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Abstract 
 

 

This dissertation investigates the temporal and regional variation in human 

skeletal morphology in relation to climate and the environment in Holocene 

China. Linking skeletal morphology to the changes in climate, subsistence 

strategy and socio-political development has been well-documented in various 

geographical areas. Although a general pattern has been observed among 

different populations, it is evident that local factors have played an equally 

important role in human morphological variation. China was chosen in this 

dissertation because its diverse geographical, historical and cultural 

background provides an ideal setting in which to elucidate human biological 

responses to a variety different external forces and stimuli.  

A total sample of 533 adult skeletons, spanning from the mid-Neolithic to 

the twentieth century, was examined. These skeletons represent the ancient 

agriculturalists, nomadic pastoralists and agropastoralists inhabiting in 

contemporary Northeast China and modern humans from South China. This 

dissertation uses body size and shape, entheseal expression and 

biomechanical properties of long bones to investigate: 1.) temporal patterns in 

postcranial dimensions, stature and body mass; 2.) regional differences 

between the northern and southern Chinese in body size and body/limb 

proportions; and 3.) variation in skeletal biomechanics and entheses in 

relation to subsistence strategy.  

The findings in this dissertation indicated that while the human skeletons 

studied were morphologically varied throughout Holocene China, they were, 

to some extent, correlated with climatic and environmental factors. Body size 

and shape and body/limb proportions corresponded with variation in 

temperature. Additionally, stature, body mass and entheseal expression were 

correlated with socio-political and cultural development. Nevertheless, 

entheseal expression unexpectedly did not show a straightforward 

relationship with subsistence strategy, in which is inconsistent with the 

findings of previous studies. Although the comparisons of biomechanical 

properties were not unequivocal, they suggest differences in mobility and 



 xxi 

mechanical loading between different populations and subsistence strategies. 

On the whole, the results suggested that variation in skeletal morphology of 

the Holocene Chinese follows the universal patterns on the one hand, while 

on the other, they were influenced by local environmental and behavioural 

factors.  

  



 xxii 

Acknowledgements 
 

 

It would not have been possible to complete this doctoral dissertation without 

the help and support of the generous and kind people around me.   

I am very grateful to my parents, sister, brother and two doggies. I would 

not have been survived through my Ph.D. without their love, support and 

patience.  

I would like to thank my supervisor, Dr. Jay T. Stock, a patient, humorous 

and enthusiastic mentor. This dissertation would not have been possible 

without his help and advice. Many thanks also go to my academic friends in 

China: Dr. LI Fajun, directed me to the right place to get the skeletons I 

needed for this dissertation; Professor ZHU Hong, kindly allowed me to 

access to the skeletal collections at the Research Center for Frontier 

Archaeology of Jilin University; Dr. WEI Dong and Dr. Rick Lin-hu Zhang, 

helped me to settle down in Changchun and offered all kinds of assistance 

during my stay; Dr. Thomas Li, granted me permission to study the modern 

skeletal remains at the Prince Philip Dental Hospital in Hong Kong.  

I would like to thank Dr. Sally Barnard and Ben, for sharing my loneliness 

and happiness; Dr. Patricia Tate, a great listener and personal life advisor. 

Many thanks to my best friends Pei-chien, Yu-shan and Fang-yun, thank you 

for all the support all these years. Also, I would like to thank all my loving 

badminton mates at Queens’ College. 

I am grateful to Dr. Emma Pomeroy for proofreading my dissertation and 

giving me invaluable comments and feedback which greatly improved the 

writing. Many thanks go to Dr. Rie Goto, for her assistance with statistical 

analyses, and Dr. Angela Lieverse, Dr. Elizabeth Weiss and Dr. Velantina 

Mariotti, for their patience and help with clarifying entheseal data. 

Last but not the least, I am extremely grateful to all the funding 

organisations that supported this research: Cambridge Commonwealth Trust, 

the Lundgren Research Awards, Queens’ College, the Sir Richard Stapley 

Education Trust, L.S.B. Leakey Foundation, the Wenner Gren Foundation 

(8186) and Funds for Women Graduates Foundation. 



  

CHAPTER 1  

Introduction 

 

 

 

 

 

1.1 Introduction 

The influence of the environment, specifically the shift in subsistence strategy 

during the Pleistocene-Holocene transition, on human skeletal biology has 

been intensively investigated over the last few decades in various 

geographical settings, including North America, Europe, Africa and Asia 

(Cohen and Armelagos 1984; Cohen and Crane-Kramer 2007; Eshed et al. 

2004; Eshed et al. 2006; Eshed et al. 2010; Larsen 1995; Larsen et al. 2002; 

Lieverse 2010; Oxenham and Tayles 2006; Pechenkina and Oxenham 2013; 

J. Peterson 2002; Pinhasi and Stock 2011; Ruff 2000a; Ruff et al. 1984; 

Temple 2010; Temple and Larsen 2007). In recent years scholars have not 

only focused on traditional issues such as the consequences of the transition 

from hunting-gathering to farming on human health, but also thoroughly 

scrutinised human biological responses to environmental factors at a local 

level. It has been agreed that environmental influences on humans is a 

complex process: it does not happen in a simple and uniform manner. 

Numerous studies in North America demonstrate that humans from the same 

region responded differently to changes in the environment. Furthermore, 

human body parts do not react synchronously when stresses are imposed, so 

variation in skeletal morphology may reflect different periods of life history 

(Larsen and Ruff 2011).  

Climate and body proportions are closely correlated, as indicated by 

Bergmann’s (1847) and Allen’s (1877) rules, which are known as 

ecogeographic patterning (Mayr 1956). Put simply, the former suggests that 

humans from cooler climates tend to have relatively larger body size than 
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those from warmer climates, while the latter indicates that the extremities of 

high-latitude populations are shorter than those of populations living in 

warmer environments. These hypotheses have been tested on a variety of 

animals and insects, including Neanderthals and Homo (Adams and Church 

2008; Ashton 2002a, b; Bidau and Marti 2008; Holliday 1997a, b, 1999, 2002; 

Holliday and Hilton 2010; Kurki et al. 2008; Lazenby and Smashnuk 1999; 

Murphy 1985; Nudds and Oswald 2007; Temple et al. 2008; Temple and 

Matsumura 2011; Trinkaus 1981). Body proportions are fundamentally 

genetically controlled, so they do not change within a generation or two 

(Auerbach 2007; Holliday 1999; Ruff 1994b, 2002). Given this, the effects of 

climate on human body proportions are a long-term process. Nevertheless, 

some studies show that the body proportions of some human populations do 

not completely fit within the global pattern of ecogeographic patterning 

(Bleuze et al. 2014; Temple and Matsumura 2011). The mixed findings in 

previous studies may imply that human skeletal plasticity and flexibility, in 

particular postcrania, have played a more important role in regulating and 

mediating external forces than had been presumed. Moreover, cultural 

buffering in the later stage of human evolution cannot be ruled out. It appears 

not only that the influence of climatic and environmental factors on human 

adaptation is difficult to disentangle, but also that these factors may have 

been equally crucial to human adaptive strategies throughout the course of 

human evolution. 

1.2 Objectives and concept of the study  

1.2.1 Aims 

The primary purpose of this dissertation is to investigate and improve 

understanding of spatial and diachronic variation in human skeletal 

morphology associated with climatic and environmental factors among the 

Holocene Chinese populations. The Chinese populations studied include 

ancient agriculturalists, pastoralists and agropastoralists in the North 

(Northeast China and Inner Mongolia) and an industrial population in the 
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South (Hong Kong). These great diversities in skeletal materials offer a 

unique opportunity to explore the relationship between natural environment 

and Chinese biological adaptation. Nevertheless, limitations in variety of the 

southern sample may hinder some aspects of skeletal adaptation to climate; 

therefore, this dissertation primarily focuses on the climatic adaptation of the 

northern Chinese, while the southern modern population is selected to provide 

a supplementary sample to assess differences between North and South 

Chinese.  

The second purpose of this dissertation is to explore biological responses 

of different body parts to various external factors. This dissertation employs 

three lines of osteological evidence: body size and shape, entheseal 

morphology and cross-sectional geometric properties to address the proposed 

questions. The responses of different human body parts reflect behaviour that 

is emphasised at various periods of life history, so they have been useful 

measures in tracking different kinds of stress. Although the approaches 

adopted in this dissertation have been widely used to investigate the issues 

outlined, these studies have been conducted independently with differing 

methods on different populations, which limits comparison. It is generally 

agreed that using multidisciplinary approaches is more advantageous than 

relying on a single skeletal indicator, particularly in studying human adaptation 

in the past. Integrating analysis of several types of structural characteristics 

helps shed further light on human skeletal morphology in relation to climatic 

and environmental changes (Ruff 2000b). Furthermore, using multiple 

approaches can avoid the potential biases resulting from the nature of bones 

per se, sample size issues and statistical methods on the one hand, while on 

the other, by systematically integrating the results from different evidence, the 

aspects which may have been missed when applying a single method can be 

revealed. In this light, the bioarchaeological approaches employed in this 

dissertation will reveal different perspectives of Chinese skeletal adaptation 

and provide a broader view of morphological variation. These approaches will 

be used to examine three main questions: 1) differences in climatic adaptation 

between North and South Chinese; 2) temporal patterns of skeletal adaptation 

among the Holocene Chinese in relation to socio-political development and 

stress; and 3) influence of subsistence strategy on skeletal biomechanics.  
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1.2.2 Why China? 

China was chosen as the geographical setting for this dissertation because it 

is vast; its climate and topography are diverse and it is the area in which many 

major events in human history originated. These characteristics make China 

an ideal region from which to determine human adaptation in different 

microecologies on the one hand, while on the other avoiding potential biases 

resulting from comparing disparate biological affinities.  

Contemporary China is the world’s third largest country, lying between 

latitudes of 20N and 54N and longitudes 30E and 75E (Domrös and Peng 

1988; Ren 1999; Winkler and Wang 1993). China has a broad climatic regime, 

but its greater part is temperate and subtropical zones (Domrös and Peng 

1988). China has a great number of mountain ranges as well as highlands 

and plateaux. By contrast, lowlands and downlands comprise only 10% of the 

total land area (Domrös and Peng 1988). Due to diversity in physical and 

structural settings, the contrast between northern and southern regions, 

divided by the Yangtze River, has gradually been developed and recognised 

in many aspects, including physique, culture, diet and language. Although the 

environment of the ancient China varied from time to time, the demarcation of 

northern and southern parts has been significant throughout the period of 

human occupation (Chang 1986:1). 

Evidence of the earliest hominins in China can be traced as far back as 

1.7 millions years ago1 (Zhu et al. 2008). The discoveries of some prominent 

hominin fossils, for instance Homo erectus Pekinesis and Homo erectus 

Lantianensis, have placed China in a crucial position in the study of human 

evolution, specifically the origins of anatomically modern humans (Demeter 

2006; Gao et al. 2010). Some researchers have advocated that fossil human 

remains discovered in China and adjacent regions support the Multiregional 

Continuity hypothesis, as evidenced by skeletal morphology, genetic studies 

and archaeological evidence (Weidenreich 1943; Wolpoff et al. 1984; Wu 

2006a, b; Wu and Zhang 1978). Although this issue is not the topic of this 

                                            
1 Various dates have been put forward for the earliest evidence of the occupation of the genus 

Homo in East Asia (Hawkey 1988; Rodrigues 2005). 
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dissertation, this claim implies that China in fact plays an important role in 

early human migration, settlement and microevolutionary change in East Asia. 

The present China is also known for its longest continuous civilisation and the 

longest recorded history (Chang 1986:4).  

In Chinese academic understanding, prehistory/history in China has been 

traditionally regarded as a single event rather than a diachronic cultural 

transformation. Therefore, although archaeological issues have been 

extensively investigated and published, comparative studies have not 

received much attention from Chinese archaeologists and bioarchaeologists. 

Additionally, the limited availability of human postcranial remains impedes 

studies of the correlation of skeletal morphology with behavioural patterns. 

Most of the postcrania unearthed in the early twentieth century were either 

reburied or disposed of after excavation because it was believed that they 

were of no value in elucidating the origins of anatomically modern humans, 

which was the most predominant research interest in Chinese 

palaeoanthropology at the time. Consequently, in comparison with other 

geographical regions, little is known about China pertaining to human 

adaptation in the later stage of human evolution, especially in the Holocene. It 

is not until recently that comparative studies in palaeopathology among 

Holocene Chinese populations have been sporadically carried out (Eng 2007; 

Eng and Zhang 2013; Hukuda et al. 2000; Pechenkina et al. 2002; 

Pechenkina et al. 2007a; Pechenkina et al. 2013a; Pechenkina et al. 2013b). 

Nor has an attempt yet been made to determine the relationship between 

Chinese skeletal morphology, climate and the environment in the last 10,000 

years, which is fundamental to the understanding of human adaptation and its 

microevolutionary trajectory.  

1.3 Expectations and contributions 

This dissertation is the first study systematically to investigate temporal and 

regional variation in Chinese skeletal adaptation during the Holocene by 

integrating three lines of evidence. It aims to bring to the fore Holocene 
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Chinese adaptation as part of human evolution by including noteworthy 

research issues of global bioarchaeological interest. China is unique in many 

aspects of its past and present and its uniqueness in culture and history, in 

which has given it merits to be comparable to developments in other parts of 

the world.  

Although palaeoanthropological, archaeological and bioarchaeological 

literature has been regularly published in Chinese, most of the results in these 

studies are inaccessible to western scholars mainly due to the language 

barrier. As a result, human-environment interaction in Holocene China still 

remains a mystery to western academics. This dissertation not only serves as 

a springboard for encouraging investigation in Chinese bioarchaeology, but 

also making the past of China visible in the western-language literature.  

1.4 Outline of the dissertation  

This dissertation is organised into nine chapters, including the Introduction in 

this chapter. Chapter two lays out the climate and environment of past and 

present China. It also demonstrates the impact of climatic and environmental 

changes on the cultural development in the Neolithic. Chapter three reviews 

current literature and new perspectives on the approaches employed and 

bioarchaeological issues. It is followed by detailed proposed hypotheses. 

Chapter four consists of two parts. The first summarises the human skeletal 

materials studied, biocultural contexts of each site and the methods employed, 

providing an overview of how this research was designed and conducted. The 

second part uses a statistical approach, discriminant function analysis, to 

develop equations for sex estimation. The human skeletal remains studied in 

this research are predominantly those of individuals whose sex is unknown. In 

the interests of maximising the sample size, equations were produced using 

the dimensions of skeletal elements such as femora and humeri. 

Subsequently, preliminary comparisons of the original and new datasets in 

living stature and body mass were carried out to elucidate the implications of 

an increase in sample size for the statistical analyses. The data collected by 
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each method were analysed and presented in chapters five to seven in order 

to elucidate the proposed hypotheses. Chapter eight discusses collectively 

the findings from chapters five to seven and offers insights into the 

relationships between the three methods. Lastly, it presents conclusions of 

the research as a whole and proposes future directions for the study of human 

adaptation in China. 
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CHAPTER 2  

Climate and environment in China 

 

 

 

 

 

China is situated between latitudes 20 and 54N and between longitudes 30 

and 75E and has a total land area of 9.6 million km2. From north to south, it 

measures about 5500 km (Winkler and Wang 1993; Zheng et al. 1998). The 

present climate in China varies from south to north and from east to west. 

While the south-north variation is mainly controlled by latitudes, the east-west 

discrepancy is dependent on topography (Liu and Feng 2012). The climate of 

China is primarily dominated by monsoon winds (Zhang and Lin 1985). The 

winter monsoon brings cold and dry continental air to the southwest. The East 

Asian monsoon carries warm and humid air from the Pacific Ocean to 

southeastern China and the Southwest Asian summer monsoon brings warm 

and humid air from the Indian Ocean to Southwest China (Liu and Feng 2012). 

In the northwestern arid region and Tibetan Plateau the temperature range is 

about -4-11°C and precipitation is 15-600mm. Northeast China shows a mean 

temperature between -5°C and 7.7°C and precipitation of 500-800mm, while 

the south is characterised by a warmer and humid climate with 16.3-23°C and 

1000-2500mm (Figure 2.1) (Zheng et al. 1998).  

The modern physical environment of China has been determined by two 

factors: climatic fluctuation since the Pleistocene and tectonics of the western 

highlands (Lin and Wu 1987; Ruddiman and Kutzbach 1991). In terms of 

topography and landform, China shows three steps of descent from west to 

east. It begins from the Qinghai-Xizang Plateau in west-central China with a 

mean altitude of 4000m to the Xinjiang-Neimenggu, Loess and Yunnan-

Guizhou plateaus, descending to a mean altitude of 2000m. It then continues 

to descend eastwardly to a mean altitude of 200-500m (Domrös and Peng 

1988; Liu and Ding 1984; Winkler and Wang 1993). This topographic variation 
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divides China into different vegetational regions, including arid steppe, 

grassland and forest (Hou 1979; Ren et al. 1985; Xu 1984). 

 
Figure 2.1 Modern annual precipitation and mean temperature of China: (A) total 

annual precipitation; (B) mean January temperature; (C) mean July temperature 

(copy from Ren and Beug 2002: 1397) 
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2.1 Past climate and environment in Northeast China 

The end of the Pleistocene witnessed the rise of plant domestication and 

animal domestication in different regions (Neumann 2003; Smith 1995) and 

this cultural transition has been referred to as the ‘Neolithic Revolution’, a 

term coined by the Australian archaeologist V. Gordon Childe in the 1920s 

(Bar-Yosef 1998). In China the beginning of the Neolithic was marked by the 

origins of millet and rice in the Yellow River in the north and the Yangtze River 

in the south, respectively (Cohen 2011; Jones and Liu 2009). This period was 

characterised by a gradual climatic transition from cool and dry to warm and 

wet conditions, with temperature about 2-4°C higher than the present (Zheng 

et al. 1998). 

In northern and northeastern China evidence of palynologic data, fauna 

and floral assemblages, paleosol, and archaeological findings suggest that 

the Holocene climate in this area can be divided into three stages (Duan et al. 

1981; Kong et al. 1982; Liu et al. 1965; Liu 1988; Tang and Huang 1985; 

Wang et al. 1982; Wang 1984; Winkler and Wang 1993): 1) the early 

Holocene (10000-8000/7500 B.P.); 2) the middle Holocene (8000-3000 BP); 

and 3. the late Holocene (3000/2500 B.P. to the present) (Figure 2.2). The 

early Holocene was warm and dry, whereas the middle Holocene was more 

humid. In the late Holocene, the climate became cooler and drier but showed 

several fluctuations (Wang 1984). Table 2.1 summarises the chronological 

periods, dates and the sites studied in this dissertation. 

 

1. The early Holocene (10000-8000 or 7500 B.P.) 

During the Last Glacial Maximum (LGM) the greater part of China was dry 

and cold. Given pollen and permafrost data, the annual mean temperature in 

the LGM in northern China was at least 7-12C lower than that of today (An et 

al. 1991; Cui and Xie 1985; Liu 1988; Sun and Chen 1991; Zheng et al. 1998; 

Zhou et al. 1991). Due to the strengthened East Asia Monsoon, a gradual 

climatic transition from cool and dry to warm and wet conditions was 

developed in the early Holocene. Nevertheless, compared with that of the 

present the climate in this period was relatively cool and dry (An et al. 2000; 

Liu 2004; Morrill et al. 2003).  
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Table 2.1 Chronological periods and dates of Chinese prehistory/history 

Time period  Site studied in this dissertation 

Neolithic Early 10,000 B.P.  

 Middle 9000-7000 B.P  

 Late 7000-4500 B.P. Jiangjialiang, Hebei 

Bronze Age 4205-2500 B.P. Three Dynasties (Xia, 

Shang and Zhou) 

Neiyangyuan, Shanxi 

Iron Age After circa 2500 B.P. Jinggouzi, Inner Mongolia 

Tuchengzi, Inner Mongolia 

Lamadong, Liaoning 

Imperial period From Qin Dynasty (221-206 B.C.) to 

Qing Dynasty (A.D. 1644-1911) 

Shenyang, Liaoning 

Modern period The foundation of Republic of China 

(1912) 

Sha Ling, Hong Kong 

 

 

The pollen obtained from the Liaoning Province sites in Northeast China 

indicates that in this period Betula forest predominated (Chen et al. 1977, 

1978). The pollen assemblages consisted of about 58-89% Betula pollen and 

11-39% pollen was from Ulmus (elm), Quercus (oak), and Pinus (pine). 

Results suggest that the climate was colder and drier than that of the present, 

with a mean annual temperature (MAT) of about 6C and an aridity index of 

1.50 (Chen et al. 1977, 1978). In northern China, including the Beijing 

lowlands, the MAT was 8-9C, based upon the dominance of birch pollen in 

this area. Abundant ostracods were discovered, implying the presence of 

numerous freshwater ponds in the Beijing lowlands, which may have formed 

when permafrost melted (Chen 1979; Winkler and Wang 1993). Liu (1988) 

reviewed the palynologic data collected from eighty sites in northeast and 

north China. He reported that as the climate became warmer and wetter after 

11,000 B.P. a more mixed conifer-hard-wood forest was developed and 

peatlands expanded. Results demonstrate that pine increased in the early 

Holocene (Liu 1988). 

 

2. The middle Holocene (8000-3000 B.P.) 

Studies of the mid-Holocene Chinese climate are relatively abundant because 

this period is of significance to human evolution and development in China 

12



  

(He et al. 2004). It is worth noting that in the mid-Holocene there was 

substantial growth of Neolithic sites in China, which may be have been 

associated with favourable climatic conditions (Liu 2004; Shi et al. 1993; 

Winkler and Wang 1993).  

The climate in this period is often known as “the Holocene optimum”, the 

time of maximum postglacial warmth (An et al. 2000). During this time 

“transgression occurred and seawater invaded the previous fluvial region, 

creating estuarine and prodelta/neritic environments”, as evidenced by 

aquatic plants, marine algae, herbs, evergreen and deciduous broadleaved 

trees (Yi et al. 2003: 17). The Holocene optimum was asynchronous in 

different parts of China (An et al. 2000; He et al. 2004), but it is generally 

believed that it started around 10,000-7500 B.P. and ended 5000-2000 B.P. 

(An et al. 2000; He et al. 2004; Shi et al. 1993; Yi et al. 2003; Zheng et al. 

1998). Due to intensified summer monsoon, 7200-6000 B.P. marked the 

climax of the Holocene optimum (Shi et al. 1993). 

 Although the mid-Holocene has been popularly considered a warm and 

humid stage, a number of climatic fluctuations occurred during this period. 

The early stage of the mid-Holocene was characterised by warm and humid 

climate; yet, in the later period, it remained warm but became drier (Winkler 

and Wang 1993). The MAT in this period was 2-3C higher than at present 

(Duan et al. 1980a). In Liaoning Province, Northeast China, the temperature 

was about 13C. The aridity index in the early stage was less than 1 but 

increased to 1.50 after about 5000 B.P. (Chen et al. 1977). Pollen studies in 

Jilin Province show similar results to those for Liaoning, with a MAT of 5C 

higher than the present (Zhou et al. 1984). Fang (1991) and Shi et al. (1993) 

reported that lake levels in North China reached their highest about 6000-

3000 B.P. and between 9000-7000 B.P., resulting in a large area in lowlands 

regions, such as rivers, marshes, and lakes, covered by water (An et al. 2000; 

Cao 1994; Man 1992). 

In North China deciduous forests were predominant throughout this period, 

but spores from ferns that now grow only south of the Yangtze River (about 

30N) were also abundant. Betula, the dominant flora in the early Holocene, 

decreased dramatically to less than 15% in Liaoning Province (Chen et al. 

13



  

1977). Discoveries of elephant bones at Neolithic sites in Henan Province and 

panda skeletal remains at the Zichuan Neolithic site (Jia and Zhang 1977) 

further suggest a warm and wet climate (Winkler and Wang 1993). Today, 

bamboo, on which pandas solely depend, is distributed in the subtropical 

monsoon climate zone in China (Fu 1999), so bamboo forest must have 

grown at least 3 north of their present latitudinal limit in the mid-Holocene 

(Chu 1973; Huang 1984). At the Banpo site (6080-5600 B.P.) in Shaanxi 

Province, skeletal remains of subtropical fauna such as Hydropotes inermis 

(water deer) and Rhizomys sinensis (bamboo rat) were found, indicating a 

warm and humid climate (Chu 1973).  

In the late mid-Holocene (5000/4500-2700 B.P.), the climate deteriorated 

as the East Asian monsoon started to weaken (Liu 2004). Ice wedges were 

found in northeastern China, indicative of a cold Neoglacial period (Jia et al. 

1987; Peng and Cheng 1990). The monsoonal evergreen and broadleaved 

deciduous trees progressively diminished and were replaced by herbaceous, 

coniferous, Pinus, and Fagus. The cool and dry conditions probably 

contributed to the contraction of deciduous and expansion of coniferous forest 

and steppe grasses (Yi et al. 2003).  

 

3. The late Holocene (3000 or 2500 B.P. to the present) 

The late Holocene was generally cooler and drier than the mid-Holocene as 

the East Asian monsoon weakened (Winkler and Wang 1993), but several 

abrupt variations were identified (Hong et al. 2000). Three warm and humid 

climatic intervals occurred between 2700-2300 B.P., 1700-1300 B.P. and A.D. 

600-1400 (Duan et al. 1980b; Yi et al. 2003). 

In Liaoning Province, Northeast China, the MAT fluctuated within 1-2C of 

the present value of 8-10C (Chen et al. 1977). In the late Holocene there was 

an increase in conifers, Pinus and Fagus (Yi et al. 2003). Pine and/or oak 

pollen percentages were relatively high, suggesting that North China was 

dominated by pine and oak forest (Liu 1988). It was recorded that during the 

Northern and Southern Dynasties (A.D. 350-580) the lakes and rivers were 

frozen during the winter (Chu 1973; Hong et al. 2000; Yi et al. 2003). It has 

been estimated that the mean winter temperature at that time was 2C lower 
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than at present (Hong et al. 2000). In the last 500 years in China, temperature 

variation displays three prominent cold-warm cycles with an interval of 180 

years. The three prominent cold events are A.D. 1470-1520, A.D. 1620-1720 

and A.D. 1820-1890, while the warm ones are A.D. 1530-1620, A.D.1730-

1810 and A.D. 1900-present (Zhang 1991), which covered the Ming and Qing 

Dynasties.  

 

The Holocene climate in Inner Mongolia is generally similar to those of 

Northeast and North China. The total inorganic carbon record of Daiha Lake, 

Inner Mongolia, suggests that the Holocene in this area consisted of a warm 

period from 11500 B.P. to 2900 B.P. and a cool interval after 2900 B.P. (Xiao 

et al. 2006). Pollen data indicates that before 7900 B.P. Daiha Lake was 

dominated by arid herbs and shrubs and patches of mixed pine and 

broadleaved forests, implying a mild and dry period. The climate between 

7900-2900 B.P. was warm and humid, as evidenced by large-scaled mixed 

coniferous and broadleaved forest. The forests in the lake area disappeared 

and vegetation density decreased after 2900 B.P., which may be attributable 

to a cool and dry condition. Although the late Holocene of Inner Mongolia was 

cold, a warm and wet interval occurred between 1700-1300 B.P. (Xiao et al. 

2006; Xiao et al. 2004). Unlike the humid Holocene climate in eastern China, 

the Holocene in Inner Mongolia was marked by relative dryness, which may 

have been due to an enhanced evaporation over higher monsoon 

precipitation that reduced effective humidity (Chen et al. 2003). 

2.2 Climate, environment and cultural development 

A dramatic climate transition, known as ‘Holocene Event 3’ or ‘4000 B.P. 

Event’ in the literature (Bond et al. 2001; Perry and Hsu 2000), was 

documented during the middle- to late-Holocene at about 4000 B.P. in various 

parts of the world. It has been argued that this climatic event played a 

possible role in the collapse of ancient Indian, Egyptian, Mesopotamian and 

Chinese Civilisations (Cullen et al. 2000; Dalfes et al. 1997; deMenocal 2001; 
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Drysdale et al. 2006; Staubwasser et al. 2003; Weiss 2000; Weiss and 

Bradley 2001; Weiss et al. 1993). A study by Wu and Liu (2001) suggests that 

the climatic deterioration around 4000 B.P. may have attributed to the 

collapse of five major Neolithic cultures on the periphery of Central China: the 

Longshan culture at the downstream of the Yellow River, the Qijia culture in 

Ganqing region, the Loahushan culture in Inner Mongolia, the Hongshan 

culture and the Xiaoheyan culture in Yanliao region. 

In North-central China a Holocene pollen sequence from the Qinghai Lake, 

situated between the Tibetan Plateau and the Chinese Loess Plateau, shows 

that Holocene Optimum vegetation started to deteriorate at 6000 B.P. and a 

noticeable dry-cool event occurred at about 4000 B.P. (Liu et al. 2002; Shi 

and Kong 1992; Shi et al. 1993). At the Sujiawan site, the western part of the 

Chinese Loess Plateau, it is reported that the vegetation exhibited a gradual 

transition from deciduous forest (6560-5790 B.P.), a Pinus-dominated (5790-

4950 B.P.) and Ulmus-dominated forest-steppe (4950-3800 B.P.), to a desert-

steppe (3800 B.P.), indicating that a dramatic climatic shift occurred at about 

3800 B.P. (Liu and Feng 2012). In Inner Mongolia a Holocene lacustrine 

sequence suggests that a lake at Baahar Basin had completely dried up by 

3700 B.P. (Guo et al. 2007). The pollen data from nearby Daiha Lake shows 

that mixed coniferous and broadleaved forests were replaced by steppe 

vegetation at 4450 B.P. (Xiao et al. 2006; Xiao et al. 2004). Although the 

results for Northeast China are inconsistent, three sets of data indicate that a 

dry climate was recorded at about 4000 B.P. The peat δ13C signature from the 

Hani Peat and Jinchuan Peat reveals that a relatively dry interval lasted from 

3900 to 3300 B.P. and from 4100 to 3700 B.P., respectively (Hong et al. 2005; 

Hong et al. 2001). At Hulun Lake, the period between 4300-3350 B.P. was 

marked as the driest period in the Holocene (Wen et al. 2010a; Wen et al. 

2010b).   

It has been documented that the Neolithic cultural assemblages in China 

such as the Longshan Culture collapsed at about 4000 B.P. The collapse of a 

social system implies a potentially substantial reduction in human population 

size, in economic and socio-political complexity across a vast area over a 

short period of time (Diamond 2005). In the Chinese context the collapse of 

agricultural cultures, particularly in northern semi-arid China, was often 
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followed by widespread pastoralism or by an agriculture-pastoralism transition 

(An et al. 2004; An et al. 2005; G. Hou et al. 2009; Liu et al. 2005; Liu 2004). 

