternative way of writing the quantum Kubo TCF. A schematic representation

of the generalised quantum Kubo TCF is shown in Figure 3.1 for N = 5. Note that
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Figure 3.1: The generalised quantum Kubo TCF for N = 5. The wavy arrows represent
real-time propagation and the curved lines represent imaginary-time propagation. The

circles show the points where A(q) and B(z) are evaluated.

the generalised quantum Kubo TCF is not new, having been used to derive QTST

by Hele and Althorpe77,78,79 and in a slightly different form by Shi and Geva.101

3.2.2 The Wigner phase space representation

Following the procedure presented in Section 2.10 to rewrite the standard quantum

TCF in the Wigner phase space representation, we insert the following identity for

each l = 1, 2, . . . , N ,

δ(∆l + ∆′l) =
1

2π~

∫ ∞

−∞
dpl e

ipl(∆l+∆′l)/~, (3.5)

into the generalised quantum Kubo TCF (3.1). This gives

C
[N ]
AB(t) =

1

(2π~)N

∫
dq

∫
dp
[
e−βĤÂ

]
N

(q,p)
[
B̂(t)

]
N

(q,p), (3.6)

where we have defined two generalised Wigner transforms,

[
e−βĤÂ

]
N

(q,p)

=

∫
d∆ A(q)

N∏

l=1

〈ql−1 −∆l−1/2| e−βN Ĥ |ql + ∆l/2〉 eipl∆l/~, (3.7)
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and

[
B̂(t)

]
N

(q,p)

=

∫
d∆

∫
dz B(z)

N∏

l=1

〈ql −∆l/2| eiĤt/~ |zl〉 〈zl| e−iĤt/~ |ql + ∆l/2〉 eipl∆l/~. (3.8)

Note that [·]N and [·]N have different forms. [·]N is a sum of products of one-

dimensional Wigner transforms (see (2.71)), whereas [·]N is more complicated, with

each product coupling variables in l and l − 1. Note also that since
[
B̂(t)

]
N

(q,p)

is simply a sum of one-dimensional Wigner transforms, it follows immediately from

(2.72) that

[
B̂(0)

]
N

(q,p) =B(q), (3.9)

for B̂ = B(q̂), as we have assumed. (For B̂ = B(p̂) we have
[
B̂(0)

]
N

(q,p) =

B(p) instead.) The TCF in (3.6) is an exact rewriting of the generalised quantum

Kubo TCF in the Wigner phase space. The advantage of this representation is that

it allows us to study the time-dependence of the TCF in terms of the quantum

Liouvillian, as detailed in the following section.

3.2.3 The quantum Liouvillian

The kth derivative of (3.6) with respect to time is

dkC
[N ]
AB(t)

dtk
=

1

(2π~)N

∫
dq

∫
dp
[
e−βĤÂ

]
N

(q,p)L̂kN

[
B̂(t)

]
N

(q,p), (3.10)

where the quantum Liouvillian is given by

L̂N =
N∑

l=1

pl
m

∂

∂ql
− V (ql)

2

~
sin

(
~
2

←−
∂

∂ql

−→
∂

∂pl

)
, (3.11)

m is the physical mass, and the arrows above each partial derivative describe the di-

rection in which the derivatives are to be taken. This can be written more compactly

in terms of UN(q) =
∑N

l=1 V (ql) as

L̂N =
1

m
p · ∇q − UN(q)

2

~
sin

(
~
2

←−∇q ·
−→∇p

)
, (3.12)

where ∇T
q =

(
∂
∂q1
, ∂
∂q2
, · · · , ∂

∂qN

)
etc. Formally we can write the Wigner phase space
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representation of the TCF (3.6) as an infinite Taylor series in t,

C
[N ]
AB(t) =

∞∑

k=0

dkC
[N ]
AB(t)

dtk

∣∣∣∣∣
t=0

tk

k!
(3.13)

=
1

(2π~)N

∫
dq

∫
dp
[
e−βĤÂ

]
N

(q,p) eL̂N tB(q). (3.14)

This is a formal rewriting of (3.6) since, as discussed in the derivation of LSC-IVR,

the quantum Liouvillian contains derivatives higher than first order.

We shall not do so in the following derivation, but note that if we truncate the

quantum Liouvillian to zeroth order in its expansion in powers of ~2,

L̂N ≈
N∑

l=1

pl
m

∂

∂ql
− V ′(ql)

∂

∂pl
(3.15)

=L0, (3.16)

then we recover the classical Liouvillian for N independent particles. The TCF

reduces to

C
[N ]
AB(t) ≈ 1

(2π~)N

∫
dq

∫
dp
[
e−βĤÂ

]
N

(q,p) eL0tB(q) (3.17)

=
1

(2π~)N

∫
dq

∫
dp
[
e−βĤÂ

]
N

(q,p)B(qt), (3.18)

which is equivalent to the LSC-IVR Kubo TCF in the N →∞ limit. Note that the

propagator eL0t has been subsumed by B(q) since the Liouvillian now involves only

first derivatives. Note also that in general,

1

(2π~)N

∫
dq

∫
dp
[
e−βĤÂ

]
N

(q,p)B(qt)

=
1

(2π~)N

∫
dq

∫
dp B(q)

[
e−βĤÂ

]
N

(q−t,p−t) (3.19)

6= 1

(2π~)N

∫
dq

∫
dp
[
e−βĤB̂

]
N

(q,p)A(q−t), (3.20)

which shows that LSC-IVR does not satisfy the detailed balance relation, as demon-

strated previously (see Section 2.10).

3.2.4 Normal mode coordinates and Matsubara modes

In the following development of the Matsubara dynamics derivation, we will find it

convenient to use the normal modes of a free ring polymer composed of N beads,
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defined by the following matrix of orthonormal vectors,

Tlk =





√
1
N

k = 0√
2
N

sin(2πlk/N) 0 < k ≤ N√
2
N

cos(2πlk/N) −N ≤ k < 0,

(3.21)

where N = (N − 1)/2 and N is odd. As previously noted, this transformation

matrix corresponds to the N -dimensional real discrete Fourier transform.84 The

orthonormal vectors are the eigenvectors of the free ring-polymer mass-weighted

Hessian,

H lk =
2δlk − δlk+1 − δlk−1

(βN~)2
, (3.22)

and the square roots of the eigenvalues are ωk = 2 sin (kπ/N) /βN~. In these coor-

dinates the quantum Liouvillian is

L̂N =
1

m
P · ∇Q − UN(Q)

2

~
sin

(
~
2

←−∇Q ·
−→∇P

)
. (3.23)

The Wigner phase space representation of the TCF is

C
[N ]
AB(t) =

1

(2π~)N

∫
dQ

∫
dP
[
e−βĤÂ

]
N

(Q,P) eL̂N tB(Q), (3.24)

where by B(Q) we mean B(TQ) etc. and we have recognised the Jacobian of this

transformation as unity, since the matrix of eigenvectors (3.21) is an orthogonal

matrix. This is, of course, an exact rewriting of the TCF in (3.14).

In the following sections, we will refer to the transformation corresponding to the

matrix of orthonormal vectors (3.21) as the ‘normal mode transformation’. These

orthonormal vectors are only the normal modes of a ring polymer in the harmonic

limit (with the free ring polymer as a special case). For any anharmonicity, they

no longer constitute the normal modes of the ring polymer, but we will nevertheless

refer to them as the ‘normal modes’.

Consider the M lowest-frequency normal modes in the limit N → ∞, with

M � N . The frequencies tend to the values

lim
N→∞

ωk =
2πk

β~
, (3.25)

which are the Matsubara frequencies.102 In studying the behaviour of the lowest M
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normal mode positions and momenta in the same limit, it is necessary to scale them

as Qk/
√
N → Qk. Having done so, we find for the k > 0 normal modes,

Qk = lim
N→∞

1√
N

N∑

l=1

√
2

N
sin(2πlk/N)ql (3.26)

=

√
2

β~

∫ β~

0

dτ sin(ωkτ)q(τ), (3.27)

where we have identified ∆τ = β~/N , τl = l∆τ and taken the set of coordinates

{ql} to a function of imaginary time q(τ) which is periodic over β~ (in accordance

with the cyclic nature of the coordinates {ql}). The replacement of the Riemann

sum with its corresponding integral over 0 ≤ τ ≤ β~ is valid since for all k satisfying

−(M − 1)/2 ≤ k ≤ (M − 1)/2 we have ωk∆τ → 0 in the N → ∞ limit. Similarly,

for the other normal modes we find

Q−k =

√
2

β~

∫ β~

0

dτ cos(ωkτ)q(τ), (3.28)

and the zeroth normal mode becomes the centroid of q(τ),

Q0 =
1

β~

∫ β~

0

dτ q(τ). (3.29)

Clearly then, in this limit the M lowest-frequency normal modes are the Fourier

coefficients of the imaginary-time path q(τ). This is unsurprising since, as recognised

earlier, the transformation matrix (3.21) corresponds to the real discrete Fourier

transform. We call these lowest M normal modes the ‘Matsubara modes’,

Qk =





√
2

β~

∫ β~
0

dτ cos(ωkτ)q(τ) −M ≤ k < 0
√

2
β~

∫ β~
0

dτ sin(ωkτ)q(τ) 0 < k ≤M

1
β~

∫ β~
0

dτ q(τ) k = 0,

(3.30)

where M = (M − 1)/2. Conversely, we may construct the imaginary-time path q(τ)

from the Matsubara modes,

q(τ) =Q0 +
√

2
M∑

k=1

sin(ωkτ)Qk + cos(ωkτ)Q−k. (3.31)

However, it is clear from this construction that something has been lost in taking this

limit, for the Fourier decomposition of the function q(τ) over the interval 0 ≤ τ ≤ β~
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Figure 3.2: Schematic diagram showing that superpositions of Matsubara modes give
imaginary-time paths q(τ) that are smooth and differentiable functions of imaginary time
τ . An arbitrary collection of points {ql} in the N →∞ limit is not necessarily smooth or

differentiable.

is necessarily smooth and differentiable, whereas a general function f(τ) as we have

from an arbitrary collection of points, {ql} in the N → ∞ limit, is not guaranteed

to be so (see Figure 3.2). The question is, how important are jagged, discontinuous

imaginary-time paths (that cannot be constructed by (3.31)) for describing static

and dynamical properties?

In the context of static properties, this is a well-studied problem.103,104,a It is well

known that the Matsubara modes give rise to an alternative ring-polymer expression

for the zero-time value of the quantum Kubo TCF CAB(0). We define

C
[M ]
AB (0) =

αM
2π~

∫
dQ

∫
dP e−βR(Q,P) A(Q)B(Q), (3.32)

where the prefactor is αM = ~1−MM !2, the ring-polymer Hamiltonian in terms of

the imaginary-time paths q(τ) and p(τ) is

R(Q,P) =
1

β~

∫ β~

0

dτ
p(τ)2

2m
+

1

2
mq′(τ)2 + V (q(τ)), (3.33)

and in the space of M Matsubara modes this becomes

R(Q,P) =
M∑

k=−M

P 2
k

2m
+

1

2
mω2

kQ
2
k + UM(Q). (3.34)

The Matsubara potential UM(Q) in the same space is

aThe concept of path smoothness also appears in the context of coherent-state path integrals.105
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UM(Q) =
1

β~

∫ β~

0

dτ V


Q0 +

√
2

M∑

k=1

sin(ωkτ)Qk + cos(ωkτ)Q−k


 , (3.35)

with A(Q) and B(Q) defined equivalently. Then

CAB(0) = lim
N→∞

1

(2π~)N

∫
dq

∫
dp e−βR(q,p)A(q)B(q) (3.36)

= lim
M→∞

C
[M ]
AB (0), (3.37)

where R(q,p) is the ring-polymer Hamiltonian in the space of N beads (2.22) and

A(q) is as defined before (3.2), with B(q) defined equivalently. In practice a good

approximation to the exact result is reached once ωM exceeds the highest frequency

in the external potential V (q).

The Matsubara modes expression (3.32) is less often used nowadays to compute

static properties, because the convergence with respect to M is typically slower than

the convergence of the right-hand side of (3.36) with respect to N .106 However, the

equivalence of the two expressions tells us something interesting: the Boltzmann

factor ensures that only smooth distributions of {ql} and {pl} survive in CAB(t) at

t = 0. The question of what happens for t > 0 if the structure of the imaginary-time

path is restricted in this way lies at the heart of Matsubara dynamics.

3.2.5 The Matsubara dynamics approximation

As discussed earlier, the LSC-IVR Kubo TCF can be recovered from the Wigner

phase space representation of the generalised quantum Kubo TCF by truncating

the quantum Liouvillian to zeroth order in ~2. In Matsubara dynamics, instead of

truncating the quantum Liouvillian at zeroth order in ~2, we retain all powers of ~2

when taking the N →∞ limit, but we split the quantum Liouvillian (3.23) into

L̂N = LM + L̂error(N,M), (3.38)

where the nascent Matsubara Liouvillian is

LM =
M∑

k=−M

Pk
m

∂

∂Qk

− UN(Q)
2

~
sin




M∑

k=−M

~
2

←−
∂

∂Qk

−→
∂

∂Pk


 , (3.39)

and the error Liouvillian is

L̂error(N,M) = L̂N − LM . (3.40)
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In preparation for taking the ‘Matsubara limit’ (N → ∞ and M � N) we scale

the position and momentum normal modes, Qk/
√
N → Qk and Pk/

√
N → Pk, as

discussed earlier. We also scale the potential, UN(Q)/N → UN(Q). This gives the

following for the nascent Matsubara Liouvillian,

LM =
M∑

k=−M

Pk
m

∂

∂Qk

− UN(Q)
2N

~
sin




M∑

k=−M

~
2N

←−
∂

∂Qk

−→
∂

∂Pk


 . (3.41)

Now, taking the Taylor expansion of the sine term we find,

2N

~
sin




M∑

k=−M

~
2N

←−
∂

∂Qk

−→
∂

∂Pk


 =

M∑

k=−M

←−
∂

∂Qk

−→
∂

∂Pk
+O

(
M3~2

N2

)
. (3.42)

Therefore, if we now take the Matsubara limit then only the classical part of the

Liouvillian survives and we are left with

lim
N→∞

LM =
M∑

k=−M

Pk
m

∂

∂Qk

− ∂UN(Q)

∂Qk

∂

∂Pk
, (3.43)

where,b

UN(Q) = lim
N→∞

1

N

N∑

l=1

V




N∑

k=−N

Tlk
√
NQk


 . (3.44)

In the context of LSC-IVR, the reduction of the quantum Liouvillian to the classical

one is often justified by appealing to the relative smallness of ~. However, it is clear

from (3.42) that for the Matsubara dynamics approximation, there is no need to

appeal to the relative smallness of ~ since the effective reduced Planck’s constant

in the space of M Matsubara modes is not ~ but rather ~
√
M3/N2, which can be

made as small as desired by increasing N . We direct the reader to Appendix B.3

for a discussion of the error Liouvillian.

3.2.6 The Matsubara dynamics time-correlation function

The approximation described in the previous section for the quantum Liouvillian

is the only approximation in Matsubara dynamics. Having made this approxima-

tion, it is straightforward to evaluate the Wigner phase space representation of the

bNote that this is not the same as UM (Q) (3.35) because the non-Matsubara position modes
still feature in the potential.
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generalised quantum Kubo TCF in the Matsubara limit. The preliminary result is

C
[M ]
AB (t) = lim

N→∞

1

(2π~)N

∫
dQ

∫
dP
[
e−βĤÂ

]
N

(Q,P) eLM tB(Q). (3.45)

where the superscript [M ] reminds us that this expression is dependent on the

number of Matsubara modes. In Appendix B.2 we demonstrate that this expression

reduces to

C
[M ]
AB (t) =

αM
2π~

∫
dQ

∫
dP e−βH(Q,P)eiβθ(Q,P) A(Q) eLM tB(Q), (3.46)

where the αM prefactor is

αM =

(∫
dQ′

∫
dP′ e−β

∑
k 6=0

P2
k

2m
+ 1

2
mω2

kQ
2
k

)−1

(3.47)

= ~1−MM !2, (3.48)

the primes denote all Matsubara modes besides the centroid, the Matsubara Hamil-

tonian H(Q,P) is

H(Q,P) =
M∑

k=−M

P 2
k

m
+ UM(Q), (3.49)

and the Matsubara potential UM(Q) is

UM(Q) = lim
N→∞

1

N

N∑

l=1

V




M∑

k=−M

Tlk
√
NQk


 , (3.50)

with A(Q) and B(Q) defined equivalently. The Matsubara phase couples pairs of

non-centroid positions and momenta,

θ(Q,P) =
M∑

k=−M

ωkQ−kPk, (3.51)

and the Matsubara Liouvillian LM is

LM =
M∑

k=−M

Pk
m

∂

∂Qk

− ∂UM(Q)

∂Qk

∂

∂Pk
, (3.52)

which is the classical Liouvillian that corresponds to the Hamiltonian (3.49).
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3.2.7 The continuum picture

In Section 3.2.4, we constructed the imaginary-time path q(τ) from the definition of

the Matsubara modes as Fourier coefficients (3.31). This continuous representation

of the imaginary-time path is not required to derive the Matsubara dynamics TCF.

However, having derived the TCF we may interpret various quantities in terms of

continuous imaginary-time paths q(τ). This ‘continuum picture’ will prove help-

ful in the following section concerning the symmetry properties of the Matsubara

dynamics TCF. We restate the imaginary-time position and momentum paths as

superpositions of the Matsubara modes,

q(τ) =Q0 +
√

2
M∑

k=1

sin(ωkτ)Qk + cos(ωkτ)Q−k (3.53)

p(τ) =P0 +
√

2
M∑

k=1

sin(ωkτ)Pk + cos(ωkτ)P−k. (3.54)

In this continuum picture, it is straightforward to show that the Matsubara poten-

tial, kinetic energy, A(Q), B(Q) and the Matsubara phase are all integrals over

imaginary time,

UM(Q) =
1

β~

∫ β~

0

dτ V (q(τ)) (3.55)

M∑

k=−M

P 2
k

2m
=

1

β~

∫ β~

0

dτ
p(τ)2

2m
(3.56)

A(Q) =
1

β~

∫ β~

0

dτ A(q(τ)) (3.57)

B(Q) =
1

β~

∫ β~

0

dτ B(q(τ)) (3.58)

θ(Q,P) =
1

β~

∫ β~

0

dτ p(τ)q′(τ). (3.59)

Each of these is easily verified by inserting the Fourier decompositions of q(τ) (3.53)

and p(τ) (3.54) into the relevant expressions in the previous section.

3.3 Symmetries

The quantum Kubo TCF for two operators Â = A(q̂) and B̂ = B(q̂) satisfies the

following three symmetry relations,
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1. Detailed balance: CAB(t) = CBA(−t)

2. Reality: CAB(t) = C∗AB(t)

3. Real-time reversal symmetry: CAB(−t) = C∗AB(t).c

Detailed balance follows from the invariance of a trace under cyclic permutations.

Reality follows from invariance of the TCF to a change in the direction of imaginary

time (and is thus an example of imaginary-time reversal symmetry). The real-time

reversal symmetry follows from the reality ofA(q̂) andB(q̂) in the basis of eigenstates

of a bound system. The last symmetry also holds for the standard quantum TCF

but the first two do not;55 rather than 1., the standard quantum TCF satisfies what

is often called the spectroscopists’ detailed balance relation instead,

I(−ω) = e−β~ω I(ω), (3.60)

where I(ω) is the Fourier transform of the standard quantum TCF. Matsubara

dynamics shares all three of the listed symmetry properties with the quantum Kubo

TCF, as we now demonstrate.

3.3.1 Time translation symmetries

Conservation of the Hamiltonian (real-time translation symmetry)

As for any classical dynamics, the Matsubara Hamiltonian is conserved because the

Liouvillian is constructed from partial derivatives of the same Hamiltonian,

LMH(Q,P) =
M∑

k=−M

∂H(Q,P)

∂Pk

∂H(Q,P)

∂Qk

− ∂H(Q,P)

∂Qk

∂H(Q,P)

∂Pk
(3.61)

= 0. (3.62)

Conservation of the phase (imaginary-time translation symmetry)

Consider the effect that translation in imaginary time (q(τ)→ q(τ + τ ′)) has on the

Matsubara modes,

Qk(τ
′) =





√
2

β~

∫ β~
0

dτ cos(ωkτ)q(τ + τ ′) −M ≤ k < 0
√

2
β~

∫ β~
0

dτ sin(ωkτ)q(τ + τ ′) 0 < k ≤M

1
β~

∫ β~
0

dτ q(τ + τ ′) k = 0.

(3.63)

cIf the product ÂB̂ is odd with respect to p̂ → −p̂ then the following relation holds instead,
CAB(−t) = −C∗

AB(t).
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Bearing in mind that the imaginary-time path is periodic with period β~, the cen-

troid is unaffected by this translation. The fluctuation (non-centroid) modes are

affected, however. The effect is a two-dimensional rotation of each pair of fluctua-

tion modes Qk and Q−k,

[
Qk(τ + τ ′)

Q−k(τ + τ ′)

]
=

[
cos(ωkτ

′) − sin(ωkτ
′)

sin(ωkτ
′) cos(ωkτ

′)

][
Qk(τ)

Q−k(τ)

]
, (3.64)

which is easily verified through integration by parts in (3.63). Given this equivalence

between imaginary-time translation and two-dimensional rotation, it is natural for us

to define for each pair of Matsubara modes, Qk and Q−k, a pair of polar coordinates

(k > 0),

rk =
√
Q2
k +Q2

−k (3.65)

φk =
1

ωk
tan−1

(
Q−k
Qk

)
, (3.66)

where the angles φk have dimensions of time. Substitution of these variables into

the Matsubara potential (3.55) gives

UM(Q0, rrr,φφφ) =
1

β~

∫ β~

0

dτ V


Q0 +

√
2

M∑

k=1

rk sin(ωk(φk + τ))


 . (3.67)

It is straightforward to show that the potential is invariant with respect to φk+∆φ→
φk, k = 1, 2, . . . ,M , due to the equivalence of this operation to translation of q(τ)

in imaginary time,

UM(Q0, rrr,φφφ) =
1

β~

∫ β~−∆φ

−∆φ

dτ V


Q0 +

√
2

M∑

k=1

rk sin(ωk(φk + ∆φ+ τ))




=
1

β~

∫ β~

0

dτ V


Q0 +

√
2

M∑

k=1

rk sin(ωk(φk + ∆φ+ τ))




= UM(Q0, rrr,φφφ+ ∆φ). (3.68)

Defining ΦΦΦ = Tφφφ, where T is some orthogonal transformation matrix with Φ0 =∑M
k=1 φk, we have

∂UM(Q0, rrr,ΦΦΦ)

∂Φ0

= 0. (3.69)
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Figure 3.3: Conservation of the Matsubara phase in a quartic potential (V (q) = q4/4 and
m = 1 atomic unit) with M = 5, N = 5 (dots), 9 (dashes) and ∞ (solid line).

