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Abstract We congratulate the authors on their stimulating contribution to the bur-
geoning high-dimensional inference literature. The bootstrap offers such an attractive
methodology in these settings, but it is well-known that its naive application in the con-
text of shrinkage/superefficiency is fraught with danger (e.g. Samworth in Biometrika
90:985–990, 2003; Chatterjee and Lahiri in J Am Stat Assoc 106:608–625, 2011).
The authors show how these perils can be elegantly sidestepped by working with
de-biased, or de-sparsified, versions of estimators. In this discussion, we consider
alternative approaches to individual and simultaneous inference in high-dimensional
linear models, and retain the notation of the paper.
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1 Why penalise coefficients of variables of interest?

Suppose that for some, presumably small, set G ⊆ {1, . . . , p}, we want a confidence
set forβ0

G .Much of the recent literature, including the paper under discussion, proceeds
by constructing an initial estimator, such as the Lasso estimator β̂, and then attempting
to de-bias it. Our starting point is the following provocative question: since we know
in advance the set of variables we are interested in, why would we want to penalise
these coefficients in the first place? Of course, it is standard practice not to penalise the
intercept term in high-dimensional linear models, to preserve location equivariance,
but we now consider taking this one stage further. More precisely, consider the linear
model

Y = Xβ0 + ε,

where the columns ofX have Euclidean length n1/2, whereXT
GXG is positive definite,

and where, for simplicity, we assume that ε ∼ Nn(0, σ 2 I ). We further assume that the
set S := { j : β0

j �= 0} of signal variables has cardinality s, and let N := {1, . . . , p}\S.
For λ > 0, let

(β̂G , β̂−G) := argmin
(βG ,β−G )∈R|G|×Rp−|G|

1

n
‖Y − XGβG − X−Gβ−G‖22 + λ‖β−G‖1,

where we emphasise that ‖βG‖1 is unpenalised. For fixed β−G ∈ R
p−|G|, the solution

in the first argument is given by ordinary least squares:

β̂G(β−G) := (XT
GXG)−1XT

G(Y − X−Gβ−G).

We therefore find that

β̂−G = argmin
β−G∈Rp−|G|

1

n
‖(I − PG)(Y − X−Gβ−G)‖22 + λ‖β−G‖1, (1)

where PG := XG(XT
GXG)−1XT

G denotes the matrix representing an orthogonal pro-
jection onto the column space ofXG . In other words, β̂−G is simply the Lasso solution
with response and design matrix pre-multiplied by (I − PG). Moreover,

β̂G = β̂G(β̂−G) = (XT
GXG)−1XT

G(Y − X−G β̂−G).

For our theoretical analysis of β̂G , we will require the following compatibility condi-
tion:

(A1) There exists φ0 > 0 such that for all b ∈ R
p−|G| with ‖bN‖1 ≤ 3‖bS‖1, we

have

‖bS‖21 ≤ s‖(I − PG)X−Gb‖22
nφ2

0

.
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The theorem below is only a small modification of existing results in the literature
(e.g. Bickel et al. 2009), but for completeness we provide a proof in “Appendix”.

Theorem 1 Assume (A1), and let λ := Aσ

√
log p
n . Then with probability at least

1 − p−(A2/8−1),

1

n
‖(I − PG)X−G(β̂−G − β0−G)‖22 + λ

2
‖β̂−G − β0−G‖1 ≤ 3A2

φ2
0

σ 2s log p

n
.

Theorem 1 allows us to show that if, in addition to (A1), the columns of XG and
those of X−G satisfy a strong lack of correlation condition, then β̂G can be used for
asymptotically valid inference forβG . To formalise this latter condition, it is convenient
to let � denote the |G| × (p − |G|) matrix (XT

GXG)−1XT
GX−G .

Corollary 2 Consider an asymptotic framework in which s = sn ≥ 1 and p = pn →
∞ as n → ∞, but σ 2 > 0 and G are constant. Assume (A1) holds for sufficiently
large n (with φ0 not depending on n), and also that ‖�‖∞ = o(s−1 log−1/2 p). If we

choose λ := Aσ

√
log p
n in the above procedure with constant A > 2

√
2, then

n1/2(β̂G − β0
G)

d→ N|G|
(
0, σ 2(XT

GXG)−1).

Proof We can write

n1/2(β̂G − β0
G) = n1/2(XT

GXG)−1XT
Gε − Δ,

where Δ := n1/2(XT
GXG)−1XT

GX−G(β̂−G − β0−G). Now

n1/2(XT
GXG)−1XT

Gε ∼ N|G|
(
0, σ 2(XT

GXG)−1).

Also, from the proof of Theorem 1, on Ω0 := {‖XT−G(I − PG)ε‖∞/n ≤ λ/2},

‖Δ‖∞ ≤ ‖�‖∞n1/2‖β̂−G − β0−G‖1 ≤ 6A

φ2
0

‖�‖∞s log1/2 p → 0.

Since P(Ω0) → 1, the conclusion follows.

