
Proceedings of the Eighteenth Conference on Computational Natural Language Learning: Shared Task, pages 15–24,
Baltimore, Maryland, 26-27 July 2014. c©2014 Association for Computational Linguistics

Grammatical error correction using hybrid systems and type filtering

Mariano Felice Zheng Yuan Øistein E. Andersen
Helen Yannakoudakis Ekaterina Kochmar

Computer Laboratory, University of Cambridge, United Kingdom
{mf501,zy249,oa223,hy260,ek358}@cl.cam.ac.uk

Abstract

This paper describes our submission to the
CoNLL 2014 shared task on grammatical
error correction using a hybrid approach,
which includes both a rule-based and an
SMT system augmented by a large web-
based language model. Furthermore, we
demonstrate that correction type estima-
tion can be used to remove unnecessary
corrections, improving precision without
harming recall. Our best hybrid system
achieves state-of-the-art results, ranking
first on the original test set and second on
the test set with alternative annotations.

1 Introduction

Grammatical error correction has attracted con-
siderable interest in the last few years, especially
through a series of ‘shared tasks’. These efforts
have helped to provide a common ground for eval-
uating and comparing systems while encouraging
research in the field. These shared tasks have pri-
marily focused on English as a second or foreign
language and addressed different error types. The
HOO 2011 task (Dale and Kilgarriff, 2011), for
example, included all error types whereas HOO
2012 (Dale et al., 2012) and the CoNLL 2013
shared task (Ng et al., 2013) were restricted to only
two and five types respectively.

In this paper, we describe our submission to the
CoNLL 2014 shared task (Ng et al., 2014), which
involves correcting all the errors in essays writ-
ten in English by students at the National Univer-
sity of Singapore. An all-type task poses a greater
challenge, since correcting open-class types (such
as spelling or collocation errors) requires different
correction strategies than those in closed classes
(such as determiners or prepositions).

In this scenario, hybrid systems or combinations
of correction modules seem more appropriate and

typically produce good results. In fact, most of
the participating teams in previous shared tasks
have used a combination of modules or systems
for their submissions, even for correcting closed-
class types (Dahlmeier et al., 2011; Bhaskar et
al., 2011; Rozovskaya et al., 2011; Ivanova et al.,
2011; Rozovskaya et al., 2013; Yoshimoto et al.,
2013; Xing et al., 2013; Kunchukuttan et al., 2013;
Putra and Szabo, 2013; Xiang et al., 2013).

In line with previous research, we present a hy-
brid approach that employs a rule-based error cor-
rection system and an ad-hoc statistical machine
translation (SMT) system, as well as a large-scale
language model to rank alternative corrections and
an error type filtering technique.

The remainder of this paper is organised as fol-
lows: Section 2 describes our approach and each
component in detail, Section 3 presents our experi-
ments using the CoNLL 2014 shared task develop-
ment set and Section 4 reports our official results
on the test set. Finally, we discuss the performance
of our system and present an error analysis in Sec-
tion 5 and conclude in Section 6.

2 Approach

We tackle the error correction task using a pipeline
of processes that combines results from multiple
systems. Figure 1 shows the interaction of the
components in our final hybrid system, producing
the results submitted to the CoNLL 2014 shared
task. The following sections describe each of these
components in detail.

2.1 Rule-based error correction system
(RBS)

The rule-based system is a component of the Self-
Assessment and Tutoring (SAT) system, a web
service developed at the University of Cambridge
aimed at helping intermediate learners of English

15

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/96707283?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: Overview of components and interac-
tions in our final hybrid system.

in their writing tasks1 (Andersen et al., 2013). The
original SAT system provides three main function-
alities: 1) text assessment, producing an overall
score for a piece of text, 2) sentence evaluation,
producing a sentence-level quality score, and 3)
word-level feedback, suggesting specific correc-
tions for frequent errors. Since the focus of the
shared task is on strict correction (as opposed to
detection), we only used the word-level feedback
component of the SAT system.

This module uses rules automatically derived
from the Cambridge Learner Corpus2 (CLC)
(Nicholls, 2003) that are aimed at detecting error-
ful unigrams, bigrams and trigrams. In order to
ensure high precision, rules are based on n-grams
that have been annotated as incorrect at least five
times and at least ninety per cent of the times
they occur. In addition to these corpus-derived
rules, many cases of incorrect but plausible deriva-
tional and inflectional morphology are detected by
means of rules derived from a machine-readable
dictionary. For further details on specific compo-
nents, we refer the reader to the aforementioned
paper.

Given an input text, the rule-based system pro-
duces an XML file containing a list of suggested
corrections. These corrections can either be ap-
plied to the original text or used to generate mul-
tiple correction candidates, as described in Sec-
tion 2.3.