Cultural changes have been identified in various parts of China during the 

climatic transition. Before 4000 B.P. South-Central Inner Mongolia was 

occupied by an advanced and well-organised agricultural population. However, 

the agricultural culture disappeared suddenly around 4000 B.P. and 

archaeological evidence shows that the succeeding inhabitants adopted an 

agropastoral lifestyle (Wang 2004). The pattern in Southeastern Inner 

Mongolia was similar to that found in the south-central region. The number of 

archaeological sites dated between 5000 B.P. and 4500 B.P. reduced 

considerably (Liu and Feng 2012). It is evident that the populations or tribes 

relying on millet farming and animal husbandry shifted to more southward 

locations during this period to seek a better environment for their food 

production (Huang and Su 2009). The later Bronze Age occupants (3200-

2500 B.P.) were found to have completely relied on pastoral nomadism (Y. Y. 

Li et al. 2006). 

It is undeniable that the Holocene Event 3 led to collapse of cultures and 

population migration in China, but human responses to these stresses varied 

and the relation between climatic changes and cultural transformation is very 

complicated. It has been suggested that the Holocene Event 3 could have 

brought positive effects, facilitating the rise of dynastic state-level society. 

However, it is worth mentioning that although numerous lines of evidence 

show that cultural collapse and climate-related events are closely correlated, 

plenty of societal failures in Chinese history such as the Qin Dynasty (2200 

B.P.) and the Sui Dynasty (A.D. 620) were not driven by climatic factors.  
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CHAPTER 3  

Bioarchaeological approaches for 

understanding human past 

 

 

 

 

 

 

The comparison of variation in skeletal morphology among past populations, 

in relation to climatic and the environmental variation, has been provided an 

important means of understanding of human adaptation (Cohen and Crane-

Kramer 2007; Oxenham and Tayles 2006; Pechenkina and Oxenham 2013; J. 

Peterson 2002; Pinhasi and Stock 2011; Weber et al. 2010). Various 

approaches have been developed and improved in an attempt to elucidate 

human variability and plasticity. This chapter reviews the bioarchaeological 

methods used in this dissertation along with past and current literature on 

ecogeographic patterning, sexual dimorphism and asymmetric patterns.  

3.1 Climate and phenotypic variability 

The development and retention of certain body traits due to climatic variables 

(e.g. moisture, precipitation, latitude etc.) and geographical variation in 

phenotype among human and non-human populations are known as 

ecogeographic patterning (Mayr 1956). Among others, Bergmann’s (1847) 

and Allen’s (1877) rules have been widely employed to test the evolution of 

phenotypic variance within species and/or closely related species in relation to 

climatic gradients or to test the validity of the application of these rules to 

different non-human animals, in particular mammals and birds (Adams and 

Church 2008; Ashton 2002a; Ashton et al. 2000; James 1970; Johnston and 
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Selander 1973; Klein and Scott 1989; Romano and Ficetola 2010; Snow 1954; 

Yom-Tov et al. 2002).  

Human body proportions have relatively stable and genetically canalised 

characteristics (Auerbach 2007; Holliday 1997a; Trinkaus 1981). It is evident 

that the differences in body proportions between geographically disparate 

human groups are observed in foetal life (Warren et al. 2002; Warren 1998). 

In this light, body proportions such as brachial index (radial length relative to 

humeral length) and crural index (tibial length relative to femoral length) have 

been the most commonly used variables in investigating climatic adaptation of 

Homo, evolutionarily short-term dispersals and/or gene flow (Fukase et al. 

2012; Holliday 1997a, b, 1999; Holliday and Hilton 2010; Jacobs 1985; Kurki 

et al. 2008; Porter 1999; Richmond et al. 2002; Temple et al. 2008; Temple 

and Matsumura 2011; Temple et al. 2011; Weinstein 2005; Zakrzewski 2003).  

A number of studies have compared limb segment lengths to skeletal trunk 

height ratios since it is argued that they can effectively distinguish human 

groups (Holliday 1997a; Holliday and Hilton 2010; Kurki et al. 2008).  

3.1.1 Ecogeographic expectations and human skeletal remains 

The diversity of human phenotypes observed can be regarded as one of the 

significant outcomes of the dispersal of anatomically modern humans out of 

Africa about 65,000 B.P. (Armitage et al. 2011), into an extreme range of 

different environments globally. The unique migration history and regional 

morphological variation of Homo sapiens offer an opportunity to explore and 

to test ecogeographic expectations (Lomolino et al. 2006).  

Holliday (1997a) found that Early Upper Palaeolithic populations show 

similar body proportions to recent Africans, which does not fit expected 

ecogeographic patterning. These results suggest that the earliest modern 

Europeans had African-like physique and likely descended from a recent 

African migration. Holliday (1999), however, pointed out that brachial and 

crural indices are not the best indicators of limb elongation because compared 

with recent Europeans the Late Upper Palaeolithic and Mesolithic samples 

tend to show tropically-adapted limb proportions (i.e. higher intralimb indices) 
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but cold-adapt limb lengths (i.e. shorter limbs). He suggested that when 

computing intralimb indices it should be born in mind that not all of the 

significant variation is in the numerator (e.g. radial and tibial lengths), but the 

denominator (e.g. humeral and femoral lengths) may bear considerable 

variation as well. In other words, the proximal limb segments may be as 

variable as the distal ones. 

Several recent studies have focused on variation in intralimb indices of 

prehistoric Japanese in an attempt to elucidate the relationship between 

migration history, climate and body proportions (Fukase et al. 2012; Temple et 

al. 2008; Temple and Matsumura 2011; Temple et al. 2011). Temple and 

colleagues (2008) compared the intralimb indices of Jomon foragers and 

Yayoi agriculturalists from prehistoric Japan to investigate the influences of 

migratory route on the limb proportions of ancient Japanese. Yayoi people 

were the descendants of recent Northeast Asian migrants to Japan, while the 

origins of the Palaeolithic ancestors of Jomon people remains uncertain. 

Temple et al. found that Jomon people have more elongated distal relative to 

proximal limb segments than Yayoi people, implying the limb proportions of 

Jomon represents either a retention of the trait of Palaeolithic ancestors who 

originally lived in a temperate/tropical environment or a morphological change 

between colder and warmer climates. The cold conditions in the last glacial 

maximum (25,000-10,000 B.P.) were only observed on the mountain peaks in 

northern Japan, while middle and southern Japan were characterised by 

warm and moist environments. In the Holocene, it was recorded that the 

mean annual temperatures were 3˚C more warmer than those of the modern 

Japanese Islands (Tsukada 1986). From this evidence and evidence from 

genetics, cranio- and odontometric data, Temple and colleagues concluded 

that the relatively long distal relative to proximal limb segments of Jomon 

people is a biological adjustment to climatic changes, indicating the ancestors 

of Jomon People were likely the Pleistocene nomads from cooler Northeast or 

North/Central Asia.   

Fukase and co-workers (2012) examined the Jomon specimens from five 

regions in Japan from Hokkaido in the north to the Okinawa Islands in the 

south. They suggested that the inconsistency between the results in previous 

comparative studies and ecogeographic expectations may have been due to 
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direct comparisons of temporally and geographically different populations. 

Fukase et al. reported that neither did the five regional Jomon groups in their 

study differ significantly in limb proportions nor was a north-south geographic 

cline observed. Nevertheless, the intralimb indices of these Jomon groups are 

distinct from those of modern Japanese. Fukase et al. suggested that the 

relationship of limb proportions to climatic variables is relatively weak within 

genealogically close human groups, indicating genetics may have greater 

controls on population-specific intralimb proportions. Although stature and 

body mass are highly correlated with nutritional and physiological conditions, 

Fukase et al. discovered that the Jomon demonstrate a north-south gradient 

in limb lengths (a proxy for stature) and femoral head diameter (a proxy for 

body mass), with the Hokkaido Jomon in the north exhibiting a larger body 

size relative to the Okinawa Jomon in the south. Similarly, Temple and 

Matsumura (2011) reported that Hokkaido Jomon foragers exhibit increased 

relative body mass, which may reflect ancestral adaptation to colder climate 

(i.e. the Pleistocene ancestors of Jomon people migrated to Japan via 

Northeast Asia), and elevated brachial and crural indices, which may due to 

selection for energetic efficiency or a morphological response to climate 

warming during the Terminal Pleistocene and Early Holocene.  

It is evident that the relationship between human body proportions and 

climate has reduced through time (Katzmarzyk and Leonard 1998), indicating 

climate is not the only factor associated with geographically variation in body 

proportions. Kurki and colleagues (2008) discovered that the body proportions 

of the small-bodied Late Stone Age (LSA) foragers of South Africa are 

discordant with those of populations from similar latitudes and small-sized 

Africans, suggesting that these populations may have lived under different 

additional selective pressures such as resources availability and life history 

parameters.  
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3.2 Growth and development 

The early study of human growth developed out of an interest in 

understanding the well-being of extant populations and how early life events 

influence later development. Growth can be regarded as a quantitative 

increase in size or mass. The growth pattern of a child can be measured 

through physical changes such as the development of height and weight 

(Bogin 1999). Therefore a child’s growth not only reflects his health, but also 

provides information on the overall nutritional status of a society (Eveleth and 

Tanner 1990). 

3.2.1 Environmental influence on growth 

Human growth is a regulated yet highly dynamic process which is controlled 

by genetics as well as environmental factors such as nutrition (Noel Cameron 

1991; Goodman et al. 1988; Mata et al. 1971), infection (Cole and Parkin 

1977; Lunn 2000; Rowland et al. 1988) and/or socioeconomic status (Bogin 

1991; Goodman et al. 1988; Mays et al. 2009; Steckel 1995). Bogin (1999: 

240) stated  “……the biological development of the human being is always 

due to the interaction of both genes and the environment. It is erroneous to 

consider whether one or the other is more important; genes are inherited and 

‘everything else is developed’ (Tanner 1978: 117)”.  

Growth retardation is highly correlated with malnutrition and illness. Low 

nutritional level delays child growth, leading to a shorter stature and/or lighter 

body mass (Bogin 1999; de Onis and Blössner 2003). Prolonged periods of 

nutritional deficiency and infectious disease have irreversible impacts on child 

development and adult size (Eveleth and Tanner 1990; Guerrant et al. 2008). 

However, children who suffer a short-period illness or starvation are able to 

return to their regular course of growth, including skeletal maturity, when 

remission occurs. The initial growth velocity upon recovery will accelerate 

beyond the normal rate for age, and is termed “catch-up-growth” (Prader et al. 

1963).  

Socioeconomic level has indirect effects on human growth and 
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development (Bindon and Dressler 1992; Eveleth and Tanner 1990), so it has 

been used as a proxy for other factors known to influence human growth such 

as nutrition, disease and workloads (Bogin 1999). Irrespective of whether a 

country is developing or developed, children from families of high or middle 

socio-economic groups have on average larger body size than their peers in 

lower economic groups (Bielicki 1986; Bogin 1999; Eveleth and Tanner 1990; 

Martorell and Habicht 1986). Nevertheless, some research shows that in 

contemporary societies overweight and obesity appear to be more prevalent 

amongst children from poorer backgrounds (Jansen and Hazebroek-

Kampschreur 1997; O’Dea 2003).  

3.2.2 Stature estimation for human skeletal remains 

The living stature of a skeleton can be estimated using mathematical and 

anatomical methods. The skeletal elements which are frequently used to 

produce regression formulae (mathematical method) are long bones, 

particularly the femur or tibia (Lundy 1985; Raxter et al. 2006). However, 

stature regression equations derived from one population should not be used 

on another genetically different population because living stature can only be 

accurately estimated using regression equations that derived from samples 

from the same region (Auerbach and Ruff 2010; Constandse-Westermann et 

al. 1985; Formicola 1983, 1993; Giannecchini and Moggi-Cecchi 2008). The 

anatomical method, generally credited to George Fully (1956), involves the 

measurements and addition of the lengths or heights of a series of articulated 

skeletal elements from the skull through the foot (Lundy 1985; Raxter et al. 

2006). Thus, “differences in body proportions, e.g. trunk length to lower limb 

length, are intrinsically incorporated into the method” (Raxter et al. 2006: 374).  

The mathematical method has been favoured over the anatomical method, 

particularly in archaeological contexts, because regression equations from 

one or two long bone lengths are much easier to apply and do not depend on 

preservation of complete skeletons (Auerbach and Ruff 2010). However, most 

documented living stature is either from military service records or from 

cadaver length, and it is uncertain how accurately the living stature was 
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measured or how well cadaver length corresponds to living stature. In addition, 

the mathematical method is based upon the proportion of certain skeletal 

elements to stature, so it does not consider variation in body proportions to 

total height (Lundy 1985). Generally, the anatomical method yields more 

accurate stature estimates since the estimation is derived directly from the 

lengths of the skeletal elements that compose it. Moreover, a correction factor 

is used in the anatomical method to compensate for the soft tissues and 

cartilage between bones (Lundy 1985). Nonetheless, the anatomical method 

requires a nearly complete skeleton to determine the skeletal height, which is 

difficult to apply to archaeological human skeletal remains (Lundy 1985).  

3.2.3 Studies of stature in archaeological settings 

Stature is often used in conjunction with other stressors to assess health 

status of populations that underwent a change in subsistence activity such as 

the transition from hunting-gathering to agriculture (Cohen and Armelagos 

1984; Cohen and Crane-Kramer 2007; Pinhasi and Stock 2011). Although 

stature alone is not as good a proxy for health as multiple indicators, it may 

reveal the trends and trajectories which cannot be found in other stress 

indicators such as porotic hyperostosis, cribra orbitalia, and enamel 

hypoplasia. There is substantial evidence that the adoption of agriculture had 

a negative impact on health due to a shift from diverse diets towards 

dependence on one or a few domesticated plants and resulting nutritional 

deficiencies (Cohen 1989; Cohen and Armelagos 1984; Cohen and Crane-

Kramer 2007; Pinhasi and Stock 2011). Malnutrition during childhood has 

enormous impacts on growth, including stature reduction. Angel (1984) 

examined populations in the Eastern Mediterranean covering a broad range of 

time periods. Results show that Upper Palaeolithic populations are 

characterised by tall stature, maximum skull base height and good dental 

health. However, in the Neolithic there was a considerable decline in growth 

and nutrition, particularly during the shift from foraging to farming. Moreover, 

both agricultural females and males exhibit a marked reduction in stature, 

probably resulting from insufficient protein (less red meat consumption), blood 
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calcium and vitamins. Similarly, Kennedy (1984) found that in South Asia the 

stature of females and males demonstrates a decline during socioeconomic 

transition from hunting-gathering to plant domestication. In Egypt (Zakrzewski 

2003), Peru (Pechenkina et al. 2007b) and Mesoamerica (Storey et al. 2002), 

human health deterioration is found to be associated with agricultural 

intensification. 

In some regions, however, stature shows an increase or no change with 

adoption of agriculture (Larsen 1995). Cook (1984) investigated the extent to 

which the introduction of maize agriculture changed the health of ancient 

populations in Illinois, North America. In contrast to the findings of other 

studies, Cook found that males from later time periods have higher stature 

than pre-agricultural males, but this trend is weak among females. In his 

recent study, Cook (2007) again found that maize dependants in the 

American Midwest do not show a decline in stature, which she attributed to 

the “reliability and redistribution functions of a chiefdom-level society” (Cook 

2007: 14). Larsen (2007) reported that the prehistoric inhabitants of coastal 

Georgia and the Florida panhandle do not demonstrate changes in humeral 

and femoral lengths correspondent to the adoption of maize agriculture. 

Larsen concluded that access to marine resources may have been of great 

importance preventing considerable reduction in stature. Findings in the 

investigations in the central Ohio River Valley (Cassidy 1984), the lower 

Mississippi valley (Rose et al. 1984) and the coastal Georgia in North America, 

Ecuador (Ubelaker 1984; Ubelaker and Newson 2002), Portugal (Cardoso 

and Gomes 2009) and Thailand (Domett and Tayles 2007; Douglas and 

Pietrusewsky 2007) demonstrate that the stature of the studied populations 

does not increase or change with the advent of agriculture. 

A decline in health occurring at the advent of agriculture or agricultural 

intensification may have been the consequence of other environmental 

fluctuations. In Bahrain (Littleton 2007) females in the Hellenistic period show 

marked reduction in stature and deterioration in overall health, while males 

remain stable over time. The characteristics of this period include low water 

levels, extensive foreign trade and severe malaria, suggesting that a 

combination of environmental and political factors has been attributable to the 

health pattern in Bahrain. In addition, inequality in power appears to play a 
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major role in sexual disparity of health. Haviland (1967) suggested that taller 

individuals found in Tikal, Guatemala, were high social status, as evidenced 

by burial in tombs. The stature discrepancy might have been resulted from 

differentiation in access to food between the two social status groups. 

Schweich and Knüsel (2003) examined a group of medieval skeletal remains 

in Britain and reported that individuals from a leprosarium cemetery show 

stunted growth in height due to a low socioeconomic status, while a high-

status monastic population is characterised by a relatively tall stature.  

3.3 Entheses 

Interests in activity-related entheseal changes originated from medical 

research in occupational and military diseases in the mid-sixteenth century in 

Europe. Variation in entheseal morphology can be used to infer past activity 

patterns, to elucidate the impacts of colonisation or transition in subsistence 

strategy on human skeletal morphology (al-Oumaoui et al. 2004; Churchill and 

Morris 1998; Eshed et al. 2004; Hawkey and Merbs 1995; Lai and Lovell 1992; 

Lieverse et al. 2009, 2013; Lovell and Dublenko 1999; Molnar 2006, 2010; 

Munson Chapman 1997; Niinimäki and Sotos 2013; Peterson 1998; Schrader 

2012; Shuler et al. 2012; Sperduti 1997; Steen and Lane 1998) and to 

investigate changes in division of labour (Havelková et al. 2013; Havelková et 

al. 2011; J. Peterson 2002; Porčić and Stefanović 2009; Rodrigues 2005; 

Villotte et al. 2010b; Wysocki and Whittle 2000). 

3.3.1 Methodological issues 

Entheses can be classified as fibrous or fibrocartilaginous according to their 

structure and location (Benjamin et al. 2002; Benjamin and McGonagle 2001; 

Benjamin and Ralphs 1998). The differences in enthesis types and their 

responses to mechanical stimuli have been well documented in clinical 

literature (Benjamin and Hillen 2003; Benjamin et al. 2002; Benjamin and 

Ralphs 1998; Benjamin et al. 2006). Nevertheless, these distinctions have not 
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been widely appreciated by bioarchaeologists until recently. Several scholars 

have suggested that the evaluation of fibrous and fibrocartilaginous entheses 

should be based upon different scoring scales due to their characteristics 

(Cardoso and Henderson 2010; Henderson and Gallant 2007; Villotte 2006; 

Villotte et al. 2010a; Villotte et al. 2010b). Since fibrous entheses are less 

susceptible to overuse injuries and other trauma (Benjamin et al. 2002) than 

fibrocartilaginous entheses (e.g. the heel spurs always seen at Achilles 

tendon enthesis), Villotte (2006) suggested that bioarchaeologists who 

attempt to reconstruct past activity patterns should only employ 

fibrocartilaginous entheses. In addition, fibrocartilaginous entheses are less 

likely to be affected by body size (Villotte et al. 2010a; Weiss in press). 

Most of the earlier literature on entheseal variation was descriptive and 

only few entheses were examined (Angel et al. 1987; Dutour 1986; Kelly and 

Angel 1987; Kennedy 1983). In addition, due the lack of systematic method, 

entheses were rarely employed to explore variation in activity-induced skeletal 

morphology on a population or sex-specific level. Over the last two decades 

numerous methods have been proposed to scientifically study entheseal 

expressions such as graded visual scoring (Hawkey and Merbs 1995; Mariotti 

et al. 2004, 2007), visual binary system (presence/absence) (al-Oumaoui et al. 

2004; Campanacho and Santos 2013; Cardoso and Henderson 2010; 

Cashmore and Zakrzewski 2009, 2013; Havelková et al. 2013; Villotte et al. 

2010a; Villotte et al. 2010b; Weiss in press) and two- and three dimensional 

scanning (Nolte and Wilczak 2010, 2013; Wilczak 1998a, b, 2009; Zumwalt 

2005). However, the precision and accuracy of visual approaches has been 

called into question (Davis et al. 2013; Henderson and Gallant 2007; Robb 

1998; Wilczak 1998a). Although it has been proposed that quantitative 

methods (two- and three dimensional scanning) are the best way to record 

shape variation along with other characteristics of entheses, they usually 

create large data sets, are more expensive and involve complicated 

calculations and analyses (Henderson and Gallant 2007). In addition, due to 

the amount of time required for scanning, quantitative methods are not 

applicable to study of a large number of samples, which makes intra- and 

inter-population comparisons difficult. 
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3.3.2 Evidence of entheseal changes among past populations 

Studies in various geographic areas, including North America, Africa and 

Europe, show that entheseal expression and habitual behaviour are highly 

correlated. Hawkey and Merbs (1995) examined the upper limb entheses of 

ancient Eskimos to investigate changes in subsistence strategy and labour 

patterns. They found that there are sexual differences in muscle use, which 

can be attributable to a gender-based pattern of labour. Additionally, the 

studied populations demonstrate different rank ordering in entheses, 

indicating a shift in subsistence activity. Peterson (2002) studied human 

skeletons from the Levant to elucidate changes in division of labour. Her 

results show that the entheses of females and males among Natufian hunter-

gatherers do not show great disparate rank ordering and scores, suggesting 

sexual division of labour was minor. By contrast, females in the Bronze Age 

exhibit an increase in upper limb entheseal scores. This not only implies that 

there are higher demands in muscular activity levels among females, but also 

that there was considerable sexual division of labour. Eshed and colleagues 

(2004) assessed the upper limb entheses of ancient populations in the Levant 

to explore the influence of adoption of agriculture on entheseal development. 

They reported that the Neolithic agriculturalists show higher entheseal scores 

than the Natufian hunter-gatherers, indicating that physical stresses and 

activity levels increased along with the transition from foraging to farming. 

Furthermore, the hunter-gatherers and agriculturalists demonstrate sexual 

differences in entheseal rank ordering, indicating a gender-based division of 

labour, which matches the results found by Peterson (2002).  

Most of the entheseal studies in bioarchaeological context have focused 

on the clavicles, scapulae and limb bones. Conversely, hand and foot bones 

and crania have received relatively little attention. Kennedy and colleagues 

(1986) provided some of the earliest documentation of activity-related 

development of entheses on phalanges of an Egyptian skeleton from the 

Third Intermediate Period. They found that the individual shows more 

developed ridges on the proximal phalanges of the right hand than the left. 

Kennedy et al. attributed this development to the individual’s profession as a 

writer who favoured the right hand for writing. Cashmore and Zakrzewski 
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(2013) used a binary system (presence and absence), which had never been 

applied to hand bones, to study hand entheses of skeletons from a cemetery 

in London. They found that some hand entheses exhibit greater variation in 

expression, suggesting that binary method can be systematically applied to 

assess the development of hand entheses. Nevertheless, they reported that 

the hand and humeral entheses show different asymmetric patterns, 

indicating a lack of congruency in the use of upper limb muscles. They also 

provided some evidence that humeral entheses are not the best indicators for 

studying muscular variation in the upper limb.  

Although crania show less plasticity than postcrania, experimental and 

clinical studies in humans and non-humans demonstrate that behaviours such 

as mastication has cumulative influences on craniofacial and mandibular 

skeletal morphology, including sutures and muscle insertion sites (Byron 2009; 

González-José et al. 2005; Ingervall and Helkimo 1978; Kiliaridis 1995; 

Kiliaridis et al. 1985; Lieberman et al. 2004; Menegaz et al. 2010; Sardi et al. 

2006; Ulgen et al. 1997; Varrela 1992). Steen and Lane (1998) examined the 

cranial and postcranial entheses of two Alaskan Eskimo groups. Results show 

that inter- and intra-population differences in cranial entheses are significant. 

They attributed these discrepancies to behavioural patterns such as 

mastication, the use of teeth as tools and the use of tumplines for load 

carrying. Nevertheless, it remains unknown whether the entheses on the skull 

and postcrania have similar etiology (Heathcote et al. 2012) and whether the 

relatively inelastic characteristics of the skull leads to less behaviour-related 

variation seen in postcrania.  

3.4 Biomechanical analysis 

Biomechanical analyses which apply engineering principles to analyse and 

interpret skeletal morphology can provide insights into loading modes and 

activity (Larsen 1997: 197). Experimental studies show that long bone 

diaphyses can be modelled as engineering beams (Huiskes 1982); therefore 

they can be studied using the same theories (Larsen and Ruff 2011; Ruff 
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2008). In a beam model the magnitude of mechanical stresses is calculated 

via the cross-sectional geometric properties of a beam (Ruff 2008). On this 

basis, the cross-sectional geometric properties of a long bone such as the 

midshafts of the femora, tibiae and humeri provide information about the 

surrounding mechanical environment, which is fundamental to the 

understanding of past human behaviour and activity patterns.  

Common mechanical loadings affecting long bones include tension, 

compression, shear, bending and torsion (twisting), among which bending and 

torsion are the two most important forces to which long bones are subjected 

(Larsen 1997: 197; Larsen and Ruff 2011). However, individual skeletal 

elements have irregular geometric structure, so forces that usually act on 

them always involve a combination of these loading modes (Larsen 1997: 

196). A bone will fracture when the stresses imposed on it reach a certain 

critical point; its ability to resist breakage is referred to as strength. The 

resistance of a bone to deformation, prior to failure, is referred to as rigidity 

(Ruff 2008). The more robust a bone is (i.e. the higher the value of a cross-

sectional geometric property), the greater its resistance to breakage due to 

loading forces (Larsen and Ruff 2011). 

3.4.1 Methodological considerations 

The techniques for measuring cross-sectional geometric properties of bones 

are somewhat better supported than other bioarchaeological approaches to 

the interpretation of behaviour such as entheseal changes because these 

methods have been quite precisely defined by a group of dedicated 

investigators in recent decades (Jurmain et al. 2012). However, due to the 

nature of archaeological skeletal samples and ethnic issues, some concerns 

have arisen as to the most appropriate method(s) of obtaining bone cross-

sections and quantifying biomechanical properties. Furthermore, it is 

important to use a similar technique for comparative studies since different 

methods have advantages and disadvantages in certain aspects.  

Several methods have been used in past studies such as direct sectioning 

of long bone diaphyses (Burr et al. 1982; Burr et al. 1981; Kimura 2003; Ruff 
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and Hayes 1983), biplanar radiography (Biknevicius and Ruff 1992; Runestad 

et al. 1993), computed tomography (Ruff and Leo 1986; Shaw and Stock 

2009a, b) or a combination of silicon mould and imaging technology (Marchi 

and Borgognini Tarli 2004; O'Neill and Ruff 2004; Sakaue 1997; Stock 2002; 

Trinkaus and Ruff 1989). Among these methods, direct sectioning is less 

desired because of its destructive nature. Although biplanar radiography or 

computed tomographic (CT) imaging are non-invasive and can produce 

accurate images of endosteal contours, they have a few drawbacks. 

Computed tomography is expensive and not easy to access, in particular in 

remote areas, while biplanar radiography is found poorly to estimate second 

moments of area, which are the most mechanically relevant biomechanical 

properties (O'Neill and Ruff 2004; Stock 2002). Other studies have employed 

a method involving external moulds of periosteal contours in combination with 

biplanar radiography to estimate cross-sectional geometric properties of 

human and canine long bones (O'Neill and Ruff 2004; Stock 2002). These 

studies show that this method corresponds well with the ‘true’ cross-sectional 

properties derived from direct sectioning or computed tomography. Stock and 

Shaw (2007) further demonstrated that data derived from periosteal contours 

also strongly correlate with 'true' cross-sectional properties (Stock and Shaw 

2007: 421).  

3.4.4 Evolutionary trends and variation among genus Homo 

The long bone diaphyseal robusticity of hominins has shown a consistent 

reduction from the early Pleistocene to the present (Ruff 2005, 2008; Ruff et 

al. 1993). A decrease in mechanical loading of skeletons due to behavioural 

changes, such as advances in technology and increased sedentism, are 

generally believed to be the factors underlying the reduction of diaphyseal 

robusticity during the course of human evolution (Ruff 2005; Ruff et al. 1993).  

Subsistence-related technological advancement is regarded as one of the 

most influential factors on long-term variation in diaphyseal robusticity (Ruff 

2008). A number of studies have examined the limb bone structure of hunting-

gathering and agricultural populations in different regions in North America 

31



  

(Bridges 1989, 1991; Bridges et al. 2000; Brock and Ruff 1988; Larsen 1981, 

1982; Ruff 1984, 1987; Ruff and Larsen 1990; Ruff and Larsen 2001; Ruff et 

al. 1984), with some showing a decrease in lower limb robusticity with the 

adoption of a more sedentary lifestyle (Ruff 1984, 1987; Ruff and Larsen 1990; 

Ruff et al. 1984). For instance, Ruff and colleagues (Ruff and Larsen 1990; 

1984) compared long bone cross-sectional properties of preagricultural (2200 

B.C. - A.D.1150) and agricultural (A.D.1150 - 1550) groups from the Georgia 

coast. The cross-sectional geometric properties of the upper and lower limbs 

among the agricultural males show a significant decline, in particular in the 

subtrochanteric region of the femur and the distal part of the humerus. In 

contrast, the bone structure of females did not change considerably in either 

upper or lower limbs. The skeletal changes noted in the Georgia coast 

suggest a reduction in workload among males with the adoption of agriculture, 

but little or no change in female activities (Ruff and Larsen 1990; Ruff et al. 

1984).  

However, other North American populations undergoing a similar 

transition in subsistence strategy yielded variable results (Bridges 1989, 1991; 

Bridges et al. 2000; Brock and Ruff 1988; Ruff 1994a). Bridges (1989) 

compared the Archaic-period and Mississippian skeletal samples from 

northwestern Alabama to determine whether Mississippian maize agriculture 

was more arduous than the Archaic hunting-gathering lifestyle. She reported 

that agricultural females show greater bone robusticity than hunting-gathering 

females in both upper and lower limbs and agricultural males exhibit stronger 

lower limbs but relatively few changes in the upper limbs. Considerable 

changes in females in the Mississippian period have been attributed to greater 

participation in agricultural tasks such as pounding maize in wooden mortars 

(Bridges 1989). Bridges and colleagues (2000) examined the bone robusticity 

of several populations in west-central Illinois, eastern North America, ranging 

from the Middle Woodland (50 B.C. - A.D. 200) to the Mississippian (A.D. 

