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K-stability for Kähler manifolds

Ruadháı Dervan and Julius Ross

We formulate a notion of K-stability for Kähler manifolds, and
prove one direction of the Yau-Tian-Donaldson conjecture in this
setting. More precisely, we prove that the Mabuchi functional be-
ing bounded below (resp. coercive) implies K-semistability (resp.
uniformly K-stable). In particular this shows that the existence of
a constant scalar curvature Kähler metric implies K-semistability,
and K-stability if one assumes the automorphism group is discrete.
We also show how Stoppa’s argument holds in the Kähler case, giv-
ing a simpler proof of this K-stability statement.
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1. Introduction

The search for canonical metrics in Kähler geometry has led to the impor-
tant notion of K-stability. Originally defined by Tian [64] in the context of
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Kähler-Einstein metrics on Fano manifolds and by analogy with the Hilbert-
Mumford criterion in Geometric Invariant Theory, K-stability involves con-
trol of the sign of a numerical invariant associated to certain one-parameter
degenerations of the original manifold. This numerical invariant is essen-
tially the same quantity discovered by Futaki [35] which is given as an in-
tegral over the central fibre of the degeneration, and has since been given a
purely algebro-geometric interpretation by Donaldson [27]. For this reason
the invariant is commonly referred to as the Donaldson-Futaki invariant,
and extends the notion of K-stability to projective manifolds that are not
necessarily Fano.

Over time it has become clear that it is useful to think of the Donaldson-
Futaki invariant as a kind of topological invariant of the total space of a
given degeneration. This point of view was exploited first by Wang [66]
and Odaka [46, 47], and is key to the relationship between K-stability and
birational geometry, in particular the work of Li-Xu [43], as well as the
non-Archimidean viewpoint taken up by Boucksom-Hisamoto-Jonsson [7].

The point of this paper is to emphasise that the topological definition of
the Donaldson-Futaki invariant allows one to define K-stability even more
generally, and applies to Kähler manifolds that are not necessarily projective.
This extension appears in embryonic form in [3, 52, 56, 62]. Our main result is
a precise definition of the Donaldson-Futaki invariant and K-stability in this
context as well as a proof of the so-called “easy direction” of the Yau-Tian-
Donaldson conjecture in this setting. In the following let X be a compact
complex manifold and [ω] be a Kähler class on X.

Theorem 1.1. Suppose the Mabuchi functional for [ω] is bounded (resp.
coercive). Then (X, [ω]) is K-semistable (resp. uniformly K-stable).

A deep analytic result of Berman-Berndtsson [5] (resp. Darvas-
Rubinstein [18] and Berman-Darvas-Lu [4]) says that the Mabuchi functional
is bounded (resp. coercive when Aut(X, [ω]) is discrete) if one assumes that
[ω] admits a constant scalar curvature Kähler (cscK) metric. So combining
this with the above we get one direction of the Yau-Tian-Donaldson con-
jecture in this setting (when this project started the result of [4] was not
available, so we were only able to conclude K-semistability).

In the projective case a clever argument of Stoppa [57] proves the exis-
tence of a constant scalar curvature Kähler metric implies K-stability (also
under the assumption there are no infinitesimal automorphisms) using a
blowup technique and the glueing theorem of Arezzo-Pacard [1]. Our second
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result shows that this technique also works in the Kähler case (and moreover
gives a slightly different proof of Stoppa’s theorem in the projective case).

Theorem 1.2. Assume the automorphism group of (X, [ω]) is discrete. If
there exists a constant scalar curvature Kähler metric in [ω] then the pair
(X, [ω]) is K-stable.

Discussion

The depth of the Yau-Tian-Donaldson conjecture in the projective case lies
in its linking analysis (through the Kähler-Einstein or cscK equation) and fi-
nite dimensional algebraic geometry (through stability). By the projectivity
assumption it is unclear what, if anything, replaces this finite dimensional
picture, but it is still interesting to ask if there are any features of the projec-
tive case that survive. For instance, one can ask how K-stability behaves in
families; that is if Y → S is a flat family of manifolds what can be said about
the set Sstab = {s ∈ S : Ys is K-stable}? For this to make sense in the pro-
jective case one needs to assume also the data of a relatively ample L → Y
making each Ys polarised. When this polarisation is the anti-canonical bun-
dle (so each Ys is Fano), a corollary of the Chen-Donaldson-Sun [11–13]
techniques gives that Sstab is Zariski-open [29, 48]. In the non-Fano case, it
may be that Zariski-openness is too much to ask for, but it seems likely that
Sstab is at least the complement of a countable number of algebraic sets in
S. In the non-projective case L must be replaced by a suitable (1, 1)-class,
and we ask if Sstab has an analogous property. More precisely, is Sstab the
complement of a countable number of analytic subsets of S? We remark that
there exist analogous statement for stability for vector bundles (or sheaves)
on Kähler manifolds (see [63] or [36, Prop 2.9,Theorem 11.6]). This, along
with results of Hong [39], suggest the above is true for particular families of
ruled manifolds, but other than this the question seems very much open.

Outline

We start in Section 2 by defining the Donaldson-Futaki invariant and K-
stability in a way that immediately extends to the non-projective case. After
recalling some of the basic functionals that we shall need in Section 3, we
prove Theorem 1.1 in Section 4. Then in Section 5 we give a modification of
the blowup argument of Stoppa [57] giving Theorem 1.2. Finally in Section 6
we give extensions that apply to twisted constant scalar curvature Kähler
metrics and to the J-flow.



692 R. Dervan and J. Ross

Notations

A polarised variety is a pair (X,L) where X is a variety and L an ample line
bundle on X. To simplify notation if L1, . . . , Ln are line bundles on X where
n = dimX we write L1 . . . Ln to mean the intersection c1(L1) · · · c1(Ln). We
will exclusively deal with normal varieties that admit a canonical (Weil)
divisor KX , and we let L1 . . . Ln−1.KX denote the intersection c1(L1) · · ·
c1(Ln−1).[KX ].

When X is smooth, the Dolbeaut cohomology class of a (1, 1) form (or
current) ω will be denoted by [ω]. If [ω1], . . . , [ωn] are (1, 1)-classes we let
[ω1] · · · [ωn] =

∫
X ω1 ∧ · · · ∧ ωn.

Given a family π : X → B for t ∈ B we let Xt := π−1(t) and if L is a line
bundle on X let Lt := L|Xt

. Similarly if Ω is a form on X we let Ωt := Ω|Xt
.

We denote the projections from a product X1 ×X2 to the two factors by
either pi for i = 1, 2 (or pXi

for i = 1, 2). Finally if p : X → Y is a morphism
and ω is a form on Y we will sometimes write ω for p∗ω when no confusion
is possible.

2. Definition of K-stability for Kähler manifolds

In this section we make a precise definition of K-stability for Kähler mani-
folds. To put this in context we start with a presentation of the definition
in the projective case.

2.1. K-stability in the projective case

Let (X,L) be a normal polarised variety of dimension n.

Definition 2.1 (Test-configuration, projective case). A test-config-
uration for (X,L) is a normal polarised variety (X ,L) together with
(i) a C∗-action on X lifting to L,
(ii) a flat C∗-equivariant map π : X → P1 where P1 is given the standard

C∗-action,

such that (π−1(P1 \ {0}),L) is C∗-equivariantly isomorphic to the product
(X × C∗, p∗XL⊗r) (where the latter is given the trivial action on the X fac-
tor). The number r is called the exponent of the test-configuration.



K-stability for Kähler manifolds 693

Definition 2.2 (Slope of a polarised variety, projective case). We
define the slope of (X,L) to be

μ(X,L) :=
−KX .Ln−1

Ln
=

− ∫
X c1(KX).c1(L)

n−1∫
X c1(L)n

.

Definition 2.3 (Donaldson-Futaki invariant, projective case). The
Donaldson-Futaki invariant of a test-configuration (X ,L) for (X,L) of ex-
ponent r is

DF(X ,L) := n

n+ 1
μ(X,L⊗r)Ln+1 + Ln.KX/P1 .

Remark 2.4. (i) As we are assuming X is normal, the assumption that π
is flat in the definition of a test-configuration is automatically satisfied
[37, III 9.7].

(ii) Again because of normality, X has a canonical divisor KX which is a
Weil-divisor, and thus also a relative canonical divisor KX/P1 = KX −
π∗KP1 making the intersection Ln.KX/P1 well-defined.

(iii) We can extend the notion of test-configuration, Donaldson-Futaki in-
variant and K-stability to the case that L and L are R-line bundles in
the obvious way. In particular, we can and do assume that the exponent
of the test-configuration is one.

Another important concept is the minimum norm of a test-configuration
[7, 24]. To define this observe that every test-configuration admits a bira-
tional map

f : (X × P1, p∗1L) ��� (X ,L),
so one can take a resolution of indeterminacy as follows.

Y

X × P1 X
q g

f

Definition 2.5 (Minimum norm of a test-configuration, projective
case). We define the minimum norm of (X ,L) to be

‖(X ,L)‖m = g∗L.(q∗L)n − (g∗L)n+1

n+ 1
.
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Proposition 2.6. The minimum norm of (X ,L) is non-negative. Moreover
a test-configuration is isomorphic to (X × P1, L) if and only if its minimum
norm is zero.

Proof. The second statement is proved in [24, Theorem 1.3] (and the non-
negativity of the norm is proved along the way) and independently in [7].
We invite the reader to compare with similar results in [42]. �

Definition 2.7 (K-stability for projective varieties). We say a po-
larised variety (X,L) is

(i) K-semistable if DF(X ,L)≥0 for all test-configurations (X ,L) for (X,L),

(ii) K-stable if DF(X ,L) > 0 for all test-configurations (X ,Ω) for (X,L)
with ‖(X ,L)‖m > 0,

(iii) uniformly K-stable if there exists an ε > 0 such that DF(X ,Ω) ≥
ε‖(X ,L)‖m for all test-configurations (X ,L) for (X,L).

Remark 2.8. (i) The definition above of the minimum norm varies slightly
to that given in [24]. Namely, the definition here is equal to the non-
Archimedean J-functional as defined in [7], while the definition in [24]
corresponds to the non-Archimedean I − J-functional. Analogous to
Lemma 3.3, it is proved in [7] that this does not affect the definition of
(uniform) K-stability.