2.2 SMT system

We follow a similar approach to the one described
by Yuan and Felice (2013) in order to train an SMT

1The latest version of the system, called ‘Write
& Improve’, is available at http://www.cambridge
english.org/writeandimprovebeta/.

2More information at http://www.cambridge
.org/elt/catalogue/subject/custom/item36
46603/

system that can ‘translate’ from incorrect into cor-
rect English. Our training data comprises a set of
different parallel corpora, where the original (in-
correct) sentences constitute the source side and
corrected versions based on gold standard anno-
tations constitute the target side. These corpora
include:

• the NUCLE v3.1 corpus (Dahlmeier et al.,
2013), containing around 1,400 essays writ-
ten in English by students at the National
University of Singapore (approx. 1,220,257
tokens in 57,152 sentences),

• phrase alignments involving corrections ex-
tracted automatically from the NUCLE cor-
pus (with up to 7 tokens per side), which are
used to boost the probability of phrase align-
ments that involve corrections so as to im-
prove recall,

• the CoNLL 2014 shared task development
set, containing 50 essays from the previous
year’s test set (approx. 29,207 tokens in 1,382
sentences),

• the First Certificate in English (FCE) cor-
pus (Yannakoudakis et al., 2011), contain-
ing 1,244 exam scripts and 2 essays per
script (approx. 532,033 tokens in 16,068 sen-
tences),

• a subset of the International English Lan-
guage Testing System (IELTS) examination
dataset extracted from the CLC corpus, con-
taining 2,498 exam scripts and 2 essays per
script (approx. 1,361,841 tokens in 64,628
sentences), and

• a set of sentences from the English Vo-
cabulary Profile3 (EVP), which have been
modified to include artificially generated er-
rors (approx. 351,517 tokens in 18,830 sen-
tences). The original correct sentences are a
subset of the CLC and come from examina-
tions at different proficiency levels. The ar-
tificial error generation method aims at repli-
cating frequent error patterns observed in the
NUCLE corpus on error-free sentences, as
described by Yuan and Felice (2013).

3Sentences were automatically scraped from http://
www.englishprofile.org/index.php?option=
com_content&view=article&id=4&Itemid=5

16

Word alignment was carried out using pialign
(Neubig et al., 2011), after we found it outper-
formed GIZA++ (Och and Ney, 2000; Och and
Ney, 2003) and Berkeley Aligner (Liang et al.,
2006; DeNero and Klein, 2007) in terms of pre-
cision and F0.5 on the development set. Instead
of using heuristics to extract phrases from the
word alignments learnt by GIZA++ or Berker-
ley Aligner, pialign created a phrase table directly
from model probabilities.

In addition to the features already defined by pi-
align, we added character-level Levenshtein dis-
tance to each mapping in the phrase table. This
was done to allow for the fact that, in error correc-
tion, most words translate into themselves and er-
rors are often similar to their correct forms. Equal
weights were assigned to these features.

We then built a lexical reordering model using
the alignments created by pialign. The maximum
phrase length was set to 7, as recommended in the
SMT literature (Koehn et al., 2003; Koehn, 2014).

The IRSTLM Toolkit (Federico et al., 2008)
was used to build a 4-gram target language model
with Kneser–Ney smoothing (Kneser and Ney,
1995) on the correct sentences from the NUCLE,
full CLC and EVP corpora.

Decoding was performed with Moses (Koehn et
al., 2007), using the default settings and weights.
No tuning process was applied. The resulting sys-
tem was used to produce the 10 best correction
candidates for each sentence in the dataset, which
were further processed by other modules.

Segmentation, tokenisation and part-of-speech
tagging were performed using NLTK (Bird et
al., 2009) for consistency with the shared task
datasets.

2.3 Candidate generation

In order to integrate corrections from multiple sys-
tems, we developed a method to generate all the
possible corrected versions of a sentence (candi-
dates). Candidates are generated by computing all
possible combinations of corrections (irrespective
of the system from which they originate), includ-
ing the original tokens to allow for a ‘no correc-
tion’ option. The list of candidates produced for
each sentence always includes the original (un-
modified) sentence plus any other versions derived
from system corrections.

In order for a combination of corrections to gen-
erate a valid candidate, all the corrections must be

Figure 2: An example showing the candidate gen-
eration process.

Model CE ME UE P R F0.5
SMT IRSTLM 651 2766 1832 0.2621 0.1905 0.2438
Microsoft Web
N-grams

666 2751 1344 0.3313 0.1949 0.2907

Table 1: Performance of language models on the
development set after ranking the SMT system’s
10-best candidates per sentence. CE: correct ed-
its, ME: missed edits, UE: unnecessary edits, P:
precision, R: recall.

compatible; otherwise, the candidate is discarded.
We consider two or more corrections to be com-
patible if they do not overlap, in an attempt to
avoid introducing accidental errors. In addition,
if different correction sets produce the same can-
didate, we only keep one. Figure 2 illustrates the
candidate generation process.

