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A PALEY-LIKE GRAPH IN CHARACTERISTIC TWO

ANDREW THOMASON

Abstract. The Paley graph is a well-known self-complementary pseudo-
random graph, defined over a finite field of odd order. We describe an
attempt at an analogous construction using fields of even order. Some
properties of the graph are noted, such as the existence of a Hamiltonian
decomposition.

1. Introduction

The well-known Paley graph is a pseudo-random graph whose vertex set
is the finite field Fq = GF (q) of order q ≡ 1 (mod 4). The pair of vertices
a, b is joined by an edge if a− b is a square in Fq. Since −1 is a square the
graph is well defined. It follows from elementary properties of the quadratic
character that the Paley graph is vertex-transitive, self-complementary, and
each edge is in (q − 5)/4 triangles. A graph of order q in which every edge
is in (q − 5)/4 triangles and whose complement has the same property is
sometimes called a conference graph. The Paley graph is thus ipso facto a
pseudo-random graph, as explained in detail in [12], and in a somewhat less
quantitative fashion in Chung, Graham and Wilson in [3].

The other odd prime powers, namely those where q ≡ 3 (mod 4), cannot
be used to construct Paley graphs since −1 is not a square. However this
very property allows the construction of a tournament, or oriented complete
graph, on the vertex Fq by inserting an edge oriented from a to b if a− b is a
square. Since −1 is not a square, exactly one of a− b and b− a is a square,
so we do indeed construct a tournament (Graham and Spencer [6]).

The property of pseudo-randomness, even when quantified, does not suf-
fice to give all the information that one would like to have about the Paley
graphs; in particular, it is not known what the clique number is. When
q is prime the calculation reduces to difficult and so far unsolved problems
involving the estimation of character sums (though if q is a square the clique
size is exactly

√
q). For more information, see [13, Section 2.5.1].

As regards Hamiltonian cycles, the Paley graphs hold fewer secrets. If q
is a prime then the Paley graph is a circulant graph and, since the edges of
a given distance in a circulant of prime order form a Hamiltonian cycle, it
follows that the Paley graph in this case is not just Hamiltonian but it has a
Hamiltonian decomposition, that is, its edge set is the union of edge-disjoint
Hamiltonian cycles.

In a finite field of characteristic two, every element is a square, and the
definition of the Paley graph is of little value. From the graph theoretical
point of view, though, characteristic two has some innate attraction. In
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2 ANDREW THOMASON

this note we describe an attempt to find different graphs, similar in spirit
to the Paley graphs but defined in relation to the field Fq for even q, which
are vertex-transitive and self-complementary. We might even hope to find
a graph which is a conference graph, or which is more easily analysed than
the Paley graph. Whilst these more ambitious aims are not realised, we do
describe the more accessible properties of the graphs.

2. Definition

We begin with a definition of the graphs, and defer to §3 a discussion of
what lies behind it. Choose as vertex set V the elements of PG(1, q), the
projective space of dimension one over Fq. We label the elements of V in
the natural way, namely

V = {( 10 ), ( 01 ), ( 11 ), . . . , ( x1 ), . . .} = {∞, 0, 1, . . . , x, . . .}.
Given an element x ∈ Fq its trace is defined to be tr(x) = x+ x2 + x4 +

. . . + xq/2. Let q = 2k and let a be an element of Fq with tr(a) = 1. For
even k we define a graph Gk(a) on the vertex set V by

xy ∈ E(Gk(a)) if tr

(

xy + x+ a

x+ y

)

= 0.

For odd k we define a tournament Gk(a), having an edge directed from x to
y whenever the same equation is satisfied.

We shall show in §4.1 that Gk(a) is well defined. Moreover, although
Gk(a) as a labelled graph depends on the value of a (for example, the neigh-
bourhood of the vertex 0 is the set of elements y such that tr(a/y) = 0), we
shall show in §5 that all the graphs (or tournaments) so defined are isomor-
phic. This allows us to refer to any member of this collection of graphs as
the graph Gk when there is no danger of confusion.