(ii) The above definitions differ slightly from elsewhere in the literature.
One can instead consider a test-configuration as a flat family over C

with the same properties. However this changes nothing as any such
family is isomorphic to to (X × C∗, p∗1L) away from t = 0 so one can
glue in the trivial family around infinity to compactify to give a test-
configuration in the above sense. Furthermore we assume that the to-
tal space X is normal, but this is known not to affect the definition
of K-semistability or uniform K-stability [52, Proposition 5.1] (and
also does not affect the definition of K-stability as we assume in (ii)
that ‖(X ,L)‖m is strictly positive). Moreover the usual definition of
K-stability often requires L to be relatively ample, again this is easily
seen to be equivalent to our definition. Finally Odaka and Wang [47, 66]
both prove that the definition of the Donaldson-Futaki invariant given
here agrees with the definition of Donaldson [27] that is given in terms
of the weight of the induced C∗-action on the section ring of the central
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fibre of (X ,L), see also [43]. This, in turn, is equivalent to Futaki’s orig-
inal invariant (as originally used by Tian [64]) when the central fiber is
normal [27].

(iii) In the Fano case the most important of these is K-stability, since it
has been proved by Chen-Donaldson-Sun [11–13] that a Fano manifold
admits a Kähler-Einstein metric if and only if (X,−KX) is K-stable. For
general polarisations it is strongly expected that something more than
K-stability is needed to guarantee the existence of a canonical Kähler
metric (such as one with constant scalar curvature), and uniform K-
stability is a candidate for this [7, 24]. In [61] Székelyhidi proposes a
beautiful notion of K-stability using filtrations that can be thought of as
a form of uniform K-stability restricted to a particular set of sequences
of test-configurations.

(iv) In the projective case, it is known that the existence of a canonical
Kähler metric implies K-stability [2, 26, 57, 64], see also [4, 14, 60] for
related results in the presence of automorphisms.

(v) The definition of K-stability is unchanged if one restricts to test-config-
urations whose central fibre X0 := π−1(0) is reduced (that is, one de-
mands only that the relevant inequality for the Donaldson-Futaki in-
variant holds for this restricted class of test-configurations). In fact,
one can perform a base change and then normalisation to obtain from
any test-configuration a new test-configuration with reduced central
fibre, whilst controlling both the Donaldson-Futaki invariant [7, Propo-
sition 7.14, Proposition 7.15] and the minimum norm [7, Remark 7.11,
Proposition 7.23]. We prove the analytic counterpart of this statement
in Proposition 2.23.

2.2. K-stability in the non-projective case

To define K-stability in the non-projective case we will use the notion of a
smooth Kähler form on an analytic space. To discuss this we first need the
notion of forms on such a space [21], so let X be a complex analytic space
that is reduced and of pure dimension n. We let Xreg and Xsing denote
respectively the regular and singular locus of X. Roughly, a smooth form on
X is defined locally as the restriction of a smooth form from some embedding
of X into affine space. That is, if j : X → Ω is a local embedding where
Ω ⊂ CN is open, a (p, q)-form on X is defined as the image of the restriction
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map

j∗ : Ap,q(Ω) → Ap,q(Xreg).

That this is well-defined is verified in [21, p14] and comes from the fact that
given any other local embedding j′ : X → Ω′ ⊂ CN ′

there exists (locally)
holomorphic f : Ω → CN ′

and g : Ω′ → CN such that j′ = fj and j = gj′,
from which one can check that the image of j∗ and j′∗ agree. In particu-
lar this definition agrees with the usual definition of smooth forms on the
smooth locus Xreg. The exterior derivative, wedge product are defined in the
obvious way on the regular locus. If F : X → Y is a morphism between ana-
lytic spaces then one can define a pullback F ∗ of forms by considering local
embeddings j : X → Ω and j′ : Y → Ω′ such that F lifts to a map Ω → Ω′

and pulling back from Ω′ to Ω. That this is well defined is verified in [21,
Lemma 1.3] (the only subtlety being when F (X) is contained in the singular
locus of Y ).

Definition 2.9 (Kähler space). A Kähler space (X,ω) is an analytic
space X and a smooth (1, 1)-form ω on X that is locally the restriction of a
smooth Kähler form under an embedding of X into an open subset of some
CN . We refer to ω as a smooth Kähler form on X, and observe that for the
same reason as above this notion is well-defined.

From now on we let X be a compact Kähler manifold of dimension n
and ω a Kähler form with cohomology class [ω].

Definition 2.10 (Test-configuration). A test-configuration for (X, [ω])
is a normal Kähler space (X ,Ω), together with

(i) a surjective flat map π : X → P1,

(ii) a C∗-action on X covering the usual action on P1 such that Ω is S1-
invariant and so that the C∗ action preserves the Bott-Chern cohomol-
ogy class of Ω,

(iii) A biholomorphism α : π−1(P1 \ {0}) � X × P1 \ {0} that is C∗-
equivariant such that for all t ∈ P1 \ {0} we have [Ωt] = [α∗tω] as co-
homology classes.

Examples 2.11. As the above definition of a test configuration is new, we
give some simple examples. Note that if X is in fact projective then one class
of test configurations for (X, [ω]) can be obtained by taking a non-integral
Kähler form Ω on a usual (i.e. projective) test configuration for X. In the
following we will see there are genuinely non-projective examples.
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(i) (Products) If a Kähler manifold (X, [ω]) admits a holomorphic C∗-
action, then the product X × C admits an induced action. One can
compactify to a family π : X → P1, which admits a relatively Kähler
class α induced from [ω]. Picking an S1-invariant Ω ∈ α gives a test
configuration with respect to Ω + π∗ωFS , called a product test config-
uration.

(ii) (Degeneration to normal cone) Suppose Y ⊂ X is a submanifold of a
compact complex manifold X, and let p : X → X × P1 be the blowup
of Y × {0} inside X × P1. Then the product C∗-action on X × P1 that
acts trivially on the X factor lifts to X . Letting [E] denote the coho-
mology class of the exceptional divisor, for sufficiently small c > 0 the
cohomology class p∗[ω]− c[E] admits a Kähler form Ω whose restriction
to 1 ∈ P1 is ω [49, Lemma 3.4], and by averaging over the S1-action we
may assume Ω is S1-invariant. Thus (X ,Ω) is a test configuration for
(X, [ω]). K-stability with respect to test-configurations constructed in
this way gives the notion of slope-stability of X with respect to Y which
was first studied in the projective case by Ross-Thomas [52, 53] and in
the analytic case by Stoppa [56]. The reader will find further (non-
projective) examples in [56, Sec 5], including a slope-unstable Kähler
manifold that is not deformation equivalent to any projective manifold.

(iii) (Toric test-configurations) The well known correspondence between
toric manifolds and polytopes gives rise to test configurations that are
themselves toric. Suppose that (X,ω) is a toric Kähler manifold and P
the image of the moment polytope. We recall that when ω is an inte-
gral class, P will be a lattice polytope, but there are examples of toric
Kähler manifolds that are not projective [45, p84]. Let f : P → R be a
concave strictly positive piecewise linear function. Then the polytope
Q = {(x, t) ∈ P × R : t ≤ f(x)} is a polytope of one dimension higher
than P , that gives rise to a toric X that is the total space of a test-
configuration for (X, [ω]). This idea been studied in detail by Donald-
son (e.g. [27]) who emphasises the projective case, but much of what is
written does not require this hypothesis.

(iv) (Projective bundles) Let (B,ωB) be a Kähler manifold and E be a
hermitian holomorphic vector bundle on B. Set X = P(E). Then the
hermitian metric on E induces a (1, 1)-form on X that is positive in
the fibre directions, and so pulling back by a suitable multiple of ωB

gives a Kähler form ω on X. We can then form a test configuration for
(X, [ω]) starting with any degeneration of E to a vector bundle E0, by
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thinking of such a degeneration as a holomorphic vector bundle E over
B × C and letting X = P(E) over C and then glueing the trivial family
over P1 \ {0}.

(v) (Limits of submanifolds) Suppose (P, ωP ) is a complete non-projective
Kähler manifold that admits a holomorphic C∗-action preserving [ωP ]
(for example one may take P to be the projectivization of a vector
bundle that admits a C∗-action). Let X ⊂ P be a submanifold and
ω := ωP |X . Moving X with the C∗-action gives a family over C∗ of
submanifolds of P which we may think of as a morphism from C∗

to the Douady space of P . Since P is a compact Kähler manifold, a
theorem of Fujiki [34, Theorem 4.5] allows one to complete this to get
a family X ⊂ C× P which is flat over C. Normalising and then glueing
the trivial family over P1 \ {0} gives a test-configuration for (X, [ω]).

Definition 2.12 (Slope of a Kähler manifold). The slope of a Kähler
manifold is defined to be

μ(X,ω) :=
c1(X).[ω]n−1

[ω]n
.

For test-configurations with smooth total space we can define the
Donaldson-Futaki invariant by complete analogy to the projective case:

Definition 2.13 (Donaldson-Futaki invariant I). Let (π : X → P1,Ω)
be a test-configuration for (X, [ω]) with X smooth. We define the Donaldson-
Futaki invariant of a (1, 1)-form Ω′ on X to be

DF(X ,Ω′) :=
n

n+ 1
μ(X,ω)[Ω′]n+1 − (c1(X )− π∗c1(P1)).[Ω′]n.

The Donaldson-Futaki invariant of (X ,Ω) is defined to be DF (X ,Ω).

When the test-configuration is singular, we take a resolution of singu-
larities p : Y → X . By Hironaka’s Theorem we can, and will, assume that
p is an isomorphism away from the central fibre of X , so that there are
equivariant isomorphisms

Y\Y0
∼= X\X0

∼= X × C.

Moreover we assume that Y is constructed from X by successive blowups
along smooth centres, and we will always assume our resolutions are equiv-
ariant. Observe that the semi-positive form p∗Ω may not be strictly positive
on Y (and so is not a Kähler form).
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Definition 2.14 (Donaldson-Futaki invariant II). Let (X ,Ω) be a
test-configuration for (X,ω) and p : Y → X be a resolution. We define the
Donaldson-Futaki invariant of (X ,Ω) to be

DF(X ,Ω) := DF (Y, p∗Ω)

=
n

n+ 1
μ(X,ω)[p∗Ω]n+1 − (c1(Y)− (π ◦ p)∗c1(P1)).[p∗Ω]n.

Lemma 2.15. The Donaldson-Futaki invariant is independent of resolution.

Proof. Let Y ′ q→ Y p→ X be a tower of resolutions. Then q∗c1(Y) = c1(Y ′) +
[D] where D is a sum of divisors that are exceptional for q. So [D].[q∗p∗Ω]n =
0 since q maps each component of D to something of dimension at most
n− 1. In fact if D =

∑
aiDi then [Di][q

∗p∗Ω]n =
∫
Di

q∗p∗Ωn =
∫
Di

ι∗q∗p∗Ωn

where ι : Di → Y ′ is the inclusion. But p ◦ ι factors though some submanifold
Z of Y and q∗p∗Ωn|Z = 0 for dimension reasons; compare [22, 7.2]. Using
this one sees immediately that

DF (Y, p∗Ω) = DF (Y ′, q∗p∗Ω).