1050 - 1250) periods. Unlike previous studies, Bridge et al. investigated 

human biological changes during the transition from initial introduction to 

intensification of maize cultivation. They predicted considerable changes in 

diaphyseal strength would occur in the agriculturally intensified period. Their 

results show that significant differences in bone robusticity occurred when the 
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use of native seed crops intensified, with female bone strength increases and 

males showing declines in upper limb strength. Nevertheless, when maize 

use intensified female upper limb strength displays a reduction, which may 

have been due to improvements in processing technology (Bridges et al. 

2000). The studies across the eastern North America support that significant 

regional diversity is present (Bridges et al. 2000) and that human populations 

adapt and modify behaviour on a local level (Ruff 1999).  

Although there was a uniformity of response (e.g. higher prevalence of 

osteoarthritis among males than females) to the agricultural transition among 

the ancient populations in eastern North America, changes in subsistence 

strategy have varying effects on activity level and mechanical loading on bone 

structure, depending on particular cultural and physical environments (Larsen 

and Ruff 2011; Ruff 2008). Binford (1980) divided hunter-gatherers into 

foragers and collectors, with the former characterised by high residential 

mobility, the latter by high logistical mobility. For instance, foraging lifestyle 

may involve long-distance food procurement over rugged terrain and 

collectors may rely on relatively less strenuous activities such as shellfish 

collecting (Ruff 2008). On this basis, mobility level in association with terrain 

appears to have a strong influence on lower limb robusticity. Ruff (1999) 

found that after sex and subsistence strategy are controlled, the populations 

from mountainous regions in the Great Basin in North America demonstrate 

greater femoral robusticity than those from plains or coastal regions. Stock 

and Pfeiffer (2001) compared the long bone diaphyses of foragers from the 

prehistoric Later Stone Age (LSA) in Southern Africa and the Andaman 

Islands (AI). Whereas the LSA foragers have relatively high level of mobility, 

the AI foragers have constrained terrestrial but high marine mobility. Stock 

and Pfeiffer reported that the LSA foragers show more robust femora and the 

AI foragers have greater humeral strength. Weiss (2003a) compared several 

Native North American samples with different levels of watercraft use. She 

found that there is a progressive increase in humeral robusticity from non-

rowing to river rowing to ocean-rowing samples among males, while females 

are less affected.  
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3.5 Sexual dimorphism 

Since skeletal dimorphism is primarily a consequence of size dimorphism, 

larger males have proportionally larger skeletons (Wood 1976). Male humans 

are approximately 10-20% heavier (Dixson 2009; Martin et al. 1994; Mayhew 

and Salm 1990; McHenry and Coffing 2000; Stini 1975) and 6-8% taller than 

females (Dixson 2009; Gaulin and Boster 1985; Gustafsson and Lindenfors 

2004). Skeletal dimorphism in modern humans is moderate by non-human 

primate standards, with a mean ratio of 1.09 in cranial dimensions and 1.14 in 

postcranial dimensions, which are slightly greater than those of chimpanzees 

(Gordon et al. 2008; Howells 1996). 

3.5.1 Human sexual dimorphism, activity and diet 

“Sexual dimorphism has important implications for the study of human 

evolution. Size and shape differences in males and females may reflect 

changes in hominid adaptation through time” (Armelagos and Van Gerven 

1980: 437). Sexual size dimorphism in humans is correlated with behavioural 

patterns and nutritional stresses. There is, in particular, a major shift in 

subsistence strategy (Brace and Ryan 1980; Carlson et al. 2007; Cole 1994; 

Collier 1993; Frayer 1980; Frayer and Wolpoff 1985; Larsen 1987; Marchi et 

al. 2011; Pomeroy and Zakrzewski 2009; Ruff 1987; Wolfe and Gray 1982). 

Although sex differences in human body size and shape are largely controlled 

and mediated by genes, the environment has a more direct influence on their 

expression than those of primary sex differences (Frayer and Wolpoff 1985). 

Hominins exhibit a reduction in sexual dimorphism in tooth, crania and 

postcrania over time (Brace and Ryan 1980; Frayer 1980; Ruff 1987). The 

degree of sexual dimorphism of early Homo and Middle and Upper 

Pleistocene hominins falls between Australopithecus and living populations 

(Wolpoff 1998). Brace and Ryan (1980) and Frayer (1980) argued that 

technological shifts and the development of food processing techniques led to 

a reduction in sexual differentiation in skeletal morphology. Frayer (1980) 

further proposed that level of sexual dimorphism within a population is 
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proportional to the exclusivity of sexual division of labour, indicating that 

hunter-gatherers who practised a more dichotomous labour pattern than 

agricultural populations should have a higher degree of sex difference in body 

size. Ruff (1987) examined the cross-sectional geometric properties of lower 

limbs among recent and archaeological populations. He reported that there is 

a consistent decline in sexual dimorphism from hunting-gathering to 

agriculture to industrial-based socioeconomics, which is attributed to a 

reduction in sexual division of labour involving differences in mobility between 

the sexes. Ruff realised that the reduction between the Middle Palaeolithic 

and recent times is mainly due to skeletal changes among males, implying 

that there was a more dramatic reduction in mechanical loading among men.  

A study by Wolfe and Gray (1982) demonstrates that the stature of extant 

agriculturalists collected from a wide range of societies shows a greater 

degree of sexual dimorphism than that of extant hunter-gatherers, which does 

not support the correlation of division of labour with declining sexual size 

dimorphism. Collier (1993) studied two recent Alaskan Eskimo populations 

relying on whale hunting and salmon fishing respectively. He reported that 

whale hunting did not lead to greater sexual dimorphism but it affected levels 

of dimorphism in different body parts. Collier contended that sexual 

dimorphism and activity type do not correlate in a simple manner. In addition, 

patterns of dimorphism reflect particular functional demands on different 

skeletal elements, so it is important to study and compare skeletal variables 

which are directly affected by the behaviour under investigation. A recent 

study by Carlson and colleagues (2007) demonstrated that the upper limb 

robusticity of modern Australian hunter-gatherers is more sexually dimorphic 

than lower limb robusticity. They attributed the significant sexual dimorphism 

in upper limb robusticity to a division of labour, whereas a relative low degree 

of lower limb dimorphism may have been due to equivalent levels of mobility 

or a compensatory effect of burden-carrying among females. The studies of 

Collier (1993) and Carlson et al. (2007) lend support to the assumption that 

sexual differentiation in human body size does not correlate with broad 

socioeconomic patterns. Rather, it is the overall mechanical loading that 

contributes to the level of sexual dimorphism in post-cranial dimensions and 

cross-sectional properties (Collier 1993; Holden and Mace 1999). 
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The effect of dietary patterns, i.e. levels of nutritional stress, on sexual 

differentiation in body size has been documented (Brauer 1982; Gray and 

Wolfe 1980; Hall 1978; Hamilton 1982; Stini 1969, 1972, 1985). It has been 

hypothesised that males are more susceptible to malnutrition and 

environmental stress than females (Stini 1969; Tanner 1962; Zuk 1990) 

because of the female role in bearing and nurturing offspring and greater 

storage capacity for subcutaneous fat combined with smaller body size 

(Frayer and Wolpoff 1985; Larsen 1987). Consequently, well-nourished 

populations tend to be more sexually dimorphic than malnourished 

populations (Hamilton 1982). Frayer and Wolpoff (1985) stated that 

populations suffering from chronic malnutrition will eventually develop smaller 

adult body size in both sexes under natural selection because of energetic 

efficiency. Since males have relatively higher susceptibility, a reduction in 

body size difference between the sexes is primarily due to a greater change 

among males.  

3.6 Bilateral asymmetry  

A considerable literature shows that most individuals in any given population 

have a preference for using their right hand for complex tasks, with a 

frequency varying between 74% and 96% (McManus 2009; Raymond and 

Pontier 2004; Uomini 2009), while no human society is reported to be 

predominantly left-handed (Llaurens et al. 2009). This species-wide right-

handedness is a unique attribute of Homo sapiens sapiens. Although there is 

evidence that our closest primate relatives show some degree of handedness, 

they do not have a population-level consistency in hand use patterns as seen 

among human populations (McGrew and Marchant 1997).  

Environmental and cultural influences on handedness have been 

intensively investigated in various geographical settings such as Asia (Ooki 

2005; Teng et al. 1976, 1979), Europe (Salmaso and Longoni 1985), America 

(Berdel Martin and Barbosa Freitas 2003) and Africa (De Agostini et al. 1997; 

Payne 1987; Zverev 2006). Every culture has different attitudes towards hand 
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use preference (Ida and Bryden 1996; Ida and Mandal 2003; Mandal et al. 

1999). For instance, a strong social pressure for right-handed writing and 

eating is found in many Asian societies. The frequency of left-handed 

individuals with Chinese cultural background is particularly low in comparison 

with Western populations, due to a strong cultural preference for right-biased 

fine motor tasks such as writing and holding chopsticks (Li 1983; Teng et al. 

1976). Teng and colleagues (1976) reported that only 3.5% of Chinese 

children and 0.7% of Taiwanese children use their left hand for writing. Li 

(1983) studied the handedness of 18,593 individuals from a wide range of age 

groups in China. Results show that only 0.23% are left-handed. A similar 

pattern is found among Japanese students, in whom 0.7% and 1.7% of 

students are left-handed in writing and eating, respectively (Shimizu and Endo 

1983). In contrast, Hardyck and colleagues (1975) found that 6.5% of Asian 

children living in the United States are left-handed, suggesting a decline in 

cultural pressures. Auerbach and Ruff (2006) assessed the asymmetric 

patterns in the skeletal dimensions of 780 Holocene humans from different 

time periods and geographical areas. They discovered that the skeletal 

measures of industrial groups in general are less asymmetric than the pre-

industrial groups. In addition, a recent study by Stock and colleagues (2013) 

pointed out that the trend of right-biased asymmetry in the upper limb 

correspond with technological development over the course of human 

evolution.  

3.6.1 Asymmetries and behavioural patterns 

Assessments of bilateral asymmetry in long bone biomechanical properties 

and entheseal morphology among past populations have mainly been linked 

to changes in subsistence strategy, mechanical factors and division of labour. 

Mays (2002) compared the second moments of area in second metacarpal of 

a British skeletal sample to investigate the influence of occupation on patterns 

of asymmetry. He found that manual workers have more marked directional 

asymmetry in metacarpal second moments of area favouring the right side, 

while directional asymmetry is less pronounced among non-manual workers. 
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Additionally, the metacarpal second moments of area of females do not show 

significant directional asymmetry, which may have been due to relatively low 

levels of manual labour. Kujanová and colleagues (2008) studied the 

relationship between stress and bilateral asymmetry of 48 metric dimensions 

of limb bones. They recorded that a recent population of low socio-economic 

status showed greater fluctuating and directional asymmetry than earlier 

medieval populations. Fluctuating asymmetry is indicative of developmental 

stability, health and fitness of human populations. Results in the study of 

Kujanová et al. (2008) support the finding that level of stress and asymmetric 

pattern are positively related.  

Weiss (2009) reported that California Amerind males who engaged in 

unilateral activities show greater humeral bilateral asymmetry than their 

female counterparts. Additionally, California Amerind males are more 

asymmetrical than British Columbian Amerind males who rowed extensively. 

Weiss suggested that it is inappropriate to link broad subsistence patterns and 

humeral asymmetry without considering other factors. Peterson (1998) 

observed that Natufian males in the Levant tended to have greater 

asymmetric entheses in the upper limb than their female counterparts 

because of involvement in hunting that requires single arm throwing motion. 

However, in the Neolithic there is a reduction in the degree of asymmetry 

among males, indicating changes in economic activities (Peterson 1997). A 

study by Eshed and colleagues (2004) shows that some Neolithic males in the 

Levant have bilateral stress lesion at the costoclavicular ligament site, 

implying that Neolithic males in the Levant practised paddling activity 

associated with fishing (Eshed et al. 2004).  

3.7 Hypotheses 

The literature review in previous sections suggests that variation in climatic 

and environmental factors can influence various aspects of skeletal 

morphology. The vast geography and diverse climate of China offer an 

opportunity to elucidate the extent to which adaptation of Chinese populations 
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is associated with natural and social environments. In this dissertation, three 

main areas of enquiry were examined: 

I. Regional differences 

A. Do the body proportions and body size of the northern and southern 

Chinese conform to ecogeographic expectations? It is predicted that: 

1. the northern Chinese will exhibit reduced distal relative to proximal 

limb segment lengths and shorter limbs relative to body mass 

compared with the southern Chinese. 

B. Are the body proportions of the studied Holocene Chinese biological 

adjustment to the early/mid-Holocene climate or retention of the traits 

of their Palaeolithic ancestors who migrated to northern East Asia via 

the Southern Route (mainland Southeast Asia)? It is predicted that: 

1. the body proportions of the Holocene Chinese to some extent will 

show retention of ancestral traits – subtropical/tropical-adapted 

intralimb proportions. On this basis, they will express comparatively 

longer distal to proximal limb segment lengths than the recent 

populations inhabiting similar latitude. 

 

II. Diachronic changes 

A. How does socio-political development influence body size, postcranial 

dimensions, entheseal expression and bone strength of the Holocene 

Chinese? It is predicted that: 

1. there was an overall decrease in stature and body mass among the 

populations in socio-politically unstable time periods (the 

Neiyangyuan, Jinggouzi, Tuchengzi and Shenyang), during which 

poverty, famine, rebellion, civil war and internal conflict prevailed. 

Thus, it is predicted that populations in these periods will have 

suffered from malnutrition and higher levels of infectious diseases;  

2. variation in male body size will be more pronounced than that of 

females. Males in general were involved in long-distance food 

procurement and traded with people from other communities at a 

very young age, which would increase the risks of accidents and 

the chances of being infected by disease. Given the hypothesis that 

males are more easily influenced by environmental and ecological 
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factors, it is expected that male body size will display greater 

temporal variability than females; 

3. males from socio-politically unstable periods (the Neiyangyuan, 

Jinggouzi, Tuchengzi and Shenyang) will show higher entheseal 

aggregated scores and bone strength in the upper and lower limbs. 

The time periods of the Neiyangyuan, Jinggouzi and Tuchengzi 

sites correspond with the Spring and Autumn period and the 

Warring States period, which is one of the most volatile time periods 

in Chinese history. During these periods, infantry army replaced war 

chariots as the main force on battlefield, so it is expected that 

prevalence of warfare will lead to greater mechanical loading and 

higher mobility levels. In contrast, the Sha Ling modern population 

is expected to exhibit relatively low aggregated scores and bone 

strength in both limbs due to a more sedentary lifestyle; and 

4. rank ordering in upper limb entheses among the studied 

populations will demonstrate considerable variation over time 

because these populations relied on different subsistence activities, 

which require the use of different muscles. In addition, it is expected 

that populations practising similar subsistence strategy will show 

similar rank ordering in upper limb entheses. In contrast, rank 

ordering in lower limb entheses will be comparable among all 

populations. 

 

B. How do habitual behaviour, nutrition and labour patterns affect level of 

sexual dimorphism among the Holocene Chinese? It is predicted that: 

1. level of sexual dimorphism in body size reduced during socio-

politically unstable periods (the Neiyangyuan, Jinggouzi, Tuchengzi 

and Shenyang). As males are expected to have received more 

negative influences due to greater exposure to stressors and had a 

higher degree of susceptibility, changes in male body size should 

be the major factor in variation in level of sexual dimorphism;  

2. the level of sexual dimorphism in the entheses and bone strength of 

the Neiyangyuan, Jinggouzi, Tuchengzi and Shenyang populations 

will be higher. Due to periodic warfare and unsteady socio-political 

40



  

environment, males from these periods are expected to have 

frequently participated in long-distance travel and/or carried out 

strenuous activities, which would result in an increase in entheseal 

development and bone strength; and 

3. the degree of sexual dimorphism in entheses and bone strength in 

the Sha Ling modern population will be lower than those of ancient 

populations because of decreases in sexual division of labour and 

mobility level. 

 

C. Do the patterns of asymmetry among the Holocene Chinese change 

over time? It is predicted that: 

1. all studied populations, regardless of sex and period, generally 

show a right-directional asymmetry in the upper limb since right-

handedness is a universal trend among living human groups, while 

the lower limb tends not to show right-left bias or demonstrates 

slight left-bias; 

2. males show higher degree of absolute asymmetry in entheses and 

bone strength in the upper limbs than females because it is 

expected that males are more often engaged in physically 

demanding activities so the dominant hand should be more robust; 

and 

3. the Sha Ling modern population will show relatively high right-

handedness frequency due to cultural pressures and technological 

development. 

 

III. Subsistence group variation 

A. How does subsistence strategy influence skeletal morphology, sexual 

dimorphism and limb asymmetry? It is predicted that: 

1. ancient pastoral and agropastoral males exhibit higher values in 

skeletal dimensions, entheses and bone strength in the lower limbs, 

while the industrial population should have more gracile limb bones; 

2. pastoral and agropastoral groups will show greater magnitude of 

sexual dimorphism in the lower limbs than other subsistence groups. 

The mobility levels of pastoral and agropastoral males are expected 
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to be higher than those of their female counterparts, in which may 

have led to more robust and larger lower limbs. In contrast, the 

industrial group will exhibit a relatively low degree of sexual 

dimorphism in both limbs due to a decline in gender-based division 

of labour; and 

3. the industrial population will have a higher frequency of right 

handedness, whereas the lower limbs of all subsistence groups will 

not show a clear side dominance. 

 

Comparative studies in Chinese bioarchaeology are rare; therefore, little is 

known pertaining to the relationship between climate, physical environment, 

socio-political development and human biology within a broad time periods. 

This study provides a unique opportunity to test a series of bioarchaeological 

questions which are important to the understanding of human evolution in 

Holocene China. The hypotheses listed above were tested in the following 

chapters using various bioarchaeological methods. 
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CHAPTER 4  

Materials and Methods 

 

 

 

 

 

4.1 Materials 

This research examined human skeletal remains from six archaeological sites 

and one contemporary cemetery, spanning from around 7000 B.P. to the 

1970’s (Table 4.1; Figure 4.1). The skeletons from the archaeological sites 

are curated at the Frontier Archaeology Center, Jilin University, China, while 

the contemporary skeletal remains are housed in the Prince Philip Dental 

Hospital in Hong Kong2. These sites were chosen for the following reasons:  

 

1.) all sites except Shenyang and Sha Ling have been well-studied 

archaeologically. Information about Shenyang and Sha Ling was obtained 

through personal communication with relevant researchers;  

 

2.) the subsistence strategy practised by these populations could be 

interpreted from cultural remains, dietary analyses and historical literature; 

and  

 

3.) these populations are genetically closely related to each other, as 

suggested by cranial morphology and historical records. 

 

 

                                            
2  The skeletal remains curated in the Prince Philip Dental Hospital in Hong Kong were 

destroyed immediately after this research due to insufficient storage space (Dr. Thomas Li, 

personal communication 2010). 
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Figure 4.1 Map of the studied sites (1. Jiangjialiang, 2. Neiyangyuan, 3. Jinggouzi, 4. 

Tuchengzi, 5. Lamadong, 6. Shenyang, 7. Sha Ling) 
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4.1.1 Description of skeletal samples 

The sex and age distribution of the human skeletal remains of each site are 

presented in Table 4.2. A total of 533 individuals were studied, of which 108 

are females, 152 are males and 273 are of indeterminate sex. All individuals 

were assessed to be adults on the basis of skeletal maturity evaluated 

through epiphyseal fusion, dental eruption, dental wear, cranial suture closure, 

pubic symphysis and auricular surface morphology. Individuals were divided 

into three age groups: young adult, aged between approximately 18 (or 20) 

and 34 years; middle-age adult, aged between 35 and 49 years; and old adult, 

aged over 50 years (Brickley and McKinley 2004; Buikstra and Ubelaker 

1994).  Owing to the poor state of skeletal preservation and the absence of 

pelvic remains among some individuals, the age of 318 out of the 533 

individuals could not be estimated using the standard age estimation methods 

described in section 4.2.1. Among the 215 individuals for whom age can be 

estimated, 92 (42.8%) are middle-aged adults, comprising the majority of the 

sample, followed by young adult (84/215, 39.1%). Only 39 individuals (18.1%) 

are identified as old adult.  

Individuals without complete fusion in postcranial epiphyses were 

regarded as subadult and were excluded in this study. Nevertheless, in order 

not to bias samples adult individuals with evidence of pathology such as 

healed wounds, fresh fractures and/or degenerative joint diseases were only 

excluded if the pathological conditions limited the observation of skeletal 

characteristics (e.g. entheseal expression), measuring and periosteal 

moulding.  
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4.1.2 Biocultural context of study site 

Jiangjialiang site  (姜家梁遗址) 

The Jiangjialiang site is the largest Neolithic cemetery ever found in Hebei 

Province, and belongs to the late Yangshao cultural phase or the transition 

from the Yangshao to the Longshan culture (Duan 2001; Xie and Li 1998). It 

is located to the east of the Nihewan basin, which is renowned for being the 

location where the oldest human evidence in Northeast Asia was discovered 

(Zhu et al. 2004). The radiocarbon dating of the site was not obtained directly 

from the cemetery itself but from the remains of house foundations close to 

the cemetery. According to the uncalibrated radiocarbon dating conducted by 

the Department of Archaeology at Peking University, this site is dated to 

6850±80 B.P. (the calibrated date is 7956-7622 B.P. 6 ). The Jiangjialiang 

skeletal samples in this dissertation were from two major excavations carried 

out in 1995 and 1998 by the Hebei Provincial Institute of Cultural Relics. In 

1995, an area of about 1600m2 area was investigated and, in total, nine 

house foundations and seventy-eight tombs were unearthed. An additional 

thirty-nine tombs were discovered in the excavation in 1998 (Xie and Li 1998, 

2001).  

The study of the nonmetric cranial traits of the Jiangjialiang sample 

demonstrates a close relationship between this group and the Neolithic 

Baikalian and the Northern Chinese (Li and Zhu 2003). Li’s study (2004) of 

craniometric variation further supports the interpretation that the Jiangjialiang 

people are closely related to the modern East Asian populations. The dental 

morphology of the Jiangjialiang population falls within the Sinodonty group but 

demonstrates some unique traits (Li and Zhu 2006).  

According to strontium/calcium (Sr/Ca) and barite/calcium 

(Ba/Ca) analyses, the Jiangjialiang inhabitants mainly relied on plant 

                                            
6 The uncalibrated date was based on a house foundation (F1) that was intruded by the tombs. 

Studies of cultural artefacts suggest that the tombs and the settlements belong to different 

time periods and were not occupied by the same population (Chen et al. 2006; Gu 2007). The 

calibrated date of this site was calculated using OxCal Online program (Li et al. 2001). 
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resources but intra-population disparities were found (Li 2004; F. Li et al. 

2006). The studies indicate that there may have been differences in accessing 

food resources and/or in dietary habits. The mortuary artefacts discovered 

imply that sexual division of labour occurred among the Jiangjialiang 

population from this site. While food producing tools were found in males 

burials, ceramic spindle whorls were common in females burials (F. Li et al. 

2006; Li et al. 2001). A total of 499 pieces of stone tools were unearthed in 

the Jiangjialiang cemetery, including axes, grinding stones (slabs and 

handstones), flakes, microblades and scrapers. In addition, a small amount of 

animal bones and ceramic tools were found (Li et al. 2001). The evidence of 

grinding stones and the reliance on plant resources suggest that the 

Jiangjialiang was agriculture-based population.   

Neiyangyuan site (内阳垣遗址) 

The site of Neiyangyuan is located in Changning, Shanxi Province. Salvage 

excavations were carried by the Neiyangyuan archaeological team in 2002 

and a total of ninety-four tombs were discovered, of which five belonged to the 

Xia Dynasty (4020-3550 B.P.) and the rest fell between the Spring and 

Autumn period and the Warring States period (2720-2171 B.P.) (Xu et al. 

2004). Culturally, the Neiyangyuan population pertained to the Jin culture 

which relied on an agricultural economy in the Central Plain, as evidenced by 

archaeological remains (Xu et al. 2004). Analyses of carbon and nitrogen 

stable isotopes among the Neiyangyuan sample show high values of δ15N and 

δ13C, suggesting that meat from domestic herds and C4 plants (such as millet) 

played an important dietary role for the community (Pei et al. 2008).  

The unique location of the Neiyangyuan site may well explain why the 

inhabitants of Neiyangyuan culturally adopted a Central Plain model 

supported by agricultural activities on the one hand, whilst on the other hand 

combining this with pastoralism, which was deemed to be a northern 
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subsistence strategy7. Geographically, the Neiyangyuan site has served as a 

corridor that linked the Central Plain (agriculture) and the northern grassland 

(nomadic culture) (Jia 2006). As a result, it is unsurprising that its inhabitants 

would be influenced by both distinct cultures. It is noteworthy that evidence of 

social stratification was observed in the burial patterns, especially among 

tombs belonging to the Spring and Autumn period (Pei et al. 2008). Burial size 

and the type of mortuary artefacts vary, suggesting differences in the 

economic and political status of the graves’ occupants (Pei et al. 2008; Xu et 

al. 2004). The dietary analysis lends further support to this assumption (Pei et 

al. 2008), as individuals of inferred higher status (based on burial 

characteristics) differ significantly in δ13C values from those of a lower status. 

Higher status individuals consumed more C4 plants than those of lower status. 

In contrast, the δ15N values from both groups are similar, indicating individuals 

from all classes relied on meat resources to a similar degree. The 

craniometric traits of the Neiyangyuan people fall within the range of the 

modern East Asian populations, in particular they share many similarities with 

the northern Chinese (Jia 2006). 

Jinggouzi site (井沟子遗址) 

The site of Jinggouzi was discovered in 1989 in Linxi County in the Inner 

Mongolia Autonomous Region (Wang 1998). Two seasons of excavation were 

carried out at the west side of the cemetery between 2002 and 2003 by the 

Research Center for Chinese Frontier Archaeology at Jilin University and the 

Institute of Cultural and Historical Relics and Archaeology in the Inner 

Mongolia Autonomous Region, and a total of fifty-eight burials and nine ash 

pits were unearthed (Zhang 2006; Zhang et al. 2008). Evidence of settlement 

was also discovered at the site (Tala et al. 2004; Wang et al. 2004). However, 

due to subsequent intensive agricultural activity and tomb raiding, the site of 
                                            
7 The Neiyangyuan population is believed to have adopted a socioeconomic model similar to 

that of the Rongdi (戎狄) (Bronk Ramsey 2009), a nomadic group relied on initial agriculture. 

The Rongdi occupied the upper and middle sections of the Yellow River from the late Neolithic 

until the Spring and Autumn period and the Warring States period (Pei et al. 2008).  
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Jinggouzi, and most burials, were seriously disturbed (Wang 1998; Wang et al. 

2004; Zhu and Zhang 2007). Charcoal collected from a burial during the first 

season of excavation was used for radiocarbon dating (Conventional 

Radiocarbon Age), and the results suggested that this site dates to 2115±65 

B.P. (with a half-life of 5568 years). However, this date is inconsistent with the 

results inferred from the pottery typologies, which fall between the late Spring 

and Autumn period (2720-2353 B.P.) and the early Warring States period 

(2353-2171 B.P.)8 (Wang et al. 2004).  

While domesticated and wild animal bones were associated with nearly 

90% of the burials, for instance, horse (Equus caballus), cattle (Bos taurus), 

sheep (Ovis aries), donkey (Equus asinus), mule, dog (Canis familiaris), fox 

(Vulpes), deer (Cervus) and water deer (Hydropotes inermis), agricultural 

tools and products were completely absent (Wang et al. 2004). From the 

evidence for the heavy reliance on livestock it appears that pastoralism was a 

dominant economic activity; however, the discovery of abundant bone 

arrowheads and aquatic remains suggest that this was supplemented by 

hunting and fishing (Chen 2007; Tala et al. 2004; Wang et al. 2004). In 

addition, the making of pottery and bone tools and bronze metallurgy were 

important economic activities in the Jinggouzi population (Tala et al. 2004). 

Tala and associates (2004) suggested that the considerable diversity in 

animal remains may indicate the pastoralism practised by the Jinggouzi 

population involved some degree of seasonal movement. The dietary 

analyses lend support to this hypothesis. The level of δ15N found in the 

skeletal remains was relatively high, indicating that the diet of the Jinggouzi 

people mainly consisted of animal products and marine resources. According 

to the δC13 values obtained from bone collagen, the Jinggouzi inhabitants 

appear to have consumed more C4 plants than C3 plants (Zhang et al. 2008; 

Zhu et al. 2009). The pollen analyses show that the palaeoclimate of this area 

was dry and the settlement was adjacent to water bodies where the marine 

resources were acquired (Tala et al. 2004). The people living at Jinggouzi 

might have been associated with the Donghu (东胡), a nomadic tribe who 

                                            
8 The date inferred using pottery typologies was favoured over the radiocarbon dating in most 

literature.  
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were documented in the literature of this period, as the lifestyle, subsistence 

activity and the area which the Jinggouzi population occupied all correspond 

well with the culture of the Donghu (Wang et al. 2004; Zhu et al. 2009). The 

Donghu relied on animal husbandry. They fought on horseback and excelled 

at archery (Di Cosmo 2002: 127). According to nonmetric cranial morphology 

and genetics, the Jinggouzi population is closely related to the modern Asian 

populations, in particular northern Asians (Zhu and Zhang 2007; Zhu et al. 

2009).  

Tuchengzi site (土城子遗址) 

The Tuchengzi site consists of a cemetery and settlement (as evidenced by 

town walls), located in Helingeer county, Inner Mongolia (Chen et al. 2006; Gu 

2007; Y. Zhang 1989). This region is characterised by flat plains and a warm 

climate due to the protection of Daqing Mountain (Gu 2007). The cultural and 

skeletal remains discovered at the site are plentiful, ranging from the late 

Spring and Autumn period to the Yuan Dynasty (Chen et al. 2006). Its 

strategic location, a major route connecting the north and the south in the past, 

led different rulers to occupy this area during a broad range of time periods (Y. 

Zhang 1989). It is worth noting that many war-related cultural remains and 

beheaded skeletons were found at the site, suggesting that war and conflicts 

were common9 (Chen et al. 2006).  