This means that Φ0 is a cyclic (ignorable) coordinate so its conjugate momentum

must be a constant of the motion. It turns out that the conjugate momentum is the

Matsubara phase, as we now demonstrate.

The Matsubara Lagrangian in the polar coordinates is

L =
1

2
m


Q̇2

0 +
M∑

k=1

ω2
kφ̇

2
kr

2
k + ṙ2

k


+ UM(Q0, rrr,ΦΦΦ). (3.70)

The conjugate momentum to Φ0 is given by a derivative of this Lagrangian,

∂L

∂Φ̇0

=
M∑

k=1

∂L

∂φ̇k

∂φ̇k

∂Φ̇0

(3.71)

=
M∑

k=1

mω2
kφ̇kr

2
k (3.72)

= θ(Q,P), (3.73)

thus proving that the Matsubara phase is conserved. In Ref. 43, we demonstrated

the conservation of the Matsubara phase by appealing to Noether’s theorem. A

continuum-picture version of this demonstration is presented in Appendix B.5.
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Figure 3.3 shows the numerical conservation of the phase. We propagated the

normal modes (Q, P) according to the Matsubara Liouvillian (3.52) with the Mat-

subara potential replaced by

UM(Q) =
1

N

N∑

l=1

V




M∑

k=−M

Tlk
√
NQk


 , (3.74)

for M = 5 and varied N . For N = M , the phase is time-dependent. For N = 9, the

phase varies only very slightly and for N →∞ the phase is time-independent.

Detailed balance

Starting with the Matsubara dynamics TCF,

C
[M ]
AB (t) =

αM
2π~

∫
dQ

∫
dP e−βH(Q,P)eiβθ(Q,P) A(Q) eLM tB(Q), (3.75)

if we expand the propagator eLM t in powers of t then repeatedly apply integration

by parts in all Qk and Pk we find

C
[M ]
AB (t) =

αM
2π~

∫
dQ

∫
dP B(Q)e−LM te−βH(Q,P)eiβθ(Q,P) A(Q). (3.76)

We have already shown that the propagator conserves the Matsubara Hamiltonian

and Matsubara phase, thus the entire quantum Boltzmann distribution is conserved.

The propagator therefore passes through the distribution to give,

C
[M ]
AB (t) =

αM
2π~

∫
dQ

∫
dP e−βH(Q,P)eiβθ(Q,P) B(Q) e−LM tA(Q) (3.77)

=C
[M ]
BA (−t), (3.78)

thus proving detailed balance (2.10). As stated in Chapter 2, for the special case

of Â = Î, this detailed balance relation implies that thermal expectation values are

time-independent in Matsubara dynamics.

This time-independence of thermal expectation values is tested numerically in

Figure 3.4. The graphs concern the quartic potential and the mildly anharmonic

potential,59

V (q) =
1

4
q4 (3.79)

V (q) =
1

2
q2 +

1

10
q3 +

1

100
q4, (3.80)
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Figure 3.4: Conservation of the quantum Boltzmann distribution for the quartic potential
(panel a) and the mildly anharmonic potential (panel b) at β = 2 atomic units. For
each panel, the quantum result is shown in black, the LSC-IVR result in blue and the

Matsubara dynamics results in red (M = 1 dots, M = 3 dashes and M = 5 solid).
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with m = 1 atomic unit. The quantum results were calculated using the Colbert-

Miller Discrete Variable Representation (DVR).20 The LSC-IVR results were cal-

culated using the Colbert-Miller DVR and evaluation of the Wigner transform by

rectangular quadrature. The Matsubara dynamics results were calculated using

Monte Carlo integration with importance sampling for the Hamiltonian part of the

distribution. The exact Matsubara potential was used to avoid the fast Fourier

transform (see Appendix B.4).

As shown in Figure 3.4, the LSC-IVR result starts at the correct initial value of

〈q2(t)〉 for both potentials then oscillates. For the quartic potential (panel a), the

LSC-IVR expectation value settles down to a value for t > 10 atomic units which

is in error by some twenty percent. On the other hand, the Matsubara dynamics

expectation values are time-independent, and gradually approach the correct value

as the number of Matsubara modes increases.d

3.3.2 Time reversal symmetries

Real-time reversal symmetry

Suppose we change the direction of real time in the Matsubara dynamics TCF,

C
[M ]
AB (−t) =

αM
2π~

∫
dQ

∫
dP e−βH(Q,P)eiβθ(Q,P) A(Q) e−LM tB(Q). (3.81)

The time reversal is equivalent to the transformation

P k = − Pk, (3.82)

as is true for any classical dynamics, since the Liouvillian is only linearly dependent

on each momentum,

−LM =
∑

k

P k

2m

∂

∂Qk

− ∂UM(Q)

∂Qk

∂

∂P k

. (3.83)

This variable transformation has no effect on the Matsubara Hamiltonian, nor on

A(Q) andB(Q). The transformation does, however, have an effect on the Matsubara

phase. The sign of the Matsubara phase is changed because of its linear dependence

on the fluctuation momenta Pk (k 6= 0),

θ(Q,P) = − θ(Q,P). (3.84)

dThe slight oscillation of the M = 5 Matsubara dynamics result in panel b of Figure 3.4 is
within the error bars of the Monte Carlo integration.
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Making the change of variables (3.82) in the TCF gives

C
[M ]
AB (−t) =

αM
2π~

∫
dQ

∫
dP e−βH(Q,P)eiβθ(Q,P)A(Q) e−LM tB(Q) (3.85)

=
αM
2π~

∫
dQ

∫
dP e−βH(Q,P)e−iβθ(Q,P) A(Q) eLM tB(Q) (3.86)

=C
[M ]∗
AB (t), (3.87)

where LM is the right-hand side of (3.83), and we have used
∫ ∞

−∞
dPk =

∫ ∞

−∞
dP k. (3.88)

If we consider momentum-dependent observables A(Q,P) and B(Q,P) then (3.87)

will only hold if the product A(Q,P)B(Q,P) is even with respect to the trans-

formation (3.82). If it is odd with respect to the transformation then instead we

have

C
[M ]
AB (−t) = − C [M ]∗

AB (t). (3.89)

These real-time reversal symmetries are the same as those satisfied by the quantum

Kubo TCF.

Reality (imaginary-time reversal symmetry)

It is straightforward to show that the quantum Kubo TCF is necessarily real by

reversing the direction of imaginary time. Consider what happens to the Matsubara

position modes when we reverse the direction of imaginary time (τ → β~− τ),

Qk =





√
2

β~

∫ β~
0

dτ cos(ωkτ)q(β~− τ) −M ≤ k < 0
√

2
β~

∫ β~
0

dτ sin(ωkτ)q(β~− τ) 0 < k ≤M

1
β~

∫ β~
0

dτ q(β~− τ) k = 0.

(3.90)

The centroid is unaffected by this transformation as are all Matsubara modes k < 0.

However, the k > 0 Matsubara modes change sign,

Qk =




Qk −M ≤ k ≤ 0

−Qk 0 < k ≤M,
(3.91)

which is easily verified by integration by parts in (3.90). Of course, the same holds

for the momentum modes as well. It is obvious that the Matsubara potential, kinetic
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energy, A(Q) and B(Q) are insensitive to this transformation from their definitions

in the continuum picture. The Matsubara phase, however, changes sign,

θ(Q,P) =
1

β~

∫ β~

0

dτ p(τ)q′(τ) (3.92)

= − 1

β~

∫ β~

0

dτ p(β~− τ)
d

dτ
q(β~− τ) (3.93)

= − θ(Q,P). (3.94)

Before we make this change of variables in the Matsubara dynamics TCF, note that

the transformation is canonical since
{
Qk, Qj

}
=
{
P k, P j

}
= 0 and

{
Qk, P j

}
= δjk,

where the braces denote the Poisson bracket, so the Jacobian is unity. Given that

the Hamiltonian in the (Qk, P k) coordinates has exactly the same form as in the (Qk,

Pk) coordinates, the Liouvillian is unchanged (every (Qk, Pk) is simply replaced with

(Qk, P k)). Bringing everything together, we find the following for the Matsubara

dynamics TCF,

C
[M ]
AB (t) =

αM
2π~

∫
dQ

∫
dP e−βH(Q,P)eiβθ(Q,P) A(Q) eLM tB(Q) (3.95)

=
αM
2π~

∫
dQ

∫
dP e−βH(Q,P)e−iβθ(Q,P) A(Q) eLM tB(Q) (3.96)

=C
[M ]∗
AB (t). (3.97)

In other words, the Matsubara dynamics TCF is a real function of time.

The relation (3.97) in conjunction with the imaginary-time reversal symmetry

(3.87) allows us to conclude that, for A(Q) and B(Q) dependent on the Matsubara

position modes only, the Matsubara dynamics TCF is an even function of time, for

C
[M ]
AB (−t) =C

[M ]∗
AB (t) (3.98)

=C
[M ]
AB (t). (3.99)

Again, this is true for the quantum Kubo TCF for operators Â = A(q̂) and B̂ = B(q̂)

and also for the classical TCF. For more general observables A(Q,P) and B(Q,P)

that depend on the Matsubara momentum modes, the TCF is an odd function of

time if the product A(Q,P)B(Q,P) is an odd function of the momenta, since in

that case we have

C
[M ]
AB (−t) = − C [M ]∗

AB (t) (3.100)

= − C [M ]
AB (t). (3.101)
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For example, the linear position autocorrelation function C
[M ]
qq (t) is an even function

of time, while the linear position-momentum TCF C
[M ]
qp (t) is an odd function of

time. This final result holds for the quantum Kubo and classical TCFs as well.

3.4 Relation to CMD and RPMD

The Matsubara dynamics TCF for two observables A(Q) and B(Q) is

C
[M ]
AB (t) =

αM
2π~

∫
dQ

∫
dP e−βH(Q,P)eiβθ(Q,P) A(Q) eLM tB(Q). (3.102)

Let us make the coordinate transformation

P k =Pk − imωkQ−k, (3.103)

which we note has no effect on the centroid momentum, P 0 = P0, since the zeroth

Matsubara frequency is zero. This transformation gives the following for the TCF,

C
[M ]
AB (t) =

αM
2π~

∫
dQ




M∏

k=−M

∫ bk

ak

dP k


 e−βR(Q,P) A(Q)eLM tB(Q), (3.104)

where the integration limits are ak = −∞− imωkQ−k and bk =∞− imωkQ−k. This

is simply (3.102) in disguise, but at t = 0 we may use a standard contour integration

trick to shift each P k onto the real axis to give

C
[M ]
AB (0) =

αM
2π~

∫
dQ

∫
dP e−βR(Q,P) A(Q)B(Q). (3.105)

The standard contour integration trick is as follows. For the strip 0 ≤ Im p ≤ λ, if

f(p) is analytic everywhere and

lim
Re p→±∞

exp(−ap2) f(p) = 0, (3.106)

then

∫ ∞+iλ

−∞+iλ

dp exp(−ap2) f(p) =

∫ ∞

−∞
dp exp(−ap2)f(p). (3.107)

The proof involves writing the right and left-hand sides of (3.107) as two parts of a

closed contour integral of width 2L in the L → ∞ limit. Such a contour is shown

for the P k coordinate in Figure 3.5. Analyticity ensures that the contour integral
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ReP k

ImP k

−mωkQ−k

+L−L I3

I1

I4 I2

Figure 3.5: A closed contour for P k. We are interested in the L → ∞ limit. We expect
the integrals along I2 and I4 to be zero. Thus we expect the sum of the integrals along I1

and I3 to be zero, provided the integrand is analytic within the contour.

is zero and the limit (3.106) ensures that integration over the vertical sections of

the contour gives zero in the L→∞ limit. The sum of the two horizontal contour

integrals must therefore be zero in the L → ∞ limit which gives the equality in

(3.107).

Note that unlike (3.102), the integrand in the expression (3.105) is completely

real, including the real ring-polymer distribution. This expression is the ring-

polymer representation of the zero-time value of the quantum Kubo TCF in the

space of M Matsubara modes. As stated before (see Section 3.2.4), in the M →∞
limit this expression will agree with the zero-time limit of the quantum Kubo TCF,

which shows that Matsubara dynamics is exact in the t→ 0 limit.

3.4.1 CMD

A mean-field approximation over the fluctuation modes (Qk, Pk, k 6= 0) can be made

if A(Q) is a function of just the centroid position Q0, in which case we need only

the Matsubara dynamics of the centroid reduced density,

b(Q0, P0, t) =αM

∫
dQ′

∫
dP′ e−βH(Q,P)eiβθ(Q,P) eLM tB(Q), (3.108)

where the primes denote integration over all modes except Q0 and P0. Differentiation

with respect to time and integration by parts gives

∂b(Q0, P0, t)

∂t
=αM

∫
dQ′

∫
dP′ e−βH(Q,P)eiβθ(Q,P) L eLM tB(Q), (3.109)
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where

L =
P0

m

∂

∂Q0

− ∂UM(Q)

∂Q0

∂

∂P0

. (3.110)

We can split the force on the centroid into

−∂UM(Q)

∂Q0

= − F ′(Q0) + Ffluct(Q), (3.111)

where F ′(Q0) is the derivative of the centroid potential of mean force,

−F ′(Q0) = − αM
Z(Q0)

∫
dQ′

∫
dP′ e−βH(Q,P)eiβθ(Q,P) ∂UM(Q)

∂Q0

(3.112)

= − αM
Z(Q0)

∫
dQ′

∫
dP′ e−βR(Q,P) ∂UM(Q)

∂Q0

, (3.113)

with

Z(Q0) =αM

∫
dQ′

∫
dP′ e−βR(Q,P). (3.114)

Note that we have used the contour integration trick to reach this expression and

the final expression for the centroid potential of mean force (3.113). Ffluct(Q) is the

fluctuation force, as defined by (3.111) as the difference between the exact force and

−F ′(Q0). The time derivative of the centroid reduced density (3.109) separates into

a sum,

∂b(Q0, P0, t)

∂t
=

[
P0

m

∂

∂Q0

− F ′(Q0)
∂

∂P0

]
b(Q0, P0, t) (3.115)

+ αM

∫
dQ′

∫
dP′ e−βH(Q,P)eiβθ(Q,P) Ffluct(Q)

∂

∂P0

eLM tB(Q),

which is an exact rewriting of (3.109). Neglect of the integral term gives the following

mean-field approximation for the first derivative,

∂b(Q0, P0, t)

∂t
≈
[
P0

m

∂

∂Q0

− F ′(Q0)
∂

∂P0

]
b(Q0, P0, t) (3.116)

=L0 b(Q0, P0, t). (3.117)

By introducing time derivatives higher than first order, we may approximate as

follows,

b(Q0, P0, t) ≈ eL0tb(Q0, P0, 0) (3.118)

= eL0te−βH(Q0,P0) B(Q0), (3.119)
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where H(Q0, P0) =
P 2

0

2m
+F (Q0) and we have used the ‘classical operator’ prescription

to reach the last line. The TCF reduces to

C
[M ]
AB (t) ≈ 1

2π~

∫
dQ0

∫
dP0 e

−βH(Q0,P0) A(Q0) eL0tB(Q0). (3.120)

This TCF (3.120) is the CMD TCF in the space of M Matsubara modes. If we take

the M → ∞ limit, so that the centroid potential of mean force is fully converged,

then (3.120) is identical to the standard CMD TCF presented earlier (2.44).

Therefore, CMD corresponds to an approximation to Matsubara dynamics where

the fluctuation term has been left out of the Liouvillian. This result is not a surprise

and is consistent with previous numerical findings that CMD causes errors through

neglect of fluctuations.64,65

3.4.2 RPMD

Let us restate the Matsubara dynamics TCF in the aforementioned P coordinates

(3.103),

C
[M ]
AB (t) =

αM
2π~

∫
dQ




M∏

k=−M

∫ bk

ak

dP k


 e−βR(Q,P) A(Q) eLM tB(Q). (3.121)

The Matsubara Liouvillian in terms of the new coordinates is

LM =L[RP] + iL[I], (3.122)

where

L[RP] =
M∑

k=−M

P k

2m
−
[
mω2

kQk +
∂UM(Q)

∂Qk

]
∂

∂P k

(3.123)

is the RPMD Liouvillian in the space of M Matsubara modes and the imaginary

part of the Liouvillian is

L[I] =
M∑

k=−M

ωk

(
P k

∂

∂P−k
−Qk

∂

∂Q−k

)
. (3.124)

Any resemblance to RPMD is at this stage illusory since the imaginary parts of P k

contribute terms that cancel the springs in L[RP] and the ring-polymer distribution
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is complex. If we now try to shift P k onto the real axis using the contour integration

trick, we find that the dynamics generated by LM propagates an initial distribution

of real phase space points into the complex plane along numerically unstable tra-

jectories. Such a trajectory in the complex plane is shown for example in Figure

3.6. This is a well-known problem.107 While the total energy must be conserved by

each trajectory, a complex kinetic energy can support a negative real part which

allows the trajectory to explore large regions of the complex plane, even for bound

potentials. Therefore, we do not know whether the contour integration trick remains

valid for such trajectories. Even if it does, they appear to be at least as difficult to

treat numerically as the sign problem in the original formulation of the Matsubara

dynamics TCF (3.102).44

However, it is possible to follow a path along which each P k is partially moved

towards the real axis and L[I] is partially discarded so the contour integration trick

remains valid. At the end of the path L[I] has been completely discarded and P k

has reached the real axis. This results in the approximation

C
[M ]
AB (t) ≈ αM

2π~

∫
dQ

∫
dP e−βR(Q,P) A(Q) eL

[RP]tB(Q), (3.125)

which is the RPMD TCF in the space of M Matsubara modes.e The aforementioned

path can be taken by letting λ change smoothly from one to zero in the Liouvillian

Lλ = L[RP]
M + iλL[I]

M , (3.126)

whilst setting P k = Πk − iλmωkQ−k, where Πk and Q−k are real. If we write Lλ in

terms of Πk and Qk we find

Lλ =
M∑

k=−M

Πk

m

∂

∂Qk

−
[
∂UM(Q)

∂Qk

+m(1− λ2)ω2
kQk

]
∂

∂Πk

(3.127)

which shows that the dynamics of P and Q maps onto a real dynamics in ΠΠΠ and

Q at every value of λ between one and zero, and thus avoids the unstable trajec-

tories in the complex plane. This procedure allows us to construct a TCF that is

parametrically dependent on λ as follows,

C
[M ]
AB (t;λ) =

αM
2π~

∫
dQ

∫
dΠΠΠ e−βRλ(Q,ΠΠΠ) eiλβθ(Q,ΠΠΠ) A(Q) eLλtB(Q), (3.128)

eNote that this also relates Matsubara dynamics to the standard formulation of RPMD in the
space of N beads, since in the N →∞ limit the two formulations are identical.
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Figure 3.6: A centroid trajectory in the complex plane over 20 atomic time units for the
quartic potential (3.79). The centroid position is initially real but becomes complex due
to coupling to the fluctuation modes. The centroid traces a long excursion in the complex

plane that is very difficult to converge numerically.
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Figure 3.7: Interpolation between Matsubara dynamics and RPMD for M = 3 in the
quartic potential (3.79) at β = 2 atomic units. The lines are λ = 1.0 (solid red), 0.5 (thin

dotted red), 0.1 (thick dotted red), 0.05 (dashed red) and 0.0 (black).
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where

Rλ(Q,ΠΠΠ) =R(Q,ΠΠΠ)− 1

2
m

M∑

k=−M

λ2ω2
kQ

2
k. (3.129)

For λ = 1, the TCF (3.128) is the Matsubara dynamics TCF. For λ = 0, it is the

RPMD TCF in the space of M Matsubara modes. Note that the Liouvillian (3.127)

conserves the Hamiltonian (3.129) and eiλβθ(Q,ΠΠΠ) so the distribution is conserved and

detailed balance is satisfied for any 0 ≤ λ ≤ 1. In other words, since both parts of

the Matsubara Liouvillian L[RP] and L[I] independently conserve the ring-polymer

Hamiltonian, the distribution is still conserved even when the imaginary part of the

Liouvillian has been completely removed to give RPMD.

Figure 3.7 shows a graph of the linear position autocorrelation functions that re-

sulted from various values of λ in the quartic potential at β = 2 atomic units. These

results were calculated using Monte Carlo integration with importance sampling for

the Hamiltonian part of the distribution. The exact Matsubara potential was used

to avoid the fast Fourier transform as described in Appendix B.4.

Since the imaginary Liouvillian L[I] does not act directly on the centroid, it

follows that an RPMD TCF involving linear operators will agree initially with the

Matsubara dynamics TCF but will then lose accuracy as the errors in the fluctuation

dynamics couple to the centroid through anharmonicity in the Matsubara potential.