Since any two resolutions of X are dominated by a third, this proves the
lemma. �

Remark 2.16. To see that the term [p∗Ωn+1] is independent of resolution
one can also simply note that [p∗Ωn+1] =

∫
Xreg

Ωn+1.

Remark 2.17. One could instead attempt to define the Donaldson-Futaki
invariant on a test-configuration with normal total space by making sense
of the intersection products in Definition 2.13. For example [54] does this
using the intersection in Bott-Chern cohomology. We have instead chosen
to define the Donaldson-Futaki invariant using a resolution of singularities,
which is equivalent and changes rather little for us, since in the end we want
to work on such a resolution.

As in the projective case we also need a notion of a norm of a test-
configuration. Let (X ,Ω) be a test-configuration for (X, [ω]). Denote by

f : X × P1 ��� X
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the natural bimeromorphic map. We can take a resolution of indeterminacy
as follows.

Y

X × P1 X
q g

f

Definition 2.18 (Minimum norm of a test-configuration). Let (X ,Ω)
be a test-configuration for (X, [ω]). We define the minimum norm of a (1, 1)-
form Ω′ on X to be

‖(X ,Ω′)‖m = [g∗Ω′].[q∗ω]n − [g∗Ω′]n+1

n+ 1
.

The minimum norm of (X ,Ω) is defined to be ‖(X ,Ω)‖m.

Just as in Lemma 2.15, we have the following.

Lemma 2.19. The minimum norm is independent of choice resolution of
indeterminacy.

We will prove the following in Proposition 4.19.

Proposition 2.20. The minimum norm of a test-configuration is non-
negative.

Remark 2.21. By the definition of a test configuration there is a biholo-
morphism f : X ∼= X1 such that [f∗Ω1] = [ω]. So abusing notation slightly,
the minimum norm is therefore also given as

‖(X ,Ω)‖m = [g∗Ω].[q∗Ω1]
n − [g∗Ω]n+1

n+ 1
.

We are now ready to define the notions of stability relevant to us.

Definition 2.22 (K-stability for Kähler manifolds). We say a Kähler
manifold (X, [ω]) is

(i) K-semistable if DF(X ,Ω) ≥ 0 for all test-configurations (X ,Ω) for
(X, [ω]),

(ii) K-stable if DF(X ,Ω) > 0 for all test-configurations (X ,Ω) for (X, [ω])
with ‖(X ,Ω)‖m > 0,

(iii) uniformly K-stable if there exists an ε > 0 such that DF(X ,Ω) ≥
ε‖(X ,Ω)‖m for all test-configurations (X ,Ω) for (X, [ω]).
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The following proposition says that for K-semistability and uniformly
K-stability it is sufficient to consider only test-configurations with smooth
total space and whose central fibre is reduced.

Proposition 2.23. Let (X,ω) be a compact Kähler manifold. Then (X, [ω])
is K-semistable (resp. uniformly K-stable) if DF (X ,Ω) ≥ 0 (resp. there ex-
ists an ε > 0 such that DF (X ,Ω) ≥ ε‖(X ,Ω)‖m) for all test-configurations
(X ,Ω) for (X, [ω]) such that X is smooth and whose central fibre X0 is re-
duced.

Moreover one can assume the natural bimeromorphic map X ��� X × P1

is defined on all of X , so no resolution of indeterminacy is needed in the
definition of the minimum norm.

Proof. (1) We first show how to reduce to test-configurations with smooth
total space. Let (X ,Ω) be a test-configuration for (X, [ω]). It is shown in
[15, Lemma 2.2] that there exists a resolution of singularities p : Y → X
such that Y has a Kähler metric ζ in the cohomology class p∗[Ω]− c[E]
where E is the exceptional divisor in Y and c is some sufficiently small
positive real number. We observe the reference [15] applies to the resolution
of singularities constructed in [6], which is canonical and so the C∗-action
on X lifts to Y; see [6, Theorem 13.2(2)]. Averaging ζ over the induced
S1-action we may assume it is S1-invariant.

Now, for small δ > 0 let

Ωδ := (1 + δ)−1(p∗Ω+ δζ)

which is an S1-invariant Kähler form on Y making (Y,Ωδ) a test configura-
tion for (X, [ω]) with smooth total space. By Lemma 2.15, the Donaldson-
Futaki invariant of (X ,Ω) can be calculated on any resolution, giving

DF (X ,Ω) = DF (Y, p∗Ω)

=
n

n+ 1
μ(X,ω)[p∗Ω]n+1 − (c1(Y)− (πp)∗c1(P1)).[p∗Ω]n

= DF (Y,Ωδ) +O(δ).

A similar calculation allows one to compare the minimum norm of (X ,Ω)
and (Y,Ωδ). In detail let f : X × P1 ��� X be the natural bimeromorphic
map which lifts to a map f̃ : X × P1 ��� Y so that pf̃ = f .
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Taking a resolution of indeterminancy of f̃ gives a smooth Z fitting in
a diagram

Z Y

X × P1 X

g

q p
f̃

f

Then g̃p : Z → X is a resolution of indeterminancy of f , and so by Lemma
2.19 it can be used to calculate both the minimum norm of (X ,Ω) and of
(Y,Ωδ). Thus

‖(Y,Ωδ)‖m = [g∗Ωδ][q
∗ω]n − [g∗Ωδ]

n+1

n+ 1

= [g∗p∗Ω][q∗ω]n +
[g∗p∗Ω]n+1

n+ 1
+O(δ)

= ‖(X ,Ω)‖m +O(δ).

This is enough to prove the first statement, for if (X, [ω]) is not K-semistable
then there is a test-configuration (X ,Ω) for (X, [ω]) with DF (X ,Ω) < 0 and
so taking δ sufficiently small DF (Y,Ωδ) < 0 as well. Analogous arguments
work for uniform K-stability, and the statement regarding the existence of
a surjective map to X × P1.

(2) We next show how to reduce to test-configurations with reduced cen-
tral fibre (this is similar to the proof in the projective case [7, Section 7.3]).
Let (X ,Ω) be a test-configuration for (X, [ω]) with smooth total space. Con-
sider the map u : P1 → P1 given by z �→ zd and let X ′ be the normalisation
of the pullback of X along u. We denote the induced finite map X ′ → X
also by u. Setting Ω′ := u∗Ω we have that (X ′,Ω′) is a test-configuration for
(X, [ω]) which, for d sufficiently large and divisible, has reduced central fibre
[41, Section 16]. Thus we need to compare the Donaldson-Futaki invariant
and minimum norms of these two test-configurations.

We start with the minimum norm. Consider a resolution of indetermi-
nancy

(2.1)

Y

X × P1 X
q g

f
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Let Y ′ be the normalisation of the pullback of Y along u, and denote
the induced finite map also by u : Y ′ → Y. Thus we have a diagram

(2.2)

Y ′

X × P1 X ′
q′

g′

f ′

such that the maps u : X × P1 → X × P1, u : X ′ → X and u : Y ′ → Y take
(2.2) to (2.1) (that is, the obvious diagram commutes). Then let p : Z ′ → Y ′
be a resolution, so Z ′ → X ′ is a resolution of indeterminancy for X × P1 ���
X ′. Using this to compute the minimum norms gives

‖(X ′,Ω′)‖m = [p∗g′∗Ω′][p∗q′∗Ω′1]
n − [p∗g′∗Ω′]n+1

n+ 1
(2.3)

= [g′∗Ω′][q′∗Ω′1]
n − [g′∗Ω′]n+1

n+ 1

= [u∗g∗Ω][q∗u∗Ω1]
n − [u∗g∗Ω]n+1

n+ 1
= d‖(X ,Ω)‖m.

We now turn to the Donaldson-Futaki invariant. Using the pullback
formula for the canonical bundle [40, 2.41.4] under finite maps (which still
holds in the analytic setting [40, Section 2.1, p38]), we have

c1(Y ′)− p′∗π∗c1(P1) = u∗(c1(Y)− p∗π∗c1(P1)) + [R]

for some effective divisor R in Y ′ (this calculation is exactly as in the pro-
jective case, for which we refer the reader to [7, equation (4.6)]). Using
[R].[g′∗Ω′]n ≥ 0 gives

DF (X ′,Ω′) = DF (Z ′, p∗g′∗Ω)
=

n

n+ 1
μ(X,ω)[p∗g′∗Ω′]n+1 − (c1(Z ′)− p∗q′∗π∗c1(P1))[g′∗Ω′]n

=
n

n+ 1
μ(X,ω)[g′∗Ω′]n+1 − (c1(Y ′)− q′∗π∗c1(P1))[g′∗Ω′]n

≤ n

n+ 1
μ(X,ω)[u∗g∗Ω]n+1 − (u∗c1(Y)− u∗q∗π∗c1(P1)).[u∗g∗Ω]n

= d

(
n

n+ 1
μ(X,ω)[g∗Ω]n+1 − (c1(Y)− p∗π∗c1(P1).[g∗Ω]n

)
= dDF (Y, g∗Ω)
= dDF (X ,Ω)
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So in total we have

DF (X ′,Ω′) ≤ dDF (X ,Ω)

Together with (2.3) this completes the proof. �

Lemma 2.24. For all c ∈ R and all smooth (1, 1)-forms η ∈ c1(OP1(1)) we
have

DF(X ,Ω+ cπ∗η) = DF(X ,Ω).

and

‖(X ,Ω+ cπ∗η)‖m = ‖(X ,Ω)‖m.

Proof. Without loss of generality we may assume X is smooth. We show

[Ω + cπ∗η]n+1 = [Ω]n+1 + c(n+ 1)[Ωt]
n,

and

[Ω + cπ∗η]n.[c1(X )− π∗c1(P1)] = [Ω]n.[c1(X )− π∗c1(P1)]

+ (cn)c1(Xt).[Ωt]
n−1,

for some (or equivalently all) t, which imply the result.
Note that π∗Ωn is smooth away from 0, since π is a submerssion on this

locus [23, Lemma 2.15]. From Poincaré-Lelong it then follows that for t 
= 0
we have ∫

X
Ωn ∧ (π∗η) =

∫
X\X0

Ωn ∧ (π∗η)

=

∫
P1\0

π∗(Ωn) ∧ η

=

∫
P1\0

π∗(Ωn) ∧ {t}

=

∫
Xt

Ωn
t .

The push-pull formula implies

[Ω]n+1−i.[π∗η]i = 0

for all i ≥ 2, which then gives the first required equation.
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The adjunction formula gives c1(X ).Xt = c1(Xt), since the intersection
of the fibre with itself is trivial. It follows that

[Ω + cπ∗η]n.(c1(X )− π∗c1(P1)) = [Ω]n.(c1(X )− π∗c1(P1))

+ (cn)[Ωt]
n−1.c1(Xt),

as required. The second statement is proved similarly. �

3. Preliminaries on the Mabuchi functional

Let (X,ω) be a compact Kähler manifold. The ∂∂̄-lemma implies any other
Kähler metric in the Kähler class [ω] can be written as ω + i∂∂̄ϕ, for some
ϕ ∈ C∞(X,R).