Archaeological excavations in this area have been carried out sporadically 

since the 1960s (Gu 2007; Y. Zhang 1989). The human skeletal remains 

studied in this dissertation come from the burials excavated between 1997-

2002, which belonged to the Warring States period (2481-2221 B.P.) (Gu 

2007:5). Stable isotope analyses show that the δ15N values in the Tuchengzi 

sample are much lower than δ13C, indicating that the diet of the population 

was largely made up of C4 and C3 plants (Gu 2007). The Tuchengzi site was 

located in the core agricultural area controlled by the Zhao State during the 

                                            
9 Although wounded individuals were common in the Tuchengzi sample due to warfare, only 

adult skeletons that do not show signs of injury were studied in this dissertation. 
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Warring States period, which provided a favourable climate for growing crops 

such as millet, chestnuts and wheat (Gu 2007). Gao and colleagues (2006) 

investigated the dental caries of the Tuchengzi population, and found that 

more than 10% of the population suffered from dental caries. This further 

supports the inference that agricultural production was fundamental to their 

daily diet, since dental caries were found to be more prevalent following a shift 

to more carbohydrate based diets associated with the adoption of agriculture. 

In contrast, Gu (2007) discovered that animal remains were only discovered in 

16 out of 265 burials, seven of which were not accompanied by other grave 

offerings, implying that not only were animals very precious to the Tuchengzi 

population, but also that animal husbandry was a less significant subsistence 

activity. The pathological as well as archaeological evidence support the 

interpretation that the Tuchengzi inhabitants primarily relied on a C4 plant 

agricultural economy and that animal production only played a minimal role in 

the their diet. Gu studied (2007) the cranial morphology of the Tuchengzi 

population and found that most of the metric and nonmetric cranial traits of the 

population fell within the range of East Asian populations.  

Lamadong site (喇嘛洞遗址) 

The Lamadong cemetery is the largest site of the Three-Yan culture in North 

China and is located on the sloping terrace above the Daling River in Beipiao 

city, Liaoning Province. The site is named after a Qing Dynasty lamasery 

situated behind the cemetery. The cemetery covers 10,000m2 and is situated 

200m above sea level (Wan 2004; Wang et al. 2007). Based on the studies of 

cultural remains such as pottery, ironware, equestrian equipment and the 

characteristics of burials, the cemetery is believed to be dated between the 

late third century and mid fourth century (circa 1600BP-1700 B.P.) (Wan 2004; 

Zhang 2003), which coincided with the occupation by the Murong Xianbei (慕

容鲜卑)10 who founded the Early Yan, Later Yan and Northern Yan empires. 

                                            
10 ‘Xianbei’ is a generic term referring to the minority groups occupying northern China and 

was first recorded in Chinese history during the Eastern Han period (A.D. 25-220); however, 
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In the literature, these empires are grouped together as the Three-Yan States 

(Zhang and Wei 1998:151). A total of five archaeological excavations were 

carried out between 1993 and 1998 by the Liaoning Provincial Institute of 

Cultural Relics and Archaeology. Of the 435 cemeteries discovered, 419 show 

characteristics of Three-Yan culture (Wan 2004; Zhang 2003). The skeletal 

materials studied in this dissertation were unearthed from the fifth excavation 

in 1998, during which 369 tombs and over 3500 artefacts were found (Wan 

2004). It is worth noting that iron tools were found in every grave in this site, 

implying that iron metallurgy would have been a fundamental activity among 

the Lamadong people (Wan 2004).  

Pastoralism was the main subsistence strategy practised by the early 

Xianbei and provided milk and meat for their diet, while agriculture was only of 

minimal importance. Although this area was suitable for the cultivation of 

millet, the Xianbei relied on imports from the Central Plain. During the rule of 

Murong Hui (慕容廆), due to the influences of the adjacent Han agriculturalists, 

farming gradually replaced pastoralism and became an important subsistence 

activity in the Xianbei life (Dong et al. 2007; Fang 1974). On this basis, the 

study of the Lamadong cemetery is crucial because it not only witnessed the 

transition from pastoralism to agriculture, but also the interaction of different 

tribal groups and the convergence of various cultures in China (Dong et al. 

2007). Dong and colleagues (2007) studied the diet of the Lamadong 

population using stable isotope analysis which suggested that unlike their 

ancestors, their diet was mainly comprised of C4 plants such as Panicum 

miliaceum and Setaria italica. The study concluded that meat was either not 

included or made up a small proportion of the diet of some Lamadong 

individuals, implying that plant domestication was already well-developed and 

had replaced pastoralism as the major food resource. A high rate of dental 

caries was also discovered among the Lamadong population, suggesting an 

increasing reliance on agricultural resources (Zhang 2003). Although dietary 

                                                                                                                             
the history of the Xianbei can be traced as far back as the Western Han period (202 B.P.- A.D. 

9). It is the only minority group in Chinese history that was able to found more than ten states. 

The Murong Xianbei are one of the important subtribes of the Xianbei and were active in the 

late 3rd century for nearly 200 years (Wang 2002). 
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studies suggest that the Lamadong population was heavily dependent on 

agriculture, the evidence of horse riding artefacts and helmets indicate that 

this population may have practised a transitional subsistence economy. Given 

the multiple lines of evidence, Eng (2007) has assigned the Lamadong 

occupants to the category of ‘agropastoralist’. Chen (2002) compared the 

cranial morphology of the Lamadong population with modern Asian 

populations, and found that the Lamadong population has an affinity with the 

East Asian populations. A genetic study by Wang and co-workers (2007) also 

demonstrated similar results. Although the genetic structure of the Lamadong 

population is complex, it has haplogroups prevalent among both modern 

Eastern Asian and Siberian populations. 

Shenyang site (沈阳遗址) 

The Shenyang site was recently discovered during the construction of 

residential buildings in 2004-2005 (Dr. Dong Wei, personal communication, 

September 2010). The site is dated to the Qing Dynasty (A.D. 1644–1911) 

and located in the city centre of Shenyang, Liaoning Province. Based on the 

cultural artefacts found, this site may belong to the late Qing Dynasty and the 

inhabitants of the site were believed to have been commoners. This site has 

yet to be fully studied and no archaeological report has been published (Dr. 

Dong Wei, personal communication, September 2010). The Qing Dynasty 

was one of the most prosperous dynasties in Chinese history, in particular 

between A.D. 1680 to 1780 (W. J. Peterson 2002). The latter half of the 

seventeenth century witnessed an enormous growth in population and it 

reached approximately 400 million in the mid-nineteenth century (Jones and 

Kuhn 1978; Min 2005; Rowe 2002), resulting in the increasing demand on 

food supply (Rowe 2002). Agricultural techniques in this period were highly 

sophisticated and farming was the most important subsistence activity 

throughout the Dynasty (Min 2005). The Qing Empire encouraged multiple 
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cropping11 in order to accommodate the exponential population growth (Myers 

and Wang 2002). After A.D. 1800 the Qing Dynasty, however, underwent a 

series of internal rebellions, bureaucratic corruption and the invasions of 

western countries (Jones and Kuhn 1978). The majority of population in 

North-West China suffered from great famine in the late nineteenth century, 

resulting in population losses (Feuerwerker 1980). 

Sha Ling Public Cemetery (沙岭墓地) 

The Sha Ling Public Cemetery (also known as the Sandy Ridge Cemetery) is 

situated in Lo Wu, Hong Kong, adjacent to the Hong Kong border 

with Shenzhen on mainland China. The cemetery was founded in 1949 and 

has been used to bury unclaimed bodies from public hospitals or unidentified 

bodies found on the streets. After a period of seven years, the skeletonised 

remains were unearthed and the graves were reused. In the late 1980s and 

early 1990s the forensic team from the Prince Philip Dental Hospital were 

given permission to curate the skeletons for academic purposes. 

Unfortunately, the skeletons from this cemetery are no longer allowed to be 

used for research due to ethnical issues (Dr. Thomas Li, personal 

communication, July 2010). 

                                            
11 Along the middle and lower sections of the Yellow River, millet, wheat and legume were 

rotated, while at the Yangtzi River area, rice and millet were cultivated alternately (Xu 

1996:22-24,33-34; Zhang and Wei 1998:151).  
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4.1.3 Subsistence patterns and social context12 

A brief characterisation of subsistence practice for each period of the sites is 

summarised in Table 4.3. 

Mid-late Neolithic 

The Yangshao Culture is the earliest known Neolithic culture in the Middle 

Yellow River Valley, characterised by sedentary farming societies (Chang 

1986; Liu and Chen 2012). The major subsistence activity of the Yangshao 

culture was millet agriculture, as evidenced by the carbonised remains of 

foxtail millet (Setaria italica) discovered at the Panpo 半坡 site and broomcorn 

millet (Panicum miliaceum) at the Jingcun 荆村 and Jiangzhai 姜寨 sites 

(Chang 1986, 1999; Zhang 2004). In addition, a variety of cultivating and 

harvesting tools were unearthed at the Yangshao-cultured sites across 

northern China including hoes, spades, digging sticks, polished/chipped 

adzes and axes, stone or pottery knives and pottery jars (for storing grains) 

(Chang 1986; Yan 1989). Dog and pig skeletal remains were found at almost 

every site, indicating that animal domestication was important during this 

period (Chang 1986). The discovery of plant seeds, wild animal skeletal 

remains, stone and bone points and arrowheads, fish spears and harpoons 

among others implies that the Yangshao-cultured inhabitants, to some extent, 

relied on hunting-gathering-fishing (Chang 1999; Zhang 2004). Compared to 

their predecessors, the Yangshao people in the Yellow River Valley appear to 

be less dependent on nut collecting, as evidenced by a decrease in the 

number of grinding stones. Nevertheless, high proportions of grinding stones 

were discovered at the Yangshao-cultured sites in Inner Mongolia, where the 

natural habitat was hardly exploited, highlighting the influence of the 

environment on socio-economic development (Liu and Chen 2012). 

                                            
12 This section only discusses the subsistence patterns and social contexts of the time periods 

associated with the studied sites in this dissertation. 
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By around 6000 B.P., the Longshan Culture had gradually replaced the 

Yangshao Culture in the Middle Yellow River Valley. The essential 

characteristics of the Longshan Culture were dramatic growth in population 

size and site number and the transition from egalitarian societies to more 

complex and hierarchical communities (Chang 1986; Liu 2004; Liu and Chen 

2012; Zhang 2004). The polished semilunar and sickle-shaped knives and 

shell knives discovered at the Longshan-cultured sites in this region imply that 

a more advanced agriculture was developed. Although a variety of crops 

appeared in this period, millet still remained the major diet for the Longshan 

inhabitants (Hou et al. 2013).  At the Hougang 后冈 site in Anyang, Henan 

province, millet remains were found in storage pits and urns and domestic 

animal bones such as pig, cattle and dog were abundant (Chang 1986).  

The discovery of defensive walls/town walls and a large number of 

spearheads and arrowheads from a Longshan-cultured site in Shandong 

suggest a mature development in the control of enormous labour forces and 

the occurrence of warfare (Chang 1986; Zhang 2004). In addition, burial 

patterns, grave goods and an increase in gender-specific tools indicate that a 

stratified society had developed (Chang 1986, 1999; Liu 1996, 2004). The 

social organisation in the Longshan period, in general, was complex and 

hierarchical, which was clearly expressed in mortuary practices; nonetheless, 

the Wangchenggang 王城岗 site in Henan province does not show evidence 

of elaborate elite burials, which lead Liu and Chen (2012) to attribute the 

variation to differences in leadership strategies. 

The Yangshao and Longshan people practiced slash-and-burn primitive 

agriculture, which involved clearing weeds and trees and then land burning. 

Sometimes, the land may have needed a certain amount of processing (Zeng 

2015). The farm implements used were largely made of wood and stone (Li 

1998; Zeng 2015).  

Bronze Age 

The Bronze Age in China coincided with the Three Dynasties – Xia, Shang 

and Zhou. The Erlitou culture (3900-3600 B.P.), which is associated with the 
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Xia Dynasty, witnessed the beginning of the Bronze Age, while the fall of the 

Western Zhou (3046-2771 B.P.) marked the waning of this period (Chang 

1983; Fang 2012; von Falkenhausen 1999; Yan 1981). The bronze-casting 

technology and the production of bronze ritual objects implies that a stratified 

society with a higher level in division of labour, organisation of workshops, 

large-scale mining and transportation knowledge was developed during this 

period (Bagley 1999: 141; Chang 1983; Liu and Chen 2003: 62-63). The 

Erligang culture (3500-3300 B.P.) discovered in Zhengzhou, Henan province, 

was believed to correspond to the early Shang Dynasty, while the Yinxu 

culture (3300-3046 B.P.) was designated as the late Shang Dynasty. 

Archaeological evidence shows that the Erligang culture expanded to a 

broader region than its predecessor, the Erlitou, and its primary centre was 

eight times as large as the first Erlitou site, implying population migration and 

colonisation (Liu and Chen 2003: 87, 127). The following Zhou Dynasty 

(3046-2256 B.P.) is important in Chinese history because it not only saw the 

transition of bronze-iron technology, but also fundamental changes in 

bureaucratic government (Shaughnessy 1999), which brought about the 

beginning of imperial China (Chang 1986: 341).  

In the Bronze Age, primitive agriculture gave way to traditional agriculture, 

which is characterised by the use of metal implements pulled by animals or 

operated by humans. One of the typical implements in this period was leisi 耒

耜. A leisi“is made by adding a crosspiece to the lower portion of a pointed 

stick in order to facilitate breaking the soil” (Li 1998: 17; Zeng 2015: 360). A 

Ougeng 耦耕 is a paired-tillage system which involved “two men using one 

siou 耜耦, one digging while the other pulls the spade with a rope” (Jun 2012: 

180). This system largely improved food production (Zeng 2015). By the 

Shang Dynasty, ox-ploughing techniques became more popular (Xiao and 

Wen 2012).  

Millet (Setaria italica and Panicum miliaceum) was the main staple in the 

Bronze Age (Chang 1986). The use of bronze agricultural implements 

facilitated grain yield, which not only boosted regional trading and the 

development of metallurgy, but also minimised the reliance on animal 

husbandry and reinforced stratified hierarchies (Guo 1963). Some imported 
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raw materials were found in the Erlitou burials, suggesting that the Erlitou 

population must have traded widely (Bagley 1999). Politically, the royal 

lineages formed the core of the dynasties in the Bronze Age, controlling food 

production, the handicraft industry and the army (Guo 1963; Keightley 1999). 

It is certain that the Bronze Age paved the way for the first civilisation in China. 

In contrast to the cultural developments along the Yellow River Valley, a 

recognisably distinct culture was formed in the Northern Zone of China as 

early as the Shang Dynasty, known as the Northern Complex (Di Cosmo 2002; 

Lin 1986). The Northern Zone stretches from Xinjang and Gansu in the west 

to Jilin in the east and includes parts of Inner Mongolia and Liaoning, along 

with the northern areas of Hebei, Shanxi, and Shaanxi (Di Cosmo 2002). The 

Northern Complex corresponds to the Erlitou and Erligang cultures in the 

Yellow River Valley and is comprised of the common cultures that were 

shared by different populations inhabiting this area, including bronze 

metallurgy and pastoral economy (Di Cosmo 1999; Liu and Chen 2012). The 

Northern Zone populations were primarily millet farmers in the early stage, 

supplemented with hunting and stock raising (Di Cosmo 1999). During the 

middle and late Bronze Age, the subsistence activity in this area underwent a 

transition from farming to agropastoral economy to full nomadic pastoralism 

due to the end of the mid-Holocene Climatic optimum and over exploitation of 

the environment (Di Cosmo 1999; Liu and Chen 2012). Interestingly, based 

upon historical literature (Ding 1988; Wang 2010; Zhu 2007) and 

archaeological evidence (Guo et al. 1992; Y. Hou et al. 2009),  between the 

late Longshan period and the Shang Dynasty the nomad inhabitants from the 

northern Henan and the southern Hebei gradually adopted agriculture while 

moving southward (Hou et al. 2013). The vast area located north of the Great 

Wall in contemporary China was part of a transitional zone where the Central 

Plain agriculturalists met the northern pastoralists (Liu and Chen 2012), 

implying that the lifeways of ancient populations would, to a certain extent, 

make changes in order to adapt to local environments.    
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Iron Age 

In Chinese archaeology, the Iron Age refers to the Warring States-Qinhan 

period (战国秦汉时期) (Zhu 2014) and features fragmented political groups 

(von Falkenhausen 1999). The earliest evidence of the use of iron tools in 

China can be traced as far back as to 3000 B.P. in the Xinjiang region (Chen 

et al. 2012; Tang 1993). In the Central Plain, however, it was not until the 

Easter Zhou period (c.a. 2800.B.P, also known as the ‘Spring and Autumn’ 

and the ‘Warring States’ periods) that iron weapons and tools were mass-

produced (Bai 2005; Hsu 1999; H. Zhang 1989).  

During the Iron Age, the Northern Zone saw the transition from mixed 

agropastoral to predominantly pastoral nomadic culture. Iron objects were 

found in Inner Mongolia and the northeast dating no later than the mid 2700 

B.P. It is also possible that iron metallurgy spread in the Northern Zone from 

the north before its general appearance on the Central Plain. Horses became 

increasingly important in this region. They were not only used for 

transportation or herding, but were also ridden in battles as evidenced by the 

considerable number of horse masks or chamfrons remains (Di Cosmo 1999).  

A large-scale bronze foundry, ceramic kilns and bone-carving workshops 

were discovered at the Houma 侯马 site, in Shanxi province. In addition, an 

abundance of bronze vessels were unearthed at most iron-aged 

archaeological sites, indicating the occurrence of commercialisation and trade 

(von Falkenhausen 1999). The wide use of iron tools, advanced irrigation 

operations and new techniques in husbandry are believed to have led to a 

rapid growth in population size and the accumulation of wealth (Hung 1999; Li 

1998). 

The armies of the Spring and Autumn period combined chariots with 

infantry. While warrior aristocracy (nobles) used convex bows on chariots, the 

infantry armies, primarily consisting of low-status members and peasants, 

fought with lances (Lewis 1999). During the Warring States period, there was 

an increasing reliance on massed infantry. Lances, dagger-axes and 

crossbows were the most common weapons used by soldiers who were 

protected by iron armour and helmets. Additionally, the use of cavalry became 

an important composition of the army. The scale of warfare changed 
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considerably from a season in the Spring and Autumn period with less than 

30,000 participants to several years in the Warring States period with 

hundreds of thousands men involved (Lewis 1999). 

Imperial period 

Due to periodic warfare in the Eastern Han period in the north, a significant 

number of populations migrated southwards, which provided a labour force for 

the development of paddy field agriculture (Li 1998). During the Tang dynasty, 

the Central Plain gradually became the centre of economy and rice replaced 

millet as the main staple food (Li 1998; Min et al. 1989; Zeng 2015). Although 

the dry farming in the north was relatively less important in the imperial 

periods, it did not put an end to the development of agricultural technology 

and techniques (Li 1998; Zeng 2015).  

A rapid growth of population in the late Tang Dynasty further led to the 

development of double-cropping wet rice cultivation (Weng 2000). In the Song 

Dynasty, quick-ripening rice varieties were introduced from the ancient 

Indochinese Kingdom, which made double- or even triple-cropping possible 

(Bray 1984). The Tang and Song Dynasties witnessed significant inventions 

and changes in farming implements and irrigation techniques, while the major 

new agricultural technology in the Ming and Qing dynasties was the 

improvement in the varieties of grain (Li 1998; Min et al. 1989; Perkins 1969; 

Xiao and Wen 2012). Apart from grains, the farmers in the imperial periods, 

particularly in the Qing Dynasty, also grew cash crops such as cotton, 

sugarcane, tea and mulberry trees (for breeding silkworms) (Li 1998; Myers 

and Wang 2002). 

Various major agricultural implements were invented during the imperial 

periods, including the seedling horse (for pulling seedlings for transplanting), 

the weeding talon (for weeding rice paddies), and field levellers ad clepsydra, 

which not only helped reduce manpower, but also improve productivity (Zeng 

2015). Irrigation was crucial to the rice agriculture in the south. The most 

common irrigation technology was the overturning wheel manipulated by 

manpower, either controlled by hands (known as the manual overturning 
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wheel) or feet (known as the pedal overturning wheel) (Min et al. 1989; Zeng 

2015; Zhang 2015) where “……two to six people would simultaneously step 

on a train pump. The persons stepping on the train pump may bend over the 

frame and step on the pump vertically or sit and step on it” (Zhang 2015: 294).  

The history of Hong Kong under British colonialism 

The population size of Hong Kong Island in pre-colonial days was 

approximately four thousand. By the end of the 19th century, the island’s 

population was estimated at twenty thousand (Nigel Cameron 1991; Endacott 

1964; Tsai 1993). It is noteworthy that the vast majority of the population of 

Hong Kong came from mainland China, many of them were escaping from 

poverty, famine, plague and socio-political disturbances and most of them 

were men from the lower classes (Carroll 2007; Chan 1993; Tsai 1993).  

Historians often describe Hong Kong as a “barren island” before the 

arrival of the British in 1841. However, archaeological findings in this area 

show that the earliest inhabitants on the island can be traced back to the 

Neolithic period. Farming and fishing were the main subsistence activities and 

the inhabitants are believed to have lived a sedentary lifestyle (Carroll 2007; 

Liu 2009).  

Under the development of British colonialism, Hong Kong gradually turned 

from a small village into a prosperous entrepôt of trade, resulting in the 

burgeoning of the construction of settlements, markets and office buildings, 

which attracted a large number of workers from mainland China who flocked 

into Hong Kong (Tsai 1993). In the late 19th century, the labouring class in 

Hong Kong mainly consisted of artisans, manufacturing workers, hawkers, 

servants or coolies, making up 60% of the population. The proportion of the 

labouring class did not show considerable change for several decades (Chan 

1993; Zhang 2005). The life of the working class was tough, for instance, 

itinerant hawkers “had to carry their goods in two baskets at the end of 

bamboo poles balanced on their shoulders” everyday (Tu 2003: 35). Moreover, 

in order to make a living, illegal hawkers bribed the police so they could carry 

on their business (Tu 2003). The cargo-carrying coolies working on shore 
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“loaded and discharged cargo on board ship and handled in on shore” (Tsai 

1993: 105) but non-contract coolies had to wait for contractors to assign a 

day’s work if there was any. Sedan chair bearers and jinricksha pullers, who 

always worked barefooted and barebacked, were also common occupations 

among the Chinese population in Hong Kong (Fung 2005; Tsai 1993). The 

income of these labourers was meagre and normally not enough to support 

the whole family, with the result that women and children had to engage in 

exhausting labour (Chan 1993; Faure 1997). 

Poverty is always concomitant with low standards and unsanitary living 

conditions. A poor family would occupy one bunk of a bed in a hut that was 

packed with bunk beds. For a larger family, some even slept on the floor 

below the bottom bunk. In addition, it was not uncommon for over one 

hundred coolies to crowd into a tenement house/lodging house which was 

divided into numerous cubicles and sublet (Chan 1993; Faure 1997; Fung 

2005; Tsai 1993; Tu 2003). It is recorded that life expectancy in Hong Kong in 

1881 was appallingly low, with a mean of only 18.33 years (Chan 1993).   

Street sleepers were seen in some notorious places in Hong Kong (Elliott 

1981). “Rows of homeless toilers, wet or dry, sleep in their tattered rags on 

the pavement . . . dressed in straw sandals at a penny a pair, . . . their clothes 

sometimes made from bags” (Alistair Macmillan 1923, cited in Lim 2011: 426). 

Dead bodies were sometimes seen in the streets (Liu 2009). In 1937, over 

one thousand dead bodies were discovered, of which some were homeless. 

However, there were cases where the deceased was disposed of by his/her 

poor family as they could not afford the burial fees (Faure 1997). 

4.2 Methods 

Three methods were employed in this study: body shape and size, entheseal 

expression and biomechanical properties of long bones. Few studies have 

attempted to integrate multiple approaches on the same series of skeletal 

materials (Cohen and Crane-Kramer 2007; Pinhasi and Stock 2011). There 

has been an increasing awareness that human biological responses to 

66



  

behavioural activities and environmental factors are far from straightforward; 

therefore, the integration of different lines of stress indicators is essential to 

elucidate the relationship between human adaptation, the environment and 

climate. Furthermore, applying multiple approaches can potentially avoid 

biases resulting from human skeletal remains per se, statistical methods, and 

subjectivity and/or the lack of experience of investigators. For instance, the 

study of entheseal expression and the calculation of Ix/Iy ratios are dependent 

upon the experience of observers. In this case, employing multiple methods 

can alleviate biases and cross-examine the results of each method. 

4.2.1 Skeletal identification 

Sex and age estimation from skeletal remains in this study follow the methods 

published in ‘Standards for Data Collection from Human Skeletal Remains’ 

(Buikstra and Ubelaker 1994).  

Sex estimation13 

Os coxae morphology was used as the primary sex indicator in this study 

because it is the most reliable feature of sex in human skeleton (Buikstra and 

Ubelaker 1994: 16). Although cranial features and postcranial skeleton 

robustness have been widely used as secondary sex indicators, the 

diversities of these traits among human populations are marked so crania 

morphology was not used as a sex indicator. If the os coxae were absent, the 

sex of an individual was assigned as indeterminate. Written record for sex and 

age were available for the Sha Ling sample, so sex determined from pelvic 

remains were cross-checked with these records. 

The morphology of the subpubic region, greater sciatic notch and 

preauricular sulcus of the os coxae were examined to estimate sex following 

Buikstra and Ubelaker (1994) (see Figures A4.1-A4.3 in Appendix A). Among 

the three subpubic region features, the ventral arc is the most reliable 
                                            
13 See section 4.3.1 for further information. 
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indicator, whereas the ischiopubic ramus ridge is the least (Phenice 1969). 

Age estimation 

The age-at-death of an individual was primarily estimated using pubic 

symphysis and auricular surface morphology following Todd’s pubic 

symphysis scoring system (1920, 1921) and Lovejoy and colleagues’ auricular 

surface technique (Lovejoy et al. 1985) (see Figures A4.4; A4.5 in Appendix 

A). If the os coxae were absent or too incomplete to provide accurate 

information, dental eruption (Moorrees et al. 1963), dental wear (Lovejoy 

1985), cranial suture closure (Buikstra and Ubelaker 1994: 32-35) and 

epiphyseal fusion (Buikstra and Ubelaker 1994: 40-43) were employed to 

determine whether an individual was an adult (approximately aged over 18). 

However, age-at-death was not estimated based on these features if the os 

coxae were not present.  

4.2.2 Osteological measurement 

Limb bone measurements were based on the descriptions published in 

‘Standards for Data Collection from Human Skeletal Remains’ (Buikstra and 

Ubelaker 1994). A total of fourteen variables from the clavicles, humeri, radii, 

ulnae, femora and tibiae were measured (see Table A4.1 in Appendix A). The 

right and left sides of the elements were measured. However, measurements 

from the right side were analysed unless the right element was unavailable, in 

which case the left side measurements were used. The maximum length of 

bones and epiphyseal breadth were measured by osteometric board, while 

other variables were measured using digital sliding or cloth tape. Variables 

measured with digital sliding and osteometric board were recorded to the 

nearest 0.01 millimetres (mm), whereas dimensions measured using cloth 

tape were documented to the centimetres (cm), but were converted to 

millimetres for analyses.  
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4.2.3 Body shape and body size 

It is known that body size and shape are highly influenced by climate (Holliday 

1997a; Katzmarzyk and Leonard 1998; Ruff 1991; Trinkaus 1981; Weinstein 

2005), diet (Mummert et al. 2011; Nickens 1976) and socio-economic 

conditions (Bogin and Keep 1999; Steckel 1995; Zakrzewski 2003). Therefore 

differences in body form between the northern and southern Chinese and 

between subsistence groups are thus expected.  

Living stature 

The mathematical method based upon long bone regressions was used for 

the estimation of living stature. It is crucial to use modern reference samples 

that match as closely as possible the body proportions of the sample in 

question to reconstruct the living stature from skeletal remains (Holliday and 

Ruff 1997; Ruff and Walker 1993).  

The living stature of the northern and southern populations in this study 

was estimated using different regression equations. For female samples, the 

regression equations of Zhang (2001) were used. Zhang’s study was the first 

of its kind to propose regression formulae for Chinese Han female stature 

estimation. The sixty-nine female individuals studied with known stature were 

derived from nine provinces in North and South China and range in age from 

19 to 66. Zhang suggested that regression equations inferred from multiple 

variables should be favoured over those from single variable. In addition, 

equations derived from lower limbs should be considered or used in 

preference to those of the upper limb whenever possible.  

For southern males, stature was estimated using the formulae advocated 

by Mo (1983). Mo investigated fifty males with known stature from southern 

China. He found that the fibulae, humeri, tibiae, the combination of the humeri 

and the radii, and the combination of the femora and the tibia were the best 

predictors. The stature of northern males were inferred using the formulae 

devised by Stevenson (1929), which was derived from forty eight northern 

Chinese males curated in the Department of Anatomy at the Peiping Union 
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medical College (now known as the Peking Union Medical College). 

Stevenson discovered that in the case of northern males the best single long 

bone to predict stature was the tibia. Although there is no consensus on the 

most appropriate skeletal element for stature estimation, it is certain that lower 

limbs are more highly correlated with stature than upper limbs.  

The studies above show that tibiae appear to be the most suitable long 

bones to estimate the stature of males; however, owing to the limited number 

of tibiae in the studied samples, femora are favoured over tibiae for stature 

estimation in this dissertation. The right femora were used whenever possible. 

If the right elements were missing, the left measurements were employed 

instead. Although Trotter and Gleser (1952) suggested subtracting 0.06cm for 

every year over the age of 30 from the final estimate to reflect the influence of 

age on living stature, the age-at-death of most samples in this study was 

estimated and each individual was assigned to a broad age group; as a result, 

it is not plausible to follow the suggestion. In addition, this research 

investigates the maximum adult height rather than the height when an 

individual died at specific age, so the adjustment is not necessary. The living 

stature was estimated as follows: 

 

 

All females (Zhang 2001) Y (left) = 483.913 + 2.671 x FXL 

Y (right) = 459.290 + 2.752 x FXL 

 

Southern males (S. Mo 1983) Y = 63.80 + 2.26 FXL ± 4.72 

 

Northern males (Stevenson 1929) Y = 61.7207 + 2.4378 FXL 

 

(Y = living stature (mm); FXL = maximum length of femur) 
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Body mass estimation 

Body mass can be determined by two general approaches that may be 

grouped as mechanical and morphometric methods (Auerbach and Ruff 2004). 

The former employs the dimensions of a weight-bearing skeletal element, 

most often femoral head diameter, while the latter reconstructs the body mass 

from skeletal dimensions such as stature and bi-iliac breadth (Auerbach and 

Ruff 2004; Ruff 2002). In this study, the mechanical method was chosen and 

articular surface dimensions are favoured over diaphyseal dimensions or 

cross-sectional dimensions since articular surface dimensions are influenced 

less by differences in activity level and mechanical loadings (Auerbach and 

Ruff 2004; Lieberman et al. 2001; Ruff 1988). In addition, femoral heads are 

frequently found in archaeological sites and are easily measurable; therefore, 

the femoral head diameter is often used as a predictor of body mass among 

human populations (Ruff 2002).  