This is corroborated by the good agreement between the results for t→ 0 in Figure

3.7. In this context, it is the neglect of the imaginary Liouvillian in RPMD that leads

to the spurious resonance problem due to the coupling of errors in the fluctuation

dynamics to the centroid. Furthermore, even in the harmonic limit where there

is no coupling between the centroid and the fluctuation modes, the neglect of the

imaginary Liouvillian leads to a demonstrably incorrect fluctuation dynamics in

non-linear TCFs. This last point is discussed in more detail in the following section.

3.5 Limits

3.5.1 The classical limit

The classical limit is recovered from the Matsubara dynamics TCF as a special case

of one Matsubara mode (the centroid). For the centroid mode alone, the TCF is

CAB(t) =
1

2π~

∫
dQ0

∫
dP0 e

−βH(Q0,P0) A(Q0) eL0tB(Q0). (3.130)
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The Matsubara Hamiltonian reduces to the classical Hamiltonian,

H(Q0, P0) =
P 2

0

2m
+ V (Q0), (3.131)

and the Matsubara Liouvillian reduces to the classical Liouvillian,

L0 =
P0

2m

∂

∂Q0

− V ′(Q0)
∂

∂P0

. (3.132)

3.5.2 The harmonic limit

It is straightforward to show that, like LSC-IVR, Matsubara dynamics is exact for

any observables A(Q) and B(Q) in the harmonic limit. The only approximation

in the Matsubara dynamics derivation is the removal of the coupling between the

Matsubara modes and non-Matsubara modes (see Section 3.2 and Appendix B.3),

which allows us to integrate out the non-Matsubara modes in the N → ∞ limit.

However, since a harmonic potential does not couple any of the normal modes, the

Matsubara dynamics approximation is not an approximation in this limit. In other

words, the M → ∞ limit of the Matsubara dynamics TCF (3.46) is just another

way of writing the quantum Kubo TCF in the harmonic limit.

In particular, consider an external harmonic potential with natural frequency Ω,

V (q) = 1
2
mΩ2q2. For M Matsubara modes the Matsubara potential is

UM(Q) =
1

2
mΩ2

M∑

k=−M

Q2
k. (3.133)

Since the potential does not couple the Matsubara modes, the trajectories can be

written down at once,

eLM tQk =Qk cos (Ωt) +
Pk
mΩ

sin (Ωt) (3.134)

eLM tPk =Pk cos (Ωt)−mΩQk sin (Ωt) . (3.135)

It is straightforward to show, by inserting these equations into (3.46), that the

Matsubara dynamics linear position autocorrelation function is

C
[M ]
qq (t)

Z
=

cos(Ωt)

mβΩ2
, (3.136)

which is independent of M since only the centroid contributes. This expression

agrees with the quantum Kubo, classical, CMD and RPMD results. Using the
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relations

〈
Q2
jQ

2
k

〉RP
= (1 + 2δjk)

1

mβ(Ω2 + ω2
j )

1

mβ(Ω2 + ω2
k)

(3.137)

〈
Q2
jP

2
k

〉RP
=

1

β2(Ω2 + ω2
j )
, (3.138)

where 〈·〉RP denotes a ring-polymer average in the space of M Matsubara modes,

along with (see Appendix C.1 for a proof)

lim
M→∞

M∑

k=−M

1

mβ(Ω2 + ω2
j )

=
~ coth(β~Ω/2)

2mΩ
, (3.139)

it is straightforward to show that the Matsubara dynamics approximation to the

non-linear position autocorrelation function is

lim
M→∞

C
[M ]

q2q2(t)

Z

=
~2

4m2Ω2

(
2

β~Ω
coth(β~Ω/2) cos(2Ωt) + 2 coth2(β~Ω/2)− 1

)
, (3.140)

which agrees with the quantum Kubo result.42 This is in contrast to CMD and

RPMD which fail to reproduce the quantum result. The ring-polymer trajectories

are

eL
[RP]tQk =Qk cos (ωkt) +

Pk
mωk

sin (ωkt) (3.141)

eL
[RP]tPk =Pk cos (ωkt)−mωkQk sin (ωkt) , (3.142)

where ω2
k = ω2

k +Ω2 are the normal mode frequencies in the harmonic potential. For

CMD, we need only consider the centroid (k = 0). We find

Cq2q2(t)

Z
=

1

(mβΩ2)2

(
1 + 2 cos2(Ωt)

)
, (3.143)

which is the classical result. On the other hand, the RPMD result is contaminated

by the normal mode frequencies,39

C
[N ]

q2q2(t)

Z
=

1

m2β2

N∑

k=−N


1 + cos(2ωkt)

ω4
k

+
N∑

j=−N

1

ω2
jω

2
k


 . (3.144)

A comparison of these results is given in Figure 3.8 for the choice β = 8, m = 1,
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Figure 3.8: Comparison of Matsubara dynamics with quantum, CMD and RPMD re-
sults for a harmonic potential (Ω = 1, m = 1 and β = 8 in atomic units). The
lines correspond to quantum (black), Matsubara dynamics (red), CMD (solid green)

and RPMD (dashed green).

and Ω = 1 in atomic units. The RPMD result was calculated with N = 128,

which we found to be sufficient for convergence. The CMD result (identical to

the classical result) is out by nearly an order of magnitude at t = 0 which is a

reflection of the inadequacy of CMD to reproduce a non-linear TCF such as this.

While the RPMD result is in agreement with the exact result at t = 0, for t > 0

the oscillations are significantly damped and the TCF adopts a shape that clearly

shows the superposition of harmonic oscillations at many spurious frequencies. This

failure of RPMD is closely related to its incorrect description of the momentum

distribution of the fluctuation modes (see Appendix B.6). The CMD and RPMD

results are in stark contrast to the Matsubara dynamics result, which agrees with

the quantum result at all time and oscillates only at the natural frequency of the

harmonic oscillator Ω.

3.6 Numerical results for one-dimensional systems

The results in this section concern the Kubo quantum, LSC-IVR, CMD and RPMD

linear and non-linear position autocorrelation functions. The Matsubara dynamics
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Figure 3.9: Convergence of the Matsubara dynamics linear position autocorrelation func-
tion. The results were generated with the quartic potential (3.79) at β = 2 atomic units.
The red lines correspond to M = 1 (dots), 3 (chains), 5 (dashes) and 7 (solid). The solid

black line is the quantum result.

results were calculated using Monte Carlo integration with importance sampling for

the Hamiltonian part of the distribution. The exact Matsubara potential was used

to avoid the fast Fourier transform as described in Appendix B.4. The quantum

results were calculated using the Colbert-Miller DVR.20 The LSC-IVR results were

calculated using the Colbert-Miller DVR and rectangular quadrature for evaluation

of the Wigner transforms. Standard techniques were used to calculate the CMD and

RPMD results with N = 8, including the well-known symplectic propagator for ring-

polymer evolution in normal mode coordinates.55,14 The CMD centroid potential of

mean force was calculated using centroid-constrained ring-polymer averages.

Figure 3.9 shows the convergence of the Matsubara dynamics linear position

autocorrelation function as the number of Matsubara modes is increased. The sim-

ulation took place at an inverse temperature of β = 2 atomic units in the quartic

potential (3.79). A total of 1011 Monte Carlo samples were required to converge

the M = 7 result. Extending these calculations beyond M = 7 was prohibitively

difficult. For M = 7, the Matsubara dynamics zero-time value is still slightly un-

derconverged, showing a slight difference with the quantum result. We expect on

the basis of RPMD simulations for this potential that M = 9 or M = 11 would
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Figure 3.10: Comparison of Matsubara dynamics with practical methods for the lin-
ear position autocorrelation function. Panel a shows results for the quartic poten-
tial (3.79) and panel b shows results for the mildly anharmonic potential (3.80),

both at β = 2 atomic units.
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Figure 3.11: Comparison of Matsubara dynamics with practical methods for the non-linear
position autocorrelation function in the quartic potential (3.79) at β = 2 atomic units.

The same colour scheme is used as in Figure 3.10.

be sufficient for convergence at this temperature (the RPMD result is converged at

N = 8). Nevertheless, the results in the figure are sufficient to show that the TCF

converges with respect to M , although the convergence becomes slower at longer

times. For the mildly anharmonic potential (3.80), we found convergence to within

graphical accuracy with M = 5 at the same temperature.

Figure 3.10 compares linear position autocorrelation functions for the quartic

and mildly anharmonic potentials at an inverse temperature of β = 2 atomic units.

Panel a shows results for the quartic potential and panel b shows results for the

mildly anharmonic potential. For Matsubara dynamics we used M = 7 and M = 5

Matsubara modes respectively. It is well known that the quartic potential is a

severe test for which any method that neglects real-time coherence fails after a

single recurrence. Nevertheless, we see that Matsubara dynamics gives a much

better treatment than LSC-IVR, reproducing almost perfectly the first recurrence

and decaying to zero more slowly. The Matsubara dynamics result is also better

than both the CMD and RPMD results which have decayed to zero by t = 15

atomic units.

Figure 3.11 shows the non-linear position autocorrelation function for the quar-

tic potential at the same temperature. The behaviours of CMD and RPMD are
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qualitatively the same as for the harmonic potential at the higher inverse tempera-

ture of β = 8 atomic units (see Figure 3.8). The lower inverse temperature we used

here leads to less pronounced spurious oscillation of the RPMD TCF and a smaller

discrepancy at zero time for the CMD TCF. However, the situation has changed

significantly for the LSC-IVR result which is no longer exact for this strongly an-

harmonic potential. The LSC-IVR TCF decays very quickly and has completely

decorrelated by t = 10 atomic units, which we know to be roughly the time re-

quired for the LSC-IVR squared-position thermal expectation value to settle down

to its incorrect final value (see Figure 3.4). On the other hand, while the Matsub-

ara dynamics TCF is no longer in perfect agreement with the quantum result, it is

promising to see that the agreement is good for t ≤ 5 atomic units, by which time

the other approximate results have almost completely decorrelated.



Chapter 4

The Planetary Model

4.1 Introduction

The planetary model of Poulsen et al. (described under the name FK-QCW(1)

in Ref. 45) combines the Feynman-Kleinert approximation with a model dynamics

involving a ‘planet’ that moves around the centroid. The model approximates the

standard quantum TCF for two operators Â = A(q̂) and B̂ = B(q̂),

CAB(t) = Tr
[
e−βĤÂB̂(t)

]
. (4.1)

The planetary model approximation to this TCF in one dimension is45

CAB(t) =
1

2π~

∫
dQ0

∫
dP0 e

−β P
2
0

2m
−βW (Q0)

× 1

2πmΩa2

∫
dq̃

∫
dp̃ e−

q̃2

2a2−
p̃2

2m2Ω2a2 fA(q, p̃) eLtB(q). (4.2)

W (Q0) is the Feynman-Kleinert centroid potential of mean force and a and Ω are

the (centroid-dependent) Feynman-Kleinert radius of gyration and frequency respec-

tively (see Section 2.3). q = Q0 + q̃ is the planet coordinate and p = P0 + p̃ is its

momentum. The Liouvillian that appears within the propagator is given bya

L =
P0

m

∂

∂Q0

−W ′(Q0)
∂

∂P0

+
p̃

m

∂

∂q̃
−mΩ2q̃

∂

∂p̃

+
P0

m

∂ ln(m2Ω2a2)

∂Q0

p̃

2

∂

∂p̃
+
P0

m

∂ ln(a2)

∂Q0

q̃

2

∂

∂q̃
. (4.3)

aPoulsen et al. do not use the Liouvillian formalism in Ref. 45. However, the Liouvillian
formalism is more helpful for our purposes so we have recast their equations in this form.

59
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This leads to the following equations of motion for the centroid,

Q̇0 =
P0

m
(4.4)

Ṗ0 =−W ′(Q0), (4.5)

and for the planet,

˙̃q =
p̃

m
+
q̃

2

d

dt
ln(a2) (4.6)

˙̃p =−mΩ2q̃ +
p̃

2

d

dt
ln(m2Ω2a2). (4.7)

Notice that the planet is influenced by the centroid through the centroid-dependence

of Ω2 and a2, but the centroid moves independently from the planet under the

Feynman-Kleinert CMD equations of motion. In practice, integration of the equa-

tions of motion for the planet is simplified by transforming to the dimensionless

coordinates q = q̃/a and p = p̃/mΩa which leads to the following simple equations

of motion,45

q̇ = Ωp (4.8)

ṗ = − Ωq. (4.9)

This transformation arises naturally by introducing the integrating factor 1/a into

(4.6) and 1/mΩa into (4.7). The function fA(q, p̃) is defined according to the fol-

lowing Fourier transform,

fA(q, p̃) =
mΩa√

2π~
e+ p̃2

2m2Ω2a2

∫
d∆ ei∆p̃/~ e−

m2Ω2a2

2~2 ∆2

A(q + ∆/2), (4.10)

which arises from the Wigner transform
[
e−βĤA(q̂)

]
(q, p) under the Feynman-

Kleinert approximation for the centroid-constrained Boltzmann operator,

〈q| e−βĤ |q′〉 (Q0) =

√
m

2πβ~2
e−βW (Q0) 1√

2πa
exp

{
− [(q + q′)/2−Q0]2

2a2

}

× exp

{
−mΩ coth (β~Ω/2)

4~
(q − q′)2

}
. (4.11)

This well-known expression is the contribution to the (Feynman-Kleinert) Boltz-

mann operator 〈q| e−βĤ |q′〉 from all imaginary-time paths whose centroids coincide

with the given configuration space point Q0.108
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The Liouvillian formalism allows us to easily demonstrate that the distribution

is conserved in the planetary model (which Poulsen et al. demonstrate equivalently

using a time-dependent Jacobian). Expanding the propagator as a Taylor series

in time and repeatedly applying integration by parts in each coordinate gives the

following for the planetary model TCF,

CAB(t) =
1

2π~

∫
dQ0

∫
dP0

∫
dq̃

∫
dp̃ B(q)

∞∑

k=0

1

k!

[LmΩa2

mΩa2
− L

]k

× 1

2πmΩa2
e−β

P2
0

2m
−βW (Q0) e−

q̃2

2a2−
p̃2

2m2Ω2a2 fA(q, p̃). (4.12)

Now, using the following result,

LmΩa2

(mΩa2)2
= L 1

mΩa2
, (4.13)

and conservation of energy,

L
[
P 2

0

2m
+W (Q0) +

q̃2

2βa2
+

p̃2

2βm2Ω2a2

]
= 0, (4.14)

leads to

CAB(t) =
1

2π~

∫
dQ0

∫
dP0 e

−β P
2
0

2m
−βW (Q0)

× 1

2πmΩa2

∫
dq̃

∫
dp̃ e−

q̃2

2a2−
p̃2

2m2Ω2a2B(q) e−Lt fA(q, p̃). (4.15)

For the special case of A(q̂) = Î, this implies

CIB(t)

Z
= 〈B〉 , (4.16)

which shows that thermal expectation values are time-independent.

In the following sections we demonstrate that the planetary model is related to

Matsubara dynamics through several quantifiable approximations. First we outline

how Matsubara dynamics approximates non-Kubo TCFs. Then we summarise the

Feynman-Kleinert approximation in the context of the quantum canonical partition

function and show that it is equivalent to making an approximation to the Matsubara

potential. We then show that a model dynamics of the planet (a linear combination

of Matsubara modes) that is based on this approximate potential allows us to inte-

grate out the Matsubara phase which leads to (4.2) with a different Liouvillian. We

find that this model dynamics gives a good approximation to the fluctuation part of
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the exact Matsubara dynamics trajectory on the Feynman-Kleinert potential and is

thus expected to be a good approximation for mildly anharmonic potentials. A slight

modification to the dynamics of the planet recovers conservation of energy (and con-

servation of the quantum Boltzmann distribution), which leads to the equations of

motion (4.6) and (4.7).

4.2 Matsubara dynamics for two-point correlation

The Matsubara dynamics TCF for two observables A(Q) and B(Q) is

C
[M ]
AB (t) =

αM
2π~

∫
dQ

∫
dP e−βH(Q,P)eiβθ(Q,P) A(Q) eLM tB(Q), (4.17)

and approximates the quantum Kubo TCF. Remembering the definitions of A(Q)

and B(Q) as imaginary-time integrals,

A(Q) =
1

β~

∫ β~

0

dτA(q(τ)), (4.18)

(with B(Q) defined equivalently) we may rewrite the TCF as follows,

C
[M ]
AB (t) =

1

(β~)2

∫ β~

0

dτ

∫ β~

0

dτ ′ C
[M ]
AB (t; τ ; τ ′), (4.19)

where

C
[M ]
AB (t; τ ; τ ′) =

αM
2π~

∫
dQ

∫
dP e−βH(Q,P)eiβθ(Q,P) A(q(τ)) eLM tB(q(τ ′)). (4.20)

This last quantity is the Matsubara dynamics TCF for two points on the imaginary

time path q(τ) and q(τ ′). The imaginary-time path point q(τ) is, as defined in

Chapter 3,

q(τ) = Q0 +
√

2
M∑

k=1

sin(ωkτ)Qk + cos(ωkτ)Q−k. (4.21)

Given the invariance of the Matsubara dynamics distribution under imaginary-time

translation, C
[M ]
AB (t; τ ; τ ′) is clearly only dependent on the imaginary-time difference

∆τ = τ − τ ′. In other words, we may rewrite the Matsubara dynamics TCF as

follows,

C
[M ]
AB (t) =

1

β~

∫ β~

0

dτ C
[M ]
AB (t; τ), (4.22)
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where C
[M ]
AB (t; τ) is given by

C
[M ]
AB (t; τ) =

αM
2π~

∫
dQ

∫
dP e−βH(Q,P)eiβθ(Q,P)A(q(τ)) eLM tB(q(0)), (4.23)

which we call the Matsubara dynamics two-point TCF. We may interpret this equa-

tion as the Matsubara dynamics approximation to the following quantum TCF,

CAB(t; τ) = Tr
[
e−(β−τ/~)Ĥ Â e−τĤ/~B̂(t)

]
, (4.24)

where 0 ≤ τ ≤ β~. In particular, the τ → 0 limit of (4.23) is the Matsubara dynam-

ics approximation to the standard quantum TCF. Indeed, rather than unravelling

the (Kubo) Matsubara dynamics TCF in this way, we may also repeat the derivation

presented in Chapter 3 with the observables A(q) and B(z) replaced with A(qj) and

B(zk) (j 6= k) in the generalised quantum Kubo TCF (3.1). The result is (4.23).

4.3 The Feynman-Kleinert approximation

Suppose we make a locally harmonic approximation for the fluctuation modes Qk

(k 6= 0) so that the Matsubara potential can be written as follows,

UM(Q) =L(Q0) +
1

2
mΩ2

∑

k 6=0

Q2
k, (4.25)

where Ω2 = Ω2(Q0) is dependent on the centroid position (we omit this centroid

dependence in the following to maintain a simple notation). With such a harmonic

description of the fluctuation modes, the quantum canonical partition function in

the space of M Matsubara modes is

Z =
αM
2π~

(
2πm

β

)M/2 ∫
dQ e−β[L(Q0)+ 1

2
m

∑
k 6=0(Ω2+ω2

k)Q2
k]. (4.26)

By recognising that

1

αM
=

∫
dQ′

∫
dP′ e−β

∑
k 6=0

P2
k

2m
+ 1

2
mω2

kQ
2
k , (4.27)

where the primes denote integration over all the Matsubara fluctuation modes, and

∞∑

k=1

∫ Ω2

0

dλ
1

λ+ ω2
k

= ln

[
sinh(β~Ω/2)

β~Ω/2

]
, (4.28)
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it is straightforward to show by thermodynamic integration that the following result

holds for the partition function in the M →∞ limit,

lim
M→∞

Z =

√
m

2πβ~2

∫
dQ0 e

−βL(Q0) csch

(
β~Ω

2

)
β~Ω

2
. (4.29)

This integral can be rewritten as follows,

lim
M→∞

Z =

√
m

2πβ~2

∫
dQ0 e

−βW (Q0), (4.30)

where

W (Q0) =L(Q0) +
1

β
ln

[
sinh(β~Ω/2)

β~Ω/2

]
, (4.31)

and this last quantity is obviously to be interpreted as the centroid potential of

mean force (see Section 2.3).

We would like to find the centroid potential of mean force W (Q0) that best

approximates the true centroid potential of mean force F (Q0) = − 1
β

ln [Z(Q0)].

From the Gibbs-Bogoliubov inequality we have the following upper bound for the

true centroid potential of mean force,

F (Q0) ≤ −〈∆H〉0 +
1

β
ln

[
sinh(β~Ω/2)

β~Ω/2

]
, (4.32)

where 〈∆H〉0 is the (centroid-dependent) expectation value of the energy difference

within the harmonic approximation,

〈∆H〉0 = lim
M→∞

∫
dQ′ ρ(Q)

[
UM(Q)− 1

2
mΩ2

∑

k 6=0

Q2
k

]
, (4.33)

and ρ(Q) is the normalised harmonic distribution of the fluctuation modes,

ρ(Q) =
e−β

1
2
m

∑
k 6=0(Ω2+ω2

k)Q2
k

∫
dQ′ e−β

1
2
m

∑
k 6=0(Ω2+ω2

k)Q2
k

. (4.34)

It is straightforward to show (see Ref. 56), by introducing the Fourier representation

of the Dirac delta function into the following rewriting of (4.33),

〈∆H〉0 = lim
M→∞

∫
dq

∫
dQ′ ρ(Q)

×
[
UM(Q)− 1

2
mΩ2

∑

k 6=0

Q2
k

]
δ(q − q(τ)), (4.35)
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that this expectation value reduces to the following simple form,

〈∆H〉0 =Va2(Q0)− 1

2
mΩ2a2, (4.36)

where Va2(Q0) is the convolution of the external potential with a Gaussian of width

a,

Va2(Q0) =
1√
2πa

∫ ∞

−∞
dq̃ e−

q̃2

2a2 V (q̃ +Q0), (4.37)

and a is the (expected) radius of gyration of the imaginary-time path within the

harmonic approximation,

a2 =
2

mβ

∞∑

k=1

1

Ω2 + ω2
k

(4.38)

=
β~Ω coth

(
β~Ω

2

)
− 2

2βmΩ2
. (4.39)

Therefore, for W (Q0) to be variationally-optimal we equate it with the right-hand

side of the inequality (4.32). This sets

L(Q0) = Va2(Q0)− 1

2
mΩ2a2, (4.40)

and minimisation with respect to a2 gives

mΩ2 = 2
∂Va2(Q0)

∂a2
(4.41)

=
1√
2πa

∫ ∞

−∞
dq̃ e−

q̃2

2a2 V ′′(q̃ +Q0). (4.42)

These are the Feynman-Kleinert equations that define the variationally-optimal cen-

troid potential of mean force in terms of the centroid position, the frequency Ω and

radius of gyration a (see Section 2.3).