2.4 Language model ranking

Generated candidates are ranked using a language
model (LM), with the most probable candidate be-
ing selected as the final corrected version.

We tried two different alternatives for ranking:
1) using the target LM embedded in our SMT sys-
tem (described in Section 2.2) and 2) using a large
n-gram LM built from web data. In the latter
case, we used Microsoft Web N-gram Services,
which provide access to large smoothed n-gram
language models (with n=2,3,4,5) built from web
documents (Gao et al., 2010). All our experiments
are based on the 5-gram ‘bing-body:apr10’ model.

The ranking performance of these two models
was evaluated on the 10-best hypotheses generated
by the SMT system for each sentence in the devel-
opment set. Table 1 shows the results from the
M2 Scorer (Dahlmeier and Ng, 2012), the official
scorer for the shared task that, unlike previous ver-
sions, weights precision twice as much as recall.

Results show that using Microsoft’s Web LM
yields better performance, which is unsurprising
given the vast amounts of data used to build that

17

System CE ME UE P R F0.5
RBS 95 3322 107 0.4703 0.0278 0.1124
SMT 452 2965 690 0.3958 0.1323 0.2830

Table 2: Results of individual systems on the de-
velopment set.

model. For this reason, we adopt Microsoft’s
model for all further experiments.

We also note that without normalisation, higher
probabilities may be assigned to shorter sentences,
which can introduce a bias towards preferring
deletions or skipping insertions.

2.5 Type filtering

Analysing performance by error type is very valu-
able for system development and tuning. How-
ever, this can only be performed for corrections
in the gold standard (either matched or missed).
To estimate types for unnecessary corrections, we
defined a set of heuristics that analyse differences
in word forms and part-of-speech tags between
the original phrases and their system corrections,
based on common patterns observed in the train-
ing data. We had previously used a similar strat-
egy to classify errors in our CoNLL 2013 shared
task submission (Yuan and Felice, 2013) but have
now included a few improvements and rules for
new types. Estimation accuracy is 50.92% on the
training set and 67.57% on the development set,
which we consider to be acceptable for our pur-
poses given that the final test set is more similar to
the development set.

Identifying types for system corrections is not
only useful during system development but can
also be exploited to filter out and reduce the num-
ber of proposed corrections. More specifically, if
a system proposes a much higher number of un-
necessary corrections than correct suggestions for
a specific error type, we can assume the system is
actually degrading the quality of the original text,
in which case it is preferable to filter out those er-
ror types. Such decisions will lower the total num-
ber of unnecessary edits, thus improving overall
precision. However, they will also harm recall,
unless the number of matched corrections for the
error type is zero (i.e. unless Ptype = 0). To avoid
this, only corrections for types having zero preci-
sion should be removed.

3 Experiments and results

We carried out a series of experiments on the de-
velopment set using different pipelines and com-
binations of systems in order to find an optimal
setting. The following sections describe them in
detail.

3.1 Individual system performance

Our first set of experiments were aimed at inves-
tigating individual system performance on the de-
velopment set, which is reported in Table 2. Re-
sults show that the SMT system has much better
performance, which is expected given that it has
been trained on texts similar to those in the test
set.

3.2 Pipelines

Since corrections from the RBS and SMT systems
are often complementary, we set out to explore
combination schemes that would integrate correc-
tions from both systems. Table 3 shows results for
different combinations, where RBS and SMT in-
dicate all corrections from the respective systems,
subscript ‘c’ indicates candidates generated from
a system’s individual corrections, subscript ‘10-
best’ indicates the 10-best list of candidates pro-
duced by the SMT system, ‘>’ indicates a pipeline
where the output of one system is the input to the
other and ‘+’ indicates a combination of candi-
dates from different systems. All these pipelines
use the RBS system as the first processing step in
order to perform an initial correction, which is ex-
tremely beneficial for the SMT system.

Results reveal that the differences between
these pipelines are small in terms of F0.5, although
there are noticeable variations in precision and re-
call. The best results are achieved when the 10
best hypotheses from the SMT system are ranked
with Microsoft’s LM, which confirms our results
in Table 1 showing that the SMT LM is outper-
formed by a larger web-based model.

