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ABSTRACT 

Single-walled carbon nanotubes (SWCNT) are a promising material for future optoelectronic applications, including 
flexible electrodes and field-effect transistors. Molecular doping of carbon nanotube surface can be an effective way to 
control the electronic structure and charge dynamics of these material systems. Herein, two organic semiconductors with 
different energy level alignment in respect to SWCNT are used to dope the channel of the SWCNT-based transistor. The 
effects of doping on the device performance are studied with a set of optoelectronic measurements. For the studied 
system, we observed an opposite change in photo-resistance, depending on the type (electron donor vs electron acceptor) 
of the dopants. We attribute this effect to interplay between two effects: (i) the change in the carrier concentration and 
(ii) the formation of trapping states at the SWCNT surface. We also observed a modest ~4 pA photocurrent generation in 
the doped systems, which indicates that the studied system could be used as a platform for multi-pulse optoelectronic 
experiments with photocurrent detection.  

Keywords: single-walled carbon nanotube; organic semiconductor; photocurrent generation; chemical vapor deposition. 
 
 

1. INTRODUCTION 

Due to the unique electronic properties of single-walled carbon nanotubes (SWCNT)1–3, these quasi-one-dimensional 
materials have been widely investigated and applied in various device systems, such as field effect transistors (FET)4, 
optical switches5, organic photovoltaics (OPV)6 and organic light emitting diodes (OLED)7. Charge dynamics at the 
interface between SWCNT and organic molecules/metals is of particular importance for the fundamental understanding 
of carbon-based electronic materials as well as for the development of new types of devices in organic electronics. One 
recent example is the observation of Marcus inverted region in SWCNT heterojunction8. To resolve the charge dynamics 
of SWCNT-based systems, ultrafast optical spectroscopy8–12 is being widely applied. This method becomes an important 
tool to undercover various ultrafast dynamics, such as exciton dissociation6,8, recombination13, relaxation14, multi-exciton 
generation10, and charge transfer15.  

The potential of SWCNT materials for flexible electronic devices comes from the fact that they can be used both as the 
channel material in FETs and as the transparent and conductive electrodes16. For example, in organic solar cell, SWCNT 
film/plastic anode has showed better performance on flexibility and environmental advantage over indium tin oxide 
(ITO)/glass with a similar efficiency17,18. In the FET configuration, SWCNTs can also be used as electrodes for robust 
and versatile molecular junctions19.  

Molecular doping is one possible way to modify the electronic properties of the SWCNTs. Due to the energy level 
difference, charge transfer (electron transfer or hole transfer) can happen at the interface between SWCNT and organic 
molecules, which would lead to the change in the electronic structure of SWCNT as well as in the concertation of mobile 
carriers. In this paper, we perform several optoelectronic experiments to observe the charge transfer and charge 
generation in our studied system.  

1.1 Material 

A,a'-dihexylquaterthiophene (LY106) is a p-type semiconductor and the highest occupied molecular orbital (HOMO) 
energy level is -5.2 eV. It acts as the acceptor while SWCNT acts as the donor. Perylenetetracarboxylicdianhydride 
(PTCDA) is an electron-donating semiconductor and the HOMO and lowest unoccupied molecular orbital (LUMO) 
energy levels are -6.8 eV and -4.7 eV, respectively. It can act as donor in the PTCDA/SWCNT interface. The molecular 
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1.3 Electrical measurement 

All SWCNT structures were measured before and after the deposition of molecules through a semiconductor parameter 
analyzer (MNIPI, Belarus) under normal conditions. To prevent the damage due to the high value of current density in 
the channel and at the contacts we limit the drain current down to 300 nA. 

1.4 Optoelectronic measurement 

Figure 1.3 (A) shows the setup for measuring the effect of light on current-voltage (I-V) curve of the devices. The dark 
conductivity was directly measured by Keithley 2400 under room light. To measure the photo-conductivity, the laser 
diode at 405 nm (CPS 405, Thorlabs) was focused on the sample area of around 0.5 mm2 and the power was reduced by 
neutral density filter to several µW.  

Figure 1.3 (B) shows the schematic to measure photocurrent generation in the device. The laser light was modulated by 
the chopper (MC2000, Thorlabs), which was synchronized to the lock-in amplifier (LIA, SR 830, Stanford Research 
System) as the reference frequency. The sample was biased by an adjustable voltage and the influence of light on the 
sample was detected by the LIA.  

Figure 1.3 (A) Setup for measuring the effect of light on device I-V curve; (B) Setup for measuring the photocurrent 
generation;ND: neutral density; G: ground. 