The estimated body mass was calculated using the average of the 

equations of Ruff and colleagues (1991), McHenry (1992), and Grine and co-

workers (1995) as recommended by Auerbach and Ruff (2004), which is a 

widely used and acceptable approach in osteology. The equations used in this 

study were listed below: 

 

Ruff et al. (1991) BM = (2.426 x FHD – 35.1) x 0.9 (females) 

 BM = (2.741 x FHD – 54.9) x 0.9 (males) 

 BM = (2.160 x FHD -24.8) x 0.9 (combined sex) 

  

McHenry (1992) BM = 2.239 x FHD -39.9 

  

Grine et al. (1995) BM = 2.268 x FHD – 36.5 

  

BM = body mass (kg); FHD = maximum head diameter of femur (mm) 
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Body and limb proportions 

The differences between northern and southern Chinese were investigated 

using the ratios of distal to proximal limb segment lengths, limb lengths to 

body mass and femoral head diameter to femoral length (Holliday 2006; 

Holliday and Hilton 2010). Formulae are as below: 

 

 

Brachial index   
                                

                               
      

  

Crural index   
                              

                               
       

  

Relative femoral     

head diameter 
  

                                     

                                
       

 

 

These variables were log-transformed (log 10) prior to statistical testing 

between the North and South Chinese. Subsequently, bivariate scatter plots 

were utilised to elucidate the degrees of overlap between two groups (Temple 

et al. 2008; Temple and Matsumura 2011; Weinstein 2005). Comparisons 

were conducted on a sex-specific group basis because these indices are 

often observed to be different for females and males (Temple et al. 2008; 

Trinkaus 1981; Yamaguchi 1989). In addition, limb lengths relative to body 

mass was used to test if inter-population variation is associated with altitude 

and temperature. The statistical software Palaeontological Statistics (PAST) 

for Windows (http://folk.uio.no/ohammer/past/) was employed to produce 

reduced major axis (RMA) regressions and non-parametric “Quick Test” 

method was to test the null-hypothesis that the distribution of individuals 

above and below the RMA regression lines do not show significant differences 

(Tsutakawa and Hewett 1977).   
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4.2.4 Entheseal expression  

As muscle insertions are subjected to minor stress, blood flow to the 

periosteum increases, thereby stimulating osteon remodelling which 

eventually causes hypertrophy of the bones and changes in entheses. 

Entheses are presented in varied forms, including rugged markings or pittings, 

or ‘furrow’ features on muscle attachment sites (Hawkey and Merbs 1995).  

In this study, the graded visual reference system, a scale of zero (no 

development) to three (strong development), proposed by Hawkey and Merbs 

(1995) was used to quantify the development of entheses. Though numerical 

scoring systems have been criticised by some researchers in recent years 

due to a high frequency in intra- and inter-observer error (Davis et al. 2013), 

Mariotti and colleagues (2004, 2007) have standardised some frequently 

measured entheses with detailed descriptions and photographs. The 

improvement of the graded visual method not only alleviates the biases of 

observers, but also provides a more systematic and reliable scoring approach. 

Additionally, Hawkey and Merbs’s method has been widely used; it makes 

comparative studies possible between this research and previously published 

results. Furthermore, if a trend is presented, it will be observed in statistical 

analyses regardless of data collection method (Dr. Elizabeth Weiss, personal 

communication, 2009).  

A total of 42 entheses, three from clavicles, two from scapulae, twelve 

from humeri, five from ulnae, four from radii, nine from femora, one from 

patellae, three from tibiae and one from calcanei from both sides were 

observed and quantified (see Figures A4.6a-g in Appendix A). These 

entheses were chosen for several reasons: 1. they are distinguishable and 

easily scored; 2. they have been associated with specific activities in the 

literature; and 3. they have been used frequently in lifestyle reconstruction 

(Weiss 2003b). All bones were carefully cleaned in water with a soft brush 

and observation was conducted using a 5x magnifier under a fluorescent lamp. 

The expression of robusticity and stress lesions were recorded separately 

using the four-point scale (0-4) listed in Table A4.2 in Appendix A. They were 

consequently combined into a scale from 0 to 7 for statistical analyses 

because robusticity and stress lesions present a continuum rather than two 
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types of features (Hawkey and Merbs 1995). Robusticity is defined as rugged 

markings on entheses, where in extreme cases ridges or crests have 

developed, while stress lesions are characterised by a pitting or furrow into 

the cortex, which resembles a lytic lesion (Hawkey and Merbs 1995) (Figure 

4.2).  

After conversion, the dataset was analysed as both disaggregated and 

aggregated data. Disaggregated data involves analysing the score of single 

muscles, which is useful for understanding the usage of each muscle, 

whereas aggregated data combines the scores of multiple entheses, creating 

an aggregated score for regions or functional groups of entheses. The 

advantage of aggregating a number of variables is that “it creates significant 

correlations where non-significant findings hampered predictability” based on 

the premise that “error variance and specificity or idiosyncratic variance can 

be averaged out” (Weiss 2003b: 231). Aggregation is common in a wide 

range of academic research such as economics, psychology and other social 

sciences (Dunn et al. 1993; Khamis and Hempstead 1996; Van Rompaey et 

al. 1999). Spearman (1904) likened aggregation to repeatedly firing a gun to 

hit a target. The bullets that failed to hit the target are analogous to error 

variance, e, and the successful hit is a “true score”, t. Therefore, every actual 

measurement (X) is comprised of a “t” and an “e”. On this basis, the more Xs 

that are summed, the more e is averaged out, leaving only t to accumulate. 
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Figure 4.2 Entheseal expressions at the costoclavicular ligament (arrow). Full 

descriptions of each score can be found in Table A4.2 in Appendix A. 
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Due to the problem of missing data and in the interest of maximising the 

sample size, only certain entheses were chosen for aggregated data analyses. 

For the upper limbs, the scores of seven entheses were summed: deltoid, 

latissimus dorsi, pectoralis major, teres major, biceps brachii, ulnar supinator 

and triceps brachii. For the lower limbs, five entheses were combined: gluteus 

maximus, vastus medialis, medial gastrocnemius, soleus and the patellar 

ligament.  

The use of entheseal changes to infer past activities has often been called 

into question because the extent to which body size influences entheseal 

expression remains unclear (Lieverse et al. 2009; Milella et al. 2012; Molnar 

2006; Weiss 2003b, 2004). In order to elucidate the correlation between body 

size and the development of entheses, upper and lower limb sizes and body 

mass were used to test this hypothesis. Upper and lower limb sizes were 

calculated following Weiss (2003b, 2004). Upper limb size was expressed by 

the sum of three humeral variables (maximum length, vertical head diameter 

and epicondylar breadth), while lower limb size was expressed by adding 

three femoral variables (maximum length, epicondylar breadth and maximum 

head diameter) and three tibial variables (lateral length, proximal epiphyseal 

breadth and distal epiphyseal breadth). The definitions of these variables are 

given in Table A4.1 in Appendix A.   

4.2.5 Biomechanical analysis of long bones 

The biomechanical analysis of bone robusticity is the application of 

engineering principles to skeletons. These analyses have been widely used in 

bioarchaeological studies to investigate the relationship between mechanical 

loading and functional adaptation in human skeletons, in particular the 

diaphyses of long bones. Long bone shafts can be modelled as beams; 

therefore they can be analysed using engineering theories. In the context of 

biomechanical analyses, bone robusticity refers to “the strength of a bone as 

reflected by its size and shape” (Stock and Shaw 2007:412) and the 

modification of skeletal morphology due to external forces is known as Wolff’s 

Law or bone functional adaptation (Ruff 2008). The primary form of bone 
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morphology is determined by genetics; however, the mature form is highly 

influenced by mechanical loadings (Ruff 2008). The more robust a bone is, 

the greater its ability to resist breakage due to loading forces. The common 

loading forces affecting bones include tension, compression, shear, bending 

and torsion (twisting), among which bending and torsion are the two most 

critical forces. Bending forces consist of tensile stresses on the convex side 

and compression on the concave side, whereas torsional loading produces a 

combination of tension, compression and shear owing to the twisting of a 

skeletal element along the axis of a bone (Larsen 1997). Bending and 

torsional forces influence the lower limb bones through body weight and 

muscle activity, while for the upper limb bending and torsion is due to muscle 

forces used in lifting and carrying (Larsen and Ruff 2011). 

The effects of loading forces that acting upon a long bone can be 

interpreted via the measurement of the cross-sectional geometric properties 

of the diaphyses of long bones. Several methods have been used to measure 

bone robusticity such as direct sectioning (Maggiano et al. 2008; Ruff and 

Hayes 1983) and computed tomographic (CT) imaging (Carlson et al. 2007; 

Ogilvie and Hilton 2011; Ruff and Leo 1986). In this study, a non-invasive 

subperiosteal mould-based method was applied and each mould was then 

digitised. While direct sectioning and CT imaging generate the cortical bone 

distribution in endosteal contour, the mould method produces “solid” cross-

sectional geometric properties, including the total subperiosteal area (TA) and 

second moment of area (I) (Table 4.4; Figure 4.3). This method has been 

shown to accurately estimate cross-sectional properties (O'Neill and Ruff 

2004; Stock 2002; Stock and Shaw 2007; Trinkaus and Ruff 1989). In addition, 

it is evident that Imax, Imin, Ix and Iy based on a solid cross section have strong 

correlations with those calculated from the cross-section with a medullary 

cavity (Stock and Shaw 2007).  

In this study, the diaphyseal robusticity of long bones was quantified 

bilaterally at the mid-distal (35%) location of the humeri (to avoid the deltoid 

enthesis) and the midshaft (50%) of the clavicles, ulnae, radii, femora, and 

tibiae. Periosteal contours were moulded using Coltene President 

polyvinylsiloxane impression material. In order to avoid confusion of 

orientation when scanning, the moulds of all bones were clearly marked on 
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their anterior surfaces later cut from the medial side after hardening and the 

moulds of clavicles were cut from the superior side (Stock 2002). Each mould 

was scanned on a flatbed scanner with a resolution of 1200dpi. During 

digitisation, the moulds were oriented antero-posteriorly, with the exception of 

the clavicles which were oriented supero-inferiorly. Cross-sectional geometric 

properties were calculated using MomentMacroJ for ImageJ 

(www.hopkinsmedicine.org/fae/macro.ßhtm) on a PC.  

 

 
Table 4.4 Cross sectional geometric properties and indices 

Symbol Definition Mechanical relevance 

TA total subperiosteal area pure axial compression 

Ix second moment of area about the 

antero-posterior plane 

bending rigidity in the antero-

posterior plane 

Iy second moment of area about the 

medio-lateral plane 

bending rigidity in medio-lateral 

plane 

Imax maximum second moment of area maximum bending rigidity 

Imin minimum second moment of area minimum bending rigidity 

 

 
Figure 4.3 Example of a femoral midshaft cross-section 
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Size standardisation 

Controlling the effects of body size and shape on bone structure is essential in 

interpreting variation in skeletal robusticity (Ruff 2000b). It is evident that there 

is a strong relationship between body size and bone robusticity, so body size 

must be taken into account into analyses in order to use biomechanical data 

to elucidate the behavioural patterns of past human populations. The best 

variable to standardise area measurements such as TA is estimated body 

mass (Ruff 2008), while the product of body mass and moment arm length2 is 

the most appropriate standardised measure for second moments of area such 

as J (Shaw and Stock 2009a; Sparacello and Marchi 2008). Although the 

upper limbs are not weight-bearing, Ruff (2000b) found that the bending and 

torsional rigidity of the upper limb bones follow the mechanical scaling 

relationship that seen in the lower limb bones. In this study, TA was 

standardised to body mass estimated using femoral head diameter as 

described in section 4.2.3. The products of standardised TA were multiplied 

by 102 for data presentation. Second moments of area (Ix, Iy, Imax and Imin) 

were presented as ratios, which are self-standardised, so size standardisation 

is not required. 

4.2.6 Sexual dimorphism and patterns of asymmetry 

Sexual dimorphism is expressed as a ratio of males (larger size) and females 

(smaller size) (Plavcan 2011; Smith 1999). The proportional differences 

between the sexes were evaluated as:  

 

percent dimorphism   
                         

          
      (Frayer 1980) 

 

 

where percent dimorphism is used as a sexual dimorphism index (SDI) to 

demonstrate the relative difference between females and males. Results that 

are more than 0 indicate that the values of males are greater than those of 
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females, and results that are less than 0 indicate the female values are 

greater.  

Only individuals with paired skeletal elements were used to examine 

bilateral asymmetry. First, the value for each individual was calculated using 

formulae listed below and then the mean value of individual values were 

utilised to represent the asymmetric pattern of each population, enthesis or 

biomechanical property. Side dominance and level of asymmetry were 

calculated using: 

 

For entheseal expression:  

percent bilateral asymmetry = 
           

           
      (Eshed et al. 2004) 

 

where percent bilateral asymmetry was employed to determine side 

dominance of upper and lower limb entheses, in which results of less than 100 

imply right dominance, while results of more than 100 imply left dominance14. 

 

For biomechanical properties:  

percent 

directional 

asymmetry 

= 
          

                         
      

(Auerbach and Ruff 

2006) 

 

percent 

absolute 

asymmetry 

= 
               

                              
      

(Auerbach and 

Ruff 2006) 

 

 

Percent directional asymmetries (%DA) standardise the asymmetric 

differences of raw data, so they are appropriate for direct comparison of 

asymmetries in dimensions of different size. Positive %DA values indicate 

right-biased asymmetries and negative values indicate left-biased 
                                            
14 Since entheses that do not show any development were recorded as zero, the formulae 
used for biomechanical properties are not appropriate to examine the asymmetric bias of 
entheses.  
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asymmetries. Percent absolute asymmetries (%AA) represent the magnitude 

of asymmetry in a given dimension, so the larger the values, the greater the 

degree of asymmetry (Auerbach and Ruff 2006). 

4.2.7 Statistical methods 

Variation in the data between populations and sexes was examined using 

either parametric or nonparametric statistical tests depending on the nature of 

the dataset (Bryman and Cramer 2009:72). For osteometric dimensions, 

biomechanical analyses, living stature, body mass and, parametric tests were 

used because these data meet the assumptions of parametric tests (Field 

2005:64). The parametric tests employed in this study include independent t-

test, paired t-test and one-way analysis of variance (ANOVA). The 

independent t-test compares the mean of one sample with the mean of 

another sample, while the paired t-test looks at the differences between 

paired values. For instance, comparisons between females and males or 

between the right and left bone elements were analysed by independent t-test 

and paired t-test, respectively. ANOVA was conducted to determine if the 

mean values of three or more groups show significant differences. Where 

ANOVA results were significant, Hochberg’s GT2 or Games-Howell post hoc 

tests were subsequently performed, depending on the results of the Levene’s 

test for equality of variance (Nikita et al. 2011; Shaw and Stock 2009a). 

Non-parametric tests examine the order or rank of the values rather than 

the actual values themselves (Field 2005:521). Scores for entheseal 

expression are ordinal data and percentage data often violate the 

requirements of most parametric tests, so Mann-Whitney tests (the non-

parametric equivalent of the independent t-test), Wilcoxon signed-ranks tests 

(the non-parametric equivalent of paired t-test) and Kruskal-Wallis tests (the 

non-parametric equivalent of the ANOVA) were employed (Auerbach and Ruff 

2006; Eshed et al. 2004). The purposes of these non-parametric tests are 

similar to their parametric equivalent. Where the results of Kruskal-Wallis tests 

were significant, Dunn-Bonferroni post-hoc tests were conducted to identify 

the significant differences in pairwise comparisons. The statistical significance 
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level was set at P<0.05 and for post-hoc tests all p-values were adjusted. All 

analyses were performed on SPSS version 21 for Mac.  

4.3 Sex estimation using discriminant function analysis 

The human skeletal remains used in this project include a large number of 

individuals of unknown sex (Table 4.2). Discriminant function analysis (DFA) 

was employed to estimate the sex of the individuals where sex could not be 

estimated based on the conventional observational approaches outlined in 

section 4.2.1. In order to avoid potential biases, only the known-sex adult 

samples from the Sha Ling cemetery were included (Table 4.2). The humeri 

and femora were chosen since they have been proved to be reliable sex 

indictors in forensic research (Charisi et al. 2011; Frutos 2005; Srivastava et 

al. 2012). Three humeral dimensions (maximum length (HXL), maximum head 

diameter (HXH) and epiphyseal breadth (HEB)) and four femoral dimensions 

(maximum length (FXL), maximum head diameter (FXH), midshaft 

circumference (FMC) and epiphyseal breadth (FEB)) were analysed. The right 

elements were used whenever possible. However, in an interest in 

maximising the sample size, if a right bone was missing, the left side was 

used.  

The discriminant functions of each single variable and combined variables 

were listed in Table A4.3 in Appendix A. A discriminant function is built as 

follows: D = a1v1 + a2v2 + … + anxn + b, where D is the discriminate score 

(also known as group centroid), ‘a’ is the unstandardised discriminant 

coefficient, ‘x’ is the variable and ‘b’ is the constant. To assign the case to 

either male or female group, the product D is compared to the sectioning point 

derived by the discriminant function. A sectioning point is the average of the 

female and male group centroids. A value higher than the sectioning point 

would probably be a male and a value below it deemed to be female. For 

instance, to estimate the sex of an unknown adult using Function 5 would be 

as follows: 
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D = 0.01536(FXL) + 0.02788(FXH) – 0.02920(FMC) + 0.27910(FEB) – 26.463 

 

 

If the individual has the following measurements:  FXL = 38.80mm, FXH = 

42.23mm, FMC = 73.00mm, FEB = 67.00mm, the discriminate score (D) 

generated from the above function would be -8.1216. The sectioning point for 

Function 5 is -0.324 and the female centroid is -1.796 (Table A4.3). Therefore, 

this particular individual is most likely to be a female. The expected correct 

classification for this function is 93.75% (without cross-validation) for females 

and 92.00% (without cross-validation15) for males (Table 4.5). 

As will be presented later in section 5.4, the Sha Ling overall sexual 

dimorphism index (SDI) values of bone lengths are lower than those of the 

epiphyseal dimensions. These results are consistent with the prediction 

percentages (Table 4.5), implying that epiphyseal dimensions have the 

greatest amount of discriminatory power between sexes. Research by Iscan 

and Ding (1995) shows that the distal epiphyseal breadth of the femora is the 

most dimorphic element among the northeastern Chinese (94.90% accuracy 

rate for both sexes). In the same research, femoral midshaft circumference 

was also proposed as a reliable variable in sex assessment, in particular 

among females (92.30%). However, the present study found that female FMC 

only classified individuals correctly in 65.38% of cases (Table 4.5). A 

combination of several variables appears to provide more accurate 

information than using one single variable. However, it is observed that some 

single variables still provide high discriminatory power such as the FEB 

among both sexes, and the FXH, HXH and HEB among males. 

                                            
15 Cross-validation (also known as the “leave-one-out method”) was used to further evaluate 

the reliability of the original findings. 
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A stepwise discriminant function analysis was carried out to find the best 

sex predictor(s). Of the seven single variables, FEB has the greatest 

predictive power (Wilks’ Lambda = 0.339, p<0.001). Fragmentary and 

incomplete human skeletal remains discovered in archaeological contexts 

sometimes make sex determination difficult. Among the skeletal parts, 

epiphyses are normally well preserved; therefore, single variable functions are 

of great importance in sex assessment for archaeological skeletal remains.  

It is observed that the correct classification rates of all functions but 

Function 5 are higher among males than among females, showing that these 

functions work better for the predicting sex among males (Table 4.5). For 

females, the most reliable individual variable for sex estimation is FEB 

(Function 4, 88.24%), followed by FXH (Function 2, 81.82%). Similarly, the 

male FXH and FEB result in 92.86% and 92.00% prediction percentage, 

respectively. The best combined variables for females proved to be 

FXL+FXH+FMC+FEB (Function 5, 93.75%), followed by FXH+FEB (Function 

6, 87.50%), whereas HXL+HXH+HEB (Function 10, 94.29%) provides the 

highest prediction rate for males, followed by FXL+FXH+FMC+FEB (Function 

5) and FXH+FEB (Function 6) (92.00%). 

Almost all prediction percentages are identical before and after cross-

validation with the exception of Functions 5 and 7, of which the accuracy rates 

show a reduction (Table 4.5).  Function 5 reduces from 93.75% to 87.50% 

among females and from 92.00% to 88.00% among males, respectively. For 

Function 7, the correct percentage is only observed to decrease among 

females from 66.67% to 62.50%.  

4.3.1 Sex determination criteria 

It is worth introducing two new terminologies at this stage – Principal 

Osteological Dataset (POD) and Extended Osteological Dataset (EOD). The 

sex estimation of the former dataset was derived from the conventional 

observational methods described in section 4.2.1, whereas the latter was 

determined using the discriminant functions (Table 4.5). The two best 

discriminant functions created in this research were employed, namely, the 
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combination of FXL, FXH, FMC and FEB (92.88%) and the combination of 

HXL, HXH and HEB  (90.62%)16. The equations are as follows: 

 

 

Function 1: 

D1 = 0.01536 (FXL) + 0.02788 (FXH) - 0.02920 (FMC) + 0.27910 (FEB) - 

26.463 

 

Function 2: 

D2 = 0.02108 (HXL) + 0.26559 (HXH) + 0.10253 (HEB) - 23.609 

 

 

In addition, Function 5 from Iscan and Ding (1995) was also utilised in 

order to increase the accuracy of estimation as well as to maximise the 

sample size. Fisher’s exact test was conducted to assess how well the Sha 

Ling known-sex samples fit with Function 5 derived by Iscan and Ding. For 

Sha Ling females, 88.89% (16 out of 18) individuals were correctly predicted 

using Iscan and Ding’s Function 5, while for males the accuracy rate is 

95.83% (23 out of 24). The Pearson’s chi square statistic is 30.644 and this 

value is highly significant (p<0.001), showing that the original and the 

estimated results are significantly correlated. Another Fisher’s exact test was 

conducted for the samples collected from other archaeological sites to 

evaluate if the sex estimation based upon Function 1 and/or Function 2 is 

consistent with the sex determined by conventional observational methods. 

The samples from all sites but the Sha Ling were used in this analysis. 

Individuals where sex was indeterminate were excluded as there may have 

been insufficient information for sex assessment rather than misidentification 

of sex. The results demonstrate that 90.20% (46/51) of the females sexed 

using conventional methods match with those predicted by the discriminant 

functions, whereas there was 93.94% (62/66) accuracy among males. The 

                                            
16  The combination of FXL, FXH, FMC and FEB was renamed as Function 1 and the 

combination of HXL, HXH and HEB as Function 2. These terminologies were used throughout 

the thesis. 
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Pearson’s chi-square value is 83.20 and it is statistically significant (p<0.001). 

Again, the sex estimates using Function 1 and/or Function 2 created in this 

research are significantly related to those using conventional observational 

methods. 

In summary, the procedure of sex estimation in this research is as follows: 

the sex of an individual estimated by conventional observational methods was 

prioritised in all circumstances. If the skeletal materials that traditionally used 

for sex determination were missing, Function 1 and/or Function 2 created in 

this chapter were employed. In cases where the results of Function 1 and 

Function 2 contradict to each other, the individual was designated as 

indeterminate 17 . Lastly, if both conventional observational methods and 

discriminant functions were not available, the Function 5 derived by Iscan and 

Ding (1995) was used instead. As a whole, 108 females and 152 males were 

estimated using conventional observational methods, while 55 females and 63 

males were sexed using Function 1 and/or Function 2. The sex of two females 

and three males was estimated using the Function 5 of Iscan and Ding (1995). 

4.3.2 Comparisons between the Principal Osteological Dataset (POD) 

and the Extended Osteological Dataset (EOD) 

In order to test the implications of using the EOD in terms of its effect on 

results, comparisons were made using the living stature and body mass of the 

seven populations in this research. In Table 4.6, the number of individuals in 

the Jinggouzi, Tuchengzi and Lamadong samples increases dramatically in 

the EOD. Living stature was estimated by maximum length of femur and body 

mass was estimated by maximum femoral head diameter using the methods 

described in section 4.2.3.  

                                            
17 There were only two individuals showing opposite results. 
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The Neiyangyuan females and the Shenyang females remain the tallest 

and shortest populations, respectively, despite a change in sample size 

(Table 4.7; Figure 4.4). However, it is worth noting that the absolute difference 

in mean living stature between the POD and the EOD of all populations but 

the Shenyang are minor. The Shenyang females in the EOD are 

approximately 2cm taller than those in the POD. In contrast, among males, 

the Jiangjialiang males replaced the Neiyangyuan males as the tallest 

population after the sample size increases and the shortest male sample do 

not differ between two datasets. The largest difference in absolute living 

stature is observed among the Jinggouzi males. 

For body mass (Table 4.7; Figure 4.5), among females, the Lamadong 

and Tuchengzi are the heaviest and the lightest populations in the POD 

respectively, yet in the EOD, the Jiangjialiang females and the Jinggouzi 

females being the heaviest and lightest populations, respectively. A similar 

pattern was seen among males. The heaviest and lightest males have 

switched from the Tuchengzi and the Jinggouzi to the Neiyangyuan and the 

Sha Ling, respectively, after the change in sample size. The absolute body 

mass of the Tuchengzi females and males demonstrate the largest disparities 

between the POD and EOD.  

As shown in the comparisons above, although an increase in sample size 

does not profoundly affect the mean values of living stature and body mass of 

each population, it does show impacts on general patterns, i.e. the tallest or 

the heaviest populations are different in the POD and EOD, implying that a 

bigger sample size may have important implications in variation in skeletal 

morphology. The previously described discriminant analyses have established 

that the sex derived from conventional observational methods and 

discriminant functions are significantly correlated, thus, the discriminant based 

sex determinations can be taken into consideration for sexing archaeological 

populations in China generally. Nevertheless, the inconsistency in the 

accuracy rates found between this research and Iscan and Ding’s (1995) 

imply that discriminant functions generated using region-specific skeletal 

materials must be employed cautiously.  

In conclusion, an increase in sample size does affect the trends and 

patterns of the biological characteristics of the Holocene Chinese; therefore, 
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all analyses in the following chapters will employ the Extended Osteological 

Dataset (EOD) unless otherwise stated. 

 

 
Table 4.7 Comparisons of the POD and EOD in mean living stature and body 

mass by sex and time period/site 

 Living stature  Body Mass 

 POD  EOD  POD  EOD 

Females n mean  n mean  n mean  n mean 

JJL 6 155.29  6 155.29  8 56.50  11 58.83 

NYY 15 157.73  16 157.88  16 56.35  19 56.19 

JGZ 7 152.77  16 153.08  7 54.33  16 54.65 

TCZ 3 156.45  18 157.23  3 53.89  17 56.43 

LMD 28 156.25  45 156.22  29 57.10  45 57.26 

SY 8 148.48  9 150.51  8 56.64  9 57.33 

SL 26 157.19  26 157.19  22 54.72  22 54.72 

            

Males            

JJL 8 171.28  8 171.28  17 69.20  17 69.20 

NYY 16 171.89  21 170.56  16 70.50  21 70.15 

JGZ 5 167.03  13 168.93  5 63.75  11 65.94 

TCZ 11 171.48  30 169.96  12 72.96  30 70.08 

LMD 32 166.90  45 167.32  33 70.10  48 68.67 

SY 9 166.98  12 167.56  9 66.85  12 66.55 

SL 41 162.33  41 162.33  42 64.61  42 64.61 
 

Abbreviations: POD, Principal Osteological Dataset; EOD, Extended 

Osteological Dataset JJL, Jiangjialiang; NYY, Neiyangyuan; JGZ, Jinggouzi; 

TCZ, Tuchengzi; LMD, Lamadong; SY, Shenyang; SL, Sha Ling; n, number of 

individuals; mean, stature in centimetre (cm), body mass in kilogram (kg); red 

font indicates the largest mean values, blue font indicates the lowest mean 

values 
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Figure 4.4 Boxplots for estimated living stature of the POD (above) and EOD (below) 

 

 
Abbreviations: POD, Principal Osteological Dataset; EOD, Extended Osteological 

Dataset
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Figure 4.5 Boxplots for estimated body mass of the POD (above) and EOD (below) 

 
Abbreviations: POD, Principal Osteological Dataset; EOD, Extended Osteological 

Dataset
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CHAPTER 5  

Variation in body size and skeletal 

metrics 

 

 

 

 

 

5.1 Aims and hypotheses 

The aims of this chapter are:  

A) to investigate the regional differences in body and limb proportions of 

northern and southern Chinese populations; 

B) to elucidate the patterns and changes in stature and body mass, which 

reflects health conditions and stresses, of the Holocene Chinese; and 

C) to explore variation in sexual dimorphism in body and skeletal size. 

 

The first aim of this chapter tests the deeply rooted assumption within 

China that “Northern people are taller and more robust”. This concept was 

mainly based upon the vast disparities in geographic environment and climatic 

conditions in China; however, no studies have yet been conducted to clarify 

the influences of environmental and climatic factors on body shape and limb 

proportions of the Holocene Chinese. According to Bergmann’s (1847) and 

Allen’s (1877) rules, populations inhabiting colder regions tend to have larger 

body mass and shorter appendages. This study utilised brachial index, crural 

index and body linearity to examine if the northern and southern Chinese 

conform to these ecogeographic expectations. It is predicted that: 

i) the northern Chinese will exhibit reduced distal relative to proximal limb 

bone length and shorter limbs relative to body mass compared with the 

southern Chinese;  
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Furthermore, this chapter compares the body proportions of the Holocene 

Chinese measured for this study with data from literature on the late 

Pleistocene humans from Mainland China, the European Neanderthals and 

the recent populations from Europe, Africa and Japan. It aims to test the 

extent to which the body proportions of the Holocene Chinese are a biological 

adjustment to the early/mid-Holocene climate and/or retention of the traits of 

their Palaeolithic ancestors. It is predicted that: 

ii) the body proportions of the Holocene Chinese to some extent will show 

retention of ancestral traits – subtropical/tropical-adapted intralimb 

proportions; as a result, they will express comparatively longer distal to 

proximal limb segment lengths than the recent populations inhabiting 

similar latitude. 

