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Introduction

For over two-and-a-half decades, dating to the first widespread commercial de-
ployment of the Internet, commodity processor architectures have failed to pro-
vide robust and secure foundations for communication and commerce. This is
in large part due to the omission of architectural features allowing efficient im-
plementation of the Principle of Least Privilege, which dictates that software
runs only with the rights it requires to operate [19, 20]. Without this support,
the impact of inevitable vulnerabilities is multiplied as successful attackers gain
easy access to unnecessary rights – and often, all rights – in software systems.

This omission is most visible at two levels of software abstraction: low-level
code execution occurs with an excess of rights facilitating easy attacker manip-
ulation, and higher-level encapsulation goals are poorly supported due to ineffi-
ciency. First, virtual addresses and C-language pointers (the references through
which code and data are accessed) are implemented using unprotected and un-
constrained integers, and are hence frequently exploited in attacks that escalate
to arbitrary code execution. Second, compartmentalized software designs that
constrain higher-level aspects of program behavior, mitigating lower-level vul-
nerabilities, scale poorly with current Memory Management Units (MMUs) –
imposing a high penalty on use. Together, these gaps cause our most security-
critical C-language software (e.g., operating systems, web browsers, and lan-
guage runtimes) to offer asymmetric advantage to attackers in which the de-
fender must make no mistakes, and the attacker can exploit a single mistake to
gain total control. This is a dangerous status quo for contemporary network-
connected ecosystems, whether mobile devices, embedded systems, or servers.

Supported by DARPA’s CRASH research program, the CTSRD Project has
sought to address this concern through a clean-slate re-design project to create
the Capability Hardware Enhanced RISC Instructions (CHERI) Instruction-Set
Architecture (ISA), processor prototype, and software stack. Our goal has been
to address these two omissions from the ground up, providing strong archi-
tectural support for the principle of least privilege, offering new innate pro-
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tections that naturally mitigate inevitable software bugs. We have drawn on
over four decades of computer-security research dating to early systems and
security projects [34, 15, 32, 8, 3, 10, 1], hardware-software co-design method-
ology, principled system design [16], and also recent insights into techniques for
hybridizing capability-system approaches with OS and programming-language
design [24, 12]. The surprising result has been a hardware-software approach
that disrupts key tools used by attackers while continuing to support current
software structures, and hence can be adopted within contemporary system
designs.

Through CHERI, we seek to insert secure computer-architecture founda-
tions beneath today’s system software stacks with a minimum of disruption
– while bringing fundamental improvements in robustness and security made
efficient only through new hardware primitives. Key technical contributions
include: the hybridization of a strong capability-system approach with a con-
ventional MMU-based RISC design, permitting highly compatible integration
with current OS and application designs; convergence of the C-language pointer
semantics with capabilities; new programming models supporting fine-grained
compartmentalization within conventional processes; and highly efficient archi-
tectural and microarchitectural approaches to memory protection. Each of these
has been validated through full-stack hardware and software prototypes required
to evaluate security, compatibility, and performance impact. In this chapter, we
consider CHERI from four perspectives:

Methodology and philosophy of approach We describe the problem we
seek to address, our motivating use cases, our key technical objectives,
and our methodology and philosophy of approach grounded in hardware-
software co-design. (Section 1)

CHERI architecture and software We present the key technical aspects of
the work, including our goals of hybridizing a capability-system model with
MMU-based operating systems (OSes) and the C programming language,
and introduce our approach to fine-grained memory protection and scal-
able compartmentalization. (Section 2)

Research and development cycle We review the development of the key
technical elements in CHERI, and the iterative cycle through six major
instruction-set revisions over a (thus far) 7-year timeline. (Section 3)

Potential for impact We conclude by considering lessons learned, as well as
the potential opportunities for impact within current system designs. We
believe that these lessons apply broadly to other work on architectural se-
curity. We also consider next directions for the CTSRD project as we enter
a further two years of research and development on CHERI. (Section 4)

2



1 Problem, Opportunity, Goals, and Approach

Despite half a century of research into computer systems and software design,
it is clear that security remains a challenging problem – and an increasingly
critical problem as computer-based technologies find ever expanding deploy-
ment in all aspects of contemporary life, from mobile communications devices
to self-driving cars and medical equipment. There are many contributing fac-
tors to this problem, including the asymmetric advantage held by attackers over
defenders (which cause minor engineering mistakes to lead to undue vulnerabil-
ity), the difficulties in assessing – and comparing – the security of systems, and
market pressures to deliver products sooner rather than in a well-engineered
state. Perhaps most influential is the pressure for backward compatibility, re-
quired to allow current software stacks to run undisturbed on new generations
of systems, as well as to move seamlessly across devices (and vendors), locking
in least-common-denominator design choices, and preventing the deployment of
more disruptive improvements that serve security.