4.4 An approximate dynamics

According to the analysis in the previous section, making the Feynman-Kleinert ap-

proximation in Matsubara dynamics corresponds to approximation of the Matsubara

potential (in the M →∞ limit) as follows,

UM(Q)→ L(Q0) +
1

2
mΩ2

∑

k 6=0

Q2
k, (4.43)
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where L(Q0) and Ω2 are defined according to (4.40) and (4.42) respectively. Modi-

fying the potential in this way leads to the following expression for the Matsubara

dynamics two-point TCF,

C
[M ]
AB (t; τ) =

αM
2π~

∫
dQ

∫
dP e−β

P2
0

2m
−βL(Q0)−β

∑
k 6=0

P2
k

2m
+ 1

2
mΩ2Q2

k

× eiβθ(Q,P) A(q(τ)) eLM tB(q(0)). (4.44)

For the Liouvillian this change leads to

LM =
P0

m

∂

∂Q0

−
[
L′(Q0) +

1

2
m
∂Ω2

∂Q0

∑

k 6=0

Q2
k

]
∂

∂P0

+
∑

k 6=0

Pk
m

∂

∂Qk

−mΩ2Qk
∂

∂Pk
. (4.45)

The corresponding equations of motion for the centroid are

Q̇0 =
P0

m
(4.46)

Ṗ0 =− ∂L(Q0)

∂Q0

− 1

2
m
∂Ω2

∂Q0

∑

k 6=0

Q2
k, (4.47)

and for the fluctuation modes (k 6= 0),

Q̇k =
Pk
m

(4.48)

Ṗk =−mΩ2Qk. (4.49)

Despite this harmonic approximation, the approximate Matsubara dynamics two-

point TCF (4.44) is in general just as difficult to treat as Matsubara dynamics

on the exact potential because each fluctuation mode Qk (k 6= 0) rapidly acquires

a non-linear dependence on the other fluctuation modes, making it impossible to

integrate out the Matsubara phase. However, if the potential is not too strongly an-

harmonic, it seems reasonable to neglect these non-linear dependences by decoupling

the centroid and the fluctuation modes to second order, i.e. to make the following

approximation for the Matsubara Liouvillian,

LM =L0 +
∑

k 6=0

Pk
m

∂

∂Qk

−mΩ2Qk
∂

∂Pk
, (4.50)

where L0 concerns the centroid coordinates only. For example, we might propagate

each centroid trajectory using a method such as CMD or RPMD, then insert the re-
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Figure 4.1: Comparison of trajectories for the q-TIP4P/F OH potential (4.51) at 300K.
The plotted trajectories are from evolution under (4.45) (black line), (4.52) (red line) and

the planetary model equations of motion (4.3) (blue line).

sulting time-dependent frequency into (4.49) to generate purely harmonic dynamics

for each fluctuation mode.

We tested such an approximation on a one-dimensional model of the OH stretch

in water based on the q-TIP4P/F potential,109

VOH(q) = Dr

[
α2
r(q − qeq)2 − α3

r(q − qeq)3 +
7

12
α4
r(q − qeq)4

]
, (4.51)

which is a fourth order expansion of a Morse potential. The parameters are Dr =

116.09 kcal mol−1, αr = 2.287 Å
−1

and qeq = 0.942 Å. The mass is taken to be the

reduced mass of the OH unit. We used the Feynman-Kleinert centroid potential

of mean force to propagate the centroid trajectories. i.e. We evolved the system

according to the following Liouvillian,

LM =
P0

m

∂

∂Q0

−W ′(Q0)
∂

∂P0

+
∑

k 6=0

Pk
m

∂

∂Qk

−mΩ2Qk
∂

∂Pk
, (4.52)

in which the dynamics of the centroid is unaffected by the fluctuation modes. In
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Figure 4.1, this is compared with evolution under (4.45) and with evolution under

the planetary model Liouvillian (4.3) from the same initial conditions. The plotted

quantity is the fluctuation coordinate q̃(0) = q(0)−Q0. To calculate the Feynman-

Kleinert parameters we used Gauss-Hermite quadrature in the relevant integrals and

found the fixed point iteration to converge after approximately five iterations. As is

clear from the figure, this approximation has a small effect on the fluctuation trajec-

tory. We found this behaviour to be typical at 150K, 300K and 600K with a range

of initial conditions that were drawn in accordance with the quantum Boltzmann

distribution.

4.5 Integrating out the Matsubara phase

The advantage of such a first-order approximation as presented in the previous

section is that it allows us to integrate out the Matsubara phase in the approximate

Matsubara dynamics two-point TCF (4.44). The dynamics of any linear combination

of fluctuation modes, e.g. q̃(τ) = q(τ) − Q0, obey the following first-order linear

differential equations (as is easily verified by inspecting LM q̃(τ) and LM p̃(τ)) with

LM defined by (4.52)),

˙̃q(τ) =
p̃(τ)

m
(4.53)

˙̃p(τ) = −mΩ2q̃(τ). (4.54)

The fluctuation coordinate q̃(τ) at time t is therefore only dependent on the initial

conditions (q̃(τ), p̃(τ), Q0, P0) and the dependence on the initial q̃(τ) and p̃(τ) is

linear. The upshot of this is that, taking the approximate Matsubara dynamics

two-point TCF,

C
[M ]
AB (t; τ) =

αM
2π~

∫
dQ

∫
dP e−β

P2
0

2m
−βL(Q0)−β

∑
k 6=0

P2
k

2m
+ 1

2
mΩ2Q2

k

× eiβθ(Q,P) A(q(τ)) eLM tB(q(0)), (4.55)

the Liouvillian may be replaced as follows,

LM →
P0

m

∂

∂Q0

−W ′(Q0)
∂

∂P0

+
p̃(0)

m

∂

∂q̃(0)
−mΩ2q̃(0)

∂

∂p̃(0)
. (4.56)



The Planetary Model 69

This enables us to integrate out the Matsubara phase in the M → ∞ limit. The

approach is to insert Dirac delta functions to rewrite as follows,

C
[M ]
AB (t; τ) =

αM
2π~

∫
dx

∫
dQ

∫
dP e−β

P2
0

2m
−βL(Q0)−β

∑
k 6=0

P2
k

2m
+ 1

2
mΩ2Q2

k

× δ (q̃2 − q̃(τ)) δ (p̃2 − p̃(τ)) δ (q̃1 − q̃(0)) δ (p̃1 − p̃(0))

× eiβθ(Q,P) A(q(τ)) eLM tB(q(0)), (4.57)

where xT = (q̃1, p̃1, q̃2, p̃2). By exploiting the Fourier transform identity for the

Dirac delta function it is straightforward to show that, in the M → ∞ limit, this

expression reduces to (see Appendix C.2)

CAB(t; τ) =
1

2π~

∫
dQ0

∫
dP0 e

−β P
2
0

2m
−βW (Q0)

× 1

(2π)2
√

det(G)

∫
dx e−

1
2
xTG−1xA(q2) eLtB(q1), (4.58)

where the 4× 4 symmetric matrix G is given by

G =




a2 0 b2(τ) ic2(τ)

0 m2Ω2a2 −ic2(τ) m2Ω2b2(τ)

b2(τ) −ic2(τ) a2 0

ic2(τ) m2Ω2b2(τ) 0 m2Ω2a2.



. (4.59)

The a2 that appears in this matrix is the Feynman-Kleinert radius of gyration (4.39),

b2(τ) is the following hyperbolic function,

b2(τ) =
2

mβ

(
β~
4Ω

cosh (β~Ω/2− Ωτ)

sinh (β~Ω/2)
− 1

2Ω2

)
(4.60)

and c2(τ) is

c2(τ) =
~
2

csch

(
β~Ω

2

)
sinh

(
β~Ω

2
− Ωτ

)
, (4.61)

which is related to the first derivative of b2(τ) with respect to τ . The Liouvillian

is, of course, the same as in (4.56) but with the following replacements q̃(0) → q̃1

and p̃(0) → p̃1 (in accordance with the Dirac delta functions in (4.57)). Note that

det(G) is positive provided Ω2 > 0 since c2(τ) ≥ 0, a2 ≥ b2(τ) and
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det (G) =
[
c4(τ) +m2Ω2(a4 − b4(τ))

]2
(4.62)

> 0. (4.63)

Note also that the imaginary entries in G are the residual phase, representing the

correlation between q̃1 and p̃2,

〈q̃1p̃2〉 = ic2(τ). (4.64)

To remove this residual phase, we recognise that since the Liouvillian does not

involve q̃2 and p̃2, we may formally integrate over these coordinates to give

CAB(t; τ) =
1

2π~

∫
dQ0

∫
dP0 e

−β P
2
0

2m
−βW (Q0)

× 1

2πmΩa2

∫
dq̃

∫
dp̃ e−

q̃2

2a2−
p̃2

2m2Ω2a2 fA(q, p̃) eLtB(q), (4.65)

where the subscripts have been dropped from q1 and p1 to simplify the notation

because only one planet remains. Of course, the form of fA(q, p̃) depends on the

observable A(q2). By the usual route for writing a multivariate normal distribution

as a product of a conditional and marginal distribution, it is straightforward to show

that the function fA(q, p̃) has the following general form,

fA(q, p̃) =
1

2π
√

det (Σ)

∫
dx e−

1
2

(x−µµµ)TΣ−1(x−µµµ) A(q2), (4.66)

where Σ is the Schur complement of G22 in G,b

Σ = G11 −G12G
−1
22 G21, (4.67)

Gab being a 2× 2 submatrix of G (G11 the upper left submatrix etc.), x is

x =

[
q̃2

p̃2

]
, (4.68)

and µµµ is

µµµ = G12G
−1
22

[
q̃

p̃

]
. (4.69)

By taking the Taylor series of A(q2) and using the following relation for the kth

bNotice that det (Σ) = det (G) /m2Ω2a4 which is positive provided Ω2 > 0.
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probabilists’ Hermite polynomial,

Hk(x) =

(
1

iσ

)k
1√
2πσ

∫ ∞

−∞
dy e−

y2

2σ2 (y + iσx)k , (4.70)

the general form of fA(q, p̃) (4.66) reduces to

fA(q, p̃) =
∞∑

k=0

Ak (Q0 + q̃ b2(τ)/a2)

k!
(iσ)kHk(ξp̃). (4.71)

The constants ξ and σ are given by the following pair of equations,

σξ =
c2(τ)

m2Ω2a2
(4.72)

σ2 = a2 − b4(τ)

a2
+

c4(τ)

m2Ω2a2
. (4.73)

This expression can be made more compact as follows,

fA(q, p̃) = e+ ξ2p̃2

2 A

[
Q0 +

b2(τ)

a2
q̃ +

σ

iξ

∂

∂p̃

]
e−

ξ2p̃2

2 , (4.74)

where this equation is to be understood as a formal rewriting of (4.71), having

equated terms in the infinite series and made use of Rodrigues’ formula for the

probabilists’ Hermite polynomials,

Hk(x) = (−1)ke+x2

2
dk

dxk
e−

x2

2 . (4.75)

Of course, we have ignored the radius of convergence of the Taylor series of A(q2) in

this analysis. However, polynomials in q2 (as we might encounter with a non-linear

dipole moment) and eikq2 (as we might encounter for the intermediate scattering

function) are entire functions. This justifies taking the Taylor expansion in (4.66)

in those cases.

As it stands, (4.65) is completely general in the sense that it encompasses all

approximate Matsubara dynamics two-point TCFs for 0 ≤ τ ≤ β~ within the

Feynman-Kleinert approximation. However, to compare with the planetary model

we take the τ → 0 limit, since CAB(t; τ) in the τ → 0 limit is the Matsubara

dynamics approximation to the standard quantum TCF. In this limit we have

lim
τ→0

b2(τ) = a2 (4.76)

lim
τ→0

c2(τ) =
~
2
, (4.77)
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Figure 4.2: Schematic diagram comparing the entire imaginary-time path that is evolved
in (Kubo) Matsubara dynamics (left) with a single point on the imaginary-time path
(the ‘planet’) which evolves about the centroid in the approximate Matsubara dynamics

two-point TCF (right).

and the function fA(q, p̃) becomes

fA(q, p̃) =
∞∑

k=0

Ak (q)

k!

(
i~

2mΩa

)k
Hk

(
p̃

mΩa

)
(4.78)

= e+ p̃2

2m2Ω2a2A

[
q +

~
2i

∂

∂p̃

]
e−

p̃2

2m2Ω2a2 . (4.79)

The Matsubara dynamics approximation to the standard quantum TCF within the

Feynman-Kleinert approximation is therefore

CAB(t) =
1

2π~

∫
dQ0

∫
dP0 e

−β P
2
0

2m
−βW (Q0)

× 1

2πmΩa2

∫
dq̃

∫
dp̃ e−

q̃2

2a2−
p̃2

2m2Ω2a2 fA(q, p̃) eLtB(q), (4.80)

which correlates one point on the imaginary-time path q = q(0) (the ‘planet’) with

itself at a later time t. A schematic diagram of this transformation from the full

imaginary-time path to the planet coordinate is shown in Figure 4.2.

We now demonstrate that the function fA(q, p̃) presented here is identical to

that in the planetary model (4.10). Using the well-known formula for the Fourier

transform of a Gaussian, we may write

∫ ∞

−∞
d∆ ei∆p̃/~ e−

m2Ω2a2∆2

2~2 =

√
2π~

mΩa
e−

p̃2

2m2Ω2a2 . (4.81)
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Inserting this identity into (4.79) leads to

fA(q, p̃) =
mΩa√

2π~
e+ p̃2

2m2Ω2a2

∫ ∞

−∞
d∆ e−

m2Ω2a2∆2

2~2 A

[
q +

~
2i

∂

∂p̃

]
ei∆p̃/~ (4.82)

=
mΩa√

2π~
e+ p̃2

2m2Ω2a2

∫ ∞

−∞
d∆ ei∆p̃/~ e−

m2Ω2a2∆2

2~2 A (q + ∆/2) , (4.83)

which is the same as in the planetary model (4.10).

4.6 Recovering conservation of energy

The only remaining difference between the approximate Matsubara dynamics two-

point TCF presented in the previous section (4.80) and the planetary model TCF

(4.2) is the Liouvillian. We restate the approximate Matsubara Liouvillian for the

centroid and the planet,

L =
P0

m

∂

∂Q0

−W ′(Q0)
∂

∂P0

+
p̃

m

∂

∂q̃
−mΩ2q̃

∂

∂p̃
. (4.84)

If we interpret the exponentiated part of the integrand in (4.80) as the total energy

of the centroid and the planet we find

H(Q0, P0, q̃, p̃) =
P 2

0

2m
+W (Q0) +

q̃2

2βa2
+

p̃2

2βm2Ω2a2
. (4.85)

Now, the energy is not conserved since

LH(Q0, P0, q̃, p̃) =
q̃2

2β

P0

2m

∂a−2

∂Q0

+
p̃2

2β

P0

2m

∂(mΩa)−2

∂Q0

(4.86)

=−
[
P0

m

∂ ln(m2Ω2a2)

∂Q0

p̃

2

∂

∂p̃
+
P0

m

∂ ln(a2)

∂Q0

q̃

2

∂

∂q̃

]

× H(Q0, P0, q̃, p̃), (4.87)

which is generally non-zero outside the harmonic limit because the Feynman-Kleinert

radius of gyration and frequency are dependent on the centroid position. However,

the form of (4.87) shows that if we modify the Liouvillian according to

L → P0

m

∂

∂Q0

−W ′(Q0)
∂

∂P0

+
p̃

m

∂

∂q̃
−mΩ2q̃

∂

∂p̃

+
P0

m

∂ ln(m2Ω2a2)

∂Q0

p̃

2

∂

∂p̃
+
P0

m

∂ ln(a2)

∂Q0

q̃

2

∂

∂q̃
, (4.88)
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then this remedies the non-conservation of energy and leads to the same Liouvillian

as in the planetary model (4.3). This completes our demonstration of the relation-

ship between Matsubara dynamics and the planetary model of Poulsen et al. in one

dimension.

4.7 Limits and momentum-dependent observables

4.7.1 The zero-time limit

Notice that while fA(q, p̃) is in general a complicated function of q and p̃, it may be

replaced with A(q) in the t→ 0 limit provided the observable B(q) is only dependent

on position. Using the Hermite polynomial representation of fA(q, p̃) (4.78), we have

CAB(0) =
1

2π~

∫
dQ0

∫
dP0 e

−β P
2
0

2m
−βW (Q0)

× 1

2πmΩa2

∫
dq̃

∫
dp̃ e−

q̃2

2a2−
p̃2

2m2Ω2a2 B(q)

×
∞∑

k=0

Ak (q)

k!

(
i~

2mΩa

)k
Hk

(
p̃

mΩa

)
. (4.89)

Now, since the zeroth Hermite polynomial is H0

(
p̃

mΩa

)
= 1 and all the Hermite

polynomials are orthogonal with respect to the weight w(p̃) = e−
p̃2

2m2Ω2a2 , it is clear

that

1√
2πmΩa

∫
dp̃ e−

p̃2

2m2Ω2a2Hk

(
p̃

mΩa

)
=





1 k = 0

0 k > 0.
(4.90)

Therefore, only the zeroth term in the series survives and we are left with

CAB(0) =
1

2π~

∫
dQ0

∫
dP0 e

−β P
2
0

2m
−βW (Q0)

× 1

2πmΩa2

∫
dq̃

∫
dp̃ e−

q̃2

2a2−
p̃2

2m2Ω2a2 A(q)B(q), (4.91)

which is the same as (4.89) but for fA(q, p̃) replaced with A(q). For example, for

A(q) = q and B(q) = q, this leads to

Cqq(0)

Z
=
〈
Q2

0 + a2
〉
, (4.92)

where the thermal average is taken over the Feynman-Kleinert distribution for the

centroid.
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4.7.2 The harmonic limit

The various approximations made to the Matsubara dynamics two-point TCF do

not need to be made in the harmonic limit. As stated earlier, the Feynman-Kleinert

approximation is equivalent to approximation of the Matsubara potential as follows,

UM(Q) =L(Q0) +
1

2
mΩ2

∑

k 6=0

Q2
k. (4.93)

However, in the harmonic limit the Matsubara potential already has this form with

L(Q0) = 1
2
mω2Q2

0 and Ω = ω (the constant natural frequency of the harmonic

potential). The approximate Matsubara dynamics two-point TCF (4.65) is therefore

exact for a harmonic potential with any imaginary-time separation τ . Of course, for

τ → 0 this implies that the planetary model TCF is exact as well.

4.7.3 Momentum-dependent observables

The analysis in this chapter may be repeated with the observable A(q2) dependent

only on momentum as opposed to position. The form of the approximate Matsubara

dynamics two-point TCF (4.65) is identical but fA(q, p̃) must be replaced with

fA(q̃, p) =
∞∑

k=0

Ak (P0 + p̃ b2(τ)/a2)

k!
(iσ)kHk(ξq̃) (4.94)

= e+ ξ2q̃2

2 A

[
P0 +

b2(τ)

a2
p̃+

σ

iξ

∂

∂q̃

]
e−

ξ2q̃2

2 , (4.95)

where

σξ =− c2(τ)

a2
(4.96)

σ2 =
c4(τ)

a2
+m2Ω2a2 − b4(τ)m2Ω2

a2
. (4.97)

For τ → 0, the function fA(q̃, p) becomes

fA(q̃, p) =
∞∑

k=0

Ak (P0 + p̃)

k!