A simple pipeline using the RBS system first
and the SMT system second (#3) yields per-
formance that is better than (or comparable to)
pipelines #1, #2 and #4, suggesting that there is no
real benefit in using more sophisticated pipelines
when only the best hypothesis from the SMT sys-
tem is used. However, performance is improved
when the 10 best SMT hypotheses are considered.
The only difference between pipelines #5 and #6
lies in the way corrections from the RBS system

18

Pipeline CE ME UE P R F0.5 ↑
1 RBS > SMTc > LM 372 3045 481 0.4361 0.1088 0.2723
2 RBSc + SMTc > LM 400 3017 485 0.4520 0.1171 0.2875
3 RBS > SMT 476 2941 738 0.3921 0.1393 0.2877
4 RBSc > LM > SMT 471 2946 718 0.3961 0.1378 0.2881
5 RBS > SMT10-best > LM 678 2739 1368 0.3314 0.1984 0.2922
6 RBSc > LM > SMT10-best > LM 681 2736 1366 0.3327 0.1993 0.2934

Table 3: Results for different system pipelines on the development set.

System CE ME UE P R F0.5
RBSc > LM > SMT10-best > LM 681 2736 1366 0.3327 0.1993 0.2934
RBSc > LM > SMT10-best > LM > Filter 681 2736 1350 0.3353 0.1993 0.2950

Table 4: Results for individual systems on the development set.

are handled. In the first case, all corrections are
applied at once whereas in the second, the sug-
gested corrections are used to generate candidates
that are subsequently ranked by our LM, often dis-
carding some of the suggested corrections.

3.3 Filtering

As described in Section 2.5, we can evaluate per-
formance by error type in order to identify and re-
move unnecessary corrections. In particular, we
tried to optimise our best hybrid system (#6) by
filtering out types with zero precision. Table 5
shows type-specific performance for this system,
where three zero-precision types can be identi-
fied: Reordering (a subset of Others that we treat
separately), Srun (run-ons/comma splices) and Wa
(acronyms). Although reordering was explicitly
disabled in our SMT system, a translation table
can still include this type of mappings if they are
observed in the training data (e.g. ‘you also can’
→ ‘you can also’).

In order to remove such undesired corrections,
the following procedure was applied: first, in-
dividual corrections were extracted by compar-
ing the original and corrected sentences; second,
the type of each extracted correction was pre-
dicted, subsequently deleting those that matched
unwanted types (i.e. reordering, Srun or Wa); fi-
nally, the set of remaining corrections was applied
to the original text. This method improves pre-
cision while preserving recall (see Table 4), al-
though the resulting improvement is not statisti-
cally significant (paired t-test, p > 0.05).

4 Official evaluation results

Our submission to the CoNLL 2014 shared task is
the result of our best hybrid system, described in
the previous section and summarised in Figure 1.
The official test set comprised 50 new essays (ap-
prox. 30,144 tokens in 1,312 sentences) written in
response to two prompts, one of which was also
included in the training data.

Systems were evaluated using the M2 Scorer,
which uses F0.5 as its overall measure. As in previ-
ous years, there were two evaluation rounds. The
first one was based on the original gold-standard
annotations provided by the shared-task organis-
ers whereas the second was based on a revised
version including alternative annotations submit-
ted by the participating teams. Our submitted sys-
tem achieved the first and second place respec-
tively. The official results of our submission in
both evaluation rounds are reported in Table 6.

5 Discussion and error analysis

In order to assess how our system performed per
error type on the test set, we ran our type estima-
tion script and obtained the results shown in Ta-
ble 7. Although these results are estimated and
therefore not completely accurate,4 they can still
provide valuable insights, at least at a coarse level.
The following sections discuss our main findings.

5.1 Type performance

According to Table 7, our system achieves the best
performance for types WOadv (adverb/adjective
position) and Wtone (tone), but these results are

4Estimation accuracy was found to be 57.90% on the test
set.

19

Error type CE ME UE P R F0.5
ArtOrDet 222 465 225 0.4966 0.3231 0.4485
Cit 0 6 0 – 0.0000 –
Mec 31 151 15 0.6739 0.1703 0.4235
Nn 138 256 136 0.5036 0.3503 0.4631
Npos 4 25 45 0.0816 0.1379 0.0889
Others 1 34 12 0.0769 0.0286 0.0575
Pform 1 25 22 0.0435 0.0385 0.0424
Pref 1 38 5 0.1667 0.0256 0.0794
Prep 61 249 177 0.2563 0.1968 0.2417
Reordering 0 1 12 0.0000 0.0000 –
Rloc- 13 115 80 0.1398 0.1016 0.1300
SVA 32 86 25 0.5614 0.2712 0.4624
Sfrag 0 4 0 – 0.0000 –
Smod 0 16 0 – 0.0000 –
Spar 4 30 0 1.0000 0.1176 0.4000
Srun 0 55 28 0.0000 0.0000 –
Ssub 7 64 15 0.3182 0.0986 0.2201
Trans 13 128 36 0.2653 0.0922 0.1929
Um 0 34 0 – 0.0000 –
V0 2 16 3 0.4000 0.1111 0.2632
Vform 28 90 68 0.2917 0.2373 0.2789
Vm 9 86 41 0.1800 0.0947 0.1525
Vt 18 137 53 0.2535 0.1161 0.2050
WOadv 0 12 0 – 0.0000 –
WOinc 2 35 71 0.0274 0.0541 0.0304
Wa 0 5 2 0.0000 0.0000 –
Wci 28 400 241 0.1041 0.0654 0.0931
Wform 65 161 54 0.5462 0.2876 0.4630
Wtone 1 12 0 1.0000 0.0769 0.2941
TOTAL 681 2736 1366 0.3327 0.1993 0.2934