Both the current state, and worse, the current direction, support a view
that today’s computer architectures (which underlie phenomenal growth of
computer-based systems) are fundamentally “unfit for purpose”: Rather than
providing a firm foundation on which higher-level technologies can rest, they un-
dermine attempts to build secure systems that depend on them. To address this
problem, we require designs that mitigate, rather than emphasize, inevitable
bugs, and offer strong and well-understood protections on which larger-scale
systems can be built. Such technologies can be successful only if transparently
adoptable by end users – and, ideally, also many software developers. On the
other hand, the resulting improvement must be dramatic to justify adopting
substantive architectural change, and while catering to short-term problems,
must also offer a longer-term architectural vision able to support further benefit
as greater investment is made.

1.1 Opportunity

Despite the challenge this problem represents, there are also reasons for hope:

• Improvements in physical fabrication technologies have allowed more com-
plex computer architectures to be supported, while sustaining performance
growth and reducing energy use. This creates the opportunity to invest
greater computational resources in security at lower incremental cost.

• The desire to bring the benefits of electronic commerce to devices ranging
from computer servers to phones and watches has created a strong financial
incentive for computer vendors to improve security. This creates not just
compliance obligations, but also the significant exposure to potential direct
(and sometimes existential) financial loss for companies.

• There is increasing appetite for mitigation techniques on existing hardware
from stack canaries and Address Space Layout Randomization (ASLR)
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that are transparent to software but impact memory usage [21], through
to process-based compartmentalization that is disruptive software [17, 7,
24, 18, 23]: function calls become Inter-Process Communication (IPC)
and additional virtual address spaces impact MMU efficiency. These tech-
niques increasingly impact on performance on current architectures, but,
due to a reliance on randomization, also increase in-field non-determinism,
which affects maintainability. Recovering lost performance, reducing com-
plexity, and restoring software determinism are all potential benefits to
better architectural protection.

• Recent modest changes in architecture, such as adopting the dual-ISA
world of Intel x86 on the desktop and ARM on mobile devices (moti-
vated by diverse energy and performance requirements), and similarly
the transition from 32-bit to 64-bit, have acclimated software develop-
ers and product vendors to the need for minor disruption, maintaining
multi-architecture software stacks. They have accepted and benefited from
minor changes required to better abstract pointers (by reducing confusion
with integers in order to span 32-bit and 64-bit ISAs), and supporting
legacy environments (such as 32-bit compatibility 64-bit operating sys-
tems). Where further disruption can be aligned with these existing pat-
terns, it may be similarly tolerated as an accepted and well-understood
set of costs.

• Multiple decades of system design evolution have led to a strong consensus
on how to integrate current architectural security features (such as MMUs)
into software stacks, and similarly on software structures such as operating
systems, programming languages/compilers, and applications. While that
baseline omits many critical security functions, its existence means that
new security technologies could be consistently applied (and incrementally
composed) across multiple architectures and software structures.

• While security principles (such as the Principle of Least Privilege) have
been known for decades, there is recent new understanding arising out
of the security-research community about how to deploy those principles
incrementally by hybridizing those approaches with current system and
language designs. This creates the opportunity to consistently introduce
disruptive new security features incrementally within current designs, as
well as to deploy use of these principles at multiple levels of abstraction,
offering strong mitigation potential against as-yet undiscovered classes of
vulnerabilities and exploit techniques.

• Developments in formal methodology relating to automation and large-
scale application of theorem-proving tools give us the confidence to ap-
proach more tightly integrated security designs – but also dramatically
improve the efficiency of a small team working in the complex arena of
hardware-software co-design.
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1.2 Technical Objectives and Implementation

From a purely technical perspective, the aim of the CHERI project is to in-
troduce architectural support for the principle of least privilege in order to
encourage its direct utilization at all levels of the software stack. Current com-
puter architectures make this extremely difficult as they impose substantial
performance, robustness, compatibility, and complexity penalties in doing so
– strongly disincentivizing adoption of such approaches in off-the-shelf system
designs despite the potential to mitigate broad classes of known (and also as-yet
unknown) vulnerability classes.