Definition 3.1 (Mabuchi functional). [44] Fix a path ϕt ∈ C∞(X,R) in
the space of Kähler potentials with ϕ0 = 0 and ϕ1 = ϕ and corresponding
Kähler metrics ωt. We define the Mabuchi functional to be

M(ϕ) := −
∫ 1

0

∫
X
ϕ̇t(S(ωt)− nμ(X,ω))ωn

t ,

where S(ωt) denotes the scalar curvature of ωt.

As the notation suggests, the Mabuchi functional is independent of cho-
sen path. The Mabuchi functional also admits an explicit formulation as
follows, due to Chen [9] and Tian [65, Section 7.2].

M(ϕ) =

∫
X
log

(
ωn
ϕ

ωn

)
ωn
ϕ +

n

n+ 1
μ(X, [ω])

n∑
i=0

∫
X
ϕωi ∧ ωn−i

ϕ

−
n−1∑
i=0

∫
X
ϕRicω ∧ ωi ∧ ωn−1−i

ϕ .

We will also require some more functionals.

Definition 3.2 (Aubin-Mabuchi, J and I functionals). Let (X,ω) be
a Kähler manifold, and let ϕ be a Kähler potential. We define

(i) the Aubin-Mabuchi energy of ϕ as

AM(ϕ) =

n∑
i=0

∫
X
ϕωi ∧ ωn−i

ϕ ,
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(ii) the J-functional of ϕ as

J(ϕ) :=

∫
X
ϕωn − AM(ϕ)

n+ 1
,

(iii) the I-functional of ϕ as

I(ϕ) :=

∫
X
ϕ(ωn − ωn

ϕ).

We will later use the following standard properties of the I and J-
functionals.

Lemma 3.3. [65, Lemma 6.19, Remark 6.20] The I and J-functionals are
non-negative. Moreover,

1

n
J(ϕ) ≤ I(ϕ)− J(ϕ) ≤ nJ(ϕ),

Definition 3.4 (Coercivity). [65, Section 7.2] We say the Mabuchi func-
tional is coercive if

M(ϕ) ≥ εJ(ϕ) + c

for some ε > 0 independent of ϕ and some c ∈ R.

Remark that one could equivalently use I(ϕ) in the definition of coer-
civity, by Lemma 3.3. Moreover, by Lemma 3.3, coercivity of the Mabuchi
functional implies it is bounded from below. It will be useful to introduce a
final functional.

Definition 3.5 (Lα-functional). Fix an arbitrary smooth (1, 1)-form α on
X. We define

Lα(ϕ) :=

n∑
i=0

∫
X
ϕα ∧ ωi ∧ ωn−1−i

ϕ .

One notes that the Mabuchi functional is then given as

M(ϕ) =

∫
X
log

(
ωn
ϕ

ωn

)
ωn
ϕ +

n

n+ 1
μ(X, [ω]) AM(ϕ)− LRicω(ϕ).

4. The Mabuchi Functional and K-stability

In this section we introduce certain currents on P1, arising from a given test-
configuration. These allow us to relate the analytic functionals (Mabuchi
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functional, J-functional, Aubin-Mabuchi energy) to the corresponding inter-
section numbers. The upshot will be the following (see Corollary 4.16 and
Corollary 4.18).

Theorem 4.1. Suppose the Mabuchi function for [ω] is bounded below (resp.
coercive). Then (X, [ω]) is K-semistable (resp. uniformly K-stable).

Our approach is closely related to arguments in the projective case,
originally due to Tian [64] and built on by Paul-Tian [50], Phong-Ross-
Sturm [51] and Berman [2] (among others).

Remark 4.2. As mentioned in the introduction Sjöström Dyrefelt [54]
has also proved this using a slightly different method. In fact [54] gives
more, namely an interpretation using intersection theoretic quantities of
the limit derivative of the Mabuchi functional along a path given by a test-
configuration with possibly non-reduced central fibre. We only consider test-
configurations with smooth total space and reduced central fibre, which is
sufficient for our purposes following Proposition 2.23.

Our constructions will be of the following flavour. Let (X ,Ω) be a test-
configuration. Since the morphism π : X → P1 is proper, given an arbitrary
current on X , we obtain a current on P1 by taking the direct image. We apply
this to the top degree forms appearing the the definition of the Donaldson-
Futaki invariant and the minimum norm. The corresponding direct image
currents will be smooth on C∗, and hence will equal i∂∂̄ of some smooth
function. The goal of this section is to determine that function.

To set this up, recall the C∗-action on X gives for each t ∈ C∗ a biholo-
morphism ρ(t) : X → X . By abuse of notation we denote also by ρ(t) its
restriction ρ(t) : X1

∼= Xt. By hypothesis each ρ(t) preserves the cohomology
class of Ω. We can then choose a smooth family ζt ∈ C∞(X ) such that

ρ(t)∗Ω− Ω = i∂∂̄ζt.

Definition 4.3. (Normalisation of potentials) Let

ϕt := ζt|X1

so

ρ(t)∗Ωt − Ω1 = i∂∂̄ϕt.

The key point is that ρ(t) is not an isometry but ρ(t)∗Ωt and Ω1 lie in
the same cohomology class on X1. Now let X× = π−1(P1 \ {0}) and continue
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to let π : X× → P1 \ {0} be the projection. We recall the definition of a test-
configuration assumes the existence of a C∗-equivariant biholomorphism

(4.1) α : X× → X × P1 \ {0}

such that α|∗Xt
[ω] = [Ωt] for t ∈ P1 \ {0}. We then use α|X1

to identify X1

with X.

Definition 4.4. Given any p-form ζ on X we set

ρ(t)∗ζ := α∗p∗1ζ

where p1 : X × P1 \ {0} → X is the projection.

Thus ρ(t)∗ζ is a p-form on X× obtained by moving the form ζ from the
fibre X1 � X to Xt using the biholomorphism ρ(t) : X1 � Xt.

As a first step, we now consider the Aubin-Mabuchi energy. In the no-
tation of Definition 3.2, Ω1 plays the role of ω, with ρ(t)∗Ωt playing the role
of ωϕ.

Proposition 4.5. Let (X ,Ω) be a test-configuration for (X, [ω]), and let t
be the usual coordinate on P1. Then the pushforward π∗Ωn+1 is smooth away
from t = 0, and is given as

π∗Ωn+1 = i∂∂̄AM(ϕt).

Moreover it gives {0} zero measure.

Proof. As the test-configuration X is equivariantly isomorphic to X × C

away from 0 ∈ P1, the morphism π is a submersion on this locus. In par-
ticular, it is smooth on this locus by properties of the the direct image [23,
Section 2.15].

The mass given by π∗Ωn+1 to {0} is calculated as∫
{0}

π∗Ωn+1 =

∫
X0

Ωn+1

= 0

which holds as Ω is smooth over the total space X .
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We wish to show

π∗Ωn+1 = i∂∂̄

∫
X
ϕt

(
n∑

i=0

Ωi
1 ∧ ρ(t)∗Ωn−i

t

)
.

Pushing forward by ρ(t) gives∫
X
ϕt

(∑
Ωi
1 ∧ ρ(t)∗Ωn−i

t

)
=

∫
Xt

(ρ(t)∗ϕt)

(
n∑

i=0

(ρ(t)∗Ωi
1) ∧ Ωn−i

t

)
.

With f a test function (in particular, of compact support) and U ⊂ C∗

open, we have ∫
U
fπ∗Ωn+1 =

∫
π−1(U)

π∗fΩn+1.

On the other hand, we have∫
U
fi∂∂̄

∫
X
ϕt

(
n∑

i=0

Ωi
1 ∧ ρ(t)∗Ωn−i

t

)

=

∫
U
(i∂∂̄f)

∫
X
ϕt

(
n∑

i=0

Ωi
1 ∧ ρ(t)∗Ωn−i

t

)

=

∫
U
(i∂∂̄f)

∫
Xt

(ρ(t)∗ϕt)

(
n∑

i=0

(ρ(t)∗Ωi
1) ∧ Ωn−i

t

)

=

∫
π−1(U)

(ρ(t)∗ϕt)(i∂∂̄π
∗f) ∧

(
n∑

i=0

(ρ(t)∗Ωi
1) ∧ Ωn−i

)

=

∫
π−1(U)

π∗f(ρ(t)∗(i∂∂̄ϕt)) ∧
(

n∑
i=0

(ρ(t)∗Ωi
1) ∧ Ωn−i

)
.

Remark that ρ(t)∗(i∂∂̄ϕt) = Ω− ρ(t)∗Ω1, while

(Ω− ρ(t)∗Ω1) ∧
(

n∑
i=0

(ρ(t)∗Ωi
1) ∧ Ωn−i

)
= Ωn+1 − ρ(t)∗Ωn+1

1 .

This gives the result since Ωn+1
1 = 0. �

Before considering the more complicated functionals, we will need a rel-
ative form of the Ricci curvature. To define this, suppose that τ is an (n, n)-
form on a complex manifold X of dimension n, and that τ is not identically
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zero. Then τ is a section of KX ⊗KX which we may then think of as a
(singular) metric hτ on −KX .

The curvature of this metric is a current, which by standard abuse of
notation we denote by

−i∂∂̄ log τ := −i∂∂̄ log hτ ∈ c1(−KX).

When τ = ωn for some Kähler metric ω then τ is a volume form, hτ is
smooth, and its curvature is just the Ricci form of ω,

Ric(ω) = −i∂∂̄ log hωn = −i∂∂̄ logωn ∈ −c1(KX).

We require a relative version of this construction. Suppose π : X → P1

is a holomorphic map with X smooth of dimension n+ 1, and let ωFS be
the Fubini-Study metric on P1. We suppose that for all t 
= 0 the fibre Xt =
π−1(t) is smooth of dimension n.

Definition 4.6. Given a semi-positive (1, 1)-form Ω on X let

Rel(Ω) := −i∂∂̄ log(Ωn ∧ π∗ωFS)− 2π∗ωFS .

In this definition we implicitly assume that Ωn ∧ π∗ωFS is not identically
zero, which will always be the case below. Thus the cohomology class of
[Rel(Ω)] is

[Rel(Ω)] = −c1(KX ) + c1(KP1) = −c1(KX/P1).