Table 5: Type-specific performance of our best hy-
brid system on the development set. Types with
zero precision are marked in bold.

Test set CE ME UE P R F0.5
Original 772 1793 1172 0.3971 0.3010 0.3733
Revised 913 1749 1042 0.4670 0.3430 0.4355

Table 6: Official results of our system on the orig-
inal and revised test sets.

not truly representative as they only account for a
small fraction of the test data (0.64% and 0.36%
respectively).

The third best performing type is Mec, which
comprises mechanical errors (such as punctuation,
capitalisation and spelling mistakes) and repre-
sents 11.58% of the errors in the data. The remark-
ably high precision obtained for this error type
suggests that our system is especially suitable for
correcting such errors.

We also found that our system was particularly
good at enforcing different types of agreement, as
demonstrated by the results for SVA (subject–verb
agreement), Pref (pronoun reference), Nn (noun
number) and Vform (verb form) types, which add
up to 22.80% of the errors. The following example
shows a successful correction:

Error type CE ME UE P R F0.5
ArtOrDet 185 192 206 0.4731 0.4907 0.4766
Mec 86 219 16 0.8431 0.2820 0.6031
Nn 122 106 143 0.4604 0.5351 0.4736
Npos 2 13 59 0.0328 0.1333 0.0386
Others 0 30 10 0.0000 0.0000 –
Pform 8 26 21 0.2759 0.2353 0.2667
Pref 19 77 12 0.6129 0.1979 0.4318
Prep 100 159 144 0.4098 0.3861 0.4049
Reordering 0 0 7 0.0000 – –
Rloc- 23 89 116 0.1655 0.2054 0.1722
SVA 38 85 31 0.5507 0.3089 0.4762
Sfrag 0 4 0 – 0.0000 –
Smod 0 2 0 – 0.0000 –
Spar 0 10 0 – 0.0000 –
Srun 0 14 1 0.0000 0.0000 –
Ssub 8 39 19 0.2963 0.1702 0.2581
Trans 17 54 39 0.3036 0.2394 0.2881
Um 2 21 0 1.0000 0.0870 0.3226
V0 8 20 15 0.3478 0.2857 0.3333
Vform 31 93 46 0.4026 0.2500 0.3588
Vm 7 27 35 0.1667 0.2059 0.1733
Vt 26 108 40 0.3939 0.1940 0.3266
WOadv 10 11 0 1.0000 0.4762 0.8197
WOinc 1 33 37 0.0263 0.0294 0.0269
Wci 33 305 146 0.1844 0.0976 0.1565
Wform 42 49 29 0.5915 0.4615 0.5600
Wtone 4 7 0 1.0000 0.3636 0.7407
TOTAL 772 1793 1172 0.3971 0.3010 0.3733

Table 7: Type-specific performance of our submit-
ted system on the original test set.

ORIGINAL SENTENCE:
He or she has the right not to tell anyone .

SYSTEM HYPOTHESIS:
They have the right not to tell anyone .

GOLD STANDARD:
They have the right not to tell anyone .

In other cases, our system seems to do a good
job despite gold-standard annotations:

ORIGINAL SENTENCE:
This is because his or her relatives have the
right to know about this .

SYSTEM HYPOTHESIS:
This is because their relatives have the right
to know about this .

GOLD STANDARD:
This is because his or her relatives have the
right to know about this . (unchanged)

The worst performance is observed for Others
(including Reordering) and Srun, which only ac-
count for 1.69% of the errors. We also note that
Reordering and Srun errors, which had explicitly
been filtered out, still appear in our final results,

20

which is due to differences in the edit extraction
algorithms used by the M2 Scorer and our own im-
plementation. According to our estimations, our
system has poor performance on the Wci type (the
second most frequent), suggesting it is not very
successful at correcting idioms and collocations.

Corrections for more complex error types such
as Um (unclear meaning), which are beyond the
scope of this shared task, are inevitably missed.

5.2 Deletions

We have also observed that many mismatches be-
tween our system’s corrections and the gold stan-
dard are caused by unnecessary deletions, as in the
following example:

ORIGINAL SENTENCE:
I could understand the feeling of the carrier .