Low-level Trusted Computing Bases (TCBs) are typically written in memory-
unsafe languages such as C and C++, which do not offer compatible or perfor-
mant protection against pointer corruption, buffer overflows, or other vulner-
abilities arising from that lack of safety not offered directly by the architec-
ture. Similarly, software compartmentalization, which mitigates both low-level
vulnerabilities grounded in program representation and high-level application
vulnerabilities grounded in logical bugs, is poorly supported by current MMUs,
leading to substantial (crippling) loss of programmability and performance as
the technique is deployed.

CHERI also seeks to minimize disruption of current designs, in order to
support incremental adoption with significant transparency: Ideally, CHERI
could be “slid under” current software stacks (such as Apple’s iOS ecosystem,
or Google’s Android ecosystem), allowing non-disruptive introduction, yet pro-
viding an immediate reward for adoption. This requires supporting current low-
level languages such as C and C++ more safely, but also cleanly supplementing
MMU-based programming models required to support current operating sys-
tems and virtualization techniques. These goals have directed many key design
choices in the CHERI-MIPS ISA.

1.3 Hardware-Software Co-Design Methodology

Changes to the hardware-software interface are necessarily disruptive. The ISA
is a “narrow waist” abstraction that allows hardware designers to pursue sophis-
ticated optimization strategies (e.g., to exploit parallelism), while software de-
velopers can simultaneously depend on a (largely unchanging) interface to build
successively larger and more complex artifacts. Stable ISAs have allowed the
development of operating systems and application suites that can operate suc-
cessfully on a range of systems, and that outlast the specific platforms on which
they were developed. This structure is inherently predisposed to non-disruption,
as platforms that incur lower adoption costs will be preferred to those that have
higher costs. However, substantive changes in underlying program representa-
tion, such as to support greater memory safety or fine-grained compartmental-
ization required to dramatically improve security, require changes to the ISA.
We therefore aimed to:

• Iteratively explore disruptions to the ISA, projecting changes both up
into the software stack including operating systems, compilers, and appli-

5



cations (to assess impact on compatibility and security), as well as down
into microarchitecture (assessing impact on performance and viability).

• Start with a conventional and well-established 64-bit RISC ISA, rather
than re-invent the wheel for general-purpose computation, to benefit from
existing mature software stacks that could then be used for validation.

• Employ realistic open-source software artifacts, including the FreeBSD
operating system, Clang/LLVM compiler suite, and an open-source ap-
plication corpus, to ensure that experiments were run with suitable scale,
complexity, performance footprint, and idiomatic use.

• Employ realistic hardware artifacts, developing multiple FPGA soft-core
based processor prototypes able to validate key questions about integra-
tion with components such as the pipeline and memory hierarchy, as well
as support performance validation for the full stack including software.

• Employ formal models of the ISA, to provide an executable gold model
for testing, from which tests can be automatically generated, and against
which theorem proving can be deployed to ensure that key properties relied
on for software security actually hold.

• Pursue the hypothesis that historic capability-system models, designed
to support implementation of the principle of least privilege, can be hy-
bridized with current software approaches to support compatible and ef-
ficient fine-grained memory protection and compartmentalization.

• Take an initially purist capability-system view, incrementally adapting
that model towards one able to efficiently yet safely support the majority of
current software use. This approach allowed us to retain well-understood
monotonicity and encapsulation properties, as well as pursue capturing no-
tions of explicit valid provenance enforcement and intentional use not well
characterized in prior capability-system work. Appropriately but uncom-
promisingly represented, these properties have proven to align remarkably
well with current OS and language designs.

• Aim specifically to cleanly compose with conventional MMUs and MMU-
based software designs by providing an in-address-space protection model,
as well as be able to represent C-language pointers as capabilities.

• Support incremental adoption, allowing significant benefit to be gained
through modest efforts (such as re-compiling) for selected software, while
not disrupting binary-compatible execution of legacy applications. Like-
wise, support incremental deployment of more disruptive compartmental-
ization into key software through greater (but selective) investment.

• Provide primitives that offer immediate short-term benefit (e.g., invulner-
ability to common pointer-based exploit techniques, scalable sandboxing
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of libraries in key software packages), while also offering a longer-term vi-
sion for future software structure grounded in strong memory safety and
fine-grained compartmentalization.