(
~

2ia

)k
Hk

(
q̃

a

)
(4.98)

= e+ q̃2

2a2A

[
P0 + p̃+

i~
2

∂

∂q̃

]
e−

q̃2

2a2 , (4.99)

which would be used to approximate the standard quantum TCF for Â = A(p̂).
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4.8 Multidimensional generalisation

The multidimensional generalisation of the foregoing analysis is straightforward,

with every quantity having a simple vector or matrix analogue. The centroid po-

tential of mean force for a system with F degrees of freedom within the Feynman-

Kleinert approximation is

W (Q0) =L(Q0) +
1

β
Tr

[
ln

(
Ω−1 sinh(β~Ω/2)

β~/2

)]
, (4.100)

where

L(Q0) =
1

(2π)F/2 det(A)

∫ ∞

−∞
dq̃M e−

1
2
q̃TMA

−2q̃M V (q̃ + Q0)− 1

2
Tr
[
Ω2A2

]
. (4.101)

The vector q̃M = M1/2q̃ is the mass-weighted coordinate corresponding to q̃ and M

is the F × F mass matrix for the system. The Feynman-Kleinert frequency matrix

that optimises the centroid potential of mean force is defined through

Ω2 =
1

(2π)F/2 det(A)

∫ ∞

−∞
dq̃ e−

1
2
q̃TMA

−2q̃M H(q̃ + Q0), (4.102)

where H(q̃ + Q0) is the mass-weighted Hessian and the Feynman-Kleinert radius of

gyration matrix A is related to the frequency via

A2 =
1

β
Ω−2

[
β~Ω

2
coth(β~Ω/2)− 1

]
. (4.103)

Note that the Feynman-Kleinert radius of gyration matrix is simply a function of

the frequency, thus they are simultaneously diagonalisable. The multidimensional

planetary model TCF is

CAB(t) =
1

(2π~)F

∫
dQ0

∫
dP0 e

−β 1
2
PT0 M

−1P0−βW (Q0) 1

(2π)F det (ΩA2)

×
∫

dq̃M

∫
dp̃M e−

1
2
q̃TMA

−2q̃M− 1
2
p̃TM (ΩA)−2p̃MfA(q, p̃) eLtB(q), (4.104)

where p̃M = M−1/2p̃ is the mass-weighted coordinate corresponding to p̃. The

function fA(q, p̃) is

fA(q, p̃) = e+ 1
2
p̃TM (ΩA)−2p̃MA

[
Q0 + q̃ +

~
2i
∇p̃

]
e−

1
2
p̃TM (ΩA)−2p̃M , (4.105)

where ∇T
x =

(
∂
∂x1
, ∂
∂x2
, · · · , ∂

∂xF

)
. Notice that for A(q) = q, the function fA(q, p̃)
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is simply

fA(q, p̃) = q + i~M−1/2(ΩA)−2p̃M , (4.106)

which we will use later in the thesis. By projecting q̃M and p̃M onto the eigenvectors

of the Feynman-Kleinert frequency matrix, fA(q, p̃) can be written in terms of the

probabilists’ Hermite polynomials as in the one-dimensional case. This provides

the relation between the function fA(q, p̃) presented here and in Ref. 46. The

multidimensional planetary model Liouvillian is

L = PT
0M

−1∇Q0 −∇T
Q0
W (Q0)∇P0

+ p̃TM∇q̃M − q̃TMΩ2∇p̃M

− q̃TM

F∑

j=1

P j
0

mj

∂A−1

∂Qj
0

A∇q̃M

− p̃TM

F∑

j=1

P j
0

mj

∂ (AΩ)−1

∂Qj
0

AΩ∇p̃M . (4.107)

This leads to the Feynman-Kleinert CMD equations of motion for the centroids,

Q̇0 = M−1P0 (4.108)

Ṗ0 = −∇Q0W (Q0), (4.109)

and the following equations of motion for the planets,

˙̃qM = p̃M − AȦ−1q̃M (4.110)

˙̃pM =− Ω2q̃M − AΩ ˙(AΩ)
−1

p̃M . (4.111)

As in one dimension, to facilitate integration of these equations we insert the inte-

grating factor A−1 into the first equation and (AΩ)−1 into the second to give

d

dt
A−1q̃M =A−1p̃M (4.112)

d

dt
(AΩ)−1p̃M =− ΩA−1q̃M . (4.113)

Defining the dimensionless coordinates q = A−1q̃M and p = (AΩ)−1p̃M we get

q̇ = Ωp (4.114)

ṗ =− Ωq, (4.115)
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which have exactly the same form as they do in one dimension (see (4.8) and (4.9)).

Note that if we choose to project the dimensionless coordinates onto the eigenvectors

of the Feynman-Kleinert frequency matrix by taking DTq→ q and DTp→ p, where

D is the (centroid-dependent) matrix of eigenvectors, then the equations of motion

become

q̇j = Ωjpj −
(
DT Ḋ q

)
j

(4.116)

ṗj =− Ωjqj −
(
DT Ḋ p

)
j
, (4.117)

where Ωj is the square root of the jth eigenvalue of Ω2. Poulsen et al. integrate

these equations with an algorithm that is accurate to first order in the size of the

time step (see Appendix in Ref. 46). We instead integrate the equations (4.114)

and (4.115) directly. By using Jacobi’s formula for the derivative of a determinant

and conservation of energy, it is straightforward to use the same approach as in

the one-dimensional case to demonstrate the conservation of the multidimensional

distribution.

4.9 Practicalities

4.9.1 Imaginary frequencies

For a general potential, the square of the Feynman-Kleinert frequency matrix is not

guaranteed to remain positive definite. In this case the distribution for the planet

momentum in the planetary model TCF becomes ill-defined. To remedy this prob-

lem we set any negative eigenvalues of the square of the effective frequency matrix

to zero, in accordance with the procedure described in the original formulation of

the planetary model in Ref. 45 under the name FK-QCW(1), which is consistent

with the limiting distribution of the planet momentum as a Dirac delta function.

This modification does not affect the conservation of the quantum Boltzmann dis-

tribution and maintains the exactness of the TCF in the harmonic limit which is

otherwise lost if the planet momentum distribution is heuristically modified (as in

FK-QCW(2) in Ref. 45) to extend the method to incorporate imaginary frequencies.

4.9.2 Two practical modifications

To apply the planetary model to large systems we need a practical means of eval-

uating the Feynman-Kleinert centroid potential of mean force and frequency that
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bypasses the non-linear simultaneous equations in (4.102) and (4.103). In previous

simulations of large systems using the Feynman-Kleinert approximation, this prob-

lem has been greatly simplified by approximating the potential as a linear combina-

tion of Gaussian functions.46,91,94 This allows for exact evaluation of the Gaussian

integrals in the definition of the Feynman-Kleinert centroid potential of mean force

and frequency. However, we would rather not make this approximation since it lim-

its the method to potentials that can be expanded in this way, which is of course

impossible for any sophisticated ab initio treatment. Rather, we suggest the use of

an alternative to the Feynman-Kleinert frequency.

Since the square of the Feynman-Kleinert frequency is an integral of harmonic

fluctuations over the mass-weighted Hessian, it seems likely that a satisfactory fre-

quency would be obtained by integrating the mass-weighted Hessian over the exact

fluctuations instead, i.e. by defining the following ‘path integral frequency’,

mΩ2 =
1

N

N∑

l=1

〈
V ′′(ql) δ

(
x− 1

N

N∑

j=1

qj

)〉
, (4.118)

where Ω2 = Ω2(x), and the thermal expectation value is taken in the space of N

ring-polymer beads,

〈A〉 = lim
N→∞

1

Z

1

(2π~)N

∫
dq

∫
dp e−βNR(q,p)A(q). (4.119)

In the normal mode coordinates (as defined previously in (2.62)) we have

N∑

l=1

∂2U(q)

∂q2
l

=
N∑

k=−N

∂2U(Q)

∂Q2
k

, (4.120)

where U(q) =
∑N

l=1 V (ql) and N = (N − 1)/2. Note that since the potential does

not couple the ring-polymer bead coordinates, we also have

1

N

N∑

l=1

∂2U(q)

∂q2
l

=
∂2U(Q)

∂Q2
0

. (4.121)

This allows us to rewrite (4.118) as follows,

mΩ2 =
1

N − 1

∑

k 6=0

〈
∂2U(Q)

∂Q2
k

δ

(
x− Q0√

N

)〉
. (4.122)

To avoid evaluation of the Hessian, we use integration by parts to give the following
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equivalent estimator,

mΩ2 =
βN

N − 1

∑

k 6=0

〈[
F 2
k −mω2

kQkFk
]
δ

(
x− Q0√

N

)〉
, (4.123)

where Fk is the force on the kth normal mode coordinate,

Fk = −∂U(Q)

∂Qk

. (4.124)

This is the first practical modification we propose for the planetary model.

The second practical modification concerns the centroid dynamics and centroid

distribution. In the original formulation of the planetary model, Poulsen et al.

perform the centroid dynamics using Feynman-Kleinert CMD in accordance with the

Feynman-Kleinert centroid potential of mean force that appears in the centroid part

of the distribution. An approximation to the Feynman-Kleinert centroid potential

of mean force could be calculated with the path integral frequency outlined above.

However, since the path integral frequency is determined stochastically using (4.123),

the method is more computationally stable if we do away with the Feynman-Kleinert

approximation for the centroid distribution and rewrite the planetary model TCF

as follows,

CAB(t) =

∫
dQ0

∫
dP0 ρ(Q0, P0)

× 1

2πmΩa2

∫
dq̃

∫
dp̃ e−

q̃2

2a2−
p̃2

2m2Ω2a2 fA(q, p̃) eLtB(q), (4.125)

where ρ(Q0, P0) is the exact centroid distribution,c and the Liouvillian is modified

to

L =L0 +
p̃

m

∂

∂q̃
−mΩ2q̃

∂

∂p̃

+
P0

m

∂ ln(m2Ω2a2)

∂Q0

p̃

2

∂

∂p̃
+
P0

m

∂ ln(a2)

∂Q0

q̃

2

∂

∂q̃
, (4.126)

where L0 is some (to be determined) Liouvillian for the centroid that conserves

the distribution ρ(Q0, P0). Of course, CMD, RPMD and TRPMD all conserve this

distribution. Since our aim is to use the planetary model in the simulation of infrared

absorption spectra, we advise against the use of CMD for this purpose because of

the curvature problem. We also advise against the use of RPMD because of the

cNote that use of the exact centroid distribution with the Feynman-Kleinert description of the
fluctuation was proposed in a different context by Liu and Miller in Appendix A of Ref. 89.
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spurious resonance problem. Instead, we propose the use of TRPMD which has

the advantage of being cheap and efficient and, of course, also allows us to easily

evaluate the path integral frequency (4.123) on the fly.

These considerations translate immediately into the multidimensional case. The

matrix elements of the multidimensional analogue of the path integral frequency

(4.123) are

Ω2
ab =

βN
N − 1

∑

k 6=0

〈[
F a
kF

b
k√

mamb

− ω2
k

√
ma

mb

Qa
kF

b
k

]
δ

(
x− Q0√

N

)〉
, (4.127)

where F a
k is the force on the kth normal mode coordinates of the ath degree of freedom

and ma is the mass associated with that degree of freedom. We direct the reader

to Appendix C.3 for a discussion about the computational efficiency of the path

integral frequency estimator.

A partial rationalisation of why the path integral frequency might be a good ap-

proximation to the Feynman-Kleinert frequency can be made by considering the low

and high temperature limits. Using Ramirez and López-Ciudad’s minimum energy

wavepacket analysis of the centroid-constrained Boltzmann operator,66 described in

more detail in Appendix C.4, it is straightforward to show that, in the T → 0 limit,

mΩ2 is the (pure state) expectation value of V ′′(x̂) taken over the minimum energy

wavepacket whose average position is Q0. In other words,

lim
T→0

mΩ2 = 〈Ψ(Q0)|V ′′(x̂) |Ψ(Q0)〉 , (4.128)

where |Ψ(Q0)〉 is normalised and minimises the energy, 〈Ψ(Q0)| Ĥ |Ψ(Q0)〉, subject

to 〈Ψ(Q0)| x̂ |Ψ(Q0)〉 = Q0. Within the Feynman-Kleinert approximation, the same

limiting behaviour holds but 〈x|Ψ(Q0〉 is further constrained to be a Gaussian. In

the T → ∞ limit, both the path integral frequency and the Feynman-Kleinert

frequency tend to the same value,

lim
T→∞

mΩ2 = V ′′(Q0), (4.129)

since the ring polymer radius of gyration and the Feynman-Kleinert radius of gyra-

tion tend to zero in this limit. These ideas are easily extended to the multidimen-

sional case.

To further explore the effect of our proposed modifications, we compared tra-

jectories for the one-dimensional q-TIP4P/F model of the OH stretch (4.51). This

comparison is shown in Figure 4.3. Panel a shows a comparison of the centroid
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Figure 4.3: Comparison of trajectories for the one-dimensional q-TIP4P/F model (4.51)
of the OH stretch at 300K. Panel a shows centroid trajectories while panel b shows trajec-
tories in the fluctuation coordinate q̃ = q −Q0. The black line corresponds to Matsubara
dynamics within the Feynman-Kleinert approximation, the blue line corresponds to the
original formulation of the planetary model and the green line corresponds to the planetary

model with our proposed modifications.
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Figure 4.4: Comparison of trajectories for the q-TIP4P/F champagne bottle model of the
OH stretch at 300K. Panel a shows centroid trajectories while panel b shows trajectories
in the fluctuation coordinate x̃ = x − X0. The black line corresponds to Matsubara
dynamics within the Feynman-Kleinert approximation, the blue line corresponds to the
original formulation of the planetary model and the green line corresponds to the planetary

model with our proposed modifications.
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trajectories and panel b shows a comparison of trajectories for the relative planet

coordinate q̃ = q − Q0. While the centroid trajectories are significantly different

(owing to the coupling of the centroid to the thermostatted fluctuation modes in

TRPMD), the planet trajectories with and without the modifications presented in

this section are reassuringly similar.

We also compared trajectories for the two-dimensional ‘champagne bottle’ ana-

logue of the q-TIP4P/F model (a simple extension of (4.51) in polar coordinates

where the potential is evaluated in the distance coordinate and the angular coordi-

nate is cyclic). These results are shown in Figure 4.4. Due to the circular symmetry

of the potential, the Feynman-Kleinert frequency matrix (and the path integral

frequency matrix) can be diagonalised as follows,

Ω2(Q0) = RT (θ)Ω2(r)R(θ), (4.130)

where r =
√
X2

0 + Y 2
0 , θ = tan−1(Y0/X0), Ω2(r) is a diagonal matrix and R(θ) is

a two-dimensional rotation matrix. One of the diagonal elements of Ω2(r) accounts

for vibration in the direction of Q0 (i.e. radially). This manifests itself in the

fast oscillations in panel b of Figure 4.4. The other accounts for vibration in the

orthogonal direction (i.e. transversally). The latter frequency becomes imaginary for

small values of the radial coordinate due to the curvature of the potential. Clearly a

harmonic approximation for the dynamics in the orthogonal direction is inadequate

since motion in this direction corresponds to rotation, which can only be described

harmonically for infinitesimal displacements. This problem is inextricably linked to

the harmonic approximation and suggests that the planetary model will be unable

to describe rotational dynamics.



Chapter 5

Infrared Absorption Spectroscopy

of Water

5.1 Simulation of infrared absorption spectra

According to the golden rule of time-dependent perturbation theory, the product of

the Beer-Lambert absorption coefficient α(ω) and the frequency-dependent refrac-

tive index n(ω) of a liquid with dipole moment operator µ̂ is69

n(ω)α(ω) =
πω

2~cV ε0
[
1− e−β~ω

]
I(ω), (5.1)

where I(ω) is the Fourier transform of the standard quantum dipole moment auto-

correlation function,

I(ω) =
1

2π

∫ ∞

−∞
dt e−iωt

Cµµ(t)

Z
. (5.2)

It is straightforward to show that we may also write

n(ω)α(ω) =
πω

~cV ε0
tanh (β~ω/2) I(ω), (5.3)

where I(ω) is now the Fourier transform of the real part of the standard quantum

dipole moment autocorrelation function. By making use of the harmonic correction

factor (2.28) that relates the Fourier transforms of the standard and Kubo quantum

TCFs, we may rewrite as follows,

n(ω)α(ω) =
πβω2

3cV ε0
I(ω), (5.4)

85
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where I(ω) is the Fourier transform of the quantum Kubo dipole moment autocor-

relation function instead.

Of course, the three equations (5.1), (5.3) and (5.4) are equivalent provided I(ω)

is the Fourier transform of an exact quantum dipole moment autocorrelation func-

tion. For approximate methods, different infrared absorption spectra n(ω)α(ω) will

result in general depending on which type of quantum dipole moment autocorrela-

tion function is approximated. Since CMD, RPMD and TRPMD approximate the

quantum Kubo TCF, the third form (5.4) is used with those methods. Since the

planetary model approximates the standard quantum TCF, we have used the sec-

ond form (5.3) for the planetary model in this study. Note that it is common when

comparing with classical simulations to use the Fourier transform of the classical

dipole moment autocorrelation function with the Kubo form (5.4), since this gives

the exact result in the harmonic limit if the dipole moment is a linear operator.69

We followed this convention in this study.

5.2 The q-TIP4P/F model of water

We performed our water simulations with the q-TIP4P/F potential of Habershon

et al.109 which has the advantage of being cheap in comparison to other more so-

phisticated water potentials (e.g. TTM3-F,110 PS,111 MB-pol112,113,114), while still

capturing the important quantum properties of water in the condensed phase. The

other commonly used simple point charge water model for approximate quantum

simulations is q-SPC/FW of Paesani et al.115 However, owing to its harmonic de-

scription of the OH covalent bond stretch, q-SPC/FW is known to incorrectly predict

distinct symmetric and antisymmetric stretch peaks in the infrared absorption spec-

trum of the room temperature liquid which is at odds with experiment.109 Since

the infrared absorption spectrum of liquid water is precisely what we would like to

describe, we opted for q-TIP4P/F over q-SPC/FW in this study.

The q-TIP4P/F potential is an empirical water potential based on TIP4P/2005.116

The intermolecular potential is pairwise additive and identical to that in TIP4P/2005,

Vinter(rrr) =
∑

i

∑

j>i

{
4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]

+
∑

m∈i

∑

n∈j

qmqn
rmn

}
, (5.5)

where rij is the distance between the oxygen atoms and rmn is the distance between

the partial charge sites in molecules i and j. Two positive charges of magnitude

qM/2 are placed on the hydrogen atoms of each molecule and a negative charge of
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−qM is placed at a point rrrM a fraction γ along the vector connecting the oxygen

atom to the centre of mass of the two hydrogen atoms,

rrrM = γrrr0 +
(1− γ)

2
(rrrH1 + rrrH2). (5.6)

The intramolecular part of the potential comprises a harmonic potential for the

HOH bend angle and a fourth-order expansion of a Morse potential for each OH

covalent bond distance,109

Vintra(rrr) =
∑

i

[
VOH(ri1) + VOH(ri2) +

1

2
kθ(θi − θeq)2

]
, (5.7)

where

VOH(r) = Dr

[
α2
r(r − req)2 − α3

r(r − req)3 +
7

12
α4
r(r − req)4

]
, (5.8)

as was described earlier in the thesis (4.51). The variables ri1 and ri2 are the two

OH bond distances and θi is the HOH bond angle in the ith water molecule. The

four parameters for the intermolecular part of the potential are the same as in

TIP4P/2005, while the intramolecular parameters were optimised by Habershon et

al. in a set of path integral calculations to give good agreement with experimental

data for liquid structure, self-diffusion constant and infrared absorption frequencies.

All nine of the parameters are to be found in Ref. 109. In practice, evaluation of the

intermolecular part of the potential is much more computationally demanding than

the intramolecular part. However, the short-range Lennard-Jones interactions can be

treated using a sensible cut-off distance, and the long range Coulombic interactions

can be accounted for with the Ewald summation technique.117,118 We employed both

of these computational tools in this study.

Since q-TIP4P/F is a point charge model of water, the total dipole moment of a

collection of water molecules is simply a linear combination of the atomic displace-

ments,

µµµ(rrr) = qMγ
∑

i

(
rrriH1

+ rrriH2

)
/2− rrriO, (5.9)

where riH1
is the position of the first hydrogen atom in molecule i etc.

The linearity of the dipole moment means that the function fA(q, p̃) that appears

in the planetary model has the following simple form for the dipole moment in (5.9),

fµ(q, p̃) = µµµ(q) + i~M−1/2µµµ
[
(ΩA)−2 p̃M

]
, (5.10)



88 Infrared Absorption Spectroscopy of Water

where M is the F×F mass matrix for the F -dimensional system and p̃M = M−1/2p̃.

Therefore, fµ(q, p̃) may be replaced with µµµ(q) in the real part of the autocorrelation

function, i.e.

ReCµµ(t) =
1

(2π~)F

∫
dQ0

∫
dP0 ρ(Q0,P0)

1

(2π)F det (ΩA2)

×
∫

dq̃M

∫
dp̃M e−

1
2
q̃TMA

−2q̃M− 1
2
p̃TM (ΩA)−2p̃M µµµ(q) · eLtµµµ(q). (5.11)

By again exploiting the linearity of the dipole moment (µµµ(q) = µµµ(Q0) + µµµ(q̃)) we

find,

ReCµµ(t) = Cµµ(t) +
1

(2π~)F

∫
dQ0

∫
dP0 ρ(Q0,P0)

1

(2π)F det (ΩA2)

×
∫

dq̃M

∫
dp̃M e−

1
2
q̃TMA

−2q̃M− 1
2
p̃TM (ΩA)−2p̃M µµµ(q̃) · eLtµµµ(q̃), (5.12)

where Cµµ(t) is the TRPMD dipole moment autocorrelation function. This con-

veniently splits the planetary model autocorrelation function into two parts which

need not be evaluated simultaneously. In practice, we have found that many more

initial centroid phase space points must be sampled to converge the TRPMD part of

(5.12) than the planetary part. This separation is therefore extremely helpful, since

calculation of the planetary part for a given initial centroid phase space point is

inherently more time-consuming because it requires calculation of the path integral

frequency matrix (4.127). Of course, the same separation applies with the original

formulation of the planetary model as well. In that case Cµµ(t) is the Feynman-

Kleinert CMD dipole moment autocorrelation function.

5.3 The single molecule

The infrared absorption spectrum of water in the gas phase is extremely complex.

The vibrations of the water molecule involve combinations of symmetric stretching,

asymmetric stretching and bending of the covalent bonds. These vibrations are cou-

pled to the rotational motion of the molecule which leads to a complicated rotational

fine structure. To accurately reproduce the infrared absorption spectrum requires

the use of a sophisticated potential and dipole moment surface in combination with

a quantum treatment of the nuclear dynamics in order to account for quantum co-

herence. Of course, such a treatment is beyond the intended scope of the methods

described in this thesis.