 

The second aim of this chapter is to investigate variation in stature, body 

mass and postcranial dimensions among the Holocene Chinese. The 

populations studied in this research were from different socio-political contexts 

and relied on various subsistence strategies; therefore it is expected these 

differences in environmental characteristics influenced the body and skeletal 

sizes of the studied populations. It is predicted that:  

i) there was an overall decrease in stature and body mass among the 

populations in the Neiyangyuan, Jinggouzi and Tuchengzi periods, as 

these populations experienced one of the most volatile socio-political 

periods in Chinese history. In addition, a reduction in body size will also be 

expected among the Shenyang population in the Qing Dynasty, during 

which rebellion, civil war and internal conflict prevailed. Severe poverty and 

famine were documented in this time period; as a result, the Shenyang 

population should have suffered from malnutrition and higher levels of 

infectious disease. Moreover, the exceptional increase in population size 

might have facilitated the spread of illness; 

ii) variation in male body size will be more pronounced than that of females. 

Males in general were involved in long-distance food procurement and 

traded with people from other communities at a very young age, which 

would increase the risks of accidents and the chances of being infected by 

disease. Given the hypothesis that males are more easily influenced by 
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environmental and ecological factors, it is expected that male body size will 

display greater temporal variability than females; 

iii) the lower limb size of the pastoral and agropastoral groups, in particular 

males, will be larger than those of other subsistence groups due to higher 

levels of mobility.  

 

The third aim of this chapter is to investigate the diachronic patterns and 

changes of sexual dimorphism in stature, body mass and postcranial 

dimensions among the Holocene Chinese. The causes of sexual size 

dimorphism such as genetics, mating systems and division of labour have 

been proposed to underlie the observed inter-population variation in the 

degree of differences in body size between females and males. The diverse 

economic, socio-political and ecological contexts in Holocene China offer an 

opportunity to elucidate the extent to which sexual size dimorphism among 

the Holocene Chinese are correlated with behavioural patterns and 

environmental factors. It is predicted that: 

i) the level of sexual dimorphism reduced during the socio-politically unstable 

time periods such as the Neiyangyuan, Jinggouzi, Tuchengzi and 

Shenyang. The hypotheses in the second aim projected that the stature 

and body mass of males received more negative influences due to greater 

exposure to stressors, while those of females were relatively less affected. 

As a result, a decrease in male body size will be expected to have been a 

major factor in variation in level of sexual dimorphism;  

ii) the level of sexual dimorphism in the Sha Ling modern population is lower 

than those of ancient populations due to a decrease in sexual division of 

labour; and 

iii) the pastoral and agropastoral groups will show greater magnitude of 

sexual dimorphism than other subsistence groups in lower limb sizes. The 

mobility level of the pastoral and agropastoral males is expected to be 

higher than that of their female counterparts, in which may have led to 

larger dimensions in male lower limbs. In contrast, compared with other 

subsistence populations, the industrial group will exhibit relatively low 

degree of sexual dimorphism due to a decline in gender-based division of 

labour. 
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5.2 Comparisons between North and South Chinese 

The purpose of this section is to test whether the northern and southern 

Chinese populations conform to the ecogeographic patterning and the 

assumption that northern Chinese are taller and more robust. In addition, this 

section explores if the body proportions of the Holocene Chinese reflect 

ancestral traits. It is predicted that: 

i) the northern Chinese will be characterised by reduced distal relative to 

proximal limb segment lengths, shorter limbs relative to body mass and 

greater body mass relative to stature, relative to the southern Chinese; 

ii) the body proportions of the Holocene Chinese will show retention of 

subtropical/tropical-adapted ancestral traits; therefore, they will express 

elongated distal to proximal limb segment lengths than the recent 

populations inhabit at similar latitude. 

5.2.1 Intralimb proportions 

With the exception of female brachial index, the northern Chinese 

demonstrate lower brachial and crural indices than their southern counterparts, 

indicating that the northern population have reduced distal relative to proximal 

limb segment lengths. However, the indices of both populations do not differ 

significantly (p>0.05; Table 5.1).  

Tsutakawa and Hewett (1977) nonparametric quick test was conducted in 

order to further compare the two samples (Table 5.2). With the exception of 

the TLL relative to FBL of females, the RXL relative to HXL and the TLL 

relative to FBL of both sexes from the north and the south are equally 

distributed above and below the RMA regression lines (p>0.05). Despite the 

absence of significant differences, most southern females tend to fall below 

the RMA regression line for RXL relative to HXL, while the southern males are 

more frequently found above the RMA regression line (Table 5.2; Figure 5.1). 

These results imply that the southern females tend to have reduced radial 

lengths, while the southern males express relatively elongated distal limb 

segment in the upper limbs. A similar pattern is seen among the northern 
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Chinese, in which the northern females are more often observed below the 

RMA regression line for RXL relative to HXL, whereas the northern males 

tend to fall above the RMA regression line (Table 5.2; Figure 5.1). It is worth 

noting that although differences are observed among the northern females 

and males, the individuals, regardless of the sex, of the northern and southern 

populations are evenly distributed above and below the RMA regression lines 

(p>0.05) (Table 5.2).  

The quick test for TLL relative to FBL exhibits that the northern and 

southern females are not equally distributed above and below the RMA 

regression lines (p<0.05), while significant differences are not seen between 

the two male samples (Table 5.2). The northern females and males are more 

frequently observed below the RMA regression lines, whereas the southern 

females and males are more frequently found above the regression line, 

suggesting the northern Chinese have more reduced tibiae relative to femora 

in comparison with the southern Chinese (Table 5.2; Figure 5.2). It is 

noteworthy that there is considerable overlap between the northern and 

southern males for RXL relative to HXL and TLL relative to FBL, in which 

most individuals cluster along the RMA regression lines (Figures 5.1; 5.2). 
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Table 5.1 Descriptive statistics for mean brachial index, crural index, relative femoral 

head diameter and body mass for northern and southern Chinese 

Females  
Brachial 

index 
Crural 

index 

Relative 

femoral head 

diameter 

Body 

mass 

North n 62 70 80 117 
 mean 76.07 81.06 10.43 56.76 

 SD 2.23 2.01 0.52 4.22 

South n 22 21 21 22 
 mean 75.34 82.01 9.98 54.72 

 SD 2.45 1.72 0.36 4.89 

Significance  n.s. n.s. <0.001 0.044 

      

Males      

North n 83 90 99 139 
 mean 76.43 80.77 10.86 68.86 

 SD 2.45 2.08 0.48 5.79 

South n 32 35 34 42 

 mean 76.44 81.02 10.52 64.61 

 SD 2.09 2.17 0.53 4.94 

Significance  n.s. n.s. 0.001 <0.001 

n, number of individuals; SD, standard deviation; significance is based upon 

independent t-tests with α=0.05 (comparisons between the northern and southern 

Chinese); n.s., non-significant; bold font indicates the highest values 
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Table 5.2 Tsutakawa and Hewett nonparametric quick-test analysis for seven indices 

Indices 
RMA regression 

line 

 Females  Males 

 North South  North South 

RXL vs. HXL Above line  32 6  45 19 

 Below line  36 16  43 15 

 Significance  n.s.   n.s.  

TLL vs. FBL Above line  32 16  43 22 

 Below line  42 5  52 13 

 Significance  0.012   n.s.  

FHD vs. FBL Above line  52 5  67 13 

 Below line  51 17  56 27 

 Significance  0.019   0.018  

HXL vs. BM Above line  38 15  51 23 

 Below line  39 5  52 15 

 Significance  0.047   n.s.  

RXL vs. BM Above line  30 13  37 20 

 Below line  41 7  44 16 

 Significance  n.s.   n.s.  

FBL vs. BM Above line  51 17  55 27 

 Below line  52 5  68 13 

 Significance  0.024   0.004  

TLL vs. BM Above line  36 16  38 24 

 Below line  41 2  57 11 

 Significance  0.001   0.005  

Abbreviations: HXL, maximum length of humerus; RXL, maximum length of radius; 

FBL, bicondylar length of femur; TLL, lateral length of tibia; FHD; femoral maximum 

head diameter; FEB, femoral epicondylar breadth; TPB, tibial proximal epiphyseal 

breadth; TDB, tibial distal epiphyseal breadth; BM, body mass; bold font, significance 

is based upon Fisher’s tests (two-tailed) with α=0.05; n.s., non-significant 
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Figure 5.1 Bivariate plots with RMA regression lines for log-transformed RXL relative 

to HXL for females (top) and males (bottom) 

 

 
 

 
ln, natural log; Abbreviations: RXL, maximum length of radius; HXL, maximum length 

of humerus; shaded circles, northern Chinese; open squares, southern Chinese 
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Figure 5.2 Bivariate plots with RMA regression lines for log-transformed TLL relative 

to FBL for females (top) and males (bottom)  

 

 
 

 
ln, natural log; Abbreviations: TLL, lateral length of tibia; FBL, bicondylar length of 

femur; shaded circles, northern Chinese; open squares, southern Chinese 
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5.2.2 Body linearity 

It is predicted that the higher the latitude the greater the body mass; therefore, 

the northern Chinese inhabiting colder regions are expected to show greater 

body mass than the southern Chinese living in subtropical areas. The ratio of 

femoral head diameter to femoral bicondylar length is an appropriate measure 

of body size since these variables are highly correlated with body mass and 

stature, respectively. In this regard, a higher index value in relative femoral 

head diameter indicates a larger body mass relative to stature.  

There is an increase in body mass with increasing latitude, which 

conforms to the relative femoral head diameter results (Table 5.1). The 

northern Chinese females and males have significantly greater mean values 

in relative femoral head diameter than their southern counterparts (p<0.001), 

indicating that they possess greater body mass relative to stature (Table 5.1). 

In Tsutakawa and Hewett quick tests the ratio of femoral head diameter to 

femoral bicondylar length of the northern and southern Chinese for both sexes 

are not equally distributed above and below the RMA regression lines (p<0.05; 

Table 5.2). The northern females are generally heavier for their stature than 

the southern females, with slightly more than half of the northern individuals 

tend to cluster above the RMA regression line, while the majority of the 

southern individuals fall below the RMA regression line (Table 5.2; Figure 5.3). 

Similarly, more northern males fall above the RMA regression line, whereas 

the southern males are more frequently distributed below the RMA regression 

line (Table 5.2; Figure 5.3). It is worth noting that although the majority of 

northern males are frequently found above the RMA regression line, some are 

observed to cluster along the RMA regression line. Furthermore, there is 

considerable overlap between the northern and southern males (Figure 5.3).  

The southern females and males are predominantly located above the 

RMA regression lines in all limb lengths relative to body mass, while the 

northern population are frequently found positioned below the RMA 

regression lines (Figures 5.4-5.7), indicating that the small-bodied southern 

population tend to have longer limbs for their body mass, while the large-

bodied northern population tend to have shorter limbs. The results in 

Tsutakawa and Hewett quick tests reveal inequalities of distribution between 
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the northern and southern Chinese in all limb lengths to body mass with the 

exception of the HXL vs. BM for males and the RXL vs. BM for both sexes 

(p<0.05; Table 5.2). 
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Figure 5.3 Bivariate plots with RMA regression lines for log-transformed FBL relative 

to FHD for females (top) and males (bottom) 

 
 

 
ln, natural log; Abbreviations: FHD, femoral head diameter; FBL, bicondylar length of 

femur; shaded circles, northern Chinese; open squares, southern Chinese 
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Figure 5.4 Bivariate plots with RMA regression lines for log-transformed upper limb 

lengths relative to body mass for females 

 

 

 
ln, natural log; Abbreviations: RXL, maximum length of radius; HXL, maximum length 

of humerus; shaded circles, northern Chinese; open squares, southern Chinese 
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Figure 5.5 Bivariate plots with RMA regression lines for log-transformed lower limb 

lengths relative to body mass for females 

 

 

 
ln, natural log; Abbreviations: TLL, lateral length of tibia; FBL, bicondylar length of 

femur; shaded circles, northern Chinese; open squares, southern Chinese 
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Figure 5.6 Bivariate plots with RMA regression lines for log-transformed upper limb 

lengths relative to body mass for males 

 

 
 

 
ln, natural log; Abbreviations: RXL, maximum length of radius; HXL, maximum length 

of humerus; shaded circles, northern Chinese; open squares, southern Chinese 
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Figure 5.7 Bivariate plots with RMA regression lines for log-transformed lower limb 

lengths relative to body mass for males 

 

 

 
ln, natural log; Abbreviations: TLL, lateral length of tibia; FBL, bicondylar length of 

femur; shaded circles, northern Chinese; open squares, southern Chinese 
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5.2.3 Comparative study: the Holocene Chinese and other geographical 

populations 

This section compares the Holocene Chinese to other past and recent 

populations from different geographical areas to elucidate the extent to which 

the body proportions of the Holocene Chinese are a biological adjustment to 

the early/mid-Holocene climate and/or retention of the traits of their 

Palaeolithic ancestors who migrated to northern East Asia via the Southern 

Route. Some of these comparative samples inhabited similar latitude as the 

Holocene Chinese did, while some came from completely different climatic 

zones18. The samples used for comparative study include the late Pleistocene 

fossil remains discovered on Mainland China (the Liujiang Man and the 

Tianyuan 1), populations living at similar latitudes (the recent South 

Europeans and recent Japanese) and populations living in extreme climatic 

conditions (the recent Africans and Neanderthals).  

The mean brachial indices of the northern and southern Chinese females 

are distinctly different from those of the recent Africans and Neanderthals who 

inhabited extreme environments, while they show the closest mean values 

with the late Pleistocene Tianyuan 1 (Table 5.3). Nevertheless, in comparison 

with other populations from similar latitudes such as the recent South 

Europeans and the recent Japanese, the northern Chinese females show 

longer radii relative to humeri. In contrast, the disparities between the 

Holocene Chinese males and other comparative samples, in particular the 

recent Japanese and the recent Europeans, are not as marked as those 

found among females (Table 5.3). The mean brachial indices of the northern 

and southern Chinese males lie close to those of the recent Japanese and the 

late Pleistocene Tianyuan 1. In addition, the differences between the Chinese 

males, irrespective of north and south, and the recent Europeans are minimal. 

Similar to their female counterparts, the Chinese males differ in mean brachial 

indices from the recent Africans and Neanderthals.  

                                            
18  The original literature did not provide information regarding the altitudes of these 

geographical regions; therefore this study excluded the potential influences of altitude on limb 

and body proportions of the comparative samples used. 
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The mean crural indices of all Chinese females (Table 5.3), in particular 

those from the south, are similar to that of the recent North Europeans, while 

all Chinese females demonstrate the most distinct difference from the recent 

Africans. It is noteworthy that the southern Chinese females, who inhabited a 

warmer region, have shorter tibiae relative to femora than the recent North 

and South Europeans. In addition, unlike the brachial index, the Tianyuan 1 

has higher crural index than the Chinese females. Among males, the crural 

indices of the northern and southern Chinese show the closest resemblance 

to that of the recent North Europeans, while they differ from the recent 

Africans. Similar to their female counterparts, all Chinese males have shorter 

tibiae relative to femora than the recent North and South Europeans and the 

late Pleistocene Tianyuan 1.  

The femoral head diameter is a variable highly positively correlated to 

adult body mass, representing the mass component of size. It is observed that 

the femoral head diameters of the northern Chinese females are relatively 

large (Table 5.3). The northern Chinese females show little differences from 

the recent Japanese, whereas the southern Chinese females are more similar 

to the recent North Europeans than to other groups that inhabited similar 

latitude. It is unsurprising to find that the northern and southern Chinese 

females differ the most from the European Neanderthals. Compared with the 

late Pleistocene Tianyuan 1, the relative femoral head diameters of the 

northern and southern Chinese females appear to be relative small. Among 

males (Table 5.3), the mean values of relative femoral head diameter for the 

Holocene Chinese are large. Similar to their female counterparts, the northern 

and southern Chinese males show minimal differences from the recent 

Japanese and the recent North Europeans, while the Holocene Chinese 

males are distinct from the recent East Africans and the European 

Neanderthals. In comparison to Tianyuan 1 and the Liujiang Man, while the 

former has a larger relative femoral head diameter than the Holocene Chinese 

males, the latter demonstrates a relatively smaller head diameter.  
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5.2.4 Summary 

Hypothesis one: Compared with South Chinese, North Chinese will show 

reduced distal relative to proximal limb segment lengths, shorter limbs relative 

to body mass and larger body mass relative to stature. 

Results: The findings in this section lend support to this hypothesis. However, 

the two Chinese samples do not differ significantly in most intralimb indices in 

Tsutakawa and Hewett quick tests. In addition, the northern Chinese, 

particularly females, do not show distinguishable patterns in most of the ratios 

in limb lengths relative to body mass, i.e. the number of individuals that fall 

above and below the RMA regression lines is comparable. 

 

Hypothesis two: The body proportions of the Holocene Chinese to some 

extent will show retention of ancestral traits – subtropical/tropical-adapted 

intralimb proportions; therefore they will express comparatively longer distal to 

proximal limb segment lengths than the recent populations inhabit at similar 

latitude. 

Results: The findings in this section demonstrate mixed patterns. The 

northern Chinese display higher brachial indices than the recent Japanese 

and South European females who lived at similar latitude. In comparison with 

males of these two populations, the brachial indices of the northern Chinese 

are slightly lower than those of the recent Japanese but are higher than the 

recent South Europeans. In contrast, all Holocene Chinese populations exhibit 

lower crural indices than the recent North and South Europeans. The late 

Pleistocene Tianyuan 1 hominin fossil discovered in Beijing, Northeast China, 

shows similar brachial index to the Holocene Chinese, while it has a 

comparatively higher mean crural index. It is noteworthy that the Tianyuan 1 

exhibits relatively large body mass relative to stature, which is closer to those 

of the European Neanderthals than other populations in the comparative 

studies.  
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5.3 Diachronic patterns and changes in postcranial metrics19 

This section investigates the temporal trends and changes in postcranial 

dimensions, stature and body mass among the Holocene Chinese. 

Additionally, since long bone lengths and maximum head diameter of femora 

are highly correlated with stature and body mass, respectively, it is believed 

that environmental factors affected these variables equally. It is predicted that: 

i) populations from socio-politically unstable periods (the Neiyangyuan, 

Jinggouzi, Tuchengzi and Shenyang) will show a general reduction in 

stature and body mass; and 

ii) males will show greater variation in body size than females due to higher 

levels of environmental stress exposure. 

 

Pearson’s correlation coefficient was carried out in order to test if it is 

appropriate to combine the right and left elements in subsequent analyses. 

Since this comparison does not involve site or sex variation, all individuals 

from seven populations were pooled. The right and left sides of all osteometric 

measurements are significantly correlated (r=0.941-0.991, p<0.001). The 

correlation results are presented in Table A5.1 in Appendix B. Thus, it was 

considered appropriate to replace the right measurement with the left 

whenever necessary.  

5.3.1 Stature and long bone lengths 

Stature 

Female stature shows considerable variation between the Jiangjialiang and 

Tuchengzi periods, and then decreases in later periods (Figure 5.8; Table 5.4). 

                                            
19 The Sha Ling population from the southern China was excluded in this section because it is 

evident that the northern and southern Chinese show differences in limb proportion and body 

linearity. Consequently, it is not appropriate to investigate both populations temporally. The 

comparisons between the northern and southern Chinese in section 5.1 in this thesis lend 

further support to this statement. 
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A one-way ANOVA shows that the stature of the six female groups differs 

significantly (p=0.003; Table 5.4). The Neiyangyuan, Tuchengzi and 

Lamadong females demonstrate significantly higher stature than the 

Shenyang females (post hoc tests; adjusted p=0.008-0.031; all pairwise 

comparisons are listed in Table A5.2 in Appendix B). Among the six 

populations, the Neiyangyuan females have the greatest mean stature, while 

that of the Shenyang females is the lowest (Figure 5.8; Table 5.4). Among 

males, stature shows a gradual yet minor reduction through time (Figure 5.8; 

Table 5.5). With the exception of the Lamadong period (1.56%), the variation 

in male stature is less than 1% between time periods. The six male 

subsamples demonstrate significant differences in stature (one-way ANOVA; 

p=0.025). However, in post hoc pairwise comparisons, significant differences 

are not observed between any two male groups (adjusted p>0.05). The 

Jiangjialiang males amongst the six populations were the tallest, whereas the 

Lamadong males were the shortest (Figure 5.8; Table 5.5).  
 

 

Figure 5.8 Boxplot for estimated stature (cm) by sex and time period/site 
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The Holocene Chinese females and males demonstrate different temporal 

patterns in stature (Figure 5.8). The female stature shows an increase 

between the Jiangjialiang and Neiyangyuan periods, followed by a fall, while 

the male stature displays a gradual decrease during the same time span. 

Another difference between the sexes is seen between the Lamadong and 

Shenyang periods. Whereas the female stature shows a significant reduction, 

the male stature exhibits a slight increase. In addition, females demonstrate 

greater variation than males in stature (Figure 5.8).  

Long bone lengths 

Although stature is highly correlated with long bone lengths, exploring the 

trends in different long bones can provide insights into whether they respond 

similarly to childhood environmental conditions. The Chinese females show a 

downward trend in the mean lengths of all upper limbs between the 

Jiangjialiang and Jinggouzi periods and between the Tuchengzi and 

Shenyang periods, while the lower limb lengths demonstrate considerable 

variation over time (Figures 5.9-5.14; Table 5.4). The six female groups do not 

differ significantly in the lengths of all upper and lower limbs except for the 

femora (one-way ANOVA; p=0.002; Table 5.4). As similar to the pattern in 

stature, the Neiyangyuan, Tuchengzi and Lamadong females have 

significantly longer femora than the Shenyang females (post hoc tests; 

adjusted p=0.005-0.023; all pairwise comparisons are listed in Table A5.2 in 

Appendix B). Among the six female groups, the Neiyangyuan females have 

the longest humeri, femora, tibiae and fibulae, and the longest radii and ulnae 

are seen among the Jiangjialiang females (Figures 5.9-5.14; Table 5.4). 

Conversely, the Shenyang females exhibit the shortest humeri, radii, ulnae 

and femora, and the Jinggouzi and Lamadong females show the shortest 

tibiae and fibulae, respectively. 
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Figure 5.9 Boxplot for maximum length of humerus (HXL) by sex and time period/site 

 
 
Figure 5.10 Boxplot for maximum length of radius (RXL) by sex and time period/site 
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Figure 5.11 Boxplot for maximum length of ulna (UXL) by sex and time period/site 

 
 

Figure 5.12 Boxplot for maximum length of femur (FXL) by sex and time period/site 
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Figure 5.13 Boxplot for lateral length of tibia (TLL) by sex and time period/site 

 
 

Figure 5.14 Boxplot for maximum length of fibula (FiXL) by sex and time period/site 
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Among males, the temporal trends of the upper limb lengths are similar to 

those of females, in which males show a reduction in upper limb lengths 

between the Jiangjialiang and Jinggouzi periods and between the Tuchengzi 

and Shenyang periods (Figures 5.9-5.11; Table 5.5). For lower limb lengths, 

the male groups, in general, exhibit a reduction over time (Figures 5.12-5.14; 

Table 5.5). It is noteworthy that male groups demonstrate a decline in mean 

maximum length of fibulae (FiXL) between the Jinggouzi and Tuchengzi 

periods, while both sexes show an increase in other upper and lower limb 

bone lengths during the same time frame (Figure 5.14). All long bones except 

for the humeri of the Jiangjialiang males are the longest, while the longest 

humeri are observed among the Tuchengzi males (Figures 5.9-5.11; Table 

5.5). Similar to their female counterparts, the Shenyang males have the 

shortest upper limb bones, whereas the shortest femora and tibiae are found 

among the Lamadong males, and the shortest fibulae are among the 

Tuchengzi males. The six male groups differ significantly in the lengths of the 

humeri, radii, femora and tibiae (one-way ANOVA; p=0.002-0.05; Table 5.5). 

Post hoc pairwise comparisons illustrate that significant differences are not 

observed between any two male groups in the humeri and femora (adjusted 

p>0.05; all pairwise comparisons are listed in Table A5.2 in Appendix B), 

while the Jiangjialiang males have significantly longer radii and tibiae than the 

Lamadong males (adjusted p=0.005-0.047) and longer radii than the 

Shenyang males (adjusted p=0.006). 

The findings above show that females and males exhibit similar diachronic 

patterns in all upper limb lengths (Figures 5.9-5.11). While female groups 

demonstrate considerable variation in lower limb lengths over time, males 

generally exhibit a reduction (Figures 5.12-5.14). It is noteworthy that as the 

tallest populations, the Neiyangyuan females and Jiangjialiang males do not 

demonstrate the largest measurements in all long bones, in particular in the 

upper limbs. The results imply that the sensitivity of upper and lower limb long 

bones to environmental conditions may be varied. Collectively, the temporal 

trend of female stature is similar to those of humeri and femora. For males, 

although minor differences are observed, overall, the temporal trends of all 

bone lengths and stature are homogenous. 
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5.3.2 Body mass and femoral head diameter 

The Holocene females first show a reduction in mean body mass between the 

Jiangjialiang and Jinggouzi periods, and then an increase in later periods 

(Table 5.6; Figure 5.15). Among the six female groups, the Jiangjialiang 

females have the greatest body mass, whereas the Jinggouzi females appear 

to be the lightest groups (Table 5.6; Figure 5.15). With the exception of the 

Jinggouzi period, the mean body mass of Chinese males is relatively constant 

between the Jiangjialiang and Tuchengzi periods, and then it shows a gradual 

decline after that (Figure 5.15). The Neiyangyuan males amongst the six 

populations have the largest body mass, while the Jinggouzi males show the 

smallest mean value (Table 5.7; Figure 5.15). Although significant differences 

are not found between the six female groups or between the six male groups 

(one-way ANOVA; p>0.05), it appears that males show greater variation than 

females in body mass between the Neiyangyuan and Tuchengzi periods and 

between the Lamadong and Shenyang periods (Table 5.7; Figure 5.15). 

However, larger variation is found among females than males between the 

Jiangjialiang and Neiyangyuan periods. 

 Females and males exhibit different temporal patterns in body mass, in 

particular between the Tuchengzi and Shenyang periods (Figure 5.15). 

Whereas female body mass demonstrates a steady increase, the male body 

mass shows a decrease gradually during the same time frame. An opposite 

discrepancy is also observed between the Jiangjialiang and Neiyangyuan 

periods.  

The diachronic patterns of femoral head diameter for both sexes (Figure 

5.16), as expected, is similar to those of body mass (Figure 5.15). Among the 

six populations, the Jiangjialiang females and the Neiyangyuan males show 

the largest femoral head diameter, whereas the smallest measurements are 

seen among the Jinggouzi females and males (Table 5.6; 5.7; Figure 5.15). 

Significant differences between samples are not observed in either sex (one-

way ANOVA, p>0.05).  
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Figure 5.15 Boxplots for estimated body mass (kg) by sex and time period/site 

 
 

Figure 5.16 Boxplot for femoral head diameter (FHD) by sex and time period/site
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5.3.3 Epiphyseal dimensions 

Except the mean distal epiphyseal breadth of tibia (TDB) of males, significant 

differences are not observed in all epiphyseal dimensions between 

populations in both sexes (one-way ANOVA, p>0.05; Tables 5.5; 5.6). 

However, post hoc pairwise comparisons show that the Neiyangyuan males 

show significantly higher mean TDB than Shenyang males (adjusted p=0.005; 

all pairwise comparisons are listed in Table A5.3 in Appendix B). Both sexes 

in the Neiyangyuan population tend to show larger mean measurements than 

other populations in epiphyseal dimensions (Figures 5.17-5.21; Table 5.6; 5.7). 

The Neiyangyuan females have the largest humeral epicondylar breadth 

(HEB), femoral epicondylar breadth (FEB) and proximal epiphyseal breadth of 

tibia (TPB), while they have the smallest mean humeral head diameter (HHD). 

The Neiyangyuan males amongst the six male groups have the largest 

measurements in all epiphyseal dimensions except the HHD. It is noteworthy 

that the Jiangjialiang females and males show the lowest mean FEB, while 

both sexes in the Shenyang population exhibit the smallest measurements in 

HEB and TDB (Table 5.6; 5.7). In general, the six Chinese female and male 

groups demonstrate different temporal trends in HHD, HEB and TDB, in which 

discrepancies are frequently found between the Jinggouzi and Lamadong 

periods (Figures 5.17; 5.18; 5.21; Table 5.6; 5.7). 
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Figure 5.17 Boxplot for humeral head diameter (HHD) by sex and time period/site 

 
 

Figure 5.18 Boxplot for humeral epicondylar breadth (HEB) by sex and time 

period/site 
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Figure 5.19 Boxplot for femoral epicondylar breadth (FEB) by sex and time 

period/site 

 
 

Figure 5.20 Boxplot for proximal epiphyseal breadth of tibia (TPB) by sex and time 

period/site 

  

132



  

Figure 5.21 Boxplot for distal epiphyseal breadth of tibia (TDB) by sex and time 

period/site 

 

5.3.4 Summary 

Hypothesis one: It is predicted that due to poverty, famine and disease there 

was an overall decrease in stature and body mass among the Chinese 

populations in the Neiyangyuan, Jinggouzi, Tuchengzi and Shenyang periods.  

Results: The results for stature and body mass partially support the 

hypothesis. A reduction in male living stature and female body mass is found 

in the Neiyangyuan period. However, the Neiyangyuan females and males 

amongst the six populations have the largest stature and body mass, 

respectively. While the Jinggouzi females and males experienced a decline in 

body size, during the Tuchengzi period, both sexes not only show an increase 

in these variables, but the stature of the Tuchengzi females and the body 

mass of the Tuchengzi males are relatively large. In the Shenyang period, the 

negative impacts of the unstable socio-political development only affected 
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female living stature and male body mass. Nevertheless, although the stature 

of Shenyang males exhibits a slight increase, in general, they were relatively 

short among the six male groups. 

 

Hypothesis two: Variation in male stature and body mass will be more 

pronounced than that of females in Holocene China because males are more 

subject to environmental and ecological factors than females. 

Results: The results for stature show that the six female groups exhibit 

significantly greater variation than males over time. The stature of the 

Neiyangyuan, Tuchengzi and Lamadong females differ significantly from that 

of the Shenyang females. In contrast, changes in male stature between time 

periods are minimal in the range of 0.15-1.56%. The results for body mass, 

however, show an opposite pattern. The six male groups although do not 

differ significantly in body mass, they show larger variation than females 

between time periods, in particular from the Neiyangyuan to Shenyang 

periods. The discrepancies between the temporal trends in stature and body 

mass in both sexes may imply that body mass appears to continue to be 

influenced by environmental variables after puberty. Conversely, living stature 

is more susceptible to childhood stresses such as access to nutrition and 

infectious or chronic diseases. It appears that once individuals achieve their 

genetic maximum height, environmental factors which they experienced after 

physical maturity less likely negatively affect growth of stature. 
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5.4 Diachronic patterns and changes in sexual dimorphism  

This section evaluates sexual dimorphism in stature, body mass and 

postcranial dimensions among the Holocene Chinese. It is predicted that: 

i) degree of sexual dimorphism decreased during the unstable socio-political 

time periods (the Neiyangyuan, Jinggouzi, Tuchengzi and Shenyang). 