2 CHERI Architecture and Software

In this section, we briefly describe the CHERI-MIPS ISA and its use in pro-
tecting pointers in generated code, as well as software compartmentalization.
Several software models can be layered over CHERI, including hybrid operating
systems that employ the MMU for address-space separation, and CHERI for
compiler-managed, capability-based in-address-space memory protection (see
Figure 1). This description is roughly synchronized to CHERI ISAv6 as pub-
lished in May 2017 [27]. While we have prototyped CHERI with respect to
64-bit MIPS, the approach described in this section implements a more general
protection model potentially applicable to a range of ISAs including Intel x86,
RISC-V, and ARM.

2.1 The CHERI-MIPS Instruction-Set Architecture (ISA)

In CHERI-MIPS, pointers may be represented as either integer virtual addresses
or tagged capabilities that atomically combine virtual addresses with additional
protection metadata. CHERI-MIPS supplements the general-purpose 64-bit
MIPS register file with a capability register file that holds a set of 256-bit capa-
bility registers (see Figure 2). A later 128-bit in-memory representation employs
bounds-compression techniques to reduce the memory overhead, trading off re-
duced bounds precision on large allocations against pointer size. Capability
instructions allow 256-bit capabilities to be loaded and stored from memory,
inspected and manipulated (e.g., to get or set the bounds), dereferenced via
load and store instructions, and to be the target of jump and branch instruc-
tions. Capability permissions control what operations can be performed via a
capability – for example, restricting use of a pointer for load, store, or execute.
Access via a capability is subject to tag validity, relocation relative to its base
and offset, and bounds checking relative to its base and length.

Most capability registers are available to compiler and Application Binary
Interfaces (ABIs), but certain registers are reserved in the ISA. The program-
counter capability ($pcc) extends the MIPS program counter ($pc) to constrain
code execution, and the exception program counter ($epc) is extended to be
the exception program-counter capability ($epcc). For compatibility, the default
data capability ($ddc) interposes on (or blocks) conventional MIPS loads and
stores. Two special capabilities are available to exception handlers: the kernel
code capability ($kcc) and kernel data capability ($kdc).

Capability instructions employ guarded manipulation to implement mono-
tonicity : instructions cannot increase the rights associated with a capability.
Tagged memory associates a 1-bit tag with each physical memory location that
can hold a capability, indicating the presence of a valid capability. Stores to, and
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Figure 2: CHERI-256 and CHERI-128 memory representations for capabilities

loads from, capabilities in memory are atomic with their tags, allowing safe con-
current access from multiple cores. Tags enforce the integrity and valid prove-
nance of a pointer by ensuring that only values derived from a valid pointer, via
valid transformations, can be dereferenced. The memory accessible to executing
code is the transitive closure of capabilities in its capability register file, and any
capabilities reachable through those capabilities. At reset, full capabilities are
granted to the boot environment, from which point they may be delegated and
refined from firmware to OS kernel, OS kernel to userspace, and then within
user compartments. Capability-based compartmentalization is provided by the
encapsulation instructions that operate on sealed capabilities.

Several architectural features are added in order to support software com-
partmentalization (see Section 2.3). Sealed capabilities allow capabilities to be
made immutable and non-dereferenceable, allowing them to support software-
defined object implementations while retaining strong integrity and provenance
properties. Object types in capabilities allow sets of capabilities to be linked
in a non-forgeable manner, supporting more complex structures such as linked
code and data capabilities implementing objects. A hardware-accelerated object
invocation exception combines a set of fast-path checks with a software-defined
exception handler to implement domain switching. Fast register clearing in-
structions allow the register file to be quickly cleared when transitioning do-
mains, further improving domain-crossing performance.

The CHERI FPGA soft-core processor implements a capability register file,
capability instructions, and tagged physical memory. Detailed descriptions of
the prototype may be found in our published papers and technical repots [33,
2, 23, 25, 22].

2.2 Protecting Pointers with CHERI

Simply by recompiling C-code, all data pointers and code pointers are repre-
sented as capabilities. Despite the promiscuous use of pointers in C-code, the
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Figure 3: CHERI pointer provenance trees

vast majority of pointers have a provenance that is summarized as a tree in Fig-
ure 3. The following key properties emerge that allow important abstractions
to be preserved:

Integrity and provenance of the capability are guaranteed by the validity
tag, cleanly separating pointers from data. Attackers can no longer inject
pointers via the network, as data writes will be tag-free, preventing later
dereference. The compiler represents all return addresses as capabilities,
thereby making return-oriented programming (ROP) attacks much harder
because the attacker not only has to overwrite the return address, but also
has to ensure it is a code capability with integrity and provenance.