However, by calculating an exact quantum autocorrelation function for the q-
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TIP4P/F potential, and by heuristically damping its oscillations to simulate quan-

tum decoherence, we may generate an approximation to the quantum infrared ab-

sorption spectrum of condensed-phase q-TIP4P/F water. By then comparing the

result with single-molecule infrared absorption spectra from approximate methods,

this approach enables us to better assess the accuracy of those methods in a genuine

condensed phase simulation where a quantum calculation is too computationally ex-

pensive. Of course, we may also compare with experiment in the condensed phase.

However, the approximate nature of the q-TIP4P/F potential will inevitably con-

tribute to observed differences that may then be incorrectly attributed to deficiencies

in the approximate method rather than the potential.

5.3.1 Computational details

To calculate the quantum results in this study, we implemented the q-TIP4P/F

potential and dipole moment surface into the DVR3D package of Tennyson et al.6

This package gives the energy levels of the system and the matrix elements of the

dipole moment operator in the basis of eigenstates. We combined these to compute

the real part of the standard quantum dipole moment autocorrelation function.

To simulate the effect of rapid quantum decoherence in the condensed phase, we

applied a Hann window (raised cosine) to the quantum autocorrelation function

before taking its Fourier transform. The Hann window is given by119

w(t,∆t) =





1
2

(cos (πt/∆t) + 1) |t| ≤ ∆t

0 elsewhere
. (5.13)

At each temperature, we chose the parameter ∆t to be commensurate with the

correlation time of the classical dipole moment autocorrelation function (∆t = 500 fs

(150K), 400 fs (300K) and 300 fs (600K)). We extended the autocorrelation function

to t < 0 through reflection about t = 0 (the real part of the autocorrelation function

is an even function of time) before applying the Hann window. We then calculated its

Fourier transform using an algorithm that is based on the fast Fourier transform.84

The result was then inserted into (5.3) with an arbitrary volume to produce the

infrared absorption spectrum.

To calculate the classical and TRPMD results, we calculated each dipole moment

autocorrelation over a total of 106 independent trajectories of length 2 ps. These

were then treated using the same Hann window as for the quantum results before

taking their Fourier transforms (to mitigate ringing in the spectra). To ensure

independence of trajectories for the classical simulations we employed an Andersen
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thermostat to resample momenta.120 We used a time step of ∆t = 0.25 fs for both

methods with a symmetric velocity Verlet algorithm (classical) and the algorithm

described in Ref. 47 to integrate the TRPMD equations of motion. To converge the

TRPMD results with respect to the number of ring-polymer beads we used N = 64

(150K), 32 (300K) and 16 (600K).

To calculate the planetary model results, we used the same TRPMD code with

a symmetric algorithm for alternating propagation of the centroids (TRPMD) and

planets (see equations (4.114) and (4.115)) with a time step of ∆t = 0.25 fs. At each

temperature we used the same number of ring polymer beads as mentioned previ-

ously for the TRPMD simulations. To calculate the path integral frequency matrix,

we spawned an independent TRPMD centroid-constrained trajectory of length 64 fs

at each time step and calculated the thermal average (4.127) as a time average along

the trajectory. We used a total of 64 independent initial planet phase space points

(drawn from the relevant normal distribution: qj, pj ∼ N (0, 1) for j = 1, 2, . . . F )

to converge the integrals over the distribution of the planets. We calculated the

dipole moment autocorrelation over a total of 104 independent centroid trajectories

of length 2 ps (one for each of the 64 initial positions and momenta of the planets).

The aforementioned Hann window and Fourier transform procedure was then used

for each autocorrelation function to generate the infrared absorption spectra.

5.3.2 Infrared absorption spectra

The effect of the Hann window on the quantum infrared absorption spectrum at

300K is shown in Figure 5.1. Without application of the Hann window, the infrared

absorption spectrum shows the presence of hundreds of lines representing the many

rovibrational transitions that are thermally accessible to the molecule. After appli-

cation of the Hann window, the rotation band adopts a broad lineshape, the bend

band shows two distinct peaks and the stretch band shows a broad lineshape with

the remnants of a little rotational structure. The bend band comprises the P, Q and

R branches of the bend vibration with an unpronounced Q branch (the bend vibra-

tion changes the dipole moment along the molecular symmetry axis). The stretch

band comprises the P, Q and R branches of the symmetric and asymmetric stretch

vibrations. The Q branch of the asymmetric stretch is pronounced since it changes

the dipole moment along an axis that is perpendicular to the molecular symme-

try axis. The symmetric stretch contributes much less to the stretch band since

it is associated with a smaller change in dipole moment. Application of the Hann

window also washes out the first overtone of the bend vibration at approximately

3200 cm-1.121,122
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Figure 5.1: Infrared absorption spectrum for the q-TIP4P/F water molecule at 300K.
The absorbance is given in arbitrary units. The black and green lines show the infrared

absorption spectra with the use of the Hann window (green) and without (black).

The infrared absorption spectra for all of the methods at 150K, 300K and 600K

are shown in Figure 5.2. The insets show the stretch band over 3300 cm-1 to

4250 cm-1. The first point to note is that the classical stretch band is shifted to

the blue at all temperatures (and by some 100 cm-1 relative to the quantum stretch

band at 150K). This relative shift is accounted for by the significant zero-point en-

ergy of the anharmonic OH covalent bond and highlights the importance of a correct

description of the quantum Boltzmann statistics in water. The planetary model and

TRPMD stretch bands are much closer to the quantum result at the three plotted

temperatures because they correctly account for the quantum Boltzmann statistics.

The second point to note is the emergence of a shoulder in the rotation band for

the planetary model at 300K, and the emergence of a spurious peak between the

rotation and bend band at 150K. We found that setting the lowest six eigenvalues

of the path integral frequency matrix to zero removed the shoulder and spurious

peak. These are therefore caused by the harmonic description of the free rotation

of the water molecule as described previously (see Chapter 4). This effect becomes

more pronounced as the temperature decreases for two reasons. Firstly, the spuri-

ous frequencies associated with rotation increase because the ring polymer in the

path integral frequency estimator becomes more delocalised along the rotation co-
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Figure 5.2: Infrared absorption spectra for the q-TIP4P/F water molecule at 150K, 300K
and 600K. The absorbance is given in arbitrary units. The lines correspond to the plane-
tary model (black), classical (red), TRPMD (blue) and quantum (green). The insets show

the stretch band over 3300 cm-1 to 4250 cm-1.
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ordinates. Secondly, the weight of the planetary contribution to the dipole moment

autocorrelation function increases relative to the centroid contribution (see (5.12)).

This is seen as a loss of absorbance of the rotational band in the correct region,

which results from the adequate TRPMD description of rotation, and an increase

in absorbance of the spurious peak. As alluded to previously, these results suggest

that the planetary model spectra should not be trusted for low frequencies.

However, at 150K where the rotation band is most poorly described, the stretch

band of the planetary model result is in remarkably good agreement with the quan-

tum result in position, absorbance and lineshape. This is in contrast to the TRPMD

result which shows a broadened lineshape and an absorbance that is nearly a factor

of two too small. This promising observation suggests that the incorrect planetary

model description of the rotational dynamics of the molecule does not contaminate

the vibrational dynamics. This is a useful property since the stretch band is the por-

tion of the spectrum that is most poorly described by CMD, RPMD and TRPMD

at low temperatures.

Notice further that the planetary model and TRPMD results do not show rota-

tional structure to the same extent that the classical and quantum results do. For

instance, the bend band of the spectrum is not split at all for either method at

150K. This is caused by the thermostatting of the fluctuation modes in TRPMD

which suppresses dynamical coupling of the vibrational and rotational motion. The

absence of this structure is not so concerning since our intention is to adequately

describe the infrared absorption spectroscopy of water in the condensed phase and

condensed-phase infrared absorption spectra of water are almost devoid of rotational

structure. While the original formulation of the planetary model by Poulsen et al.

does lead to the presence of rotational structure in the stretch and bend bands for

the single q-TIP4P/F molecule, the infrared absorption spectrum at 150K exhibits a

spurious combination band that results from the modulation of the planetary model

rotation frequencies at a rate governed by the centroid stretching motion. This point

is developed further in Appendix D.1.

5.4 The condensed phase

5.4.1 Computational details

We used the i-PI package of Ceriotti et al.123 (including the packaged q-TIP4P/F

driver) to calculate the classical, TRPMD and planetary model infrared absorption

spectra of q-TIP4P/F water in the condensed phase. We simulated hexagonal ice
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at 150K, liquid at 300K and (compressed) liquid at 600K under periodic boundary

conditions. Our simulation box consisted of 96 water molecules for hexagonal ice

and 128 water molecules for the liquid at 300K and 600K.a These are the same

thermodynamic conditions as were used by Rossi et al. in Ref. 124. To determine

the size of the simulation box we used the experimental density of hexagonal ice

and the liquids at the relevant temperatures, which at 600K was the density of the

liquid at the liquid-vapour coexistence point. To generate initial hexagonal ice ge-

ometries at 150K we used a Monte Carlo procedure125 to ensure consistency with the

Bernal-Fowler rules126 which were then evolved under thermostatted ring-polymer or

classical (Andersen thermostatted) dynamics. The initial liquid configurations were

generated straightforwardly using only the thermostatted ring-polymer or classical

dynamics.

We used a time step of ∆t = 0.25 fs for all the simulations and N = 64 (150K),

32 (300K) and 16 (600K) ring-polymer beads for the TRPMD and planetary model

simulations in accordance with the previous study by Rossi et al.124 For the classi-

cal and TRPMD simulations we calculated the autocorrelation of the total dipole

moment derivative of the simulation box over 256 independent trajectories of length

10 ps. We then applied the aforementioned Hann window and Fourier transform

procedure (∆t = 500 fs) to the autocorrelation functions to generate the infrared

absorption spectra, making use of the following relation,

1

2π

∫ ∞

−∞
dt e−iωt 〈µ̇µµ · µ̇µµ(t)〉 =

ω2

2π

∫ ∞

−∞
dt e−iωt 〈µµµ · µµµ(t)〉 . (5.14)

There are three important computational differences between how we calculated

the planetary model infrared absorption spectra for the single molecule and the

condensed phase. Firstly, we found that we need not calculate the path integral

frequency matrix every 0.25 fs, but could rather calculate it every 1 fs and use linear

interpolation to approximate the intervening matrices without any loss in quality

of the resulting infrared absorption spectra. Secondly, we found the eigenvalues of

the path integral frequency matrix to converge more slowly in the condensed phase

than for the single molecule for the following reason. The converged path integral

frequency matrix is sparse and nearly block diagonal when fully converged, but noise

in the underconverged matrix elements associated with pairs of atoms that are well-

separated in space leads to a slow convergence of the eigenvalues. To remedy this

problem we took the Hadamard product of the following screening matrix with the

aWe also simulated the 300K and 600K liquids with a simulation box of 64 water molecules
and found the resulting infrared absorption spectra to be almost indistinguishable to graphical
accuracy.
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path integral frequency matrix,

Sab = exp
(
−γ2r2

ab

)
, (5.15)

where γ is an adjustable parameter and rab is the distance between the centroids that

pertain to the ath and bth degrees of freedom. We found that a value of γ = 0.10 a.u.-1

was sufficient to give the same result as with a smaller value (we also simulated with

γ = 0.25, 0.13, 0.11, 0.09, 0.08 a.u.-1) but without the expense of significantly longer

centroid-constrained TRPMD trajectories. With this modification we were able to

use centroid-constrained TRPMD trajectories of length 128 fs. Thirdly, we exploited

the different convergence properties of the TRPMD and planetary parts of the auto-

correlation function in (5.12) by calculating each part in a separate simulation. We

have already described the calculation of the TRPMD part, while for the planetary

part we found we obtained a converged infrared absorption spectrum by correlating

the total dipole moment of the simulation box over only 8 trajectories of length 2 ps

at each temperature. As for the simulations of the single q-TIP4P/F water molecule,

we used a total of 64 independent initial planet phase space points to converge the

integrals over the phase space distribution of the planets. The aforementioned Hann

window and Fourier transform procedure (∆t = 500 fs) was then applied to these

autocorrelation functions to generate the planetary contributions to the infrared

absorption spectra.

For comparison, we extracted CMD infrared absorption spectra data for the

same thermodynamic conditions from Ref. 124. The authors present their infrared

absorption spectra in arbitrary units so we scaled the extracted CMD data by the

same ratio as that required to match the absorbances of our TRPMD results with

the TRPMD results in the same paper.124

5.4.2 Infrared absorption spectra

The results of our simulations of condensed-phase q-TIP4P/F water are shown in

Figure 5.3. Hydrogen bonding in the condensed phase has a pronounced effect on

the infrared absorption spectrum of water as is clear from a comparison of Figure

5.2 and Figure 5.3. For example, hindered rotation of hydrogen-bonded molecules

leads to a blueshift of the libration (rotation) band in comparison to that for the

single molecule. Hydrogen bonding also leads to a redshift of the stretch band since

it weakens the OH covalent bond stiffness. This is the opposite effect to what is

found for the bend band, which is blueshifted relative to that for the single molecule.

All three of these effects become more pronounced with a decrease in temperature



96 Infrared Absorption Spectroscopy of Water

0

5000

10000

15000

0 1000 2000 3000 4000
ω / cm−1

0

5000

10000
0

2500

5000

n(ω)α(ω) / cm−1

150K

300K

600K

n(ω)α(ω) / cm−1

150K

300K

600K

n(ω)α(ω) / cm−1

150K

300K

600K

Figure 5.3: Infrared absorption spectra for q-TIP4P/F hexagonal ice (150K), liquid (300K)
and compressed liquid (600K). The lines correspond to the planetary model (black), clas-

sical (red), TRPMD (blue) and CMD (green).
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because the hydrogen bond network is longer-lived at lower temperatures.

The most noticeable difference between the planetary model results in the single-

molecule and condensed-phase figures is the improvement in the appearance of the

libration (rotation) band. At 150K the planetary model libration band is shifted to

the blue and shows a shoulder (the underlying TRPMD peak) but has not bifurcated

like it has in the single molecule case. Clearly, the harmonic approximation is less

crude for hindered rotation in the condensed phase than for free rotation in the

single molecule.

Besides the libration band, the relative positions and absorbances of the plan-

etary model and TRPMD bands are very similar between the single-molecule and

condensed-phase figures. For example, at 150K the absorbance of the planetary

model stretch band is approximately twice that of TRPMD for both the single-

molecule and condensed-phase infrared absorption spectra. Likewise, the positions

of the planetary model and TRPMD stretch bands are in very good agreement at

150K in both figures; the maximum of the planetary model stretch band lies ap-

proximately 10 cm-1 to the blue of the TRPMD maximum (see Appendix D.2 for

tabulated spectroscopic data). By comparing with the exact quantum result for the

single water molecule, we were able to determine that the planetary model provides

a good representation of the stretch band for that system at 150K. We are unable

to make such a comparison with an exact quantum q-TIP4P/F condensed-phase

infrared absorption spectrum because the calculation of such a result is infeasible.

However, it is reassuring to see that the planetary model and TRPMD stretch bands

respond consistently to changes in the composition of the system. This observation

leads us to speculate that the planetary model provides a good representation of the

stretch band in both the condensed-phase and single-molecule systems, especially

at 150K.

As for the single-molecule results, the agreement between the absolute positions

of the maxima of the planetary model and TRPMD stretch bands is excellent at

150K but slightly worse at 300K and 600K, where the maximum of the planetary

model stretch band lies approximately 50 cm-1 to the blue of the TRPMD maximum

at both temperatures. However, the agreement with the positions of the CMD

stretch band is significantly worse at 150K and 300K. At 150K, the CMD stretch

band is shifted to the red from the TRPMD and planetary model results by some

150 cm-1. This discrepancy is almost certainly the result of the curvature problem in

CMD at this low temperature, but at 300K the importance of the curvature problem

for condensed-phase water simulations with CMD is not fully resolved.

This is partly because the position of the stretch band in a PA-CMD infrared
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absorption spectrum is strongly affected by the details of the thermostatting of the

fluctuation modes.95,124 The absolute position of the stretch band is also strongly

dependent on the water potential and dipole moment surface. For the condensed-

phase q-TIP4P/F and q-SPC/FW models, the CMD stretch band is consistently

redshifted relative to TRPMD/RPMD at 300K.69,47 A comparison of Figure 5.2

and Figure 5.3 suggests that the curvature problem is responsible for this difference

in the q-TIP4P/F water model since the TRPMD stretch band position is in good

agreement with the quantum result in Figure 5.2. However, Medders et al. have

shown that the position of the CMD stretch band at 300K is in good agreement

with experiment for the MB-pol potential and dipole moment surface (MB-µ).61

Comparisons between CMD and LSC-IVR have also been made in the litera-

ture which have led to different conclusions about the importance of the curvature

problem at room temperature. For example, with the TTM3-F potential and dipole

moment surface, the CMD stretch band at 300K was found by Liu to be redshifted

relative to the experimental result but blueshifted relative to the LSC-IVR result.35

On the other hand, with the q-SPC/FW potential and dipole moment surface, Liu

et al. found the CMD stretch band at 298K to be significantly redshifted relative

to the LSC-IVR result, with both blueshifted relative to the experiment.93 How-

ever, LSC-IVR infrared absorption spectra must be interpreted with caution since

the stretch band position is known to be susceptible to a redshift that is depen-

dent on how strongly the TCF is damped before its Fourier transform is taken.95

Of course, strong damping minimises the long-time contribution of the TCF to its

Fourier transform. Since the non-conservation of the quantum Boltzmann distribu-

tion becomes increasingly important at long times, the redshift in LSC-IVR is likely

to be closely related to this well-known shortcoming.

5.5 Motional narrowing and lineshapes

The results in this chapter lead us to speculate on the importance of explicit time-

dependence in the path integral frequency matrix. Are the planetary model spectra

in Figure 5.3 simply a reflection of the static distribution of the path integral fre-

quencies (the square roots of the eigenvalues of (4.127))?

To answer this question we repeated the planetary model simulations with the

path integral frequency matrix held constant for the dynamics of the planets. This,

of course, keeps the radius of gyration matrix constant as well. The infrared ab-

sorption spectrum that resulted from the planetary part of (5.12) at 300K is shown

in Figure 5.4. As is clear from the figure, this modification has a drastic effect
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which suggests that the planetary model spectra are not simply a reflection of the

static distribution of frequencies. In particular, the bend and stretch bands are

distorted through broadening and appear to no longer hold a Lorentzian lineshape.

The stretch band is of a broad Gaussian shape that is some three to four times wider

than the full width at half maximum of the previously-presented planetary model

stretch band. We found this modification to have the same effect at 150K and 600K

as well (results omitted).

The relevant theory to describe this phenomenon is that of motional narrowing.

In the absence of a time-dependent path integral frequency matrix, the dynamics

of the planets can be mapped onto an exact harmonic dynamics with each eigenfre-

quency constant in time. This leads to the broad bands in Figure 5.4 that directly

reflect the static distribution of eigenfrequencies. However, with a time-dependent

path integral frequency matrix, the modulation of each eigenfrequency can sharpen

these peaks.

The physics of motional narrowing in this context is described concretely by

Kubo’s stochastic theory of lineshape.48 Kubo identifies two important quantities

for the effect of frequency modulation on lineshapes by a stationary process. These

are the time-independent standard deviation of the frequency,

∆ =
〈
Ω2
〉1/2

, (5.16)

and its correlation time,

τc =
1

∆2

∫ ∞

0

dt 〈ΩΩ(t)〉 . (5.17)

These equations are for a one-dimensional system but, of course, for a multidimen-

sional system the frequency Ω(t) represents one of many eigenfrequencies. If the

condition ∆τc � 1 is satisfied then the modulation of the frequency is slow, while if

∆τc � 1 is satisfied then the modulation is fast. For fast modulation the spectrum

of an oscillator that moves under the stochastic frequency Ω(t) shows motional nar-

rowing: the lineshape becomes sharp with Lorentzian form. In the opposite limit,

the lineshape is a direct reflection of the random distribution of the frequency.48

To reach this conclusion, Kubo assumes that the environment, as experienced

by the system through the stochastic frequency Ω(t), is insensitive to the motion

of the system. This is precisely the situation in the planetary model where the

centroid is to be identified with the environment and the planet with the system.

We therefore conclude that the planetary model infrared absorption spectra show

the phenomenon of motional narrowing due to the unidirectional interaction of the
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planet with the centroid through the time-dependent path integral frequency matrix.

Notice that the standard deviation of the frequency (5.16) is a static property

and the correlation time (5.17) is a zero-frequency property of the system. It is

well known that CMD, RPMD and TRPMD provide a consistent description of

zero-frequency properties like the self-diffusion constant.68 This suggests that for

calculation of infrared absorption spectra, all of these methods would reproduce the

effect of motional narrowing, and to the same extent, and the question of which

in particular to use for the planetary model boils down to one of convenience.b In

other words, all three of the methods when used with the planetary model would

lead to the same, consistent description of the fluctuation dynamics.