At first appearance the definition of the graph Gk looks somewhat con-
trived. We attempt in §3 to show that the definition does in fact arise fairly
naturally. Having made a few elementary remarks about the properties of Fq

(in §4) we establish in §5 that Gk(a) is a vertex-transitive self-complementary
graph whose isomorphism class is independent of a, as claimed. Finally, we
explore some of the further properties of the graph Gk; in particular we show
that it is a pseudo-random graph, having a Hamiltonian decomposition.

3. Background

The Paley graph is a circulant graph when q is prime; that is, its vertices
may be labelled {0, 1, . . . , q − 1}, and whether xy is an edge depends only
on the difference |x− y|. It is therefore necessarily vertex-transitive, and it
is also self-complementary. A regular self-complementary graph has order
≡ 1 (mod 4), and obviously there is no such graph with vertex set Fq when
q is even. We set out to define a circulant graph on vertex set PG(1, q).

The group PSL(2, q), comprising the 2× 2 matrices of determinant one,
acts on V = PG(1, q). As usual, we associate with the matrix

(

a b
c d

)

the
Möbius, or linear fractional, map z 7→ (az + b)/(cz + d). We use two simple
facts about these maps; that they form a group, and (for this background
discussion) that a map is determined by its action on any three points. For
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convenience and completeness we assume only a minimal familiarity with
properties of finite fields. Much more can be found in the classical algebraic
text of Dickson [5] or the more recent and geometrical Hirschfeld [7]. Both
these authors pay attention to the characteristic two case needed here.

In order to begin constructing a circulant on V we need a Möbius trans-
formation of order q + 1. It is not hard to show, though we don’t need this
fact, that every transformation with no fixed points is conjugate to one of
the form z 7→ a/(z+1) such that the equation x2+x = a has no solution in
Fq. Let us then consider such a map. The condition that x2 + x = a has no
solution is equivalent to the condition tr(a) = 1 (see §4.1). Amongst such
transformations there exist some of order q + 1 (see §4.2).

Take such a transformation α. Then V = {∞, α(∞), α2(∞), . . . , αq(∞)}.
For convenience, we write vi = αi(∞), so V = {v0, v1, . . . , vq}. Notice that,
for example, v1 = α(∞) = 0 and v2 = α(0) = a. Moreover α−1(z) = 1+a/z,
so vq = αq(∞) = α−1(∞) = 1 and vq−1 = α−1(1) = 1 + a. It is easily
verified, by induction on i, that vq−i = 1 + vi (the induction step being
vq−i−1 = α−1(vq−i) = 1 + a/vq−i = 1 + a/(1 + vi) = 1 + α(vi) = 1 + vi+1).
Subscripts may be reduced modulo (q + 1), so we write v−i = 1 + vi.

We may, therefore, define a circulant graph on V as follows. Choose a
map f : Fq → F2, to be specified later. The neighbours of ∞ = v0 will be
those vi for which f(vi) = 0. In general, vivj will be an edge if v0vj−i is an
edge, which is to say, if f(vj−i) = 0. In order that the graph be well defined
we must ensure that f(vi−j) = f(vj−i), which we have seen is equivalent to
f(x+ 1) = f(x). (This section is just to motivate the earlier definition, so
we ignore tournaments here.)

Let us see how to compute whether xy is an edge, given x, y ∈ V . Let
x = vi and y = vj . Then xy will be an edge if f(vi−j) = f(vj−i) = 0. Now
vi−j = α−j(x). We claim that the map α−j is identical to the Möbius map
β(z) = (zy + z + a)/(z + y), and so vi−j = β(x) = (xy + x + a)/(x + y).
To check the claim, it suffices to show that α−j and β act identically on
the three distinct points vj−1, vj and vj+1. Now α−j maps these points to
v−1 = 1, v0 = ∞ and v1 = 0. But vj = y, vj−1 = α−1(y) = 1 + a/y and
vj+1 = α(y) = a/(y+1). Thus β(vj−1) = β(1+a/y) = 1, β(vj) = β(y) = ∞
and β(vj+1) = β(a/(y + 1)) = 0, proving the claim. We conclude that xy is
an edge if f((xy + x+ a)/(x+ y)) = f(vj−i) = 0.