Bounds (and the tag) prevent a capability referring to one object being used
to access another. Bounds prevent buffer overflow and over-read attacks,
for example preventing bugs such as Heartbleed.

Monotonicity guarantees that bounds and permissions can never be increased,
preventing privilege escalation.

Permissions prevent a number of attacks including code modification, or in
the case of a JIT compiler, providing fine-grained control over what can
generate code and where it can place that code.

Capabilities also allow the Principle of Intentional Use to be expressed:
where multiple rights are available to a program, the selection of rights used to
authorize work on behalf of the program is explicit [29]. The effect of preserving
this principle during the compilation process is to avoid the accidental or unin-
tended exercise of rights that could lead to a violation of the intended policy.
For example, memory loads and stores are with respect to an explicitly named
capability register, and instruction fetches are via the program-counter capabil-
ity, rather the register used for load, store, or fetch being selected implicitly from
a table via an associative lookup. The effect of this principle is to counter what
are classically known as ‘confused deputy’ problems, in which a program will
unintentionally exercise a privilege that it holds legitimately, but on behalf of
another party who does not (and should not) hold that privilege. This principle,
common to many capability systems, has been applied throughout the CHERI
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design, from architectural privilege management (e.g., operations via explicit
capability registers) through to privilege management by software abstractions
such as the CheriBSD object-capability systems, which are enabled in this by
sealed capabilities.

2.3 Software Compartmentalization

Software compartmentalization is a fundamental abstraction that limits privi-
leges and further attack surfaces available to attackers [6, 17, 24]. In compart-
mentalization, applications are decomposed into isolated (“sandboxed”) compo-
nents that are granted only selected access to system and application resources.
For example, in conventional process-based compartmentalization, gunzip de-
compression can be executed in a sandbox that has been delegated only capa-
bilities for the files being read from and written to. A successful exploit in the
decompression code will yield only those limited rights, requiring the attacker
to find and exploit further vulnerabilities.

Unlike more specific exploit mitigation techniques (which targets attack-
vector characteristics such as remote code injection), compartmentalization does
not depend on knowledge of specific attack vectors, and is resistant to an arms
race as attack and defence co-evolve. Fine-grained compartmentalization im-
proves mitigation by virtue of the principle of least privilege: attackers must
exploit more vulnerabilities to gain rights in the target system – meaning that
improving the performance and scalability of compartmentalization can directly
support improvements to software security.

Compartmentalization relies on two underlying trustworthy primitives, typ-
ically provided through a blend of hardware and software: strong isolation,
often implemented using Operating-System (OS) process models grounded in
virtual memory, and controlled communication, implemented as Inter-Process
Communication (IPC) between processes. These primitives were designed for
coarse-grained isolation – e.g., whole applications or even virtual machines; they
limit compartmentalization scalability in the number of domains, rate of domain
switches, and degree of memory sharing. This prevents use of more granular
decompositions in larger, security-sensitive applications such as OpenSSH [17]
and Chromium [18].

Capability models prove particularly useful in implementing compartmen-
talization, as they allow programs to easily control what rights are delegated to
compartments, and to configure sets of compartments with diverse trust rela-
tionships [15, 34, 8, 24]. Object-capability systems blend object-oriented OS or
programming-language facilities with capabilities to protect application-defined
objects. Object encapsulation and interposition then allow programmers to
express a range of security policies.

We have used CHERI’s ISA facilities as a foundation to build a software
object-capability model supporting orders of magnitude greater compartmental-
ization performance, and hence appropriate granularity, than current designs.
We use sealed capabilities to build a hardware-software domain-transition mech-
anism and programming model suitable for safe communication between mutu-
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ally distrusting software.
As with MMU-based memory protection, CHERI capabilities can be used to

construct a software-defined (but hardware-supported) object-capability model
based on isolation and controlled communication. The clean separation of
policy and mechanism in object-capability systems aligns elegantly with the
RISC (Reduced Instruction Set Computer) philosophy: with protection “fast
paths” in hardware, policy definition is left to the OS, compiler, and applica-
tion. The resulting hardware-software security model can efficiently implement
diverse security policies including hierarchical models (e.g., sandboxing) and
non-hierarchical models (e.g., mutually distrusting components).

In contrast to MMU-based approaches, CHERI-based compartmentalization
optimizes sharing by allowing cheap delegation and avoiding aliasing problems
experienced by TLBs as memory sharing increases [30]. This allows domain
crossing to be performed at a low constant cost regardless of the amount of data
sharing. These properties are critical to scaling up intra-application compart-
mentalization that is characterized by frequent domain crossings and extensive
memory sharing. CHERI also eases programming for compartmentalized soft-
ware by virtue of restoring a single address-space model, where MMUs imposed
a multi-address-space model that programmers find difficult to reason about.