To further investigate the accuracy of the narrowed stretch band in the plane-

tary model infrared absorption spectra, we compare the stretch bands of the CMD,

TRPMD and planetary model condensed-phase results at 300K and 600K in Figure

5.5. To aid the comparison of lineshapes and absorbances, we shifted the CMD

stretch bands to match their median values with the planetary model results. As

is clear from the figure, at both temperatures the CMD and planetary model line-

shapes and absorbances are in remarkably good agreement. On the other hand, the

TRPMD lineshape is noticeably distorted at 300K because of the thermostatting

of the fluctuation modes. While the absolute positions of the planetary model and

CMD stretch bands differ, these results suggest that CMD and the planetary model

provide an equivalent description of the non-trivial structure of the stretch band for

q-TIP4P/F at temperatures exceeding 300K through fundamentally different ap-

proaches. This is a promising result for motional narrowing in the planetary model

since CMD in conjunction with the TTM3-F water model has been shown to give a

good description of experimental lineshapes for condensed-phase infrared absorption

spectra.127 These considerations strengthen our earlier speculation that the plane-

tary model provides a good representation of the stretch band of the condensed-phase

infrared absorption spectrum of q-TIP4P/F at 150K, where the CMD stretch band

is unambiguously distorted and redshifted by the curvature problem.

bOf course, LSC-IVR does not provide a consistent description of zero-frequency properties
since the quantum Boltzmann distribution is not conserved.37
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Chapter 6

Conclusions

In this thesis we have derived Matsubara dynamics, a theory for rigorously combining

quantum statistics and classical dynamics in approximate quantum time-correlation

functions (TCFs).43 Matsubara dynamics is based on the classical dynamics of the

Fourier coefficients (Matsubara modes) of an imaginary-time path in the quantum

Kubo TCF. We have shown that, remarkably, if this imaginary-time path is con-

strained to remain a smooth function of imaginary time (a linear combination of

Matsubara modes), then the quantum dynamics reduces to the classical dynamics

of the Matsubara modes. Owing to its invariance with respect to imaginary-time

translation, Matsubara dynamics conserves a complex phase factor that appears in

the quantum Boltzmann distribution. Since the Matsubara phase and Hamiltonian

are constants of the motion, the quantum Boltzmann distribution is conserved.

Before our development of Matsubara dynamics, the pre-eminent theory for com-

bining quantum statistics and classical dynamics in approximate quantum TCFs

that exclude quantum coherence was the Linearised Semiclassical Initial Value Rep-

resentation (LSC-IVR).35 In principle, the LSC-IVR description of water could pre-

dict the spontaneous boiling of the liquid at room temperature.2 Of course, the

neglect of quantum coherence is not to blame for this shortcoming. The source of

this and other spurious predictions is, as is well known, the erroneous redistribu-

tion of energy over time which results from the non-conservation of the quantum

Boltzmann distribution.37

The fact that LSC-IVR fails to conserve the quantum Boltzmann distribution

renders it inadequate as a theory from which to derive any approximate method

that does, such as the popular Centroid Molecular Dynamics (CMD) and Ring

Polymer Molecular Dynamics (RPMD) methods.38,55 CMD and RPMD were gener-

ally considered to be ad hoc, but we have shown that both result from quantifiable

approximations to the Matsubara dynamics TCF. In the case of CMD, the approxi-
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mation is that of a mean field taken over the fluctuation (non-centroid) modes, while

for RPMD it is the neglect of an imaginary part of the Matsubara Liouvillian that

governs the dynamics of a set of analytically-continued Matsubara modes.44 Since

the RPMD approximation only affects the dynamics of the fluctuation modes, this

analysis shows that RPMD is ultimately a short-time approximation to Matsubara

dynamics for TCFs involving observables that are linearly-dependent on position.

This analysis also explains the origin of the shortcomings of CMD and RPMD, which

are most apparent in non-linear TCFs, and ultimately result from their incorrect

description of the (Matsubara) fluctuation dynamics.

Like CMD and RPMD, the recently-developed approximate method of Poulsen

et al., the planetary model,45 also conserves the quantum Boltzmann distribution,

suggesting that it is related to Matsubara dynamics. We have shown that the plan-

etary model is indeed equivalent to an approximation to the Matsubara dynamics

two-point TCF for a particular imaginary-time separation τ = 0 of two points on

the imaginary-time path. This approximation arises naturally from Matsubara dy-

namics by invoking the Feynman-Kleinert approximation,56 a variationally-optimal

locally-harmonic approximation for the fluctuation modes, then uncoupling the dy-

namics of these modes from the centroid. By comparing trajectories, we found that

this approximation is a faithful approximation to Matsubara dynamics for weakly

anharmonic systems but does not work well for low-frequency anharmonic motions

such as rotations and librations.

To make the planetary model more practical for the simulation of large systems,

we have proposed two practical modifications. The first is the use of thermostatted

RPMD (TRPMD)47 instead of Feynman-Kleinert CMD for the evolution of the

centroid coordinate. The second is the use of an alternative to the Feynman-Kleinert

frequency that is consistent with the ring-polymer distribution in TRPMD. Using

these practical modifications, we applied the planetary model to a study of the

infrared absorption spectroscopy of the q-TIP4P/F water model109 in the gas phase

and condensed phase.

We found, by comparison with exact quantum calculations, that the planetary

model gives a good representation of the high frequency portion of infrared absorp-

tion spectra for the single molecule but a poor representation of the low-frequency

(rotation) band. For the condensed phase, we showed that the libration band is

better reproduced by the planetary model than the rotation band for the single

molecule. We also demonstrated that the planetary model provides a good represen-

tation (in position, lineshape and absorbance) of the stretch band in the condensed-

phase infrared absorption spectra with a Lorentzian lineshape that is significantly
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different from the static distribution of stretch frequencies. We have rationalised

this difference on the basis of Kubo’s stochastic theory of lineshape48 which suggests

that CMD, RPMD and TRPMD would all give the same, consistent description of

fluctuation dynamics when used with the planetary model.

Given that Matsubara dynamics underlies CMD, RPMD and the planetary

model, it would be interesting to search for other approximate methods based on

the Matsubara dynamics theory in the future. For example, it might be possible to

maintain at least part of the imaginary part of the Matsubara Liouvillian that is

discarded in RPMD, e.g. by using constraints on the fluctuation modes to stabilise

the complex dynamics. It might also be possible to apply a less-severe alternative

to the CMD mean-field approximation that does not lead to the curvature problem.

It would certainly be interesting to apply the planetary model to more sophis-

ticated water potentials and dipole moment surfaces (e.g. MB-pol and MB-µ) for

infrared absorption spectroscopy or polarisability tensors (e.g. MB-α) for Raman

spectroscopy.112,113,114 To the extent that the planetary model provides a faithful

approximation to Matsubara dynamics, it might also be possible to use the plan-

etary model as a tool for determining the importance of an explicit description of

fluctuation dynamics for non-linear TCFs. From a practical point of view, this

would help to determine the range of validity of centroid-based methods like CMD

and RPMD for non-linear dynamical properties. In other words, it would help to

clarify the importance of the non-linear operator problem for these methods.42 More

fundamentally, such an analysis would help us to understand how explicit non-linear

terms in the Matsubara dynamics TCF affect observable properties like the dynamic

structure factor, for example, which is probed in neutron scattering experiments.128
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Appendix A

Background Theory Appendix

A.1 The classical propagator

We would like to prove the following result for a classical propagator eLt,

eLt [ab] =
[
eLta

] [
eLtb

]
. (A.1)

We start by taking the Taylor expansion of eLt,

eLt [ab] =
∞∑

k=0

1

k!
Lktk [ab] . (A.2)

Using the Leibniz product rule (which is valid for any linear operator involving only

first derivatives like L) we get

eLt [ab] =
∞∑

k=0

k∑

l=0

1

k!

(
k

l

)
tk
[
Lk−la

] [
Llb
]

(A.3)

=
∞∑

k=0

∞∑

l=0

1

k!

1

l!
tktl
[
Lka

] [
Llb
]

(A.4)

=
[
eLta

] [
eLtb

]
. (A.5)

The key step is recognising (A.3) as a Cauchy product. This result means that for

any function f(q, p) and any Liouvillian L that involves only first derivatives we

may write

eLtf(q, p) =f(eLtq, eLtp) (A.6)

=f(qt, pt), (A.7)
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since the Taylor series of f(q, p) will involve products in q and p, and we know

from (A.1) that the propagator eLt is distributive over any product. This argument

breaks down if the Liouvillian contains derivatives of higher order than first, e.g.

the quantum Liouvillian outside the harmonic limit, since then the Leibniz product

rule does not hold.

A.2 Trajectories in LSC-IVR

Another way to understand the LSC-IVR approximation is to consider the Wigner-

transformed operator
[
B̂(t)

]
(q, p) as a function of three variables b(q, p, t). The

relationship between b(q0, p0, t) and b(qt, pt, 0) is given without approximation by

b(q0, p0, t)− b(qt, pt, 0) =

∫

L

∇b(q, p, t′) · dvvv, (A.8)

where vvv = (q, p, t′) and L is any directed line connecting the points vvv = (qt, pt, 0) to

vvv = (q0, p0, t). Now,

∂b(q, p, t′)

∂t′
=
p

m

∂b(q, p, t′)

∂q
− V ′(q)∂b(q, p, t

′)

∂p
+O

(
~2
)

(A.9)

so

b(q0, p0, t)− b(qt, pt, 0)

=

∫ t

0

dt′
[
∂b(q, p, t′)

∂q
q̇ +

∂b(q, p, t′)

∂p
ṗ+

∂b(q, p, t′)

∂t′

]
(A.10)

=

∫ t

0

dt′
[
∂b(q, p, t′)

∂q

(
q̇ +

p

m

)
+
∂b(q, p, t′)

∂p
(ṗ− V ′(q))

]
+O

(
~2
)
. (A.11)

Therefore, if q and p satisfy the following first-order ordinary differential equations,

q̇ =− p

m
(A.12)

ṗ =V ′(q), (A.13)

then the integrand in (A.11) is zero at every point on the line L and we have

b(qt, pt, 0) = b(q0, p0, t) +O
(
~2
)

(A.14)

≈ b(q0, p0, t). (A.15)

Note that t→ −t transforms (A.12) and (A.13) into Hamilton’s equations.



Appendix B

Matsubara Dynamics Appendix

B.1 Exactness of the generalised quantum Kubo

time-correlation function

The first step in the proof of

CAB(t) = lim
N→∞

C
[N ]
AB(t), (B.1)

is to recognise that, since the weight 1/N of any A(ql + ∆l/2) becomes vanishingly

small in the N →∞ limit, we may anticipate this limit and rewrite (3.1) as

C
[N ]
AB(t) =

∫
dq

∫
d∆

∫
dz A(q + ∆/2)B(z)

×
N∏

l=1

〈ql−1 −∆l−1/2| e−βN Ĥ |ql + ∆l/2〉

× 〈ql + ∆l/2| eiĤt/~ |zl〉 〈zl| e−iĤt/~ |ql −∆l/2〉 . (B.2)

Now we make the following change of variables,

xl = ql + ∆l/2 (B.3)

yl = ql −∆l/2, (B.4)

which has unit Jacobian. This gives the following for the generalised quantum Kubo

TCF,

C
[N ]
AB(t) = lim

N→∞

1

N2

N∑

j=1

N∑

k=1

Tr

[
N∏

l=1

fjl(e
iĤt/~, B̂)e−iĤt/~fkl(e

−βN Ĥ , Â)

]
, (B.5)
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where for convenience we have defined

fjk(A,B) = (1− δjk)A+ δjkAB. (B.6)

Notice that for l 6= j we have

fjl(e
iĤt/~, B̂)e−iĤt/~ = Î . (B.7)

For k ≥ j we have

Tr

[
N∏

l=1

fjl(e
iĤt/~, B̂)e−iĤt/~fkl(e

−βN Ĥ , Â)

]

= Tr
[
e−βN (k−j)ĤÂe−βN (N−(k−j))ĤB̂(t)

]
, (B.8)

where we have exploited the invariance of a trace under cyclic permutations. For

k < j we have

Tr

[
N∏

l=1

fjl(e
iĤt/~, B̂)e−iĤt/~fkl(e

−βN Ĥ , Â)

]

= Tr
[
e−βN (N−(j−k))ĤÂe−βN (j−k)ĤB̂(t)

]
. (B.9)

Therefore,

N∑

j=1

N∑

k=1

Tr

[
N∏

l=1

fjl(e
iĤt/~, B̂)e−iĤt/~fkl(e

−βN Ĥ , Â)

]

= N

N∑

j=1

Tr
[
e−βN (N−k)ĤÂe−βNkĤB̂(t)

]
. (B.10)

To reach this last result we have exploited the following relation,

b∑

j=a

g(j) =
b∑

j=a

g(b+ a− j). (B.11)

So, as was to be proved,

lim
N→∞

1

N2

N∑

j=1

N∑

k=1

Tr

[
N∏

l=1

fjl(e
iĤt/~, B̂)e−iĤt/~fkl(e

−βN Ĥ , Â)

]

=
1

β

∫ β

0

dλTr
[
e−(β−λ)ĤÂe−λĤB̂(t)

]
. (B.12)
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B.2 Derivation of the Matsubara dynamics

time-correlation function

To obtain the Matsubara dynamics time-correlation function (3.46), we note that

eLM tB(Q) is independent of the non-Matsubara P modes. They can therefore

be integrated out of (3.45), giving a product of Dirac delta functions in the non-

Matsubara D modes (D = T T∆∆∆). As a result, the generalised Wigner transform[
e−βĤÂ

]
N

(Q,P) in (3.45) reduces to

[
e−βĤÂ

]
N

(Q,PM) = (2π~)N−MA(Q)

∫
dDM

M∏

k=−M

eiPkDk/~

×
N∏

l=1

〈η−l−1(Q,DM)| e−βN Ĥ |η+
l (Q,DM)〉 , (B.13)

where PM and DM include only the Matsubara modes (and Q includes all N normal

modes), and

η±l (Q,DM) =
N∑

k=−N

TlkQk ±
M∑

k=−M

TlkDk/2. (B.14)

Using the Trotter factorisation of e−βN Ĥ , the position-space matrix elements of the

free-particle Boltzmann operator and trigonometric identities, we may write the

following for (B.13),

[
e−βĤÂ

]
N

(Q,PM)

= (2π~)N−M
(

m

2πβN~2

)N/2
A(Q)

∫
dDM

M∏

k=−M

eiPkDk/~

× exp


−βN

1

2
m

N∑

k=M+1

ω2
k(Q

2
k +Q2

−k)




× exp


−2βN

m

(βN~)2

M∑

k=−M

(
Qk sin

(
kπ

N

)
+
D−k

2
cos

(
kπ

N

))2



× exp

[
−βN

1

2

[
N∑

l=1

V (η−l (Q,DM)) + V (η+
l (Q,DM))

]]
, (B.15)
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where we have used

N∑

l=1

[
η−l (Q,DM)− η+

l (Q,DM)
]2

(B.16)

= 4
M∑

k=−M

(
Qk sin

(
kπ

N

)
+
D−k

2
cos

(
kπ

N

))2

+
N∑

k=M+1

(β~ωk)2 (Q2
k +Q2

−k).

On converting the DM normal modes to their normalised counterparts Dk/
√
N →

Dk, we find that the Gaussians involving DM in (B.15) are nascent Dirac delta

functions. i.e. For k satisfying −M ≤ k ≤M they have the form

exp

(
−mN

2D2
k

2β~2

)
∼
√

2πβ~2

mN2
δ(Dk). (B.17)

Anticipating this limit, we make the replacement (B.17) and integrate out the DM

Matsubara modes to give

[
e−βĤÂ

]
N

(Q,PM)

=

(
2πm

βN

)N−M
2

A(Q)
M∏

k=−M

e−βN
P2
k

2m eiPkQ−k
2 tan(nπ/N)

~

× exp


−βN

1

2
m

N∑

k=M+1

ω2
k(Q

2
k +Q2

−k)




× exp


−βN

N∑

l=1

V




N∑

k=−N

TlkQk




 . (B.18)

Now we replace the position and momentum normal modes with their normalised

counterparts, Qk/
√
N → Qk and Pk/

√
N → Pk. This leads to

[
e−βĤÂ

]
N

(Q,PM)

=

(
2πm

βN

)N−M
2

A(Q)
M∏

k=−M

e−β
P2
k

2m eiPkQ−k
2N tan(kπ/N)

~

× exp


−β 1

2
m

N∑

k=M+1

ω2
k(Q

2
k +Q2

−k)




× exp


−β 1

N

N∑

l=1

V




N∑

k=−N

Tlk
√
NQk




 . (B.19)
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If we now substitute this expression into the integral (3.45), we find

C
[M ]
AB (t) = lim

N→∞

N
N+M

2

(2π~)N

∫
dQ

∫
dPM

[
e−βĤÂ

]
N

(Q,PM) eLM tB(Q). (B.20)

We recognise the non-Matsubara position mode Gaussians in
[
e−βĤÂ

]
N

(Q,PM) as

nascent Dirac delta functions. i.e. They have the form

exp

(
−2mN2 sin2(πk/N)Q2

k

β~2

)
∼
√

2π

mβω2
k

δ(Qk), (B.21)

and become Dirac delta functions in the Matsubara limit. Therefore, integrating

out the non-Matsubara position modes has the following effect on the rest of the

integrand in (B.20),

exp


−β 1

N

N∑

l=1

V




N∑

k=−N

Tlk
√
NQk




→ exp [−βUM(QM)] , (B.22)

and

A(Q)eLM tB(Q)→ A(QM)eLM tB(QM), (B.23)

where UM(QM) is the Matsubara potential (3.50) with A(QM) and B(QM) defined

equivalently, and LM is the Matsubara Liouvillian (3.52). Use of 2N tan (kπ/N)→
2πk in the N →∞ limit leads to the Matsubara phase, and the αM prefactor derives

from a well-known formula for a product of sines,a

N−1∏

k=1

sin (kπ/N) =
N

2N−1
. (B.24)

Bringing everything together gives

C
[M ]
AB (t) =

αM
2π~

∫
dQ

∫
dP e−βH(Q,P)eiβθ(Q,P) A(Q) eLM tB(Q), (B.25)

as stated in Chapter 3. Note that we have dropped the M subscripts from the

Matsubara positions and momenta since there is no longer a need to distinguish

between the Matsubara and non-Matsubara modes. Only the Matsubara modes

remain.

aThis is easily proved by writing the left-hand side in terms of the real parts of the N th roots
of unity.
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B.3 The error Liouvillian and the harmonic limit

The error Liouvillian can be written as follows without approximation,

L̂error(N,M) =
N∑

k=M+1

P−k
m

∂

∂Q−k
+
Pk
m

∂

∂Qk

− 4

~
UN(Q) sin(X̂/2) cos(Ŷ + X̂/2), (B.26)

where

X̂ =
~
2

N∑

k=M+1

←−
∂

∂Q−k

−→
∂

∂P−k
+

←−
∂

∂Qk

−→
∂

∂Pk
, (B.27)

and

Ŷ =
~
2

M∑

k=−M

←−
∂

∂Qk

−→
∂

∂Pk
. (B.28)

Note that for a harmonic potential all the normal modes are uncoupled and the

error Liouvillian becomes

L̂error(N,M) =
N∑

k=M+1

P−k
m

∂

∂Q−k
− ∂UN(Q)

∂Q−k

∂

∂P−k

+
Pk
m

∂

∂Qk

− ∂UN(Q)

∂Qk

∂

∂Pk
, (B.29)

which does not feature the Matsubara modes. In other words, the part of the

quantum Liouvillian that remains in Matsubara dynamics is the exact quantum

Liouvillian for the Matsubara modes, provided the potential is harmonic.

B.4 The Matsubara limit for polynomial

potentials

To improve computational efficiency in the Matsubara dynamics calculations, we

calculated the Matsubara potential,

UM(Q) = lim
N→∞

1

N

N∑

l=1

V




M∑

k=−M

Tlk
√
NQk


 , (B.30)
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explicitly in the N → ∞ limit. The right-hand side of (B.30) can be evaluated for

finite N with an N -dimensional fast Fourier transform and zero-padding of N −M
of the vector entries. However, this becomes increasingly time-consuming for large

N . However, the right-hand side of (B.30) can be evaluated without the fast Fourier

transform in the N →∞ limit for potentials that can be written in powers of q,

V (q) = a0 + a1q + a2q
2 + · · ·+ anq

n. (B.31)

Inserting (B.31) into (B.30) gives, for the cubic term,

a3

M∑

i, l, k=−M

QiQlQk
1

N

N∑

j=1

Ailk(j/N), (B.32)

where Ailk(j/N) = N3/2TjiTjlTjk. Defining xj = j/N with ∆x = 1/N we have, in

the N →∞ limit, an integral over products of sines and cosines (c.f. (3.55)),

lim
N→∞

1

N

N∑

j=1

Ailk(j/N) =

∫ 1

0

dx Ailk(x). (B.33)

Analogous expressions result from the other powers of q in (B.31). If the integrals

(B.33) are worked out in advance then the calculation can remain in Matsubara

position space in the N → ∞ limit. This makes potential evaluation less time-

consuming.

B.5 Noether’s theorem and Matsubara phase

conservation

As discussed in Section 3.3, the effect of imaginary-time translation is a

two-dimensional rotation of the Matsubara position modes,

[
Qk(τ)

Q−k(τ)

]
=

[
cos(ωkτ) − sin(ωkτ)

sin(ωkτ) cos(ωkτ)

][
Qk

Q−k

]
, (B.34)

and likewise for the Matsubara momentum modes. Clearly the Lagrangian is in-

sensitive to the imaginary-time translation since it has no effect on the kinetic and

potential energies. In other words, the transformation (B.34) is a continuous sym-

metry of the Lagrangian,
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∂L(Q(τ), Q̇(τ))

∂τ
= 0. (B.35)

From Noether’s theorem, for every such symmetry there is a corresponding conserved

quantity that is given by

M∑

k=−M

∂L(Q(τ), Q̇(τ))

∂Q̇k(τ)

∂Qk(τ)

∂τ

∣∣∣∣∣
τ=0

. (B.36)

Obviously,

∂L(Q(τ), Q̇(τ))

∂Q̇k(τ)
= Pk(τ), (B.37)

and it is straightforward to show through differentiation of (B.34) that

∂Qk(τ)

∂τ
= ωkQ−k(τ). (B.38)

The conserved quantity is therefore

M∑

k=−M

ωkQ−kPk = θ(Q,P), (B.39)

which is the Matsubara phase.