The map vi 7→ v2i is a permutation of V which leaves v0 fixed. An easy
way to ensure that our circulant graph is self-complementary is to arrange
that this map interchanges the graph with its complement. So we wish to
arrange that if x = vi then f(v2i) 6= f(x), or, equivalently, f(v2i)+f(x) = 1.
If we put j = −i then v2i = vi−j, and using the calculation in the previous
paragraph with y = v−i = 1 + x, we see that v2j = (xy + x+ a)/(x + y) =
x2 + a.

Therefore this procedure will yield a self-complementary vertex-transitive
graph if we select a function f : Fq → F2 such that f(x) = f(x + 1) and
f(x) + f(x2 + a) = 1 for all x ∈ Fq. An obvious choice is f = tr. In fact,
this is the only natural choice which does not depend on a itself; for we may
assume that f(0) = 0, and then we must have f(a) = 1 for all a to which
the discussion applies, namely those a for which tr(a) = 1 and α has order
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q + 1. This is close to requiring f(a) = 1 whenever tr(a) = 1, which in turn
implies f = tr because f must be zero on exactly half the elements of Fq.

So by the process described we arrive at the definition of the graph Gk(a).

3.1. Other possibilities. Aiming for a circulant is not a priori the right
thing to do; the Paley graphs are circulants if q is prime but not in general.
However, in order that the group PSL(2, q) have a nice action on our graph
we should choose its edge set to be a union of orbits of elements of PSL(2, q).
We also want the graph to be self-complementary and to have some Möbius
map interchanging the graph and its complement. As we shall see below, a
great number of Möbius maps have order q + 1, and so any graph of this
more general kind is likely to be circulant.

4. Field Work

Here we make further, standard and elementary, calculations over finite
fields to justify some earlier remarks. A full treatment of these matters can
be found in Lidl and Niederreiter [9].

4.1. Trace comments. The trace map is defined by tr(a) = a+ a2 + a4 +

. . . + aq/2. Thus tr(a)2 = tr(a) so tr(a) ∈ F2. Moreover trace is a linear
map. There is a distinction between even k and odd k, because

tr(1) = 1 + 12 + 14 + . . .+ 1k−1 =

{

0 if k is even
1 if k is odd.

Since trace is a linear map,

tr

(

xy + x+ a

x+ y

)

+ tr

(

yx+ y + a

y + x

)

= tr(1).

It follows that the definition in §2 determines a graph if k is even and a
tournament if k is odd, as claimed.

The map tr : Fq → F2 is surjective, since trace, being a polynomial of
degree lower than q, cannot annihilate Fq. Let Ti = tr−1(i), i = 0, 1. Then
T0 is the kernel of trace; since the map is surjective, we have dimT0 = k− 1
and so |T0| = |T1| = 2k−1 = q/2.

Now tr(a2) = tr(a), or tr(a2+a) = 0. The map x 7→ x2+x is also a linear
map Fq → Fq. Its kernel is F2 so its image has dimension k − 1. But its
image contains T0. Therefore its image is T0; in particular, for every element
c with tr(c) = 0 there exists an element b ∈ Fq with b2 + b = c. There are
two solutions to this quadratic equation, the other being b + 1. Thus if k
is even and tr(1) = 0 the two solutions have the same trace, whereas if k is
odd the solutions have different traces.

4.2. Möbius comments. Our aim here is to identify a suitable element
a ∈ Fq with which to carry out the above construction. Note that, for any a
with tr(a) = 1, then the equation z2+z+a = 0 has no solution in Fq, because
tr(z2 + z + a) = tr(a) = 1. Therefore the equation has a root λ in Fq2 . It

follows that λ = λq is the other root, because λ
2
+ λ+ a = (λ2 + λ+ a)q.

Let k be the order of the element λ/λ in Fq2 . Then 1 = (λ/λ)k = λk(q−1),

but also λq
2−1 = 1, so k | (q + 1) (in particular, if q + 1 is a Fermat prime

then λ/λ has order q + 1).
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Now let k > 2 be any factor of q + 1. Let g be a primitive root for Fq2 .

Then the cyclic group 〈gq−1〉 of order q+1 has exactly φ(k) elements of order

k, where φ is Euler’s function. Let µ = gt(q−1) be an element of order k in

〈gq−1〉. Then µq−1 = gt(q−1)2 = g−2t(q−1). Therefore µ /∈ Fq, for otherwise
µq−1 = 1 which would imply (q + 1) | 2t, which in turn would imply that
µ2 = 1, contradicting k > 2.