In addition to developing a high-performance compartmentalization mode,
we have also explored how software static analysis can assist programmers in
reasoning about decomposing software in order to accomplish mitigation objec-
tives [4].

3 Research and Development

Between 2010 and 2017, six major versions of the CHERI-MIPS ISA developed
a mature hybridization of conventional RISC architecture with a strong (but
software-compatible) capability-system model. Key research and development
milestones can be found in Figure 4 including major publications. The major
ISA versions, with their development focuses, are described in Table 3. This
work occurred in several major overlapping phases as aspects of the approach
were proposed, refined, and stabilized through a blend of ISA design, integrated
hardware and software prototyping, and validation of the combined stack.

2010-2015: Composing the MMU with a capability-system model

A key early design choice was that the capability-system model would be largely
orthogonal to the current MMU-based virtual-memory model, yet also compose
with it cleanly [33]. We chose to place the capability-system model “before” the
MMU, causing capabilities to be interpreted with respect to the virtual, rather
than physical, address space. This reflected the goal of providing fine-grained
memory protection and compartmentalization within address spaces – i.e., with
respect to the application-programmer model of memory.

Capabilities therefore protect and implement virtual addresses dereferenced
in much the same way that integer pointers are interpreted in conventional
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Table 1: CHERI ISA revisions and major development phases

Year(s) Version Description

2010- ISAv1 RISC capability-system model w/64-bit MIPS
2012 Capability registers and tagged memory

Guarded manipulation of registers

2012 ISAv2 Extended tagging to capability registers
Capability-aware exception handling
MMU-based OS with CHERI support

2014 ISAv3 [26] Fat pointers + capabilities, compiler
Instructions to optimize hybrid code
Sealed capabilities, CCall/CReturn

2015 ISAv4 [28] MMU-CHERI integration (TLB permissions)
ISA support for compressed capabilities
Hardware-accelerated domain switching
Multicore instructions: LL/SC variants

2016 ISAv5 [29] CHERI-128 compressed capability model
Improved generated code efficiency
Initial in-kernel privilege limitations

2017 ISAv6 [27] Mature kernel privilege limitations
Further generated code efficiency
CHERI-x86 and CHERI-RISC-V sketches
Jump-based protection-domain transition

architectures. Exceptions allow controlled escape from the capability model by
providing access to privileged capability registers, and execution in privileged
rings grants the ability to manipulate the virtual address space, controlling the
interpretation of virtual addresses embedded in capabilities.

This approach tightly integrates the capability-system model with the pipeline
and register file, requiring that capabilities be first-class primitives managed by
the compiler, held in registers, and so on. In order to protect capabilities in the
virtual address space, we chose to physically tag them, distinguishing strongly
protected pointers from ordinary data, in turn extending the implementation
of physical memory, but also making that protection entirely independent from
(and non-bypassable by) the MMU mechanism.

2012-2014: Composing C pointers with the capability-system mode

Another key early design choice was the goal of using capabilities to imple-
ment C-language pointers – initially discretionarily (i.e., as annotated in the
language), and later ubiquitously (i.e., for all virtual addresses in a more-secure
program). This required an inevitable negotiation between C-language seman-
tics and the capability-system model, in order to ensure strong compatibility
with current software [2, 11].
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For example, C embeds a strong notion that pointers point within buffers.
This requires that CHERI capabilities distinguish the notion of current vir-
tual address from the bounds of the containing buffer – while also still provid-
ing strong integrity protection to the virtual address. This led us to compose
fat-pointer [5, 13, 14] and capability semantics as the capability-system model
evolved.

Similarly, we wished to allow all pointers to be represented as capabilities –
including those embedded within other data structures – leading naturally to
a choice to mandatorily tag pointers in memory. A less obvious implication of
this approach is that operations such as memory copying must be capability-
oblivious, maintaining the tag across pointer-propagating memory operations,
requiring that data and capabilities not only be intermingled in memory, but
also in register representation. Capability registers are therefore also tagged,
allowing them to hold data or capabilities, preserving provenance transparently.

As part of this work, we also assisted with the development of new formal
semantics for the C programming language, ensuring that we met the practical
requirements of C programs, but also assisting in formalizing the protection
properties we offer (e.g., strong protection of provenance validity grounded in
an implied pointer provenance model in C).