SYSTEM HYPOTHESIS:
I understand the feeling of the carrier .

GOLD STANDARD:
I could understand the feeling of the carrier .
(unchanged)

This effect is the result of using 10-best hy-
potheses from the SMT system together with LM
ranking. Hypotheses from an SMT system can in-
clude many malformed sentences which are effec-
tively discarded by the embedded target language
model and additional heuristics. However, rank-
ing these raw hypotheses with external systems
can favour deletions, as language models will gen-
erally assign higher probabilities to shorter sen-
tences. A common remedy for this is normali-
sation but we found it made no difference in our
experiments.

In other cases, deletions can be ascribed to dif-
ferences in the domain of the training and test sets,
as observed in this example:

ORIGINAL SENTENCE:
Nowadays , social media are able to dissemi-
nate information faster than any other media .

SYSTEM HYPOTHESIS:
Nowadays , the media are able to disseminate
information faster than any other media .

GOLD STANDARD:
Nowadays , social media are able to dissemi-
nate information faster than any other media .
(unchanged)

5.3 Uncredited corrections

Our analysis also reveals a number of cases where
the system introduces changes that are not in-
cluded in the gold standard but we consider im-
prove the quality of a sentence. For example:

ORIGINAL SENTENCE:
Demon is not easily to be defeated and it is
required much of energy and psychological
support .

SYSTEM HYPOTHESIS:
Demon is not easily defeated and it requires
a lot of energy and psychological support .

GOLD STANDARD:
The demon is not easily defeated and it re-
quires much energy and psychological sup-
port .

Adding alternative corrections to the gold stan-
dard alleviates this problem, although the list of
alternatives will inevitably be incomplete.

There are also a number of cases where the sen-
tences are considered incorrect as part of a longer
text but are acceptable when they are evaluated in
isolation. Consider the following examples:

ORIGINAL SENTENCE:
The opposite is also true .

SYSTEM HYPOTHESIS:
The opposite is true .

GOLD STANDARD:
The opposite is also true . (unchanged)

ORIGINAL SENTENCE:
It has erased the boundaries of distance and
time .

SYSTEM HYPOTHESIS:
It has erased the boundaries of distance and
time . (unchanged)

GOLD STANDARD:
They have erased the boundaries of distance
and time .

In both cases, system hypotheses are perfectly
grammatical but they are considered incorrect
when analysed in context. Such mismatch is the
result of discrepancies between the annotation and
evaluation criteria: while the gold standard is an-
notated taking discourse into account, system cor-

21

rections are proposed in isolation, completely de-
void of discursive context.

Finally, the inability of the M2 Scorer to com-
bine corrections from different annotators (as op-
posed to selecting only one annotator’s corrections
for the whole sentence) can also result in underes-
timations of performance. However, it is clear that
exploring these combinations during evaluation is
a challenging task itself.

6 Conclusions

We have presented a hybrid approach to error cor-
rection that combines a rule-based and an SMT
error correction system. We have explored dif-
ferent combination strategies, including sequen-
tial pipelines, candidate generation and ranking.
In addition, we have demonstrated that error type
estimations can be used to filter out unnecessary
corrections and improve precision without harm-
ing recall.

Results of our best hybrid system on the offi-
cial CoNLL 2014 test set yield F0.5=0.3733 for
the original annotations and F0.5=0.4355 for alter-
native corrections, placing our system in the first
and second place respectively.

Error analysis reveals that our system is partic-
ularly good at correcting mechanical errors and
agreement but is often penalised for unnecessary
deletions. However, a thorough inspection shows
that the system tends to produce very fluent sen-
tences, even if they do not match gold standard
annotations.

Acknowledgements

We would like to thank Marek Rei for his valuable
feedback and suggestions as well as Cambridge
English Language Assessment, a division of Cam-
bridge Assessment, for supporting this research.

References
Øistein E. Andersen, Helen Yannakoudakis, Fiona

Barker, and Tim Parish. 2013. Developing and test-
ing a self-assessment and tutoring system. In Pro-
ceedings of the Eighth Workshop on Innovative Use
of NLP for Building Educational Applications, BEA
2013, pages 32–41, Atlanta, GA, USA, June. Asso-
ciation for Computational Linguistics.

Pinaki Bhaskar, Aniruddha Ghosh, Santanu Pal, and
Sivaji Bandyopadhyay. 2011. May I check the
English of your paper!!! In Proceedings of the
Generation Challenges Session at the 13th Euro-
pean Workshop on Natural Language Generation,

pages 250–253, Nancy, France, September. Associ-
ation for Computational Linguistics.