Based upon the findings in previous section, changes in males will be 

expected to have been attributable to variation in sexual dimorphism, in 

particular in stature and body mass; and 

ii) the modern Sha Ling population will show lower levels of sexual 

dimorphism than ancient populations in overall body size and postcranial 

dimensions. 

5.4.1 Stature and long bone lengths 

Stature 

The early periods show greater variation in level of sexual dimorphism in 

stature than the late periods (Table 5.8). The SDI values although 

demonstrate variation between the Jiangjialiang and Tuchengzi periods, the 

differences between time periods are not marked, with variation of less than 

2%. Major changes in level of sexual dimorphism occur between the 

Lamadong and Sha Ling periods. The SDI values show increases from 6.63% 

to 10.18% between the Lamadong and Shenyang periods and then decreases 

to 3.16% in the Sha Ling period. The Shenyang females and males exhibit the 

greatest sexual dimorphism in stature, with males being 10.18% taller than 

females. In contrast, the Sha Ling males are only 3.16% taller than females. 

Variation in sexual dimorphism is attributable to the pronounced temporal 

changes in female stature (Figure 5.8; Table 5.4).  

 

 
 

 

135



  

Table 5.8 Mean percent dimorphism for stature and bone lengths for seven populations 

 
JJL NYY JGZ TCZ LMD SY SL 

Stature 9.34  7.44  9.38  7.49  6.63  10.18  3.16  

HXL 7.53  7.21  7.42  8.57  7.81  9.49  6.69  

RXL 10.38  9.01  8.23  9.22  7.51  8.95  8.25  

UXL 8.66  9.00  7.89  7.82  7.97  8.15  7.46  

FXL 11.39  8.72  11.30  8.60  7.37  12.48  7.24  

TLL 11.86  9.34  10.60  8.46  6.28  7.99  6.96  

FiXL 8.78  6.59  8.67  4.57  7.76  9.09  5.83  

Abbreviations: HXL, maximum length of humerus; RXL, maximum length of radius; 

UXL, maximum length of ulna; FXL, maximum length of femur; TLL, lateral length of 

tibia; FiXL; maximum length of fibula; JJL, Jiangjialiang; NYY, Neiyangyuan; JGZ, 

Jinggouzi; TCZ, Tuchengzi; LMD, Lamadong; SY, Shenyang; SL, Sha Ling; red font 

indicates the highest values, blue font indicates the lowest values 

Long bone lengths 

 The seven Holocene Chinese populations show fairly consistent degree of 

sexual dimorphism in HXL (Table 5.8) between the Jiangjialiang and 

Lamadong periods, ranging from 7.21% to 8.57%, but the mean percent 

dimorphism shows marked increases from 7.81% in the Lamadong period to 

9.49% in the Shenyang period. Increases in level of sexual dimorphism can 

be attributed to a larger reduction in Shenyang female HXL. However, the Sha 

Ling population exhibits a relatively large reduction to 6.69%, which is again 

associated with considerable increases in female HXL. The seven populations 

show minimal variation in sexual dimorphism in UXL through time (Table 5.8). 

Except from the Neiyangyuan to Jinggouzi periods, the differences in mean 

percent dimorphism between time periods are less than 1%. Neiyangyuan 

population has the greatest percent dimorphism in UXL (9.00%), while the 

Sha Ling population shows the least sexually dimorphic UXL (7.46%). The 

consistency in level of sexual dimorphism in UXL in Holocene China is 

because females and males show similar amount of change in UXL in each 

time period. It appears that the Chinese populations in the early periods 

demonstrate greater variation in sexual dimorphism in RXL than those of the 
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later periods (Table 5.8). The Chinese populations show a reduction in mean 

percent dimorphism of 1.72% between the Tuchengzi and Lamadong periods 

and later the Shenyang population exhibit an increase by 1.44%.  In addition, 

changes in mean percent dimorphism between the Jiangjialiang and 

Neiyangyuan periods are noticeable, with values show a reduction from 

10.38% to 9.01%. It is found that the variation between these periods is 

mainly due to pronounced changes in male RXL.  

The Holocene Chinese populations in the early and middle periods exhibit 

a consistent temporal pattern in the degree of sexual dimorphism in FXL, 

ranging from 2.6% to 2.7% (Table 5.8). However, the populations show 

relatively marked increases in mean percent dimorphism between the 

Lamadong and Shenyang periods (from 7.37% to 12.48%), but later a 

reduction occurred between the Shenyang and Sha Ling periods (from 

12.48% to 7.23%) (Table 5.8). Relatively large variation in female FXL in the 

later time periods is the major factor explaining the fluctuations in the level of 

sexual dimorphism in FXL. In general, the Chinese populations show a 

gradual decrease in the magnitude of sexual dimorphism in TLL (Table 5.8). 

Nevertheless, two slight increases are observed. The increase between the 

Neiyangyuan and Jinggouzi periods is primarily due to a greater reduction in 

female TLL, while the increase between the Lamadong and Shenyang periods 

is attributable to opposite changes in male TLL and female TLL. The level of 

sexual dimorphism in FiXL among the Chinese populations in middle and late 

periods demonstrate greater variation than that in the early periods (Table 

5.8). The Tuchengzi population shows the lowest percent dimorphism but it 

may be due to a small sample size (♂=1, ♀ =2). Another marked reduction is 

seen between the Shenyang and Sha Ling periods (from 9.09 to 5.83%), in 

which is due to a marked increase in female FiXL.  

The Shenyang population shows the largest sexual dimorphism in HXL, 

FXL and FiXL, the Jiangjialiang population has the largest SDI in RXL and 

TLL and the Neiyangyuan population is in UXL (Table 5.8). In contrast, the 

Sha Ling population has the smallest level of sexual dimorphism in HXL, UXL, 

FXL and FiXL and the Lamadong population is the lowest in RXL and TLL. 

The findings above show that variation in sexual dimorphism of bone lengths 
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is more marked in the lower limbs than in the upper limbs. The changes in 

sexual dimorphism between the Lamadong and Shenyang periods (HXL, RXL 

and FXL) and between the Shenyang and Sha Ling periods (HXL, FXL and 

FiXL) appear to be greater than those in other time periods. On the whole, 

marked changes in female HXL, FXL, TLL and FiXL contributed to the 

variability of sexual dimorphism in these measurements in Holocene China, 

while changes in male measurements account for the temporal variation in 

sexual dimorphism in RXL.  

It is noteworthy that there is a marked difference between the degree of 

sexual dimorphism in stature (SDI=3.16%) and FXL (SDI= 7.24%) among the 

Sha Ling population (Table 5.8). The stature of the Sha Ling males was 

estimated using regression equations which are claimed to be the most 

suitable for the southern Chinese males. However, stature estimated using 

these regression equations is far shorter than those of the northeastern 

populations, which led to differences between the sexual dimorphism in 

stature and FXL among the Sha Ling population. 

5.4.2 Body mass and femoral head diameter 

Variation in the level of sexual dimorphism in body mass is minimal between 

the Neiyangyuan and Shenyang periods, in the range of 2.36-2.85% (Table 

5.9). The largest temporal change in mean percent dimorphism is observed 

between the Jiangjialiang and Neiyangyuan, (from 14.98% to 19.90%), 

whereas there is a slight increase between the Shenyang and Sha Ling 

periods (from 13.85% to 15.31%) (Table 5.9). The different patterns observed 

in the early and late periods are both due to larger changes in female body 

mass, while variation between the Neiyangyuan and Shenyang periods is 

primarily because of greater changes in male body mass. The sample from 

the Neiyangyuan period shows the greatest level of sexual dimorphism in 

body mass, where males are 24.84% heavier than females. In contrast, the 

Shenyang population is the least sexually dimorphic, with male body mass 

just 13.85% larger than that of females. The temporal pattern and changes of 

the degree of sexual dimorphism in femoral head diameter (FHD) is similar to 
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those of body mass but the values of SDI in FHD are smaller in each time 

period (Table 5.9).  

 

 
Table 5.9 Mean percent dimorphism for body mass and epiphyseal dimensions for 

seven populations 

 
JJL NYY JGZ TCZ LMD SY SL 

BM 14.98  19.90  17.12  19.47  16.62  13.85  15.31  

FHD 11.06  14.27  12.41  13.99  12.12  10.33  11.25  

HHD 9.27  14.62  13.31  14.40  12.04  14.27  11.49  

HEB 13.07  12.23  11.58  13.99  13.10  12.60  9.05  

FEB 13.21  12.95  11.53  13.28  11.45  13.12  11.51  

TPB 11.66  12.14  10.36  13.26  10.42  12.30    9.16  

TDB 9.88  13.57  11.14  14.88  11.43  12.86  10.30  

Abbreviations: BM, body mass; FHD, femoral head diameter; HHD, humeral head 

diameter; HEB, humeral epicondylar breadth; FEB, femoral epicondylar breadth; 

TPB, proximal epiphyseal breadth of tibia; TDB, distal epiphyseal breadth of tibia; 

JJL, Jiangjialiang; NYY, Neiyangyuan; JGZ, Jinggouzi; TCZ, Tuchengzi; LMD, 

Lamadong; SY, Shenyang; SL, Sha Ling; red font indicates highest values, blue font 

indicates lowest values 

5.4.3 Epiphyseal dimensions 

There is a marked increase in the level of sexual dimorphism in HHD between 

the Jiangjialiang and Neiyangyuan periods (from 9.27% to 14.62%), while a 

relatively pronounced reduction is found between the Shenyang and Sha Ling 

(from 14.27% to 11.49%) (Table 5.9). The changes between these time 

periods are due to opposite changes in HHD among females and among 

males. In general, the temporal variation in sexual dimorphism in HEB (Table 

5.9) is minimal except between the Jinggouzi and Tuchengzi periods (from 

11.58% to 13.99%) and between the Shenyang and Sha Ling period (from 

12.60% to 9.05%). These pronounced changes in the degree of sexual 

dimorphism in HEB is mainly due to a different trend in skeletal size between 

females and males.  
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The Chinese population shows a relatively consistent variation in the 

magnitude of sexual dimorphism in FEB in the Holocene (Table 5.9). The 

differences in percent dimorphism between time periods range from 1.42% to 

1.83%. For TPB (Table 5.9), greater variation in level of sexual dimorphism is 

observed in the middle and late periods than the early periods. The temporal 

change between the Shenyang and Sha Ling periods is the greatest, with a 

reduction of 3.14% (from 12.30% to 9.16%). A larger change in male TPB 

accounts for the pronounced variation during these periods. Relatively marked 

diachronic variation in sexual dimorphism in TDB occurs between the 

Jiangjialiang and Neiyangyuan periods and between the Jinggouzi and 

Lamadong periods (Table 5.9). The percent dimorphism shows a difference of 

3.45-3.74% during these periods. It appears that a greater change in male 

TDB is the major factor for the large variation from the Jiangjialiang to 

Neiyangyuan periods, whereas different trends in female and male TDB 

explains the patterns seen between the Jinggouzi and Lamadong periods. 

The Holocene Chinese population demonstrates relatively large 

differences between some time periods in level of sexual dimorphism in 

epiphyseal dimensions. For instance, the temporal changes in HHD and TDB 

are great between the Jiangjialiang and Neiyangyuan periods (Table 5.9). A 

similar pattern is seen between the Shenyang and Sha Ling periods, during 

which the diachronic variation in HEB and TPB is the greatest (Table 5.9). 

The different trends in female and male skeletal size appear to be attributable 

to the great variation in HHD, HEB and TDB in Holocene China and changes 

in male measurements are mainly correlated with the large temporal 

differences in the epiphyseal dimensions of tibiae. 

In comparison with long bone lengths, the dimensions and the magnitude 

of sexual dimorphism in all epiphyses show minimal variation in Holocene 

China (Table 5.9). Among all sample groups, the Tuchengzi sample shows 

the greatest level of sexual dimorphism in all epiphyseal measurements 

except HHD. 
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5.4.4 Summary 

Hypothesis one: A reduction in the level of sexual dimorphism in stature and 

body mass occurred during the socio-politically unstable time periods such as 

the Neiyangyuan, Jinggouzi, Tuchengzi and Shenyang due to a decline in 

male body size.  

Results: The findings above show a mixed picture. While the Neiyangyuan 

and Tuchengzi populations experienced a decrease in the level of sexual 

dimorphism in stature, the Jinggouzi and Shenyang populations demonstrate 

opposite patterns. In addition, the stature of the Shenyang population is the 

most sexually dimorphic. Although the stature shows a minor decline between 

the Neiyangyuan and Jinggouzi periods, it appears that larger changes in 

female stature have attributed to the variation during these time periods. 

Conversely, the Tuchengzi and Shenyang males have a slight increase in 

stature, but again the changes among females are the major factor explaining 

the variation. For body mass, the Neiyangyuan and Tuchengzi populations 

show an increase in level of sexual dimorphism, whereas the Jinggouzi and 

Shenyang populations have a reduction. The Shenyang population has the 

least sexually dimorphic body mass among the six populations. In general, 

except for the Neiyangyuan period, the temporal changes during the socio-

politically unstable time periods are mainly due to greater variation in male 

body mass. However, a reduction in male body mass only occurs in the 

Jinggouzi and Shenyang periods. 

 

Hypothesis two: The modern Sha Ling population will show lower levels of 

sexual dimorphism than ancient populations due to a decline in sexual 

division of labour. 

Results: The modern Sha Ling population amongst the six populations show 

the lowest level of sexual dimorphism in stature, maximum length of humerus, 

maximum length of ulna, maximum length of femur, epicondylar breadth of 

humerus and proximal epiphyseal breadth of tibia. For body mass and other 

postcranial dimensions, the Sha Ling population have relatively low percent 

dimorphism compared with others. 
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5.5 Comparison of variation within subsistence/cultural 

categories 

In order to provide more detailed insights into the impact of subsistence 

strategy on human skeletal morphology, this section compares the postcranial 

dimensions, stature, body mass and sexual dimorphism of these variables 

between four subsistence groups (agricultural, pastoral, agropastoral and 

industrial). The seven populations studied here were assigned to one of the 

four groups based on the socioeconomic type listed in Table 4.1. On this 

basis, the Jiangjialiang, Tuchengzi and Shenyang populations were classified 

as an agricultural group, the Neiyangyuan and Jinggouzi populations as a 

pastoral group, the Lamadong population as an agropastoral group, and the 

Sha Ling population as an industrial group. The agricultural, pastoral and 

agropastoral groups consist of ancient populations from the northeastern 

China, whereas the industrial group was southern Chinese. It is predicted that: 

i) the lower limb size of the pastoral and agropastoral groups, particularly 

males, will be larger than those of other subsistence groups due to higher 

levels of mobility; and 

ii) pastoral and agropastoral groups will show greater level of sexual 

dimorphism in lower limb size because males of these subsistence groups 

will be expected to have higher mobility levels than their female 

counterparts. Conversely, the industrial group will exhibit relatively low 

degrees of sexual dimorphism due to a decline in gender-based division of 

labour. 
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5.5.1 General analysis in body size and postcranial dimensions 

Stature and long bone lengths 

A one-way ANOVA shows that the four female subsistence groups differ 

significantly in maximum length of fibulae (FiXL) (p=0.047; Table 5.10), in 

which a significant difference is found between the industralised and 

agropastoral females (adjusted p=0.039; Table 5.11). Among the four female 

subsistence groups, the industrial females have the largest mean stature as 

well as largest mean lengths of the humeri, femora, tibiae and fibulae (Table 

5.10). In contrast, the female agriculturalists exhibit the smallest value in 

stature, but compared with other female groups they have moderate lengths 

in all bones except the femora. The pastoral females are just slightly taller 

than the agricultural females; however, their radii and ulnae are the longest 

among four groups. Conversely, although the agropastoral females are the 

second tallest subsistence group, they show the shortest lengths in the 

humeri and fibulae (Table 5.10).  

The four male subsistence groups differ significantly in stature (one-way 

ANOVA; p<0.001), maximum length of femur (FXL) (p=0.021) and lateral 

length of tibia (TLL) (p=0.02; Table 5.12). The stature of the agricultural, 

pastoral and agropastoral males are significantly greater than that of the 

industrial males (adjusted p<0.001; Table 5.11). In addition, the tibiae of the 

male agriculturalists are significantly longer than those of the male 

agropastoralists (adjusted p=0.029). Among males, the pastoralists have the 

largest stature and longest ulnae and femora (Table 5.12). As the second 

tallest male subsistence group, the agriculturalists show the largest mean 

humeral, radial and tibial lengths. In contrast, the industrial population has the 

shortest living stature and the male agropastoralists exhibit the lowest radial, 

femoral, tibial and fibular lengths (Table 5.12).  
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Table 5.11 Inter-subsistence group comparisons for stature and six long bone 

lengths 

 A vs. P A vs. AG  A vs. I P vs. AG P vs. I AG vs. I Females 

Stature n.s. n.s. n.s. n.s. n.s. n.s. 

HXL n.s. n.s. n.s. n.s. n.s. n.s. 
RXL n.s. n.s. n.s. n.s. n.s. n.s. 
UXL n.s. n.s. n.s. n.s. n.s. n.s. 
FXL n.s. n.s. n.s. n.s. n.s. n.s. 
TLL n.s. n.s. n.s. n.s. n.s. n.s. 
FiXL n.s. n.s. n.s. n.s. n.s. 0.039  

       

Males       

Stature n.s.  n.s. <0.001 n.s. <0.001 <0.001 

HXL n.s. n.s. n.s. n.s. n.s. n.s. 

RXL n.s. n.s. n.s. n.s. n.s. n.s. 

UXL n.s. n.s. n.s. n.s. n.s. n.s. 

FXL n.s. n.s. n.s. n.s. n.s. n.s. 

TLL n.s. 0.029 n.s. n.s. n.s. n.s. 

FiXL n.s. n.s. n.s. n.s. n.s. n.s. 

Abbreviations: HXL, maximum length of humerus; RXL, maximum length of radius; 

UXL, maximum length of ulna; FXL, maximum length of femur; TLL, lateral length of 

tibia; FiXL; maximum length of fibula; A, agricultural group; AG, agropastoral group; 

P, pastoral group; I, industrial group; bold font, significance is based upon one-way 

ANOVA followed by Hochberg’s GT2 or Games-Howell post-hoc tests, significant at 

0.05 level; n.s., non-significant 
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It is noteworthy that the industrial females and males demonstrate 

contrasting patterns in stature and bone lengths (Tables 5.10; 5.12). While the 

industrial females are the tallest among all female subsistence groups, the 

industrial males have the shortest living stature. Additionally, while most of the 

upper and lower limb long bones of the industrial females show the largest 

lengths, the male long bones are relatively short in comparison to other male 

subsistence groups.  

Body mass and femoral head diameter 

The four subsistence groups in both sexes differ significantly in body mass (♀ 

p=0.039; ♂ p=0.001) and femoral head diameter (♀ p=0.039; ♂ p=0.001; 

Tables 5.13; 5.14). However, in post hoc pairwise comparisons, significant 

differences are only observed between male subsistence groups (Tables 

5.15). The results show that the agricultural, pastoral and agropastoral males 

demonstrate significantly greater body mass (adjusted p=0.001-0.014) and 

femoral head diameter (adjusted p=0.001-0.014) than the industrial males 

(Table 5.15). The industrial females and males, who inhabited a warmer area, 

exhibit the lowest mean body mass and smallest mean femoral head diameter 

(FHD) (Tables 5.13; 5.14). In contrast, the female and male agriculturalists 

have the largest body mass and femoral head diameter.  
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Table 5.15 Inter-subsistence group comparisons for body mass and epiphyseal 

dimensions 

 A vs. P A vs. AG  A vs. I P vs. AG P vs. I AG vs. I Females 

BM n.s. n.s. n.s. n.s. n.s. n.s. 

FHD n.s. n.s. n.s. n.s. n.s. n.s. 
HHD n.s. n.s. n.s. n.s. n.s. n.s. 
HEB n.s. n.s. n.s. n.s. n.s. n.s. 
FEB n.s. 0.033  n.s. n.s. n.s. n.s. 
TPB n.s. n.s. n.s. n.s. n.s. n.s. 
TDB n.s. n.s. n.s. n.s. n.s. n.s. 

       

Males       

BM n.s.  n.s.  0.001  n.s.  0.014  0.005  

FHD n.s.  n.s.  0.001 n.s.  0.014  0.005  

HHD n.s.  n.s.  n.s. n.s.  n.s.  n.s.  

HEB n.s.  n.s.  <0.001  n.s.  0.001  0.009  

FEB n.s.  n.s.  n.s.  n.s.  0.050  n.s.  

TPB n.s.  n.s.  n.s.  n.s.  0.004  n.s.  

TDB n.s.  n.s.  n.s.   n.s.  0.007  n.s.  

Abbreviations: BM, body mass; FHD, femoral head diameter; HHD, humeral head 

diameter; HEB, humeral epicondylar breadth; FEB, femoral epicondylar breadth; 

TPB, tibial proximal epiphyseal breadth; TDB, tibial distal epiphyseal breadth; A, 

agricultural group; AG, agropastoral group; P, pastoral group; I, industrial group; bold 

font, significance is based upon one-way ANOVA followed by Hochberg’s GT2 or 

Games-Howell post-hoc tests, significant at 0.05 level; n.s., non-significant 
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Epiphyseal dimensions 

The four female subsistence groups differ significantly in femoral epicondylar 

breadth (FEB) (one-way ANOVA; p=0.014; Table 5.13) and a significant 

difference is observed between the agropastoral and agricultural females 

(post hoc tests; adjusted p=0.033; Table 5.15). Among female subsistence 

groups, the agropastoral females show the largest mean measurements in 

humeral head diameter (HHD), femoral epicondylar breadth (FEB) and tibial 

distal epiphyseal breadth (TDB) (Table 5.13). The pastoral females have the 

largest humeral epicondylar breadth (HEB) and tibial proximal epiphyseal 

breadth (TPB). In contrast, the agricultural females have the smallest humeral 

epicondylar breadth (HEB), femoral epicondylar breadth (FEB) and tibial 

proximal epiphyseal breadth (TPB).  

With the exception of humeral head diameter (HHD), the four male 

subsistence groups differ significantly in all epiphyseal dimensions (one-way 

ANOVA; p<0.001; Table 5.14). Post hoc pairwise comparisons illustrate that 

the industrial and pastoral males show significant differences in the mean 

measurements of all epiphyseal dimensions (adjusted p=0.001-0.05; Table 

5.15). In addition, the agricultural and agropastoral males differ significantly 

from the industrial males in humeral epicondylar breadth (HEB) (adjusted 

p<0.001). Among males, the pastoralists show the largest mean 

measurements in humeral epicondylar breadth (HEB), femoral epicondylar 

breadth (FEB) and tibial proximal epiphyseal breadth (TPB) and tibial distal 

epiphyseal breadth (TDB), while the industrial group demonstrates the 

smallest measurements in all epiphyseal dimensions (Table 5.14).  
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5.5.2 Sexual dimorphism 

Stature and long bone lengths 

The agricultural group shows the greatest level of sexual dimorphism in 

stature and all bone lengths except the TLL, where male values are 8.58%-

10.19% larger than those of females (Table 5.16). The pastoral group have 

the largest degree of sexual dimorphism in lateral length of tibia (TLL) and the 

sexual size differences in other variables among the pastoral population are 

relatively large (Table 5.16). In contrast, the industrial sample amongst the 

four subsistence groups shows the lowest mean percent dimorphism in 

stature, maximum length of humerus (HXL), maximum length of ulna (UXL), 

maximum length of femur (FXL) and maximum length of fibula (FiXL) (Table 

5.16). The agropastoral group has the lowest percent dimorphism in 

maximum length of radius (RXL) and lateral length of tibia (TLL).  

Body mass and femoral head diameter 

The pastoral group shows the greatest degree of sexual dimorphism in body 

mass, with males being 19.23% heavier than their female counterparts (Table 

5.17). This is also true for femoral head diameter (FHD), in which the pastoral 

males have femoral head diameters that are on average 13.81% larger than 

those of females (Table 5.17). Similar to the pattern found in stature, the body 

mass and femoral head diameter (FHD) of the industrial group are the least 

sexually dimorphic (Table 5.17). The percent dimorphism of the industrial 

group is 15.31% for body mass and 11.25% for femoral head diameter (FHD). 
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Table 5.16 Mean percent dimorphism for stature and six long bone lengths by 

subsistence group 

 
Agricultural group Pastoral group 

Agropastoral 

group 

Industralised 

group 

Stature 8.58 8.51 6.63 3.16 

HXL 8.75 7.70 7.81 6.69 

RXL 9.56 8.72 7.51 8.25 

UXL 8.62 8.55 7.97 7.46 

FXL 10.19 10.16 7.37 7.24 

TLL 9.31 10.08 6.28 6.96 

FiXL 8.67 7.54 7.76 5.83 

Abbreviations: HXL, maximum length of humerus; RXL, maximum length of radius; 

UXL, maximum length of ulna; FXL, maximum length of femur; TLL, lateral length of 

tibia; FiXL; maximum length of fibula; red font indicates the highest values, blue font 

indicates the lowest values 

 

 
Table 5.17 Mean percent dimorphism for body mass and epiphyseal dimensions by 

subsistence group 

 
Agricultural group Pastoral group 

Agropastoral 

group 

Industralised 

group 

BM 16.99  19.23  16.62  15.31  

FHD 12.36  13.81  12.12  11.25  

HHD 13.30  13.92  12.04  11.49  

HEB 13.70  12.15  13.10  9.05  

FEB 13.44  12.68  11.45  11.51  

TPB 12.15  11.65  10.42  9.16  

TDB 12.14  12.95  11.43  10.30  

Abbreviations: BM, body mass; FHD; femoral head diameter; HHD, humeral head 

diameter; HEB, humeral epicondylar breadth; FEB, femoral epicondylar breadth; 

TPB, proximal epiphyseal breadth of tibia; TDB, distal epiphyseal breadth of tibia; red 

font indicates the highest values, blue font indicates the lowest values 
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Epiphyseal dimensions 

The agricultural group exhibits the greatest level of sexual dimorphism in 

humeral epicondylar breadth (HEB), femoral epicondylar breadth (FEB) and 

tibial proximal epiphyseal breadth (TPB) (Table 5.17). In addition, the pastoral 

group shows the highest percent dimorphism in humeral maximum head 

diameter (HHD) and tibial distal epiphyseal breadth (TDB). Among the four 

subsistence groups, the industrial sample has the lowest degree of sexual 

dimorphism in all epiphyseal dimensions except for femoral epicondylar 

breadth (FEB) (Table 5.17). 

5.5.3 Summary 

Hypothesis one: The pastoral and agropastoral groups, in particular males, 

will show larger lower limb size than other subsistence groups due to higher 

levels of mobility. 

 Results: The findings above partially support the hypothesis. The pastoral 

females have the longest radii and ulnae and the pastoral males have the 

longest ulnae and femur. However, among the agropastoral males, four out of 

six long bones show the shortest lengths and the agropastoral females have 

the smallest measurements in humeral and fibular lengths. The patterns, 

however, are different in epiphyseal dimensions. The pastoral males show the 

largest measurements in four out of five epiphyseal dimensions and the 

pastoral females have the largest humeral epicondylar breadth (HEB) and 

tibial proximal epiphyseal breadth (TPB). Among the agropastoral females, 

three out of five epiphyseal measurements are the greatest and the 

agropastoral males have the largest humeral maximum head diameter (HHD). 

The results show that mobility level appears to have greater influences on 

epiphyseal dimensions than long bone lengths. The growth of long bones is 

highly correlated with childhood environment.  

 

Hypothesis two: The pastoral and agropastoral groups will show greater 

level of sexual dimorphism in lower limb size because the males from these 
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subsistence groups are expected to have higher levels of mobility than 

females. In contrast, the industrial group, in general, will exhibit relatively low 

degree of sexual dimorphism in body size and postcranial measurements due 

to a decline in gender-based division of labour. 

Results: The industrial group shows the lowest magnitude of sexual 

dimorphism in stature, body mass and most of the postcranial measurements. 

In addition, the results partially support that the pastoral group has greater 

degree of sexual dimorphism than other subsistence groups in lower limb size, 

in particular lateral length of tibia (TLL), femoral head diameter (FHD) and 

tibial distal epiphyseal breadth (TDB). Nevertheless, the agropastoral group, 

overall, exhibits relatively low level of sexual dimorphism in the lengths and 

dimensions of the lower limbs. 
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CHAPTER 6  

Entheseal morphology 

 

 

 

 

 

6.1 Aims and hypotheses 

The aims of this chapter are: 

A) to investigate the temporal patterns of entheseal expression associated 

with socio-political conditions and stresses in Holocene China and the 

relation between the development of entheses and subsistence strategy; 

B) to elucidate variation in sexual dimorphism of entheseal expression 

through time and to investigate intra-group sexual differences; and  

C) to explore the patterns of asymmetry in entheseal expression among the 

Holocene Chinese over time and to examine intra-group sex differences in 

bilateral asymmetry.  

 

The first aim of this chapter is to investigate the general patterns and 

changes of entheseal expression through time in Holocene China. In addition, 

it explores the correlation of entheseal changes and subsistence activity. It is 

predicted that:  

i) the aggregated scores of the upper and lower limb entheses of the 

Holocene Chinese will reflect patterns of socio-political development and 

levels of stress over time. On this basis, men of socio-politically unstable 

periods (the Neiyangyuan, Jinggouzi, Tuchengzi and Shenyang) will show 

higher aggregated scores because they might have been involved in more 

strenuous and stressful activities in these periods, including battles, re-

development of communities and/or long-distance food procurement. 

Although it has been suggested that females often carried out relatively less 

physically demanding tasks, women of the unstable periods are expected to 
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exhibit higher aggregated scores than women of other time periods;  

ii) the aggregated scores of the Sha Ling modern population should be lower 

than ancient populations due to less physical demands of modern habitual 

activities. However, since the Sha Ling population was from a low socio-

economic status, it is predicted that their lower limb aggregated scores will 

not differ much from those of the ancient populations; 

iii) the ancient pastoral and agropastoral males will exhibit relatively higher 

aggregated scores in the lower limb entheses. Also, it is predicted that the 

industrial population will show high lower limb aggregated scores because 

this sample consists of homeless people who might have spent a lengthy 

time wandering on streets; and 

iv) individuals of advanced age will show higher aggregated and disaggregated 

scores than younger individuals because they have experienced more 

muscle use over a lifetime in activities. 