Lemma 4.7. Over X× we have

Rel(ρ(t)∗Ω1) = ρ(t)∗Ric(Ω1)

Proof. Recall hτ denotes the hermitian metric on the anticanonical bundle
induced by a top-degree form τ and α : X× � X × P1 \ {0} is the biholo-
morphism from (4.1). We claim that under the isomorphism

p∗1KX ⊗ π∗KP1\{0} = KX×P1\{0}
α∗
� KX×

we have

(4.2) hρ(t)∗Ωn
1∧π∗ωFS

= α∗(p∗1hΩn
1
⊗ p∗2hωFS

)
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where p2 : X × P1 \ {0} → P1 \ {0} is the projection. But this is clear since
p2 ◦ α = π so

ρ(t)∗Ωn
1 ∧ π∗ωFS = (α∗p∗1Ω

n
1 ) ∧ π∗ωFS = α∗(p∗1Ω

n
1 ∧ p∗2ωFS).

Then taking the curvature of (4.2) gives

Rel(ρ(t)∗Ω1) + 2π∗ωFS = α∗p∗1Ric(Ω1) + π∗Ric(ωFS)

= ρ(t)∗Ric(Ω1) + 2π∗ωFS

since Ric(ωFS) = 2ωFS . �

Definition 4.8 (Mabuchi current). Given a smooth test-configuration
(X ,Ω) for (X, [ω]), the Mabuchi current on P1 is defined to be

η(Ω) = π∗
(

n

n+ 1
μ(X, [ω])Ωn+1 − RelΩ ∧ Ωn

)
.

The construction of the Deligne current instead uses the usual Ricci
curvature, with the addition of a relative term coming from P1.

Definition 4.9 (Deligne current). Given a smooth test-configuration
(X ,Ω) for (X, [ω]) we define the Deligne current to be

η̂(Ω) = π∗
(

n

n+ 1
μ(X, [ω])Ωn+1 − (RicΩ− 2π∗ωFS) ∧ Ωn

)
.

We name this the Deligne current by analogy with the Deligne pairing
(as used, for example, in [51]). It is defined so that

DF(X ,Ω) =

∫
P1

η̂(Ω).

Just as with the Aubin-Mabuchi energy, we have the following.

Proposition 4.10. Let (X ,Ω) be a smooth test-configuration. Then the
Mabuchi current is smooth on P1\{0}. Away from t = 0, we have η(Ω) =
i∂∂̄M(ϕt).

Proof. As the direct image of a smooth form, the Mabuchi current is smooth
on P1\{0}.
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Since we have already considered the Aubin-Mabuchi term, we only need
to consider the term RelΩ ∧ Ωn. We consider the terms

A(t) = −i∂∂̄

∫
X
ϕt

(
RicΩ1 ∧

(
n−1∑
i=0

Ωi
1 ∧ ρ(t)∗Ωn−1−i

t

))

and

B(t) = i∂∂̄

∫
X
log

(
ρ(t)∗Ωn

t

Ωn
1

)
ρ(t)∗Ωn

t

arising from the Mabuchi functional separately. We have to show

−
∫
U
fπ∗(Rel Ω ∧ Ωn) =

∫
U
f(A(t) +B(t))

where U ⊂ C∗ is open and f is a compactly supported test function on U .
For the A(t) term, arguing as with the Aubin-Mabuchi energy, we wish

to calculate
∫
U fA(t) which equals

−
∫
π−1(U)

(ρ(t)∗ϕt)(i∂∂̄(π
∗f)) ∧

(
(ρ(t)∗RicΩ1)∧

(
n−1∑
i=0

(ρ(t)∗Ωi
1) ∧ Ωn−1−i

))
.

Using again the same argument as with the Aubin-Mabuchi functional, we
see ∫

U
fA(t) = −

∫
π−1(U)

(π∗f)((ρ(t)∗RicΩ1) ∧ (Ωn − ρ(t)∗Ωn
1 )).

The term involving only Ω1 and Ric(Ω1) vanishes, leaving

(4.3)

∫
U
fA(t) = −

∫
π−1(U)

(π∗f)((ρ(t)∗RicΩ1) ∧ Ωn)

For the B(t) term, we have∫
U
fB(t) =

∫
U
(i∂∂̄f)

∫
X
log

(
ρ(t)∗Ωn

t

Ωn
1

)
Ωn
t

=

∫
U
(i∂∂̄f)

∫
Xt

log

(
Ωn
t

ρ(t)∗Ωn
1

)
Ωn
t

=

∫
π−1(U)

log

(
Ωn ∧ π∗ωFS

ρ(t)∗Ωn
1 ∧ π∗ωFS

)
(i∂∂̄π∗f) ∧ Ωn

=

∫
π−1(U)

π∗f
(
i∂∂̄ log

(
Ωn ∧ π∗ωFS

ρ(t)∗Ωn
1 ∧ π∗ωFS

))
∧ Ωn
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Now using Lemma 4.7

−i∂∂̄ log

(
Ωn ∧ π∗ωFS

ρ(t)∗Ωn
1 ∧ π∗ωFS

)
= Rel(Ω)− Rel(ρ(t)∗Ω1)

= Rel(Ω)− ρ(t)∗Ric(Ω1).

So combining with (4.3) gives∫
U
f(A(t) +B(t)) = −

∫
U
fπ∗(Rel(Ω) ∧ Ωn))

as required. �

While the Mabuchi current is related to the Mabuchi functional, the
object we are more interested in is the Donaldson-Futaki invariant, which is
related to the Deligne current. We relate the two objects as follows.

Lemma 4.11. Assume (X ,Ω) is a smooth test-configuration. Then the
Deligne current and the Mabuchi current are related by

η̂(Ω)− η(Ω) = −i∂∂̄

∫
Xt

log

(
π∗ωFS ∧ Ωn

Ωn+1

)
Ωn
t .

This equality is global, and in particular holds in a neighbourhood of 0 ∈ P1.

Proof.

−Ric(Ω) + 2π∗ωFS +Rel(Ω) = i∂∂̄ log Ωn+1 − i∂∂̄ log(Ωn ∧ π∗ωFS)

= i∂∂̄ log

(
Ωn+1

Ωn ∧ π∗ωFS

)
Thus

η̂(Ω)− η(Ω) = π∗
(
i∂∂̄ log

(
Ωn+1

π∗ωFS ∧ Ωn

)
∧ Ωn

)
.

One readily sees that∫
U
fi∂∂̄

∫
Xt

log

(
Ωn+1

π∗ωFS ∧ Ωn

)
Ωn
t =

∫
U
fπ∗

((
i∂∂̄ log

Ωn+1

π∗ωFS ∧ Ωn

)
∧ Ωn

)
where U ⊂ P1 is an arbitrary open subset. �
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Remark 4.12. The previous lemma is closely analogous to a result is proven
in [51]. As noted in [51], the function

ft =
π∗ωFS ∧ Ωn

Ωn+1

is the ratio of two top degree forms whose denominator is strictly positive,
and so ft is a non-negative smooth function on Xt (it is important here that
X is smooth, so that Ω is Kähler; this would not be true on a resolution of
singularities p : Y → X where p∗Ω is merely semi-positive). It follows that
the integral

ψ(t) =

∫
Xt

log

(
π∗ωFS ∧ Ωn

Ωn+1

)
Ωn
t

is smooth and bounded above as t → 0. Moreover, as in [51], it is also con-
tinuous and bounded below provided the central fibre X0 is reduced. With
this notation, the previous lemma proves that

η̂(Ω)− η(Ω) = −i∂∂̄ψ(t).

Finally, we consider the minimum norm. We assume (X ,Ω) admits a
map q : X → X × P1, working on a resolution of indeterminacy if not. As
in Remark 2.21, we fix an isomorphism X ∼= X1, and consider Ω1 to be a
Kähler metric on X. We also denote

N (Ω) = π∗
(
(Ω ∧ q∗(Ω1)

n)− Ωn+1

n+ 1

)
.

Proposition 4.13. Away from t = 0, we have N (Ω) = i∂∂̄J(ϕt).

Proof. The metric q∗Ω1 satisfies the property that (q∗Ω1)|Xt
= ρ(t)∗Ω1. Here

q∗Ω1 denotes the (1, 1) form on X , and (q∗Ω1)|Xt
is its restriction to Xt.

Since we have already considered the Aubin-Mabuchi energy, it suffices
to show

π∗(Ω ∧ ρ(t)∗Ω1) = i∂∂̄

(∫
X
ϕtΩ

n
1

)
.

The proof then follows exactly as in the previous cases.
�

4.1. A Kempf-Ness lemma

We now relate the numerical invariants, such as the Donaldson-Futaki invari-
ant, to the limit derivatives of the corresponding functionals along certain
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paths of metrics. The simplest case, which we deal with first, is the Aubin-
Mabuchi functional. So far we have used t as the coordinate; to state our
results it will be more convenient to use τ = − log |t|2. In this way, τ → ∞
corresponds to t → 0, and t = e−τ/2. It will also be useful to use the notation
θτ = ϕt.

Theorem 4.14. Let (X ,Ω) be a test-configuration. Then

[Ω]n+1 = lim
τ→∞

d

dτ
AM(θτ ).

Proof. Using Proposition 4.5, we have

[Ω]n+1 =

∫
P1

π∗(Ωn+1)

=

∫
C=P1\{0}

π∗(Ωn+1)

=

∫
C

i∂∂̄AM(ϕt).

The function AM(ϕ) is S1-invariant, since Ω is. For clarity we write
ν(t) = AM(ϕt). The subsequent argument follows [2, Lemma 2.6]: with these
coordinates, we have∫

C

i∂∂̄AM(ϕt) =

∫ ∞

−∞
d

(
dν(e−τ/2)

dτ

)
=

(
lim

τ→−∞
d

dτ
ν(e−τ/2)

)
+

(
lim
τ→∞

d

dτ
ν(e−τ/2)

)
.

To conclude we note that

lim
τ→−∞

d

dτ
AM(θτ ) = 0,

since the C∗-action on X is trivial at infinity and hence θτ and so AM(θτ )
tend to a constant.

�
We next relate the Donaldson-Futaki invariant to the Mabuchi func-

tional. For this argument, we require that X0 is reduced, which by Re-
mark 4.12 will give detailed information about the function

ψ(t) =

∫
Xt

log

(
π∗ωFS ∧ Ωn

Ωn+1

)
Ωn
t .
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Theorem 4.15. Let (X ,Ω) be a smooth test-configuration with reduced cen-
tral fibre. Then

DF(X ,Ω) = lim
τ→∞

d

dτ
M(θτ ).

Proof. By definition of the Deligne current we have

DF(X ,Ω) =

∫
P1

η̂(Ω)

=

∫
P1

(η(Ω) + (η̂(Ω)− η(Ω))).

We consider each term separately, dealing first with the η(Ω) term. By
smoothness, the mass given by the Deligne current to {0} is zero, just as
with π∗Ωn+1 in Proposition 4.5. Using Theorem 4.10, we have∫

P1

η(Ω) =

∫
C=P1\{0}

η(Ω)

=

∫
C

i∂∂̄M(ϕt).