CHERI should be viewed as providing primitives to support strong C-language
pointer protection, rather than as directly implementing that protection: it is
the responsibility of the compiler (and also operating system and runtime) to
employ capabilities to enforce protections where desired – whether by specific
memory type, based on language annotations, or more universally. The compiler
can also perform analyses to trade off source-code and binary compatibility, en-
forcing protection opportunistically in responding to various potential policies
on tolerance to disruption.

2014-2015: Fine-grained compartmentalization

A key goal of our approach was to differentiate virtualization (requiring table-
based lookups, and already implemented by the MMU) from protection (now
implemented as a constant-time extension to the pointer primitive), which would
avoid table-oriented overheads being imposed on protection. This applies to
C-language protection, but also to the implementation of higher-level security
constructs such as compartmentalization [31, 30].

Compartmentalization depends on two underlying elements: strong isolation
and controlled communication bridging that isolation. Underlying monotonicity
in capabilities – i.e., that a delegated reference to a set of rights cannot be broad-
ened to include additional rights – directly supports the construction of confined
components within address spaces. Using this approach, we can place code in
execution with only limited access to virtual memory, constructing “sandboxes”
(and other more complex structures) within conventional processes. The CHERI
exception model permits transition to a more privileged component – e.g., the
operating-system kernel or language runtime – allowing the second foundation,
controlled communication, to be implemented.

Compartmentalization is facilitated by further extensions to the capability
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model, including a notion of “sealed” (or encapsulated capabilities). In CHERI,
this is implemented as a software-defined capability: one that has no hardware
interpretation (i.e., cannot be dereferenced), and also strong encapsulation (i.e.,
whose fields are immutable). Other aspects of the model include a type mecha-
nism allowing sealed code and data capabilities to be inextricably linked; pairs
of sealed code capabilities and data capabilities can then be used to efficiently
describe protection domains via an object-capability model. We provide some
hardware assistance for protection-domain switching, providing straightforward
parallel implementation of key checks, but leave the implementation of higher-
level aspects of switching to the software implementation.

Here, as with C-language integration, it is critical that CHERI provide a
general-purpose mechanism rather than enforce a specific policy: the sealed
capability primitive can be used in a broad variety of ways to implement various
compartmentalization models with a range of implied communication and event
models for software. We have experimented with several such models, including
a protection-domain crossing primitive modeled on a simple (but now strongly
protected) function call, and also on asynchronous message passing. Our key
performance goal was fixed (low) overhead similar to a function call, avoiding
overheads that scale with quantity of memory shared (e.g., as is the case with
table-oriented memory sharing configured using the MMU).

2015-2017: Architectural and microarchitectural efficiency

Side-by-side with development of a mature capability-based architectural model,
we also explored the implications on performance. This led to iterative refine-
ment of the ISA to improve generated code, but also substantive efforts to ensure
that there was an efficient in-memory representation of capabilities, as well as
microarchitectural implementations of key instructions.

A key goal was to maintain the principle of a load-store architecture by
avoiding combining computations with memory accesses – already embodied
by both historic and contemporary RISC architectures. While pointers are no
longer conflated with integer values, a natural composition of the capability
model and ISA maintains that structural goal without difficulty.

One important effort lay in the reduction from a 256-bit capability (capturing
the requirements of software for 64-bit pointer, 64-bit upper bound, and 64-bit
lower bound, as well as additional metadata such as permissions) to a 128-
bit compressed representation. We took substantial inspiration from published
work in pointer compression [9], but found that our C-language compatibility
requirements imposed a quite different underlying model and representation.
For example, it is strictly necessary to support the common C-language idiom
of permitting out-of-bounds pointers (but not dereference), which had been
precluded by many proposed schemes [2, 11]. Similarly, the need to support
sealed capabilities led to efforts to characterize the tradeoff between the type
space (the number of unique classes that can be in execution in a CHERI address
space) and bounds precision (the alignment requirements imposed on sealed
references).

Another significant effort lay in providing in-memory tags, which are not
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directly supported by current DRAM layouts. In our initial implementation, we
relied on a flat tag table (supported by a dedicated tag cache). This imposed
a uniform (and quite high) overhead in additional DRAM accesses across all
memory of roughly 10%. We have developed new microarchitectural techniques
to improve emulated tag performance, based on a hierarchical table exploiting
sparse use of pointers in memory, to reduce this overhead to < 2% even with
very high pointer density (e.g., in language runtimes).