Steven Bird, Edward Loper, and Ewan Klein.
2009. Natural Language Processing with Python.
O’Reilly Media Inc.

Daniel Dahlmeier and Hwee Tou Ng. 2012. Bet-
ter evaluation for grammatical error correction. In
Proceedings of the 2012 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
NAACL 2012, pages 568–572, Montreal, Canada.

Daniel Dahlmeier, Hwee Tou Ng, and Thanh Phu Tran.
2011. NUS at the HOO 2011 Pilot Shared Task. In
Proceedings of the Generation Challenges Session
at the 13th European Workshop on Natural Lan-
guage Generation, pages 257–259, Nancy, France,
September. Association for Computational Linguis-
tics.

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu.
2013. Building a Large Annotated Corpus of
Learner English: The NUS Corpus of Learner En-
glish. In Proceedings of the 8th Workshop on Inno-
vative Use of NLP for Building Educational Appli-
cations, BEA 2013, pages 22–31, Atlanta, Georgia,
USA, June.

Robert Dale and Adam Kilgarriff. 2011. Helping
Our Own: The HOO 2011 Pilot Shared Task. In
Proceedings of the Generation Challenges Session
at the 13th European Workshop on Natural Lan-
guage Generation, pages 242–249, Nancy, France,
September. Association for Computational Linguis-
tics.

Robert Dale, Ilya Anisimoff, and George Narroway.
2012. HOO 2012: A Report on the Preposition
and Determiner Error Correction Shared Task. In
Proceedings of the Seventh Workshop on Building
Educational Applications Using NLP, pages 54–62,
Montréal, Canada, June. Association for Computa-
tional Linguistics.

John DeNero and Dan Klein. 2007. Tailoring word
alignments to syntactic machine translation. In Pro-
ceedings of the 45th Annual Meeting of the Asso-
ciation of Computational Linguistics, pages 17–24,
Prague, Czech Republic, June. Association for Com-
putational Linguistics.

Marcello Federico, Nicola Bertoldi, and Mauro Cet-
tolo. 2008. IRSTLM: an open source toolkit for
handling large scale language models. In Proceed-
ings of the 9th Annual Conference of the Interna-
tional Speech Communication Association, INTER-
SPEECH 2008, pages 1618–1621, Brisbane, Aus-
tralia, September. ISCA.

Jianfeng Gao, Patrick Nguyen, Xiaolong Li, Chris
Thrasher, Mu Li, and Kuansan Wang. 2010. A
Comparative Study of Bing Web N-gram Language
Models for Web Search and Natural Language Pro-
cessing. In Web N-gram Workshop, Workshop of the

22

33rd Annual International ACM SIGIR Conference
(SIGIR 2010), pages 16–21, Geneva, Switzerland,
July.

Elitza Ivanova, Delphine Bernhard, and Cyril Grouin.
2011. Handling Outlandish Occurrences: Using
Rules and Lexicons for Correcting NLP Articles. In
Proceedings of the Generation Challenges Session
at the 13th European Workshop on Natural Lan-
guage Generation, pages 254–256, Nancy, France,
September. Association for Computational Linguis-
tics.

Reinhard Kneser and Hermann Ney. 1995. Improved
backing-off for m-gram language modeling. In Pro-
ceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing, volume I,
pages 181–184, Detroit, Michigan, May.

Philipp Koehn, Franz Josef Och, and Daniel Marcu.
2003. Statistical phrase-based translation. In Pro-
ceedings of the 2003 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics on Human Language Technology, vol-
ume 1 of NAACL ’03, pages 48–54, Edmonton,
Canada. Association for Computational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the ACL
on Interactive Poster and Demonstration Sessions,
ACL ’07, pages 177–180, Prague, Czech Republic.
Association for Computational Linguistics.

Philipp Koehn, 2014. Moses: Statistical Ma-
chine Translation System – User Manual and Code
Guide. University of Edinburgh, April. Available
online at http://www.statmt.org/moses/
manual/manual.pdf.

Anoop Kunchukuttan, Ritesh Shah, and Pushpak Bhat-
tacharyya. 2013. IITB System for CoNLL 2013
Shared Task: A Hybrid Approach to Grammati-
cal Error Correction. In Proceedings of the Seven-
teenth Conference on Computational Natural Lan-
guage Learning: Shared Task, pages 82–87, Sofia,
Bulgaria, August. Association for Computational
Linguistics.

Percy Liang, Ben Taskar, and Dan Klein. 2006. Align-
ment by agreement. In Proceedings of the Human
Language Technology Conference of the NAACL,
Main Conference, pages 104–111, New York City,
USA, June. Association for Computational Linguis-
tics.