Given µ = gt(q−1) as described, let ν = gt. Let b = ν + ν, where ν = νq.
Then b = bq = ν + ν = b, so b ∈ Fq. Put λ = ν/b. Thus λ + λ = 1, and

the element λ/λ = ν/ν = µ has order k. Let λλ = a; since aq = a we have
a ∈ Fq. Moreover λ2 + λ+ a = 0, so tr(a) = λ+ λq = 1.

We summarize as follows. Every element a of trace 1 in Fq satisfies an

equation λ2 + λ+ a = 0 where λ ∈ Fq2 and the order of λ/λ divides q + 1.
Conversely, for every factor k > 2 of q + 1 there exists such an a such that
λ/λ has order k.

In particular, there exists an a such that λ/λ has order q+1. For such an
a, consider the map α : z → a/(z +1) and its associated matrix ( 0 a

1 1 ). This

matrix has eigenvectors
(

λ
1

)

and
(

λ
1

)

with eigenvalues λ and λ respectively.

Now ∞ = ( 10 ) =
(

λ
1

)

+
(

λ
1

)

. Therefore the result of applying the map

z 7→ a/(z + 1) to ∞ k times is λ
k( λ

1

)

+ λk
(

λ
1

)

. This equals ( 10 ) only if

λ
k
+ λk = 0, which is to say (λ/λ)k = 1. Since λ/λ has order q + 1, the

vertex ∞ is in an α-orbit of size q + 1. Thus there do exist elements a for
which the graph Gk(a) is a self-complementary circulant graph, as described
in §3.

5. Elementary properties

Some of the more accessible properties of Gk can now be described.

5.1. Isomorphisms. Let b ∈ Fq. The map x 7→ x + b is a permutation of
Fq. Moreover

tr

(

(x+ b)(y + b) + (x+ b) + a

(x+ b) + (y + b)

)

= tr

(

xy + x+ b2 + b+ a

x+ y

)

+ tr(b). (†)

Suppose that k is odd, that is, tr(1) = 1. Let a and a′ be two elements
of T1. Then tr(a + a′) = 0, and by the remarks in §4.1, there exists an
element b with b2 + b + a = a′ and tr(b) = 0. Therefore (†) shows that
the map x 7→ x + b is an isomorphism Gk(a

′) → Gk(a). Moreover, since
12+1+a = a, by (†) the map x 7→ x+1 is an orientation-reversing bijection
of the vertex set, because tr(1) = 1. It follows that the tournaments defined
in §2 are isomorphic to each other and are self-complementary.

Now let k be even. We showed in §4 that there is some element a for which
the map α : z → a/(z+1) has order q+1 and tr(a) = 1. Let a′ be any other
element of T1. Let c = a′−a. Again, by the remarks in §4.1, there exists an
element b with b2+ b+a = a′. Now either tr(b) = 0, in which case (†) shows
that the map x 7→ x+ b is an isomorphism Gk(a

′) → Gk(a), or tr(b) = 1, in
which case the map x 7→ x+b is an isomorphism between Gk(a

′) and the com-
plement of Gk(a). But Gk(a) is vertex-transitive and self-complementary,
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as shown in §3. Therefore the graphs defined in §2 are isomorphic to each
other, being both vertex-transitive and self-complementary.

5.2. Automorphisms. Let a ∈ Fq have trace one. The Möbius map z 7→
a/(z + 1) is a permutation of V . It is also an automorphism of the graph
Gk(a), because

a
x+1 · a

y+1 + a
x+1 + a

a
x+1 +

a
y+1

=
xy + x+ a

x+ y
.

This, of course, is just the automorphism α that was built into the definition
of Gk(a).

In the graph case, the map z 7→ z+1 is also an automorphism, being the
map vi 7→ v−i.

5.3. Co-degrees. The co-degree of a pair x, y of vertices is the number
of their common neighbours. As mentioned earlier, a q/2-regular graph of
order q + 1 is a conference graph if every pair x, y has codegree q/4 − ǫ,
where ǫ = 0 or 1 according as x and y are not adjacent or are adjacent.