Denoting temporarily ν(t) = M(ϕt), using the same argument as [2,
Lemma 2.6] again, we have

∫
C

i∂∂̄(M(ϕt)) =

∫ ∞

−∞
d

(
dν(e−τ/2)

dτ

)
= lim

τ→∞
dν(τ)

dτ

= lim
τ→∞

dM(θτ )

dτ
.

Here the limit as τ → −∞ vanishes for the same reason as in Theorem 4.14.
We now calculate∫

P1

(η̂(Ω)− η(Ω)) = −
∫
P1

i∂∂̄ψ(t).

Since η̂(Ω) and η(Ω) are well defined as currents, so is i∂∂̄ψ(t). As X0 is
reduced, by Remark 4.12 ψ(t) is continuous, hence bounded, and smooth
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away from t = 0. It follows that∫
P1

i∂∂̄ψ(t) =

∫
P1\{0}

i∂∂̄ψ(t)

= − lim
τ→∞

dψ(e−τ/2)
dτ

.

This derivative vanishes as ψ(t) is bounded, completing the proof.
�

Corollary 4.16. Suppose the Mabuchi functional for [ω] is bounded. Then
(X,ω) is K-semistable. In particular this holds if [ω] admits a cscK metric.

Proof. By Proposition 2.23 we need only consider test-configurations for
(X, [ω]) with smooth total space and reduced central fibre. Then bounded-
ness of the Mabuchi functional implies

lim
τ→∞

dM(θτ )

dτ
≥ 0

which from the above gives K-semistability. The second statement follows
from Berman-Berndtssson [5] who prove the existence of a cscK metric in
[ω] implies the Mabuchi functional is bounded. �

We move on to consider the case the Mabuchi functional is coercive, for
which we require a similar result regarding the J-functional. We remark that
the following result applies to general, singular test-configurations.

Theorem 4.17. Let (X ,Ω) be a test-configuration. Then

‖(X ,L)‖m = lim
τ→∞

d

dτ
J(θτ ).

Proof. The proof is the same as for the Aubin-Mabuchi functional, using
Proposition 4.13. For this we use that the direct image current

π∗
(
(Ω ∧ q∗(Ω1)

n)− Ωn+1

n+ 1

)
gives zero mass to {0} as the mass equals the integral∫

X0

(
(Ω ∧ q∗(Ω1)

n)− Ωn+1

n+ 1

)
= 0,
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using the same notation as Proposition 4.13. If the test-configuration is
singular, we pass to a resolution of singularities and run the same argument.

�

The following is then an immediate corollary.

Corollary 4.18. Suppose (X, [ω]) has coercive Mabuchi functional. Then
(X, [ω]) is uniformly K-stable. In particular this holds if the automorphism
group of (X, [ω]) is discrete, and [ω] admits a Kähler metric that has constant
scalar curvature.

Proof. In this case the functional M(ϕ)− εJ(ϕ) is bounded below, so in
particular its limit derivative along a sequence of Kähler potentials must
be non-negative. But, for an arbitrary test-configuration (assuming the to-
tal space is smooth and the central fibre is reduced, which we may do by
Proposition 2.23), we have

DF(X ,Ω)− ε‖(X ,Ω)‖m = lim
τ→∞

d

dτ
(M(θτ )− εJ(θτ ))

≥ 0.

It follows that DF(X ,Ω) ≥ ε‖(X ,Ω)‖m, i.e. (X, [ω]) is uniformly K-stable.
The second statement then follows from the main result of Berman-Darvas-
Lu [4]. �

Another corollary is the following, which proves Proposition 2.20.

Proposition 4.19. The minimum norm of a test-configuration is non-
negative.

Proof. By Lemma 3.3, the J-functional is always bounded below by zero. In
particular, one has limτ→∞ d

dτ J(θτ ) ≥ 0. It then follows from Theorem 4.17
that ‖(X ,L)‖m ≥ 0. �

5. Stoppa’s Theorem for Kähler manifolds

The goal of the present section is to prove the following.

Theorem 5.1. If a Kähler manifold with discrete automorphism group ad-
mits a cscK metric, then it is K-stable.

Our argument is similar in spirit to Stoppa’s method in the projective
case [57]. As with Stoppa’s method, the method relies on the following result
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due to Arezzo-Pacard [1]. For a point p ∈ X we let BlpX denote the blowup
of X at p with exceptional divisor F .

Theorem 5.2. Suppose (X, [ω]) is a Kähler manifold with discrete auto-
morphism group admitting a cscK metric, and let p ∈ X. Then for all ε
sufficiently small, (BlpX, [ω]− εc1(F )) admits a cscK metric.

The argument is then as follows. We wish to show that the Donaldson-
Futaki invariant of each non-trivial test-configuration (X ,Ω) for (X, [ω]) is
strictly positive. By the K-semistability result from the previous section we
have only to consider the possibility of such a test-configuration with zero
Donaldson-Futaki invariant. Let p ∈ X and denote by C the closure of the C∗

orbit of the point p ∈ X = X1 inside X . Assuming X and C are smooth, then
by blowing up along C, with exceptional divisor E, we get for ε sufficiently
small a test-configuration (Y,Ω− εξε) for (BlpX, [ω]− εc1(F )) where ξε ∈
c1(E) is some smooth (1, 1)-form in c1(E). The goal is to explicitly calculate
the change of the Donaldson-Futaki invariant as ε tends to zero, and show
that this contradicts the K-semistability result for the blowup.

We start by giving the following definition by analogy with Stoppa’s
work:

Definition 5.3 (Chow weight). Given a test-configuration (X ,Ω) for
(X, [ω]) and a point p ∈ X the Chow weight is defined to be

Chp(X ,Ω) =
[Ω]n+1

(n+ 1)[ω]n
−
∫
C
Ω

where C is the closure of the C∗-orbit containing p.

With this definition in place, we will prove the following.

Proposition 5.4. Suppose X and C are smooth. The Donaldson-Futaki
invariant of (Y,Ω− εξε) is

DF(Y,Ω− εξε) = DF(X ,Ω)− n(n− 1)εn−1Chp(X ,Ω) +O(εn).

If X or C is singular, we will produce in Section 5.2 a test configuration
(B,ΩB) for (BlpX, [ω]− εc1(F )) using a slightly different construction which
similarly satisfies

DF(B,ΩB) = DF(X ,Ω)− n(n− 1)εn−1Chp(X ,Ω) +O(εn).

Thus the proof of Theorem 5.1 is completed by the following result:
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Proposition 5.5. For any (possibly singular) test-configuration (X ,Ω) that
satisfies ‖(X ,Ω)‖m > 0, there exists a point p ∈ X such that

Chp(X ,Ω) > 0.

Proof of Theorem 5.1. Suppose (X, [ω]) is K-semistable but not K-stable.
Then there is a test-configuration (X ,Ω) for (X, [ω]) with ‖(X ,Ω)‖m > 0
but DF(X ,Ω) = 0. Choosing p as in Proposition 5.5, for ε sufficiently small,
we have DF(Y,Ω− εξε) < 0 (or DF(B,ΩB) < 0 if X or C is singular). There-
fore (BlpX, [ω]− εc1(F )) is K-unstable. This contradicts the K-semistability,
which follows from the combination of Theorem 5.2 and Corollary 4.16.
Therefore (X, [ω]) must be K-stable as claimed. �

5.1. Discussion of the projective case

Before proving the required results for Kähler manifolds, we briefly discuss
the projective case. We will assume here that various quantities involved
are smooth to make the exposition clearer (in any case we will prove the
corresponding results in the more general Kähler setting in Section 5.2). So
let (X,L) be a smooth projective variety and an ample R-line bundle. Let
(X ,L) be a smooth test-configuration for (X,L), with L an R-line bundle.

Fix a point p ∈ X, and denote C the closure C∗.p. We assume that C is
smooth, so that C ∼= P1. Set ψ : B = BlCX → X , with exceptional divisor
E. Then (B,L − εE) is clearly a test-configuration for (BlpX,L− εF ). We
wish to calculate the Donaldson-Futaki invariant of (B,L − εE). We have

KB = ψ∗KX + (n− 1)E,

and also

(L− εF )n = Ln − εn

−KBlp X .(L− εF )n−1 = −Ln−1.KX − (n− 1)εn−1.

Similarly, by the projection formula, we see

(L − εE)n+1 = Ln+1 + (n+ 1)(−εE)n.L+O(εn+1)

KB/P1 .(L − εE)n = Ln.KX/P1 + n(n− 1)(−εE)n−1.E.L+O(εn).

The following standard intersection-theoretic result relates the computed
intersection numbers to intersections on X .
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Lemma 5.6. (−E)n.L = L.C.
Defining

Chp(X ,L) = Ln+1

(n+ 1)Ln
− L.C

and putting this together gives that the Donaldson-Futaki invariant of
(Y,L − εE) is

(5.1) DF(B,L − εE) = DF(X ,L)− n(n− 1)εn−1Chp(X ,L) +O(εn)

which is nothing other than Proposition 5.4 in the projective case [57, 58]
(the point we are emphasising here once again is that such calculations
are made easier if one considers the Donaldson-Futaki invariant in terms of
intersection theory on the total space of the test-configuration). Thus one is
left to prove the following statement:

Theorem 5.7. (Stoppa) Suppose (X ,L) is not the trivial test-configuration
(X × P1, L). Then there exists a point p ∈ X such that

Chp(X ,L) = Ln+1

(n+ 1)Ln
− L.C > 0.

This statement is proved by Stoppa, and we shall not repeat his argu-
ment here. However given the point of view we have been taking, it has an
equivalent and simple formulation. We may normalise so Ln+1 = 0. Suppose
for contradiction that no p exists. Then L.C ≥ 0 for all such curves C. But
L is relatively ample so this implies L.C ≥ 0 for all C∗-invariant curves C
inside X and so L is nef. Thus Theorem 5.7 is equivalent to the following
statement:

Theorem 5.8. Suppose (X ,L) is a test-configuration such that L is nef
but not big. Then (X ,L) is the trivial test-configuration, i.e. (X ,L) ∼= (X ×
P1, L).

It should be possible to give a direct proof of this using basic positivity
properties of line bundles (and thus completely avoid the Geometric Invari-
ant Theory arguments of Stoppa), but we will not consider that question
further here.