We remark that for j ∈ Gc, � j is the coefficient in the ordinary least squares regres-
sion of X j on XG . Even though the condition on ‖�‖∞ is strong, it may well be
reasonable to suppose that, having pre-specified the index set G of variables that we
are interested in, we should avoid including in our model other variables that have
significant correlation with XG .
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2 More complicated settings

Without this strong orthogonality condition, we might instead consider adjusting β̂G

by debiasing or de-sparsifying β̂−G . Following van de Geer et al. (2014), we suggest
replacing β̂−G by

b̂−G = β̂−G + 1

n
MXT−G(I − PG)(Y − X−G β̂−G)

for some matrix M ∈ R
(p−|G|)×(p−|G|). This yields the de-biased estimator

b̂G = (XT
GXG)−1XT

G(Y − X−Gb̂−G)

= β0
G + (XT

GXG)−1XT
Gε − 1

n
ΘMXT−G(I − PG)ε − R(β̂−G − β0−G),

where R is the |G| × (p − |G|) matrix given by

R := Θ − 1

n
ΘMXT−G(I − PG)X−G .

Under our Gaussian errors assumption, (XT
GXG)−1XT

Gε and n−1ΘMXT−G(I − PG)ε

are independent centredGaussian randomvectors; thus if the remainder term R(β̂−G−
β0−G) is of smaller order, we see that our estimate b̂G is approximately centred Gaus-
sian. The techniques of van de Geer et al. (2014) or Javanmard and Montanari (2014)
might then be used to give asymptotic justifications for Gaussian confidence sets and
hypothesis tests concerning β0

G . But another very interesting direction would be to

adapt the bootstrap approaches proposed in the current paper to the estimate b̂G .
As in van de Geer et al. (2014), we should choose M depending on X to control

δ := ‖R(β̂−G − β−G)‖∞ ≤ ‖R‖∞‖β̂−G − β−G‖1.

Note that we may write the matrix R in terms of the sample covariance matrix of the
covariates Σ̂ := XTX/n (using obvious notation for the partitioning) as

R = Σ̂−1
G,GΣ̂G,−G

(
I − M(Σ̂−G,−G − Σ̂−G,GΣ̂−1

G,GΣ̂G,−G)
)
.

Of course, if Σ̂ is invertible, then

(Σ̂−G,−G − Σ̂−G,GΣ̂−1
G,GΣ̂G,−G)−1 = (Σ̂−1)−G,−G ,

so M can be thought of as an approximation to (Σ̂−1)−G,−G (even though Σ̂ is not
invertible when p > n). In general, wemight use concentration inequalities for entries
in Σ̂ to control ‖R‖∞; if we think of |G| as small, then we only have O(p) entries to
control, rather than O(p2) as is more typical in these debiasing problems. We hope to
pursue these ideas elsewhere.
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Appendix

Proof of Theorem 1 The KKT conditions for the problem (1) state that

1

n
XT−G(I − PG)(Y − X−G β̂−G) = λγ,

where ‖γ ‖∞ ≤ 1 and γ j = sgn(β̂−G, j ) if β̂−G, j �= 0. Thus

1

n
(β0−G − β̂−G)TXT−G(I − PG)X−G(β0−G − β̂−G)

= λ(β0−G − β̂−G)T γ − 1

n
(β0−G − β̂−G)TXT−G(I − PG)ε

= λ(β0−G)T γ − λ‖β̂−G‖1 − 1

n
(β0−G − β̂−G)TXT−G(I − PG)ε

≤ λ‖β0−G,S‖1 − λ‖β̂−G‖1 + ‖β̂−G − β0−G‖1 1
n
‖XT−G(I − PG)ε‖∞.

Let Ω0 := {‖XT−G(I − PG)ε‖∞/n ≤ λ/2}. Then since XT−G(I − PG)ε ∼
Np(0, σ 2XT−G(I − PG)X−G), and since the diagonal entries of XT−G(I − PG)X−G

are bounded above by n, we have P(Ωc
0) ≤ p−(A2/8−1). Moreover, on Ω0,

1

n
(β̂−G − β0−G)TXT−G(I − PG)X−G(β̂−G − β0−G) + λ

2
‖β̂−G,N‖1

= 1

n
(β̂−G − β0−G)TXT−G(I − PG)X−G(β̂−G − β0−G)

+ λ‖β̂−G‖1 − λ‖β̂−G,S‖1 − λ

2
‖β̂−G,N‖1

≤ λ

2
‖β̂−G − β0−G‖1 − λ

2
‖β̂−G,N‖1 + λ(‖β0−G,S‖1 − ‖β̂−G,S‖1)

≤ 3λ

2
‖β̂−G,S − β0−G,S‖1.
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In particular, ‖β̂−G,N −β0−G,N‖1 = ‖β̂−G,N‖1 ≤ 3‖β̂−G,S −β0−G,S‖1, so from (A1),

1

n
‖(I − PG)X−G(β̂−G − β0−G)‖22 + λ

2
‖β̂−G,N‖1

≤ 3λ

2
‖β̂−G,S − β0−G,S‖1

≤ 3λ

2

s1/2‖(I − PG)X−G(β̂−G − β0−G)‖2
n1/2φ0

.

Thus

1

n1/2
‖(I − PG)X−G(β̂−G − β0−G)‖2 ≤ 3λs1/2

2φ0
.

We conclude that

1

n
‖(I − PG)X−G(β̂−G − β0−G)‖22 + λ

2
‖β̂−G − β0−G‖1

≤ 2λ‖β̂−G,S − β0−G,S‖1

≤ 2λs1/2‖(I − PG)X−G(β̂−G − β0−G)‖2
n1/2φ0

≤ 3A2

φ2
0

σ 2s log p

n
,

as required.
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