The present graphs do not quite satisfy this condition but come close. Let
us compute the co-degree of x, y in Ga(q). By the rotational symmetry we
may assume that y = ∞. A vertex w /∈ {∞, x} is joined to ∞ if tr(w) = 0
and to x if tr((xw + x + a)/(x + w)) = 0. Let ψ : Fq → {−1, 1} be the

additive character ψ(z) = (−1)tr(z). If ℓ is the co-degree of x, y, then there
are q/2−ǫ−ℓ vertices joined to x but not to y, with the same number joined
to y but not x. So we have

∑

w∈Fq,w 6=x

ψ(w)ψ

(

xw + x+ a

x+ w

)

= q − 1− 4(q/2 − ǫ− ℓ) .

Thus, writing K for the sum on the left, we have ℓ = q/4− ǫ+ (K + 1)/4.
Using the substitutions w = z + x and b = x2 + x+ a we have

K =
∑

z∈Fq−{0}

ψ(z + x)ψ

(

x+
b

z

)

=
∑

z∈Fq−{0}

ψ

(

z +
b

z

)

.

Therefore K is a Kloosterman sum; see Lidl and Niederreiter [9, Section 5.5]
for a discussion. In particular, |K| ≤ 2

√
q ([9, Theorem 5.45]). This

was proved by Carlitz and Uchiyama [4], extending the proof by Weil [14]
to even q. A self-contained proof, based on Stepanov [11], appears in
Schmidt [10, Chapter 2].

In the case that Gk is a graph we have q = 2k where k is even, and so
√
q

is an even integer. Therefore every co-degree is at most q/4 +
√
q/2.

5.4. Pseudo-randomness. For our purposes, the import of the preceeding
estimate of co-degrees is that the graph Gk is pseudo-random. Specifically,
it is (1/2, q3/4)-jumbled, meaning that, for every induced subgraph H ⊂
Gk, |e(H) − 1

2

(|H|
2

)

| ≤ q3/4|H| holds. This follows comfortably from [12,
Theorem 1.1] using the bound q/4 +

√
q/2 for co-degrees.

From this it follows that Gk enjoys all the usual consequences of pseudo-
randomness, such as expansion, having about the expected number of in-
duced subgraphs of any given kind, and so on.
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Another approach to showing that Gk is pseudo-random would be to es-
timate the eigenvalues, which are of course available in a reasonably explicit
form given that Gk is a circulant. However the present approach via co-
degrees is quick and effective.

5.5. Hamiltonian decompositions. As mentioned above, the Paley graph
of order q has a Hamiltonian decomposition when q is prime because it is
a circulant of prime order, and likewise so is Gk if q + 1 is a Fermat prime,
though there seems to be a limited supply of these.

What about non-prime orders? For the Paley graph, there is always a
Hamiltonian decomposition, as shown by Alspach, Bryant and Dyer [1].
The graphs Gk too have a Hamiltonian decomposition, at least if k is large.
This follows from the deep work of Kühn and Osthus [8]. Theorem 1.2 of [8]
states that there is some number τ > 0 such that, provided Gk is a robust

(τ/3, τ)-expander, then Gk has a Hamiltonian decomposition for large k.
This condition requires that, for every subset S of the vertices of Gk with
τq ≤ |S| ≤ (1 − τ)q, there are at least |S| + τq/3 vertices of Gk having at
least τq/3 neighbours in S. The condition is comfortably satisfied by Gk

because it is (1/2, q3/4)-jumbled (using simple standard properties of such
graphs [12]). The decomposition is, of course, not explicit but there is a
polynomial time algorithm for finding it.

6. Acknowledgements

Thanks are due to Robin Chapman for his comments. In particular he
suggests another description of the graph Gk, from a field theoretic, rather
than a geometric, viewpoint. The line PG(1, q) can be identified in a nat-
ural way with the quotient group F ∗

q2/F
∗
q , so we can consider graphs with

this as its vertex set. Let λ ∈ F ∗
q2 . Given u, v ∈ F ∗

q2 then the equiv-

alence classes [u], [v] are vertices of a graph Hλ, and we join [u] to [v]
if tr(T (λuqv)/T (λ)T (uqv)) = 0, where T (x) = x + xq is the trace map
F ∗
q2 → F ∗

q . Chapman [2] shows that Hλ is well defined and isomorphic to

Gk.
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