2. RESULTS AND DISCUSSION

2.1 Electrical characterization 

Typical output and transfer I-V curves before and after LY106 and PTCDA deposition are shown in Figure 2.1. While 
the output I-V characteristics are remained, the transfer curves are drastically changed after the coating. When SWCNTs 
are coated with a thin molecular layer the Fermi level of the nanotubes is shifted. For SWCNTs with LY106 molecules, 
the Fermi level is shifted closer to the valance band and the transconductance is drastically increased. For the nanotubes 
with PTCDA film, the Fermi level is shifted closer to the conduction band and we do not observe any field effect 
anymore. This indicates that the doping switches off the transistor behavior of all the semiconducting nanotubes. Thus, 
all the changes we attribute to the doping effect from coated molecules, which modifies the SWCNT energy structure21. 

2.2 Optoelectronic Characterization 

In order to see how the molecular doping affects the optoelectronic properties of the SWCNT, two types of experiments 
described in the part 1.4 were performed on the transistors. 

Figure 2. shows the photocurrent generation (Figure 1.3A) in the PTCDA-deposited device. The 405nm light modulated 
at 370 Hz was blocked and unblocked every 15 seconds and the change in current was recorded with LIA. From the left 
panel (grey), the background noise level was ~1 pA while from the right panel (white), the photocurrent was ~5 pA. The 
small but present ~4 pA photocurrent proves the possibility of photocurrent generation in the PTCDA-deposited device. 
This photocurrent most likely originates from the photoexcitation of PTCDA. Immediately after the exciton formation, 
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electron transfer is expected to occur from PTCDA to SWCNTs. The photogenerated mobile carriers are later collected 
by the electrodes under the 100 mV bias. 

 
Figure 2.1 (A) Output I-V curves for pristine and coated SWCNTs with LY106 molecules; (B) Output I-V curves for pristine and 
coated SWCNTs with PTCDA molecules; (C) Transfer I-V curves for pristine and coated SWCNTs with LY106 molecules; (D) 
Transfer I-V curves for pristine and coated SWCNTs with PTCDA molecules. 

 
Figure 2.2 Photocurrent of the SWCNT device deposited by PTCDA under the direct-current voltage of 100 mV. The light was 
modulated by the optical chopper at 370 Hz and the current was detected with LIA.  

 
In order to further resolve the charge dynamics in these devices, the conductivity change under the light illumination was 
investigated (Figure 1.3B). Figure 2. shows the change of the I-V curve under the illumination of 405 nm laser light for 
different dopants. For LY106 (Figure 2.A), the black curve was measured under room light. When the laser light is on, a 
steeper curve (blue) was observed, which indicates towards a higher conductivity. When the power increased from 10 
µW to 30 µW, these two I-V curves overlapped with each other, which indicates the presence of the saturation effect. 
For PTCDA (Figure 2.B), the conductivity was reduced under light illumination, which is different from LY106. In both 
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Currently, we still cannot completely exclude the influence of SWCNT exciton generation. Laser sources at higher 
wavelengths would be chosen to excite the sample in the following experiments. Another possibility of the result of 
molecular doping would be the formation of the intermolecular complex22, like charge transfer states in organic solar 
cells. However, simple quasi-steady state optoelectronic experiments cannot detect these states. To discriminate this 
possibility and to see whether some trap states are formed, the novel pump-push spectroscopy will be applied in the 
future.  
 

3. CONCLUSIONS 

In this study, we have performed both electrical and optoelectronic measurement of the SWCNT devices, which are 
doped with an additional layer of organic molecules. Electrical measurements before and after molecules deposition 
show a substantial change in transfer I-V characteristics due to molecules doping. LY106 molecules shift the Fermi level 
of SWCNTs closer to the valence band increasing the hole concentration and transconductance, while PTCDA molecules 
drastically decrease the number of holes, shifting the Fermi level closer to the conduction band. In the optoelectronic 
measurement, ~4 pA photocurrent generation was observed in modulation light, which we associate with the charge 
transfer from organic molecules to SWCNTs. To further watch the doping effect, the light effect on the I-V curves were 
measured. For electron-donating material, like PTCDA, electron transfer to SWCNT leads to the lower conductivity of 
SWCNT while hole transfer from LY106 increases the hole concentration and thus the conductivity. On the other hand, 
the recovering process of I-V curve without illumination, due to charge diffusion and recombination, happens in a much 
slower speed than the photo doping process. We anticipate the optoelectronic systems similar to those studied in this 
work can be used for ultrafast experiments with photocurrent detection23.  
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