2016-2017: Kernel Compartmentalization

Our initial design focus was on supporting fine-grained memory protection
within the user virtual address space, and implicitly, also compartmentaliza-
tion. Beyond an initial microkernel brought up to validate early capability
model variants, kernel prototypes through much of our project have eschewed
use of capability-aware code in the kernel due to limitations of the compiler, but
also because of a focus on large userspace TCBs such as compression libraries,
language runtimes, web browsers, and so on, which are key attack surfaces.

We have more recently returned to in-kernel memory protection and com-
partmentalization, where the CHERI model in general carries through without
change – code executing in the kernel is not fundamentally different from code
executing in userspace. The key exception is a set of management instructions
available to the kernel, able to manipulate the MMU (and hence the inter-
pretation of capabilities), as well as control features such as interrupt delivery
and exception handling. We are now extending CHERI to allow the capability
mechanism to control access to these features so that code can be compartmen-
talized within the kernel. We are also pursuing changes to the exception-based
domain-transition mechanism used in earlier ISA revisions that shift towards a
jump-based model, which will avoid exception-related overheads in the microar-
chitecture.

3.1 CHERI ISAv6: Looking Beyond MIPS

As we wrap up work on CHERI ISAv6, we are looking beyond the 64-bit MIPS
ISA on which we based our hardware-software co-design effort towards further
ISAs. These range from the still-developing open-source RISC-V ISA (which
strongly resembles the MIPS ISA and hence to which most CHERI ideas will
apply with minor translation) to the widely used Intel x86-64 instruction set
(which is quite far from the RISC foundations in which we have developed
CHERI). This exploration has allowed us to derive a more general CHERI pro-
tection model from our work, rather than seeing CHERI as simply an extension
to MIPS. We have focused on developing portable software-facing primitives
and abstractions potentially supported by a variety of architectural expressions.
We take some inspiration from the diverse range of MMU semantics and in-
terfaces providing a common virtual-memory abstraction, and process model,
across a broad range of architectures. New versions of the ISA specification also
explore in much greater detail how architecture protection can be exploited by
operating systems and compilers to reinforce program structure and mitigate
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vulnerabilities.

4 Conclusion

Over the last seven years, the CTSRD project has performed intensive and it-
erative hardware-software co-design to develop the CHERI-MIPS ISA, focusing
on introducing architectural support for the principle of least privilege. The
resulting approach – a hybridization of architectural and software techniques
building on capability systems, C-language memory safety, virtual memory, and
operating systems – is surprisingly adoptable in large real-world software stacks.
As described in Section 2.2, many security benefits can be achieved simply by
recompiling current C-language TCBs with little or no source-code-level change,
achieving fine-grained referential integrity and protection that mitigates many
known classes of pointer-related exploit. With further investment in refactoring
software described in Section 2.3, scalable support for fine-grained software com-
partmentalization opens the door to vulnerability and exploit-class non-specific
mitigation, both accelerating current software compartmentalization, and sup-
porting the introduction of much great compartmentalization.

By starting with a conventional RISC architecture and a C-language operating-
system and application corpus, we have been able to demonstrate and validate
our approach against large extant software stacks (e.g., the FreeBSD operating
system), as well as provide an easier path to potential transition. Using FPGA-
based prototypes, which allow a far tighter design cycle between hardware and
software, we have also been able to support detailed resource and performance
analyses, validating microarchitectural aspects of the approach. This hardware-
software co-design approach has paid enormous dividends in forcing a vital
iterative design and refinement process over several years. It is increasingly
clear that the CHERI protection model is applicable to a broad range of archi-
tectures and microarchitectures, rather than being specific to the 64-bit MIPS
architecture on which we have prototyped.

As the project enters its next two years (now seven years into a 4-year
project!), we continue our focus on building larger demonstrations of the ap-
proach, maturing our software stack – including demonstrating how CHERI
converges with OS design choices and the compiler stack, as well as improving
performance through research into architectural and microarchitectural features
such as capability compression and efficient hierarchical tag tables. We are also
turning our attention from formal modeling (which has allowed us to precisely
specify behaviors of the ISA for the purposes of informal reasoning and auto-
mated testing) to formal reasoning – yielding early proofs of key underlying
security properties in the ISA, such as strong capability monotonicity, capabil-
ity unforgeability, and protection-domain isolation. More information about the
CHERI architecture and our ongoing work, along with open-source hardware
and software artifacts, may be found on the CTSRD project website:

https://www.cl.cam.ac.uk/research/security/ctsrd/
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