B.6 The thermal kinetic energy

Consider the thermal expectation value of the kinetic energy in Matsubara dynamics,

〈T 〉 =
1

Z

αM
2π~

∫
dQ

∫
dP e−βH(Q,P)eiβθ(Q,P) 1

2m

M∑

k=−M

P 2
k (B.40)

=
1

2m

M∑

k=−M

〈
P 2
k

〉RP −
〈
m2ω2

kQ
2
−k
〉RP

, (B.41)

where we have used the contour integration trick to reach the last line (see (3.107))

and the quantum canonical partition function is given by

Z =
αM
2π~

∫
dQ

∫
dP e−βR(Q,P). (B.42)
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The thermal expectation value 〈·〉RP is taken over the ring-polymer distribution in

the space of M Matsubara modes. The first part in (B.41) gives

1

2m

M∑

k=−M

〈
P 2
k

〉RP
=
M

2β
. (B.43)

The second part gives

− 1

2m

M∑

k=−M

〈
m2ω2

kQ
2
−k
〉RP

= −M
β

+
1

2

∑

k 6=0

〈
Qk

∂UM(Q)

∂Qk

〉RP
, (B.44)

which results from integration by parts. Combining the two gives

〈T 〉 =
1

2β
+

1

2

∑

k 6=0

〈
Qk

∂UM(Q)

∂Qk

〉RP
, (B.45)

in agreement with the virial estimator for the thermal expectation value of the

kinetic energy.129 This is in contrast to RPMD, where the expectation value does

not converge with respect to the number of beads,

〈T 〉 =
N

2β
, (B.46)

and also in contrast to CMD, where the expectation value is the same as the classical

result,

〈T 〉 =
1

2β
, (B.47)

since it is simply the thermal expectation value of the kinetic energy of the centroid.



118 Matsubara Dynamics Appendix



Appendix C

The Planetary Model Appendix

C.1 Identities involving sums of Matsubara

frequencies

For −β~
2
≤ x ≤ +β~

2
, we may represent cosh(Ωx) as the Fourier series

cosh(Ωx) = a0 +
∞∑

k=1

ak cos (ωkx) + bk sin (ωkx) , (C.1)

where ωk are the Matsubara frequencies. The zero frequency component is

a0 =
2 sinh

(
β~Ω

2

)

β~Ω
, (C.2)

the cosine components are

ak =
4Ω(−1)k sinh

(
β~Ω

2

)

β~ (Ω2 + ω2
k)

, (C.3)

and sine components are

bk = 0. (C.4)

Therefore,

cosh(Ωx) =
4Ω sinh

(
β~Ω

2

)

β~

[
1

2Ω2
+
∞∑

k=1

(−1)k cos (ωkx)

Ω2 + ω2
k

]
. (C.5)

Setting τ = x+ β~
2

, we have for 0 ≤ τ ≤ β~

cosh

(
β~Ω

2
− Ωτ

)
=

4Ω sinh
(
β~Ω

2

)

β~

[
1

2Ω2
+
∞∑

k=1

cos (ωkτ)

Ω2 + ω2
k

]
. (C.6)
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Therefore

2

mβ

∞∑

k=1

1

Ω2 + ω2
k

=
β~Ω coth

(
β~Ω

2

)
− 2

2βmΩ2
, (C.7)

and

2

mβ

∞∑

k=1

cos (ωkτ)

Ω2 + ω2
k

=
2

mβ

(
β~
4Ω

cosh (β~Ω/2− Ωτ)

sinh (β~Ω/2)
− 1

2Ω2

)
. (C.8)

These expressions agree with those stated in Gradshteyn and Ryzhik.130

C.2 The Matsubara dynamics two-point

time-correlation function distribution

The Matsubara dynamics two-point TCF within the Feynman-Kleinert approxima-

tion is

C
[M ]
AB (t; τ) =

αM
2π~

∫
dQ

∫
dP e−β

P2
0

2m
−βL(Q0)−β

∑
k 6=0

P2
k

2m
+ 1

2
mΩ2Q2

k

× eiβθ(Q,P) A(q(τ)) eLM tB(q(0)), (C.9)

where the Liouvillian is given by

LM =
P0

m

∂

∂Q0

−W ′(Q0)
∂

∂P0

+
p̃(0)

m

∂

∂q̃(0)
−mΩ2q̃(0)

∂

∂p̃(0)
. (C.10)

By inserting Dirac delta functions for each of the four fluctuation variables xT =

(q̃(τ), p̃(τ), q̃(0), p̃(0)), we find

C
[M ]
AB (t; τ) =

αM
2π~

∫
dx

∫
dQ

∫
dP e−β

P2
0

2m
−βL(Q0)−β

∑
k 6=0

P2
k

2m
+ 1

2
mΩ2Q2

k

× δ (q̃2 − q̃(τ)) δ (p̃2 − p̃(τ)) δ (q̃1 − q̃(0)) δ (p̃1 − p̃(0))

× eiβθ(Q,P) A(q2) eLtB(q1), (C.11)

where xT = (q̃2, p̃2, q̃1, p̃1) and we have made the replacment LM → L,

L =
P0

m

∂

∂Q0

−W ′(Q0)
∂

∂P0

+
p̃1

m

∂

∂q̃1

−mΩ2q̃1
∂

∂p̃1

. (C.12)
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Using the Fourier representation of the Dirac delta function,

1

2π

∫ ∞

−∞
dω e−iω(x−y) = δ(x− y), (C.13)

we may rewrite (C.11) as follows,

C
[M ]
AB (t; τ) =

αM
2π~

1

(2π)4

∫
dx

∫
dξξξ

∫
dQ

∫
dP e−iξξξ

T (x−x)

× e−βH(Q,P)eiβθ(Q,P) A(q2) eLtB(q1), (C.14)

where ξξξT = (ψ2, φ2, ψ1, φ1). We complete the square in each fluctuation momentum

mode Pk (k 6= 0),

∑

k 6=0

β
P 2
k

2m
− iβωkQ−kPk − iφ2akPk − iφ1bkPk

=
β

2m

∑

k 6=0

[
Pk −

im

β
(βωkQ−k + φ2ak + φ1bk)

]2

+
m

2β

∑

k 6=0

(βωkQ−k + φ2ak + φ1bk)
2 , (C.15)

where

ak =





√
2 cos (ωkτ) k < 0
√

2 sin (ωkτ) k > 0
, (C.16)

and

bk =





√
2 k < 0

0 k > 0
. (C.17)

Now we make the following change of variables,

P k =Pk −
im

β
(βωkQ−k + φ2ak + φ1bk) , (C.18)

and integrate over these coordinates using the contour integration trick described

in Chapter 3 to move each P k onto the real axis. This procedure is then repeated

with the fluctuation position modes Qk (k 6= 0). Having done so we find

C
[M ]
AB (t; τ) =

1

2π~
1

(2π)4

∫
dx

∫
dξξξ

∫
dQ0

∫
dP0 e

−iξξξTx

× e−β
P2

0
2m
−βW (Q0) e−

1
2
ξξξTGξξξ A(q2) eLtB(q1). (C.19)
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The 4× 4 symmetric matrix G is defined by

G =




a2 0 b2(τ) ic2(τ)

0 m2Ω2a2 −ic2(τ) m2Ω2b2(τ)

b2(τ) −ic2(τ) a2 0

ic2(τ) m2Ω2b2(τ) 0 m2Ω2a2.



, (C.20)

where a2 is

a2 =
2

mβ

M∑

k=1

1

Ω2 + ω2
k

, (C.21)

b2(τ) is

b2(τ) =
2

mβ

M∑

k=1

cos (ωkτ)

Ω2 + ω2
k

(C.22)

and c2(τ) is

c2(τ) =
2

β

M∑

k=1

ωk sin (ωkτ)

Ω2 + ω2
k

, (C.23)

with M = (M−1)/2. The M →∞ limit is now taken which allows us to collapse the

series (C.21), (C.22) and (C.23) into hyperbolic functions (see Appendix C.1) and

leads to the G matrix presented in Chapter 4. Now, using the following well-known

result for the Fourier transform of an F -dimensional Gaussian,

√
det(G)

(2π)F/2

∫
dξξξ e−iξξξ

Tx e−
1
2
ξξξTGξξξ = e−

1
2
xTG−1x, (C.24)

we reach the following expression for the approximate Matsubara dynamics two-

point TCF,

CAB(t; τ) =
1

2π~

∫
dQ0

∫
dP0 e

−β P
2
0

2m
−βW (Q0)

× 1

(2π)2
√

det(G)

∫
dx e−

1
2
xTG−1xA(q2) eLtB(q1), (C.25)

which is the same as (4.58).
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C.3 Convergence of the path integral frequency

estimator

It is natural to question whether there may be a more efficient way to calculate the

path integral frequency (4.123) in practice. For example, it is clear that

mΩ
2

=
N∑

l=1

al

〈
V ′′(ql) δ

(
x− 1

N

N∑

j=1

qj

)〉
, (C.26)

where
∑N

l=1 al = 1 will converge to (4.118) since the ring-polymer average is invariant

under permutation of the beads. For example, we could pick al = T 2
lk, where T is the

orthonormal matrix that corresponds to the real discrete Fourier transform (2.62),

which would give the following as an alternative estimator,

mΩ2 =

〈
∂2U(Q)

∂Q2
k

δ

(
x− Q0√

N

)〉
. (C.27)

The question is, what choice of the set of coefficients {al} will lead to the fastest

convergence of (C.26) under Monte Carlo sampling? We can answer this question by

rewriting (C.26) in terms of a set of N independent, identically distributed random

variables Zj,

mΩ
2

=
N∑

l=1

alZl. (C.28)

Provided the samples are independently distributed, the variance of the provisional

estimator is

V
[
mΩ

2
]

=V [Z]
N∑

l=1

a2
l , (C.29)

which is minimised when al = 1
N

(subject to the constraint
∑N

l=1 al = 1). This

corresponds to (4.118) and justifies this original choice.

C.4 The path integral frequency in the T → 0

limit

Consider the following diagonal elements of a normalised centroid-constrained Boltz-

mann operator,
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ρf (x,Q0) =
1

Zf
〈x| e−βĤ−βfx̂ |x〉 (Q0), (C.30)

where

Zf = Tr
[
e−βĤ−βfx̂

]
. (C.31)

By definition, integration overQ0 gives the diagonal elements of the exact normalised

density matrix for a system with Hamiltonian Ĥ + fx̂. Of course, in the T → 0

limit, this density matrix becomes the probability density of the ground state,

lim
T→0

∫
dQ0 ρf (x,Q0) = |Ψf

0(x)|2. (C.32)

In Ref. 66, Ramirez and López-Ciudad show that since all the moments of Q0 besides

the first become vanishingly small in the T → 0 limit, this equation becomes

lim
T→0

ρ0

(
x, 〈x〉f

)
= |Ψf

0(x)|2, (C.33)

where 〈x〉f = 〈Ψf
0 | x̂ |Ψf

0〉.66 Now, it is straightforward to show that the state |Ψf
0〉

also satisfies the variational minimum of the following energy,

E = 〈Ψ| Ĥ |Ψ〉 , (C.34)

for all normalised trial states |Ψ〉 (we follow Ramirez and López-Ciudad in referring

to these trial states as wavepackets) that satisfy the constraint

〈Ψ| x̂ |Ψ〉 = 〈x〉f . (C.35)

Using this result, we may write

lim
T→0

ρ0 (x,Q0) = |Ψ(x,Q0)|2, (C.36)

where |Ψ(x,Q0)|2 is the probability density of the minimum energy wavepacket,

subject to the constraint (C.35) with 〈x〉f replaced with Q0. Multiplying both sides

of the last equation by V ′′(x) and integrating over x gives

lim
T→0

mΩ2 =

∫
dx |Ψ(x,Q0)|2 V ′′(x) (C.37)

= 〈Ψ(Q0)|V ′′(x̂) |Ψ(Q0)〉 , (C.38)
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where Ω2 is the square of the path integral frequency (4.118) and 〈x|Ψ(Q0)〉 =

Ψ(x,Q0). In other words, mΩ2 is, in the T → 0 limit, the (pure state) expectation

value of V ′′(x̂) taken over the mininum energy wavepacket whose average position

is Q0.

On the other hand, the corresponding quantity within the Feynman-Kleinert

approximation is, in the T → 0 limit, the expectation value of V ′′(x̂) taken over the

minimum energy Gaussian wavepacket whose centre is Q0. i.e.

lim
T→0

mΩ2 = 〈Ψ(Q0)|V ′′(x̂) |Ψ(Q0)〉 , (C.39)

where |Ψ(Q0)〉 is constrained to have the following form,

〈x|Ψ(Q0)〉 =
1

(2πa2)1/4
e−

1
4a2 (x−Q0)2

, (C.40)

and the parameter a2 minimises the energy (C.34). To demonstrate this, we recog-

nise that the Feynman-Kleinert centroid potential of mean force is, in the T → 0

limit, the minimum of the following with respect to a2,56

lim
T→0

W (Q0) =Va2(Q0) +
~2

8ma2
(C.41)

= 〈Ψ(Q0)| Ĥ |Ψ(Q0)〉 . (C.42)

Now, using the definition of the Feynman-Kleinert frequency,

lim
T→0

mΩ2 =
1√
2πa

∫
dq̃ e−

1
2a2 q̃

2

V ′′(Q0 + q̃) (C.43)

= 〈Ψ(Q0)|V ′′(x̂) |Ψ(Q0)〉 , (C.44)

as claimed.
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Appendix D

Infrared Absorption Spectroscopy

of Water Appendix

D.1 The effect of modifying the planetary model

on the infrared absorption spectrum of the

q-TIP4P/F water molecule

As detailed in Chapter 4, the first change we propose for the planetary model is

the replacement of the Feynman-Kleinert centroid distribution and CMD dynamics

with the exact centroid distribution and TRPMD dynamics. The second change we

propose is the use of the path integral frequency (4.118) instead of the Feynman-

Kleinert frequency. To further assess the effect of these modifications on planetary

model infrared absorption spectra for water, we repeated our simulations of the single

q-TIP4P/F water molecule at 150K, 300K and 600K using the original formulation

of the planetary model as presented in Ref. 45 and Ref. 46 under the name FK-

QCW(1).

To calculate the Feynman-Kleinert frequency matrix we used the exact mass-

weighted Hessian of the q-TIP4P/F intramolecular potential. We iterated the simul-

taneous equations five times to converge the Feynman-Kleinert frequency and radius

of gyration matrices with a total of 4096 samples for Monte Carlo integration. The

converged radius of gyration matrix was then used to calculate the Feynman-Kleinert

centroid force using 16384 samples for Monte Carlo integration. We found that this

many Monte Carlo samples were required to converge the Feynman-Kleinert CMD

infrared absorption spectra but an underconverged centroid force could be used to

converge the planetary part of the autocorrelation function in (5.12) with no visible

loss in accuracy. We used a total of 64 independent initial planet phase space points

127



128 Infrared Absorption Spectroscopy of Water Appendix

0

0.2

0.4

0.6

0 1000 2000 3000 4000
ω / cm−1

0

0.2

0.4
0

0.1

0.2

0.3

Absorbance

150K

300K

600K

Absorbance

150K

300K

600K

Absorbance

150K

300K

600K

Figure D.1: Comparison of infrared absorption spectra for a single q-TIP4P/F water
molecule. The lines are the same as in Figure 5.2 but for the red lines which represent
the Feynman-Kleinert CMD spectra (the classical results are omitted). The dotted black
lines show the planetary model results that were calculated using the original formulation

of Poulsen et al.
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to converge the integrals over the distribution of the planets. At each temperature,

we calculated the dipole moment autocorrelation over a total of 104 independent

centroid trajectories of length 2 ps (one for each of the 64 initial positions and mo-

menta of the planets). Prior to taking its Fourier transform, we damped the dipole

moment autocorrelation function with the same Hann window as described in Chap-

ter 5. We used the same procedure with the centroid part of the autocorrelation

function to produce the Feynman-Kleinert CMD result.

The results of these simulations are shown in Figure D.1. The first point to note

is that the Feynman-Kleinert CMD stretch band is significantly redshifted relative

to the other results at 150K. This is the result of the well-known curvature problem

for CMD which, while mitigated by use of the Feynman-Kleinert approximation, is

pronounced nevertheless. However, the stretch bands of the two planetary model

results are in good agreement despite the incorrect Feynman-Kleinert CMD descrip-

tion of the stretch vibrations. Of course, this can be rationalised using the motional

narrowing analysis of Chapter 5: while the high-frequency spectral properties of

the Feynman-Kleinert CMD centroid dynamics are clearly incorrect, the correla-

tion times and standard deviations of the Feynman-Kleinert stretch frequencies are

likely to be very close to the (TRPMD) correlation times and standard deviations of

the path integral stretch frequencies. The incorrect Feynman-Kleinert CMD stretch

band does, however, contaminate the planetary model result with a shoulder on the

low frequency side of the stretch band. This is simply the low-absorbance centroid

contribution to the band. Such a shoulder is not present with our modified plan-

etary model infrared absorption spectrum at this temperature since the TRPMD

stretch band overlaps with the spectrum of the planetary part of the dipole moment

autocorrelation function in (5.12).

As mentioned in Chapter 5, our proposed modifications lead to less rotational

structure in the infrared absorption spectra at these temperatures. In particular,

the bend band shows a bifurcated structure when calculated using the original for-

mulation of the planetary model that is absent when our proposed modifications are

made. However, the original formulation at 150K also presents a spurious combina-

tion band at approximately 3100 cm-1 which is the result of coupling of the planetary

model rotation frequencies to the centroid motion. To determine this, we repeated

our calculations with the lowest six eigenvalues of the Feynman-Kleinert frequency

matrix set equal to zero and found that the peak disappeared. This spurious peak

is washed out by the use of TRPMD rather than Feynman-Kleinert CMD for the

centroid dynamics (at the expense of less rotational structure in the spectrum).

To investigate the origin of the discrepancy in Figure D.1 between the rotation
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Figure D.2: Comparison of the asymmetric stretch frequency for a single q-TIP4P/F
water molecule at 300K. The lines represent the Feynman-Kleinert frequency (red), the

path integral frequency (blue) and the classical frequency (black).
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Figure D.3: Comparison of the highest rotation frequency for a single q-TIP4P/F water
molecule at 300K. The lines represent the Feynman-Kleinert frequency (red), the path

integral frequency (blue) and the classical frequency (black).
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bands before and after application of our proposed modifications, we calculated the

eigenvalues of the Feynman-Kleinert frequency and path integral frequency matri-

ces as functions of the centroid symmetric stretch coordinate. The highest eigen-

frequency (the asymmetric stretch) is plotted in Figure D.2 and the fourth highest

eigenfrequency (the highest-frequency rotation) is plotted in Figure D.3. These are

compared with the eigenfrequencies of the following ‘classical’ frequency matrix,

Ω2 = H(Q0), (D.1)

where H(Q0) is the mass-weighted Hessian of the q-TIP4P/F intramolecular poten-

tial. As is apparent in Figure D.2, the agreement between the Feynman-Kleinert

and path integral asymmetric stretch frequencies is good over the range of thermally

accessible centroid configurations. However, the agreement between the Feynman-

Kleinert and path integral frequency is poorer for the rotation. At the equilib-

rium configuration (r = 1.78 a.u.), the two frequencies disagree by approximately

100 cm-1, with the path integral frequency lying above the Feynman-Kleinert rota-

tion frequency. This discrepancy obviously manifests itself in the difference between

the planetary model rotation bands in Figure D.1. Of course, since the planetary

model fails to adequately describe rotations regardless of the choice of frequency

matrix, this difference is interesting but ultimately unimportant.

D.2 Spectroscopic data for the condensed-phase

q-TIP4P/F water simulations

Mean Median Mode FWHM

150K 779 781 765 203
300K 623 642 663 407
600K 461 456 480 659

150K 1663 1668 1673 89
300K 1589 1634 1644 114
600K 1561 1604 1628 118

150K 3496 3500 3485 142
300K 3576 3576 3554 228
600K 3679 3684 3672 305

Table D.1: Spectroscopic data for the
condensed-phase classical infrared ab-
sorption spectra. Moving down the ta-
ble, each panel concerns the libration,
bend and stretch bands respectively.
FWHM is the full width at half maxi-
mum of each band. The mode is equiv-
alent to the position of maximum ab-
sorbance. All values besides the tem-

peratures are in cm-1.
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Mean Median Mode FWHM

150K 856 886 928 166
300K 647 676 736 419
600K 470 468 504 635

150K 1637 1632 1632 97
300K 1556 1594 1608 109
600K 1534 1565 1583 138

150K 3436 3444 3448 146
300K 3531 3540 3526 232
600K 3636 3643 3632 305

Mean Median Mode FWHM

909 932 981 264
837 857 895 394
815 830 895 451

1643 1642 1649 175
1616 1614 1616 195
1584 1582 1583 232

3460 3456 3428 647
3558 3551 3465 814
3683 3675 3652 1099

Table D.2: Spectroscopic data for the condensed-phase planetary model results with a
time-dependent path integral frequency matrix (left) and without (right). Moving down
the table, each panel concerns the libration, bend and stretch bands respectively. FWHM
is the full width at half maximum of each band. The mode is equivalent to the position

of maximum absorbance. All values besides the temperatures are in cm-1.

Mean Median Mode FWHM

150K 762 761 745 223
300K 615 632 643 427
600K 468 462 468 655

150K 1648 1633 1636 114
300K 1573 1602 1616 126
600K 1547 1583 1604 130

150K 3416 3420 3436 228
300K 3489 3489 3481 293
600K 3605 3604 3587 313

Mean Median Mode FWHM

776 773 765 145
620 634 615 440
475 468 515 640

1633 1629 1625 80
1567 1606 1615 100
1541 1587 1605 105

3257 3257 3285 225
3437 3444 3440 210
3599 3606 3620 285

Table D.3: Spectroscopic data for the condensed-phase TRPMD (left) and CMD (right)
results. Moving down the table, each panel concerns the libration, bend and stretch bands
respectively. FWHM is the full width at half maximum of each band. The mode is
equivalent to the position of maximum absorbance. All values besides the temperatures

are in cm-1.
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