Remark 5.9. The results extend easily to the higher dimensional case (com-
pare Della Vedova [20]). Fix a smooth subvariety Z ⊂ X of dimension m,
so that the case we have considered is dimZ = 0. Let (X ,L) be a smooth
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test-configuration, and suppose the closure Z of the C∗-orbit of Z in X
is smooth. Then the blow-up B = BlZ X is a test-configuration for BlZX,
just as above. Arguing as in the case m = 0, its Donaldson-Futaki invariant
admits an expansion of the form

DF(B,L − εE) = DF(X ,L) + cεn−m−1DFZ(X ,L) +O(εn−m),

where c > 0 and DFZ(X ,L) is the leading term in the expansion of the
X-twisted asymptotic Chow weight of (Z,L|Z), introduced by the first au-
thor and Keller [25]. The smoothness hypotheses are satisfied, for example,
when (X ,L) is a test-configuration induced by a holomorphic vector field
on (X,L). This answers a question of Stoppa [58, Remark 4.13]. Similarly,
using this technique it is straightforward to compute the lower order terms
in the expansion of the Donaldson-Futaki invariant given in equation (5.1).

5.2. The Donaldson-Futaki invariant of the induced
test-configuration

We return to the Kähler setting. Fix a test-configuration (X ,Ω) for (X, [ω]),
and fix a point p ∈ X. Denote by C = C∗.p, the closure of the C∗-orbit of p.
From this data, we construct a test-configuration for the blow-up of X at p,
and compute its Donaldson-Futaki invariant. For now assume both X and
C are smooth, so C is automatically isomorphic to P1.

Let F be the exceptional divisor of the blow-up ν1 : B → X at a point
p, and let ζ ∈ c1(F ). Then ν∗1 [ω]− εc1(F ) is a Kähler class for ε sufficiently
small.

Similarly, let ν2 : B = BlCX → X be the blowup of X along C, so ν∗2 [Ω]−
ε[E] is a Kähler class for ε sufficiently small. Thus there exists a family of
smooth (1, 1)-forms ξε ∈ c1(E), such that Ω− εξε is Kähler on Y for ε suffi-
ciently small (here we have abused notation by writing Ω as the pullback of
Ω to B).
Lemma 5.10. B admits a C∗-action, and ξε can be chosen S1-invariant.
As such, (B,Ω− εξε) is a test-configuration for (B, [ω]− εc1(F )).

Proof. Since C is C∗-invariant, B automatically admits a C∗-action. If ξ is
not S1-invariant, it can be chosen to be so by averaging. �

We now compute the Donaldson-Futaki invariant of this induced test-
configuration.
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Lemma 5.11. The volume term in the Donaldson-Futaki invariant changes
as

[Ω− εξε]
n+1 = [Ω]n+1 + (−ε)n(n+ 1)[ξε]

n.[Ω] +O(εn+1).

Proof. This is obvious using the projection formula, since C is 1-dimensional.
�

Lemma 5.12. The remaining term in the Donaldson-Futaki invariant
changes as

[Ω− εξε]
n.c1(B) = [c1(X )].[Ω]n + (−ε)n−1n(n− 1)[ξε]

n.[Ω] +O(εn).

Here [c1(X )].[Ω]n is calculated on X and the remaining integrals are calcu-
lated on B.
Proof. Remark that [ξε] ∈ c1(E). As B is the blow-up of X along the one-
dimensional submanifold C, we have in cohomology c1(B) = ν∗2c1(X )− (n−
1)[E]. The result then follows from the projection formula. �

The final step in relating the Donaldson-Futaki invariant of (B,Ω− εξ)
to integrals calculated on X is the following.

Lemma 5.13. −[−ξ]n.[Ω] =
∫
C Ω.

Proof. Ω|C is in AmpR(C), since C is one-dimensional and hence every
Kähler class is a limit of classes of ample Q-line bundles. Fix an R-line
bundle H on C such that Ω|C ∈ c1(H). Let α : E → C be the map induced
from the blow-up. Remark that E is projective, as it is the projective bun-
dle over C. Moreover E gives a line bundle on B, hence by restriction a line
bundle on E which we denote (abusing notation) by E. Then what we wish
to prove is

(−E|E)n−1.(α∗H) = degH,

where the intersection number on the left hand side is computed on E and
degH is computed on C. This is a standard argument using intersection
theory for projective varieties when H is a Z or Q-line bundle as in Lemma
5.6, and therefore extends to R-line bundles by continuity. �

Combining the previous lemmas gives the following.

Proposition 5.14. The Donaldson-Futaki invariant of (Y,Ω− εξε) satisfies

DF(Y,Ω− εξε) = DF(X ,Ω)− n(n− 1)εn−1Chp(X ,Ω) +O(εn).
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Proof. All that remains is to compute the slope of (B, [ω − εζ]) in terms of
the slope of (X, [ω]). This follows easily as above. �

Now we relax the smoothness assumption, so let (X ,Ω) be an arbitary
test-configuration and p ∈ X. Denote by C the closure C∗.p. Take a res-
olution of singularities p : Y → X such that the proper transform Ĉ of
C is smooth. Then p∗Ω is semi-positive, and Kähler away from X0. Set
b : B = BlĈY → Y to be the blow-up, so that we have a diagram as follows.

B

Y X
b

q=p◦b

p

Remark that B is a smooth Kähler manifold. Let E be the exceptional
divisor of Y → X and Ê the exceptional divisor of B → Y. Take ε > 0 and
ξε ∈ c1(Ê) and αε ∈ c1(E) such that q∗Ω− εξε − εnb∗αε is Kähler on B. We
can, and do, assume that q∗Ω− εξε − εnb∗αε is S

1-invariant. Remark that E
has support in the central fibre of the test-configuration, so in cohomology
we have

[(q∗Ω− εξε − εnb∗αε)t] ∼= [ω]− εc1(F ).

Then (B, q∗Ω− εξε − εnb∗αε) is a test-configuration for (BlpX, [ω]− εc1(F )).
The following is immediate.

Lemma 5.15. We have DF(B, q∗Ω− εξε − εnb∗αε) ≥ 0. Moreover, setting
μ = μ(BlpX, [ω]− εc1(F )), the Donaldson-Futaki invariant

DF := DF(B, q∗Ω− εξε − εnb∗αε)

is given as

DF =
n

n+ 1
μ[q∗Ω− εξε]

n+1 − [c1(B)− (π ◦ p)∗c1(P1)].[q∗Ω− εξε]
n +O(εn).

Just as with the minimum norm proven in Proposition 2.19, one can
calculate the Chow weight Chp(X ,Ω) on a resolution of singularities.

Lemma 5.16. We have

Chp(X ,Ω) =
[p∗Ω]n+1

(n+ 1)[ω]n
−
∫
Ĉ
p∗Ω.
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Proof. It suffices to show ∫
C
Ω =

∫
Ĉ
p∗Ω,

where Ĉ is the proper transform of C under the map p : Y → X . Denote
q = C ∩ X0. Then since Ω is smooth, we have∫

C
Ω =

∫
C\{q}

Ω

=

∫
Ĉ\{p−1(q)}

Ω

=

∫
Ĉ
p∗Ω,

where we have used that p : Ĉ \ {p−1(q)} ∼= C \ {q} is an isomorphism away
from p−1(q). �

Remark that B → Y is a map of smooth Kähler manifolds, which is
the blow-up along the smooth curve Ĉ. The Donaldson-Futaki invariant of
(X ,Ω) is computed on Y, by definition. Thus Proposition 5.14 gives the
following.

Proposition 5.17. The Donaldson-Futaki invariant of (B, q∗Ω− εξε − εnαε)
satisfies

DF(B, q∗Ω− εξε − εnαε) = DF(X ,Ω)− n(n− 1)εn−1Chp(X ,Ω) +O(εn).

5.3. Existence of a destabilising point

As in the last section, we fix a test-configuration (X ,Ω) for (X, [ω]). The
goal of this section is to prove the following.

Proposition 5.18. Provided ‖(X ,Ω)‖m > 0, there exists a point p ∈ X sat-
isfying

Chp(X ,Ω) > 0.

Remark 5.19. Due to pathological examples of Li-Xu [43, Section 8.2], we
require the assumption that ‖(X ,Ω)‖m > 0 (rather than the a priori weaker
assumption that (X ,Ω) is not equivariantly isomorphic to (X × P1, p∗Xω) for
some ω). We refer to [59] for a discussion of this requirement.

To prove this it will be useful to normalise such that [Ω]n+1 = 0, using
Lemma 2.24 (that is we replace Ω by Ω + π∗ωFS which does not change the
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Donaldson-Futaki invariant or minimum norm, but it should be noted that
Ω will no longer be Kähler). Recall by Theorem 4.14 that we have

lim
τ→∞

d

dτ
AM(θτ ) = [Ω]n+1,

where as usual ρ(t)∗Ωt = Ω1 + i∂∂̄ϕt with ϕt are normalised as in Defini-
tion 4.3, τ = − log |t|2 and θτ = ϕt. The following is a simple calculation.

Lemma 5.20. The derivative of the Aubin-Mabuchi functional is

d

dτ
AM(θτ ) =

1

n+ 1

∫
X
θ̇τω

n
θτ .

Thus if [Ω]n+1 = 0, then

lim
τ→∞

∫
X
θ̇τω

n
θτ = 0.

We wish to give another way of calculating the integral
∫
C Ω. Since

C ∼= P1, and since Ω is smooth, we have∫
C∼=P1

Ω =

∫
C∗

Ω.

From Theorem 4.14 we obtain the following.

Lemma 5.21. We have

lim
τ→∞

d

dτ
θτ (p) =

∫
C
Ω.

Here we think of (C,Ω|C) as a test configuration for the point p, so that
the Aubin-Mabuchi functional is simply θτ (p) (the proof of Theorem 4.14
works even when X is zero dimensional).

Remark 5.22. Lemma 5.20 can also be obtained from [2, Lemma 2.6] (not-
ing that no positivity assumption is required in [2, Lemma 2.6] as we assume
Ω is smooth, and the equality we seek is additive in the Kähler metric).

Remark 5.23. With this in place, it is clear why one should expect a
destabilising point to exist. Under our normalisationof Ω, we have

lim
τ→∞

∫
X
θ̇τω

n
θτ = 0.
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On the other hand, if no destabilising point exists, for all p ∈ X we have

lim
τ→∞

d

dτ
θτ (p) ≥ 0,

which should lead to a contradiction. We now give a precise argument for
why this is the case.

We would like to define the L1-norm of a test-configuration, analogous
to that in the projective case. It is not a priori clear that our definition is
actually well defined, so we give a conditional definition.

Definition 5.24 (L1-norm). Fix a test-configuration (X ,Ω), and nor-
malise such that [Ω]n+1 = 0. We define the L1-norm of (X,Ω) to be

‖(X ,Ω)‖1 = lim
τ→∞

∫
X
|θ̇τ |ωn

θτ ,

provided the limit exists.

We expect the L1-norm always exists, and we will show it does in our
case of interest. Our aim is to relate the L1-norm to the minimum norm. The
L1-norm is closely related to the geometry of the space of Kähler potentials,
as we now recall from [17].