Graham Neubig, Taro Watanabe, Eiichiro Sumita,
Shinsuke Mori, and Tatsuya Kawahara. 2011. An
unsupervised model for joint phrase alignment and

extraction. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguis-
tics: Human Language Technologies, pages 632–
641, Portland, Oregon, USA, June. Association for
Computational Linguistics.

Hwee Tou Ng, Siew Mei Wu, Yuanbin Wu, Christian
Hadiwinoto, and Joel Tetreault. 2013. The CoNLL-
2013 Shared Task on Grammatical Error Correction.
In Proceedings of the Seventeenth Conference on
Computational Natural Language Learning: Shared
Task, pages 1–12, Sofia, Bulgaria, August. Associa-
tion for Computational Linguistics.

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian
Hadiwinoto, Raymond Hendy Susanto, and Christo-
pher Bryant. 2014. The CoNLL-2014 Shared Task
on Grammatical Error Correction. In Proceedings of
the Eighteenth Conference on Computational Natu-
ral Language Learning: Shared Task (CoNLL-2014
Shared Task), Baltimore, Maryland, USA, June. As-
sociation for Computational Linguistics. To appear.

Diane Nicholls. 2003. The Cambridge Learner Cor-
pus: Error coding and analysis for lexicography and
ELT. In Dawn Archer, Paul Rayson, Andrew Wil-
son, and Tony McEnery, editors, Proceedings of
the Corpus Linguistics 2003 conference, pages 572–
581, Lancaster, UK. University Centre for Computer
Corpus Research on Language, Lancaster Univer-
sity.

Franz Josef Och and Hermann Ney. 2000. Improved
statistical alignment models. In Proceedings of the
38th Annual Meeting on Association for Computa-
tional Linguistics, ACL ’00, pages 440–447, Hong
Kong, October. Association for Computational Lin-
guistics.

Franz Josef Och and Hermann Ney. 2003. A sys-
tematic comparison of various statistical alignment
models. Comput. Linguist., 29(1):19–51, March.

Desmond Darma Putra and Lili Szabo. 2013. UdS
at CoNLL 2013 Shared Task. In Proceedings of
the Seventeenth Conference on Computational Natu-
ral Language Learning: Shared Task, pages 88–95,
Sofia, Bulgaria, August. Association for Computa-
tional Linguistics.

Alla Rozovskaya, Mark Sammons, Joshua Gioja, and
Dan Roth. 2011. University of Illinois System in
HOO Text Correction Shared Task. In Proceedings
of the Generation Challenges Session at the 13th Eu-
ropean Workshop on Natural Language Generation,
pages 263–266, Nancy, France, September. Associ-
ation for Computational Linguistics.

Alla Rozovskaya, Kai-Wei Chang, Mark Sammons,
and Dan Roth. 2013. The University of Illinois
System in the CoNLL-2013 Shared Task. In Pro-
ceedings of the Seventeenth Conference on Compu-
tational Natural Language Learning: Shared Task,
pages 13–19, Sofia, Bulgaria, August. Association
for Computational Linguistics.

23

Yang Xiang, Bo Yuan, Yaoyun Zhang, Xiaolong Wang,
Wen Zheng, and Chongqiang Wei. 2013. A hy-
brid model for grammatical error correction. In Pro-
ceedings of the Seventeenth Conference on Compu-
tational Natural Language Learning: Shared Task,
pages 115–122, Sofia, Bulgaria, August. Associa-
tion for Computational Linguistics.

Junwen Xing, Longyue Wang, Derek F. Wong, Lidia S.
Chao, and Xiaodong Zeng. 2013. UM-Checker: A
Hybrid System for English Grammatical Error Cor-
rection. In Proceedings of the Seventeenth Confer-
ence on Computational Natural Language Learn-
ing: Shared Task, pages 34–42, Sofia, Bulgaria, Au-
gust. Association for Computational Linguistics.

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.
2011. A new dataset and method for automatically
grading esol texts. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages
180–189, Portland, Oregon, USA, June. Association
for Computational Linguistics.

Ippei Yoshimoto, Tomoya Kose, Kensuke Mitsuzawa,
Keisuke Sakaguchi, Tomoya Mizumoto, Yuta
Hayashibe, Mamoru Komachi, and Yuji Matsumoto.
2013. NAIST at 2013 CoNLL Grammatical Er-
ror Correction Shared Task. In Proceedings of the
Seventeenth Conference on Computational Natural
Language Learning: Shared Task, pages 26–33,
Sofia, Bulgaria, August. Association for Computa-
tional Linguistics.

Zheng Yuan and Mariano Felice. 2013. Constrained
grammatical error correction using statistical ma-
chine translation. In Proceedings of the Seventeenth
Conference on Computational Natural Language
Learning: Shared Task, pages 52–61, Sofia, Bul-
garia, August. Association for Computational Lin-
guistics.

24