Definition 5.25 (L1-Mabuchi metric). Denote byHω the space of Kähler
potentials for ω. We define the L1-Mabuchi metric on Hω to be

‖ξ‖ϕ =

∫
X
|ξ|ωn

ϕ,

where ξ ∈ TϕHω
∼= C∞(X,R).

Remark 5.26. The L1-Mabuchi metric is called the weak Finsler metric
by Darvas-Rubinstein [18, p. 10].

From this, one obtains a Finsler metric on Hω.

Definition 5.27. Fix a smooth path α(s) : [0, 1] → Hω with α(0) = ϕ0 and
α(1) = ϕ1. The length of α is defined to be

�1(α) =

∫ 1

0
‖α̇(s)‖α(s)ds.
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We define the Finsler metric on H as

d1(ϕ0, ϕ1) = inf
α
{�1(α) | α(0) = ϕ0, α(1) = ϕ1}.

Our application of these ideas is related to the path of metrics arising
from a test-configuration (X ,Ω). We define

β(s) = θs

and for fixed τ let

γτ (s) = β(τs) for s ∈ [0, 1].

In this way γτ is a smooth path between 0 and θτ so

d1(0, θτ ) ≤ �1(γτ ).

Some elementary calculus gives the following.

Lemma 5.28. d
dτ �1(γτ ) = ‖θ̇τ‖θτ .

Proof. Clearly

‖γ̇τ (s)‖γτ (s) = τ‖β̇(τs)‖β(τs),
so

�1(γτ ) =

∫ 1

0
‖γ̇τ (s)‖γτ (s)ds =

∫ 1

0
τ‖β̇(τs)‖β(τs)ds =

∫ τ

0
‖β̇(y)‖β(y)dy,

from which the statement follows. �
The final result we will need to relate the minimum norm and the L1-

norm of a test-configuration is as follows.

Proposition 5.29. [18, Proposition 5.5] There exists a constant C > 1 such
that for all ϕ ∈ Hω we have

1

C
J(θτ )− C ≤ d1(0, θτ )− AM(θτ )

n+ 1
.

Remark 5.30. The version of the above stated in [18, Proposition 5.5]
assumes AM(θτ ) = 0, but if one does not make this assumption then the
same proof gives the statement above.

We can now prove the following analogue of Proposition 5.29 for test-
configurations, which relates the minimum norm to the L1 norm.
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Proposition 5.31. Fix a test-configuration (X,Ω) and normalise the test
configuration in such a way that [Ω]n+1 = 0. Suppose (X,Ω) has well-defined
L1-norm. Then there exists a C > 1, independent of (X,Ω), such that

1

C
‖(X ,Ω)‖m ≤ ‖(X ,Ω)‖1.

Proof. We have

1

C
J(ϕτ )− C ≤ d1(0, ϕτ )− AM(θτ )

n+ 1

≤ �1(γτ )− AM(θτ )

n+ 1
.

Hence using Theorem 4.17 and then Lemma 5.28

1

C
‖(X ,Ω)‖m = lim

τ→∞
d

dτ

1

C
J(θτ ) ≤ lim

τ→∞
d

dτ
�1(γτ )

= lim
τ→∞ ‖θ̇τ‖θτ = ‖(X ,Ω)‖1,

where we have used that

lim
τ→∞

d

dτ
AM(θτ ) = [Ω]n+1 = 0.

�
We can now prove the existence of a destabilising point on non-trivial

test-configurations.

Proposition 5.32. Suppose that ‖(X ,Ω)‖m > 0. Then there exists a point
p ∈ X such that

Chp(X ,Ω) =
[Ω]n+1

(n+ 1)[ω]n
−
∫
C
Ω > 0.

Proof. First of all we normalise such that [Ω]n+1 = 0. We are then seeking
a point p ∈ X such that

∫
C Ω < 0. By Lemma 5.20, our normalisation gives

that

(5.2) lim
τ→∞

∫
X
θ̇τω

n
θτ = 0.

We argue by contradiction and assume no such point exists. By Lemma
5.21, we therefore have that

lim
τ→∞ θ̇τ (p) ≥ 0
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for all p ∈ X. In particular, if we knew we could swap limits and integration,
this would give

lim
τ→∞

∫
X
|θ̇τ |ωn

θτ = lim
τ→∞

∫
X
θ̇τω

n
θτ = 0

and hence the L1-norm of the test-configuration is equal to zero and we
would be done. However, not being able to justify this step we argue instead
using the associated geodesic of the test-configuration (see [2, Proposition
2.7]). This geodesic ψτ solves a homogeneous Monge-Ampère equation (in
the sense of currents) on Xπ−1(∂Δ) with background metric Ω, so that ψt →
ϕt as t → 1. Then

lim
τ→∞ ψ̇τ (p) = lim

τ→∞ θ̇τ (p) ≥ 0.

Thus ∫
X

lim
τ→∞ |ψ̇τ |ωn

θτ =

∫
X

lim
τ→∞ ψ̇τω

n
θτ =

∫
X

lim
τ→∞ θ̇τω

n
θτ = 0

Now convexity of the geodesic in τ implies that

|ψ̇τ | ≤ lim
τ→∞ |ψ̇τ |.

Hence the Dominate Convergence Theorem applies to give

lim
τ→∞

∫
X
|ψ̇τ |ωn

θτ =

∫
X

lim
τ→∞ |ψ̇τ |ωn

θτ = 0.

Now ψτ − θτ is bounded over all τ so

lim
τ→∞

∫
X
|ψ̇τ |ωn

θτ = lim
τ→∞

∫
X
|θ̇τ |ωn

θτ = ‖(X ,Ω)‖1.

Thus Proposition 5.31 gives that the minimum norm ‖(X ,Ω)‖m = 0 which
contradicts our hypothesis.

Hence there must be a point such that
∫
C Ω < 0 as claimed. �

6. Related canonical metrics and stability

The methods of the previous sections extend almost verbatim to the setting
of critical points of the J-flow and twisted cscK metrics. We briefly explain
the required adaptations.
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Definition 6.1 (J-flow). Fix a Kähler metric α in an arbitrary Kähler
class. A critical point of the J-flow in a Kähler class [ω] is defined to be a
solution to

Λωα = γ,

where the topological constant γ is given as

γ =
[α].[ω]n−1

[ω]n
,

and ω ∈ [ω].

The J-flow was introduced by Donaldson [30], and has close links to
properties of the Mabuchi functional [9]. The primary analytic result of
interest to us related to the J-flow is as follows.

Theorem 6.2. [9, 16, 55] There exists a critical point of the J-flow in the
Kähler class [ω] if and only if the functional

Jα(ϕ) = Lα(ϕ)− n

n+ 1
γAM(ϕ)

is coercive.

The corresponding notion of stability is as follows.

Definition 6.3 (J-stability). [42] We define the J-weight of a test-config-
uration (X ,Ω) to be the numerical invariant

J[α](X ,Ω) = [Ω]n.[q∗α]− n

n+ 1
γ[Ω]n+1,

computed on a resolution of indeterminacy. We say that (X, [ω]) is uniformly
J-stable if for all test-configurations we have

J[α](X ,Ω) > ε‖(X ,Ω)‖m,

for some ε independent of (X ,Ω)

In the projective case, this definition agrees with that of Lejmi-
Székelyhidi [42] by [25, Proposition 4.29]. The results of the previous sections
extend to this setting in a trivial way to give the following,
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Theorem 6.4. Fix a test-configuration (X ,Ω). We have

lim
τ→∞

d

dτ
Jα(θτ ) = J[α](X ,Ω),

where ρ(t)∗Ωt = Ω1 + i∂∂̄ϕt, τ = − log |t|2 and θτ = ϕt.

The following corollary is due to Lejmi-Székelyhidi in the projective case,
using different methods.

Corollary 6.5. If (X, [ω]) admits a critical point of the J-flow, then (X, [ω])
is uniformly J-stable.

An alternative proof of J-semistability in the projective case was given
by the first author and Keller [25].

A similar result holds for twisted cscK metrics, which are an important
tool in constructing cscK metrics, for example through Fine’s construction
of cscK metrics on fibrations [32, 33] and Datar-Székelyhidi’s proof of the ex-
istence of Kähler-Einstein metrics on equivariantly K-stable Fano manifolds
[19].

Definition 6.6 (Twisted cscK metric). A twisted cscK metric is a solu-
tion of

S(ω)− Λωα = γ̂,

where γ̂ is the appropriate topological constant and α is an arbitrary Kähler
metric.

The analogous result to Theorem 6.2 is as follows, and gives a slight
strengthening of a result due to Berman-Berndtsson [5].

Theorem 6.7. If (X, [ω], α) admits a twisted cscK metric, then the twisted
Mabuchi functional

M̂(ϕ) = M(ϕ) + Jα(ϕ)

is coercive.

Proof. By [5], if (X, [ω], α) admits a twisted cscK metric, then the twisted
Mabuchi functional is bounded.

A straightforward argument now proves coercivity. Given a solution to

S(ω)− Λωα = γ̂,
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one automatically obtains a solution

S(ω)− Λω(α− εω) = γ̂′.

Taking ε small enough so that α− εω is still Kähler, we see that (X, [ω], α−
εω) has bounded twisted Mabuchi functional. That is, the functional

M̂α−εω(ϕ) = M(ϕ) + Jα−εω(ϕ)

is bounded below. One easily sees that

Jα−εω(ϕ) = Jα(ϕ)− ε(I(ϕ)− J(ϕ)),

so that

M̂α(ϕ) ≥ ε(I(ϕ)− J(ϕ)) + c.

That is, using Lemma 3.3, the twisted Mabuchi functional is coercive. �

Remark 6.8. In proving Corollary 6.7, one could instead use the openness
of solutions of the twisted cscK equation due to Hashimoto and Chen [10,
38]. The perturbation trick used above is analogous to one used by the
first author in studying twisted cscK metrics on projective varieties [24,
Lemma 3.2].

Defining the twisted Donaldson-Futaki invariant of a test-configuration
as

D̂F(X ,Ω) = DF(X ,Ω) + J[α](X ,Ω)

and taking the obvious definition of uniform twisted K-stability, we imme-
diately obtain the following.

Corollary 6.9. If (X, [ω], α) admits a twisted cscK metric, then it is uni-
formly twisted K-stable.

This result is due to the first author in the projective case [24]. A weaker
result which holds also in the Kähler setting is due to Stoppa [56].
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Dyrefelt [54] who independently proves Theorem 1.1 with a slightly different
method (see Remark 4.2). We are very grateful to both Sebastien Boucksom
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[60] J. Stoppa and G. Székelyhidi, Relative K-stability of extremal metrics,
J. Eur. Math. Soc. (JEMS) 13 (2011), no. 4, 899–909.
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