 

The second aim of this chapter is to explore the diachronic variation in 

sexual dimorphism of entheseal expressions and to elucidate intra-group sex 

differences in order to provide insights into the patterns and changes of 

division of labour in Holocene China. It is predicted that the: 

i) levels of sexual dimorphism among the Neiyangyuan, Jinggouzi, Tuchengzi 

and Shenyang populations will be relatively higher. Due to periodic warfare 

and unsteady socio-political environments, men may have engaged in 

muscular activities with higher levels of stress such as long-distance travel, 

which results in increases in entheseal scores; 

ii) ancient pastoral and agropastoral groups will exhibit greater magnitude of 

sexual dimorphism in the lower limb entheses than other subsistence 

groups because the mobility levels of the pastoral and agropastoral males 

are expected to be higher; and 

iii) rank orders of the upper limb entheses, particularly those with a high rank, 

will display more sex differences among populations in the Neiyangyuan, 

Jinggouzi, Tuchengzi and Shenyang periods. This is based upon the 

premises that sexual division of labour was developed in Holocene China 

and that warfare may result in more rigidly dichotomous sex roles. Moreover, 

it is expected that the influence of gender-based labour pattern is greater on 
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ancient populations than modern populations, so the Sha Ling modern 

population will have relatively less sex differences in the rank orders of the 

upper limb entheses; 

iv) rank orders of the highest-ranking upper limb entheses between the sexes 

of pastoral and agropastoral groups will be more variable because it is 

projected that pastoral and agropastoral lifestyles should have a more 

distinct labour pattern along sex line.   

 

The third aim of this chapter is to address the general patterns and 

changes in asymmetry of entheseal expressions in Holocene China and intra- 

group differences in limb laterality. It is predicted that: 

i) all studied populations, regardless of sex, time period and subsistence 

category, will show a high frequency of right-side directional asymmetry in 

the upper limb entheses since right-handedness is a universal phenomenon 

among living human groups. Additionally, the Sha Ling modern population 

and the industrial group will exhibit more right-biased upper limb entheses 

because it is projected that stronger cultural pressures in contemporary 

Chinese societies and advanced technological development will have more 

profound influences on recent Chinese populations. Conversely, the lower 

limb entheses will be less asymmetric and it is expected that they will show 

a slight left-side bias; and 

ii) females and males within a population will show disparate bilateral 

asymmetry in the upper limb entheses because of gendered labour division.  

6.2 Correlations of entheses with sex, age and body size 

This section assesses the relationship of entheseal expression with sex, age, 

and body size in the Chinese populations studied in this dissertation. Although 

previous studies generally agree that sex and age to some extent influence 

the development of entheses, there is no consensus as to whether body size 

influences entheseal expression (Lieverse et al. 2009; Milella et al. 2012; 

Molnar 2006; Weiss 2003b, 2004). If age, sex and body size are found to 
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have significant influences on entheseal morphology, it would be best to 

control for these factors in subsequent comparisons. Spearman's correlation 

coefficients (rs) were used to compare the correspondence between entheseal 

expression and these variables. It is hypothesised that sex and age will be 

strongly correlated with entheseal changes, in particular those in the upper 

limbs, while the link between entheseal expression and body size is uncertain. 

This section employs aggregated and disaggregated data to elucidate the 

effect of sex, age, limb size and body mass on entheseal development.  

6.2.1 Aggregated scores vs. sex, age and body size 

Table 6.1 demonstrates the results of Spearman’s correlation coefficient for 

aggregated scores, sex, age, upper limb size, lower limb size 20 and body 

mass. With the exception sex derived from the Principal Osteological Dataset 

(POD), all variables show some degree of significant correlations with 

aggregated scores, which emphasises the influence of sample size on 

statistical analyses. All aggregated scores in the upper and lower limbs 

correlate significantly with age (rs=0.266-0.347, p<0.001; Table 6.1). Whereas 

the aggregated scores of both upper limbs are significantly correlated with the 

sex in the Extended Osteological Dataset (EOD) (rs=0.229-0.264, p=0.006-

0.026), none of the lower limb aggregated scores are associated with the 

same variable. Upper limb size shows a significant correlation with both upper 

limb aggregated scores (rs=0.255-0.281, p=0.004-0.015), while lower limb 

size is only marginally correlated with the left lower limb aggregated score 

(rs=0.239, p=0.045). The correlations between body mass and aggregated 

scores are statistically significant in both upper limbs (rs=0.242-0.324, 

p=0.003-0.016); however, the aggregated scores of the lower limbs do not 

correlate with body mass.  

 

 

                                            
20 The definition and calculation of upper and lower limb sizes can be found in section 4.2.4. 
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Table 6.1 Correlations of aggregated scores with sex, age, limb size and body mass 

Aggregated 

score 

 

Sex1 Sex2 Age3 
Upper limb 

size4 

Lower limb 

size4 
Body mass4 

Right upper limb 
rs 0.185 0.264 0.280 0.281 -0.009 0.242 

P 0.089 0.006 0.008 0.004 0.959 0.016 

Left upper limb 
rs 0.163 0.229 0.266 0.255 0.092 0.324 

P 0.157 0.026 0.017 0.015 0.573 0.003 

Right lower limb 
rs 0.023 0.087 0.347 0.082 0.162 0.095 

P 0.802 0.153 <0.001 0.430 0.216 0.233 

Left lower limb 
rs 0.056 0.108 0.311 0.052 0.239 0.140 

P 0.520 0.156 <0.001 0.589 0.045 0.056 
1 samples with known and estimated sex in the Principal Osteological Dataset (POD); 
2 samples with known and estimated sex in the Extended Osteological Dataset 

(EOD); 3 sex-pooled samples with known and estimated age; 4 sex- and age-pooled 

samples; rs, Spearman’s correlation; bold font, P-values based upon Spearman’s 

correlation coefficient, significant at 0.05 level 

 

When sex is analysed separately, the correlations of aggregated scores 

with age, limb size and body mass are different from those of the pooled 

sample (Table 6.2). Except for age, the aggregated scores of upper and lower 

limbs do not correlate with upper limb size, lower limb size and body mass in 

both sexes. Among females, all aggregated scores except that of the left 

upper limb show significant correlations with age (rs=0.293-0.454, p=0.004-

0.026), while for males age only correlates significantly with the lower limb 

aggregated scores (rs=0.030-0.031, p=0.012). 

The findings suggest that regardless of sex age may be a major factor in 

the development of the upper and lower limb entheses. However, when sex is 

separated in analyses, the effects of upper limb size and body mass on the 

upper limb aggregated scores disappear. Partial correlation tests were 

conducted to further elucidate these variable results. When sex is controlled, 

except that of body mass with the left upper limb aggregated score (r=0.257, 

p=0.022, df=78), the correlations between body size variables and aggregated 

scores are removed. It appears that variance in entheseal expression is 

mainly accounted for by sex and age rather than body size. 
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Table 6.2 Correlations of aggregated scores with age, limb size and body mass by 

sex group1 

Aggregated score 
 Age2 Upper limb size3 Lower limb size3 Body mass3 

Females  

Right upper limb 
rs 0.454 0.073 0.205 0.022 

P 0.006 0.649 0.627 0.900 

Left upper limb 
rs 0.274 0.159 0.316 0.253 

P 0.129 0.369 0.317 0.177 

Right lower limb 
rs 0.388 -0.165 -0.003 0.117 

P 0.004 0.296 0.988 0.346 

Left lower limb 
rs 0.293 0.045 0.277 -0.060 

P 0.026 0.775 0.162 0.615 

      

Males      

Right upper limb 
rs 0.159 0.189 -0.287 0.165 

P 0.271 0.155 0.165 0.219 

Left upper limb 
rs 0.276 0.099 -0.078 0.264 

P 0.063 0.469 0.070 0.061 

Right lower limb 
rs 0.031 0.229 0.130 0.095 

P 0.012 0.103 0.444 0.407 

Left lower limb 
rs 0.030 0.094 0.042 0.119 

P 0.012 0.451 0.787 0.252 
1 samples with known and estimated sex in the Extended Osteological Dataset 

(EOD); 2 samples with known and estimated age; 3 pooled samples; rs, Spearman’s 

correlation; bold font, P-values based upon Spearman’s correlation coefficient, 

significant at 0.05 level 

6.2.2 Disaggregated scores vs. age and body size 

The Spearman’s correlations (rs) of disaggregated scores (26 upper limb 

entheses and 14 lower limb entheses from the right and left limbs) with age, 

upper limb size, lower limb size and body mass are illustrated in Tables A6.1 - 

A6.4 in Appendix C. Age has the greatest influence on the upper and lower 

limb disaggregated scores in both sexes. For females, 10 (rs=0.281-0.440, 
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p<0.001) and nine (rs=0.300-0.504, p<0.001) out of 26 entheses of the right 

and left upper limbs, respectively, are significantly correlated with age. 

Similarly, age appears to be highly correlated with the development of male 

upper limb entheses, where five (rs=0.198-0.358, p=0.009-0.045) and eight 

rs=0.219-0.449, p=0.002-0.046) out of 26 entheses of the right and left upper 

limbs, respectively, are significantly associated with age. In the lower limbs, 

10 out of 14 entheses (rs=0.255-0.507, p<0.001) of the right side and nine 

(rs=0.250-0.464, p<0.001) of the left sides show statistically significant 

correlations with age in females. Among males, four out of 14 entheses of 

both limbs (rs=0.202-0.513, p<0.001) are significantly related with age. 

Size variables have minor influences on the entheseal expressions of the 

Holocene Chinese, in particular among males. None of the disaggregated 

scores of the right upper entheses in females is affected by upper limb size. 

Among all body size variables, lower limb size appears to have greater 

impacts on female entheses, where eight out of 40 (rs=0.441-0.749, p=0.005-

0.036) of the right limb and five out of 40 (rs=0.449-0.701, p=0.016-0.036) of 

the left limb are significantly correlated with lower limb size. Likewise, the 

influences of body size variables on the expressions of male entheses are 

slight. Lower limb size and body mass do not show significant correlations 

with any disaggregated scores of the right lower limb entheses. Moreover, 

none of the disaggregated scores of the left upper and lower limb entheses is 

significantly correlated with upper and lower limb sizes.   

In summary, the findings described above suggest that sex and age play 

fundamental roles in the expressions of entheses, whereas body size has 

minimal influence on entheseal scores when sex is controlled. On this basis, 

the data analyses in the following sections were based upon sex- or age-

specific groups 21  as described in section 4.1.1 and Table 4.2; 4.5. The 

samples of some populations are relatively small, which do not meet the 

assumptions of statistical tests, so sex and age groups were analysed 

separately in the subsequent analyses. As a result, the effects of sex or age 

on either group analyses were not taken into account. However, it should be 

                                            
21 Due to the small sample size of some populations, middle-aged adults and old adults were 

combined as middle-old adults. 
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borne in mind that these two factors should be considered together whenever 

possible.    

In the following analyses, the average scores from the right and left 

elements were used whenever possible. In order to maximise sample size, 

the score of either side was used if one of them was missing or too 

fragmented for scoring (Lieverse et al. 2009, 2013). The correlations between 

the right and left sides of 40 entheses are summarised in Table A6.5 in 

Appendix C. Clearly, the right and left sides of all entheses are significantly 

related (rs=0.242-0.774, p<0.01); therefore, it is appropriate to use the 

disaggregated score from either side.  

6.3 Diachronic patterns and changes in entheseal expression  

This section presents the analysis of variation and temporal trends of 

aggregated and disaggregated data of the seven populations in relation to 

socio-political development and stress level. It is predicted that: 

i) men and women from socio-politically unstable periods (the Neiyangyuan, 

Jinggouzi, Tuchengzi and Shenyang) will show higher aggregated scores in 

both limbs, resulting from increases in level of stress; and 

ii) the Sha Ling modern population will have relatively high lower limb 

aggregated scores due to their low socio-economic background. However, 

overall, the scores of the Sha Ling individuals will be lower than those of 

ancient populations. 

6.3.1 General analysis in aggregated data  

This section employs aggregated scores to investigate the entheseal 

robusticity across seven populations. The Sha Ling females have the highest 

mean aggregated scores in the upper and lower limbs, while the lowest upper 

and lower limb aggregated scores are found among the Jiangjialiang and 

Neiyangyuan populations, respectively (Table 6.3). The temporal trends of the 

upper and lower limb aggregated scores are differences between the 
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Jiangjialiang and Tuchengzi periods (Figure 6.1). The upper limb aggregated 

score increases between the Jiangjialiang and Neiyangyuan periods and is 

followed by a decrease until the Tuchengzi period, whereas the lower limb 

aggregated score presents a reverse trend. The lower limb aggregated scores 

across the seven female groups differ significantly (Kruskal-Wallis; p<0.001). 

Dun-Bonferroni post hoc tests illustrate that the Sha Ling females have 

significantly higher lower limb aggregated scores than the Neiyangyuan 

(adjusted p<0.001) and Lamadong (adjusted p=0.01) females.  

 

 
Table 6.3 Summary of mean aggregated scores by time period/population and sex 

group 

Upper limb  JJL NYY JGZ TCZ LMD SY SL 

Females 
n 6 10 6 3 4 5 26 

 ̅ 9.83 12.00 11.17 10.83 10.05 10.90 12.08 

Males* 
n 9 18 2 18 11 5 33 

 ̅ 11.33 13.42 10.50 15.06 13.27 12.10 11.95 

         

Lower limb         

Females* 
n 7 13 6 7 36 6 25 

 ̅ 8.07 7.19 7.42 9.14 8.33 8.58 10.00 

Males* 
n 9 16 8 20 36 10 39 

 ̅ 8.72 10.00 8.13 10.90 8.82 8.30 8.90 

Abbreviations: JJL, Jiangjialiang, NYY, Neiyangyuan, JGZ, Jinggouzi, TCZ, 

Tuchengzi, LMD, Lamadong, SY, Shenyang, SL, Sha Ling; n, number of individuals; 

 ̅ , mean aggregated score; bold font, the highest mean aggregated score; *, 

Differences is based upon Kruskal-Wallis with =0.05 (for comparisons across seven 

populations) 
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Figure 6.1  Temporal trends of mean aggregated scores for the upper and lower 

limbs (females) 

 
 

The Tuchengzi males amongst the seven populations have the highest 

mean aggregated scores in the upper and lower limbs, while the lowest 

aggregated scores for both limbs are found among the Jinggouzi males 

(Table 6.3). The male upper and lower limb aggregated scores show a similar 

trend from the Jiangjialiang to Shenyang periods (Figure 6.2). Whereas the 

upper limb aggregated score continues to decrease after the Shenyang period, 

the lower limb aggregated score shows an initial increase in the same period. 

The seven male groups differ significantly in the aggregated scores of the 

upper (Kruskal-Wallis; p<0.001) and lower (Kruskal-Wallis; p=0.003) limbs 

(Table 6.3). The upper limb aggregated scores of the Tuchengzi males are 

significantly higher than those of the Jiangjialiang (post hoc test; adjusted 

p=0.007) and Sha Ling (adjusted p=0.001) males. In the lower limbs, the 

Tuchengzi males show a significantly higher aggregated score than the 

Lamadong (adjusted p=0.016), Shenyang (adjusted p=0.015) and Sha Ling 

(adjusted p=0.02) males. 
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Figure 6.2  Temporal trends of mean aggregated scores for upper and lower limbs 

(males) 

 
 

The aggregated scores of the Holocene Chinese show some interesting 

patterns over time. The aggregated scores of the female upper and lower 

limbs demonstrate different trends between the Jiangjialiang and Tuchengzi 

periods. In addition, the trends of the females and males are disparate from 

the Jinggouzi to Sha Ling periods in the upper limb aggregated score and 

from the Jiangjialiang to Jinggouzi periods in the lower limb aggregated score. 

Except for the Neiyangyuan and Jinggouzi females, the mean ratio of upper to 

lower limb aggregated scores among the seven female groups is relatively 

consistent, in the range of 1.21-1.32, implying that the upper and lower 

aggregated scores of women may have changed proportionally through time 

(Figure 6.3). As noted earlier, the Neiyangyuan, Jinggouzi and Tuchengzi 

periods are characterised by frequent warfare and internal conflicts (spannnig 

between the Spring and Autumn period and Warring States period). It is likely 

that females of these time periods not only carried out usual daily subsistence 

activities, but also they may have been to some extent involved in warfare-
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related tasks, attributing to the different diachronic trends between the upper 

and lower limbs from the Jiangjialiang to Tuchengzi periods. Similarly, sexual 

differences in the lower limb aggregated scores between the Jiangjialiang and 

Jinggouzi periods and in the upper limb aggregated scores between the 

Jinggouzi and Sha Ling periods might have been due to changes of female 

roles in communities while battles/conflicts occurred and ceased. 

 

 
Figure 6.3 Mean ratio of upper limb to lower limb aggregated scores across seven 

populations 
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6.3.2 Summary 

Hypothesis one: Men and women from periods with warfare (the 

Neiyangyuan, Jinggouzi, Tuchengzi and Shenyang) will show higher 

aggregated scores, reflecting increases in level of stress. 

Results: The findings show mixed results. While the Neiyangyuan and 

Tuchengzi males have higher upper and lower limb aggregated scores than 

most populations, the Jinggouzi males exhibit the lowest scores in both limbs. 

Among females, compared with other populations the upper limb aggregated 

scores of the Neiyangyuan, Jinggouzi, Tuchengzi and Shenyang are high. In 

the lower limbs, the Tuchengzi and Shenyang females have relatively high 

scores, whereas the Neiyangyuan and Jinggouzi females have the lowest 

scores among the seven populations. 

 

Hypothesis two: The Sha Ling modern population will exhibit lower 

aggregated scores than ancient Chinese. Nevertheless, due to low socio-

economic status, it is projected that their aggregated scores will still be 

relatively high.  

Results: The Sha Ling females have the highest upper and lower limb 

aggregated scores among the seven populations and the scores of males are 

moderate, which are contrary to the hypothesis. It appears that the Sha Ling 

population received a higher level of stress than predicted. Moreover, the Sha 

Ling females have greater aggregated scores than their male counterparts in 

both limbs, indicating that females may have experienced a tougher and more 

difficult life. 
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6.4 Sex dimorphism and asymmetry 

This section investigates the temporal trends in level of sexual dimorphism 

and asymmetry pattern in entheseal aggregated and disaggregated data. In 

addition, it assesses intra-population sex differences in entheseal rank orders 

and limb asymmetry. It is predicted that: 

i) the levels of sexual dimorphism in the socio-politically unstable time 

periods (the Neiyangyuan, Jinggouzi, Tuchengzi and Shenyang) will be  

relatively high due to increases in male scores for entheseal expression 

and relatively minor changes in female scores. In this light, it is projected 

that males in these periods should have greater absolute asymmetry in 

the upper limb entheses. 

ii) due to sexual division of labour all populations will exhibit sex differences 

in rank order of the upper limb entheses, reflecting different muscle use 

patterns. Also, it is expected that sexual differences in rank order are 

more pronounced among populations in the periods with warfare when 

males were involved in subsistence activities and warfare-related tasks at 

the same time. In addition, the influence of gender-based labour pattern is 

projected to be greater on ancient populations than modern populations. 

Therefore, the Sha Ling modern population should have relatively less sex 

differences in rank orders of the upper limb entheses; and  

iii) all studied populations will exhibit a higher frequency in right-biased 

directional asymmetry in the upper limb entheses, while the entheses on 

the lower limb will be less asymmetric and they will tend to show a slight 

left-sided bias. Moreover, the Sha Ling modern population will exhibit 

more right-biased upper limb entheses due to strong cultural pressures in 

contemporary Chinese societies and advanced technological development. 
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6.4.1 Aggregated data: General patterns and changes in sexual 

dimorphism 

Except for the Jinggouzi and Sha Ling populations, the upper limb mean 

aggregated scores of males are higher than those of females in all 

populations (Tables 6.4). The Tuchengzi population shows the greatest level 

of sexual dimorphism in the upper limb entheses, with males having 28% 

significantly higher aggregated scores than females (p=0.007). It is followed 

by the Lamadong population, in which males exhibiting 24.3% significantly 

larger aggregated scores than their female counterparts (p=0.042). In contrast, 

the Sha Ling females and males show minimal sexual differences in the upper 

limb aggregated score, with females having 1.09% higher scores than males. 

Sexual dimorphism in the lower limbs is not as great as that in the upper 

limbs. Except those of the Shenyang and Sha Ling populations, all male 

subsamples have higher mean aggregated scores than their female 

counterparts (Table 6.4). The Neiyangyuan population has the greatest level 

of sexual dimorphism in the lower limb mean aggregated score, with males 

having 28% significantly higher aggregated scores than females (p=0.001). 

Additionally, the aggregated scores of the Tuchengzi males are 16.15% larger 

than those of females (p=0.015). In contrast, the Shenyang population has the 

lowest magnitude of sexual dimorphism in the lower limbs, with females who 

exhibit 3.37% higher aggregated scores than males.  

Some populations demonstrate considerable differences in SDI between 

the upper and lower limb aggregated scores. While the upper limb entheses 

of the Lamadong population show a relatively high level of sexual dimorphism 

of 24.27%, the sex difference in their lower limb entheses is slightly more than 

5% (Table 6.4). The opposite is true for the Sha Ling population. The SDI 

value of the Sha Ling upper limb aggregated score is just slightly over 1%, 

whereas the lower limb scores between females and males exhibit a 12.36% 

difference.  
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Table 6.4 Sexual dimorphism index (SDI) and intra-population sexual differences for 

upper and lower limb aggregated data 

Upper limb JJL NYY JGZ TCZ LMD SY SL 

SDI 13.24 10.58 -6.38 28.09 24.27 9.92 -1.09 

Significance 0.236 0.070 0.495 0.007 0.042 0.399 0.783 

        

Lower limb        

SDI 7.45 28.10 8.73 16.15 5.56 -3.37 -12.36 

Significance 0.489 0.001 0.436 0.015 0.366 0.440 0.066 

Abbreviations: JJL, Jiangjialiang, NYY, Neiyangyuan, JGZ, Jinggouzi, TCZ, 

Tuchengzi, LMD, Lamadong, SY, Shenyang, SL, Sha Ling; negative values indicate 

female aggregated scores greater than those of males; bold font, significance is 

based upon Mann-Whitney, significant at 0.05 level (for intra-population 

comparisons) 

6.4.2 Disaggregated data: General patterns and changes in sexual 

dimorphism 

Figure 6.4 shows that the sexual dimorphism of disaggregated scores among 

the Jiangjialiang population varies considerably, with values of SDI ranging 

from 2.94% to 66.67% in the upper limbs and from 1.23% to 33.33% in the 

lower limbs (see Tables A6.6; A6.7 in Appendix C). The Jiangjialiang males 

have higher disaggregated scores than females in 21 out of 26 upper limb 

entheses, among which the triceps brachii(o) exhibits a significant difference 

(p=0.024) (see Tables A6.6; A6.7 in Appendix C). It is noteworthy that the 

score of the brachioradialis among the Jiangjialiang females is 66.67% 

greater than males. Likewise, the disaggregated scores of 11 out of 14 lower 

limb entheses are higher among the Jiangjialiang males than females but 

none of them differs significantly (p>0.05).  
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Figure 6.4 Sexual dimorphism index (SDI) of the upper and lower limb disaggregated 

scores for the Jiangjialiang population 

 

 
Abbreviations: C, clavicle, H, humerus, U, ulna, R, radius, F, femur; T, tibia; P, patella; 
Ca, calcaneus; (o), origin site; * Significance is based upon Mann-Whitney with 
=0.05 
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Among the Neiyangyuan population, variation in sexual dimorphism of the 

upper limb disaggregated scores is greater than that of the lower limb scores 

(Figure 6.5). While the SDI value of the upper limb entheses is in the range of 

0.22-38.24%, nine out of 14 lower limb entheses show a level of sexual 

dimorphism above 20%. The Neiyangyuan males demonstrate higher 

disaggregated scores than females in 19 out of 26 upper limb entheses, of 

which seven differ significantly (p<0.001). In the lower limbs, all disaggregated 

scores of the Neiyangyuan males are higher than those of females, six of 

which show significant sex differences (p=0.002-0.027). 

The Jinggouzi population appears to show greater variation in the sexual 

dimorphism of the upper limb disaggregated scores (Figure 6.6). Whereas the 

score of males in the pectoralis major is 1.32% higher than that of females, 

the males have 41.33% larger scores than females in the costoclavicular 

ligament. The Jinggouzi males exhibit higher disaggregated scores than 

females in 19 out of 26 upper limb entheses, among which the scores of the 

supraspinatus and brachialis differ significantly (p<0.001). In the lower limbs, 

the disaggregated scores of 8 out of 13 entheses are higher among males 

than females but only the gluteus minimus shows a significant difference 

(p=0.022).  

The disaggregated scores of the Tuchengzi upper limbs show varied 

levels of sexual dimorphism (Figure 6.7) The SDI value of the brachioradialis 

is 41.94%, whereas that of the pectoralis major is less than 0.5%. It is worth 

noting that the Tuchengzi females and males do not show differences in the 

disaggregated score of the extensor carpi radialis longus. The Tuchengzi 

males exhibit higher disaggregated scores than females in 16 out of 21 upper 

limb entheses, among which the scores of the latissimus dorsi, teres major 

and brachioradialis differ significantly (p=0.001-0.039). Similarly, except the 

vastus intermedius males have higher disaggregated scores in all lower limb 

entheses, three of which show significant differences (p=0.004-0.036).  
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Figure 6.5 Sexual dimorphism index (SDI) of the upper and lower limb disaggregated 

scores for the Neiyangyuan population 

 

 
Abbreviations: C, clavicle, H, humerus, U, ulna, R, radius, F, femur; T, tibia; P, patella; 
Ca, calcaneus; (o), origin site; * Significance is based upon Mann-Whitney with 
=0.05 
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Figure 6.6 Sexual dimorphism index (SDI) of the upper and lower limb disaggregated 

scores for the Jinggouzi population 

 

 
Abbreviations: C, clavicle, H, humerus, U, ulna, R, radius, F, femur; T, tibia; P, patella; 
Ca, calcaneus; (o), origin site; * Significance is based upon Mann-Whitney with 
=0.05
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Figure 6.7 Sexual dimorphism index (SDI) of the upper and lower limb disaggregated 

scores for the Tuchengzi population 

 

 
Abbreviations: C, clavicle, H, humerus, U, ulna, R, radius, F, femur; T, tibia; P, patella; 

Ca, calcaneus; (o), origin site; * Significance is based upon Mann-Whitney with 

=0.05 
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The SDI of the upper limb disaggregated scores among the Lamadong 

population shows considerable variation, ranging from 0.65% in the pronator 

quadratus to 56.08% in the brachioradialis (Figure 6.8). Males demonstrate 

higher disaggregated scores than females in 19 out of 25 upper limb entheses, 

seven of which show significant differences (p=0.001-0.047). For the lower 

limbs, the disaggregated scores of 11 out of 14 entheses are higher among 

the Lamadong males than females, of which five differ significantly (p=0.027-

0.048). It is noteworthy that the scores of the quadriceps tendon (50%) and 

achilles tendon (45.45%) exhibit relatively high levels of sexual dimorphism.  

Levels of sexual dimorphism in the Shenyang population vary 

considerably in the upper limb entheses (Figure 6.9). While the disaggregated 

scores of the trapezoid ligament and pronator quadratus do not demonstrate 

sexual differences, the extensor carpi radialis longus shows a SDI of 

approximately 62%. The Shenyang males have higher disaggregated scores 

than females in 15 out of 26 upper limb entheses, of which the score of the 

teres major differs significantly (p=0.002). It is worth noting that the Shenyang 

females exhibit relatively high disaggregated scores in the teres minor, 

extensor carpi radialis longus and brachioradialis and the score of the 

extensor carpi radialis shows a significant difference (p=0.031). In contrast to 

the patterns in the upper limbs, the Shenyang females have higher 

disaggregated scores in 8 out of 14 lower limb entheses, of which the SDI of 

the vastus intermedius and achilles tendon are relatively high. Significant 

differences are not observed in any of the lower limb disaggregated scores 

(p>0.05). 
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Figure 6.8 Sexual dimorphism index (SDI) of the upper and lower limb disaggregated 

scores for the Lamadong population 

 

 
Abbreviations: C, clavicle, H, humerus, U, ulna, R, radius, F, femur; T, tibia; P, patella; 
Ca, calcaneus; (o), origin site; * Significance is based upon Mann-Whitney with 
=0.05 
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Figure 6.9 Sexual dimorphism index (SDI) of the upper and lower limb disaggregated 

scores for the Shenyang population 

 

 
Abbreviations: C, clavicle, H, humerus, U, ulna, R, radius, F, femur; T, tibia; P, patella; 
Ca, calcaneus; (o), origin site; * Significance is based upon Mann-Whitney with 
=0.05 
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In general, the Sha Ling population have relatively low levels of sexual 

dimorphism in the upper limb disaggregated scores (Figure 6.10). Twelve out 

of 26 upper limb entheses show a SDI below 10%. Nonetheless, as opposed 

to the patterns seen in other populations, the Sha Ling females show higher 

disaggregated scores than their male counterparts in 18 out of 26 upper limb 

entheses, of which the scores of the trapezoid ligament, extensor(o), 

supinator(o), pronator teres and pronator quadratus exhibit significant 

differences (p=0.001-0.041). Although the disaggregated scores of the Sha 

Ling males are lower than those of females in most upper limb entheses, they 

have significantly higher scores than females in the costoclavicular ligament, 

trapezius and brachioradialis (p=0.013-0.049). Likewise for the lower limbs, 

the Sha Ling females have higher disaggregated scores than males in 10 out 

of 14 entheses, four of which demonstrate significant differences (p<0.001). 

Although the Sha Ling males have higher disaggregated scores in five out of 

14 lower limb entheses, the degree of sexual dimorphism is relatively low, in 

the range of 0.57%-7.64%.  
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 Figure 6.10 Sexual dimorphism index (SDI) of the upper and lower limb 

disaggregated scores for the Sha Ling population 

 

 
Abbreviations: C, clavicle, H, humerus, U, ulna, R, radius, F, femur; T, tibia; P, patella; 
Ca, calcaneus; (o), origin site; * Significance is based upon Mann-Whitney with 
=0.05 
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6.4.3 Aggregated data: General patterns and changes in limb asymmetry 

All except the Neiyangyuan population show lateralisation in the upper limb 

mean aggregated scores. The Jiangjialiang, Tuchengzi and Lamadong 

populations have a right-sided bias in the upper limb scores, while those of 

the Shenyang and Sha Ling populations are left dominant (Table 6.5). 

Although the upper limb aggregated scores of the Shenyang and Sha Ling 

populations are left-biased, the values of BA are slightly over 100. In contrast, 

the pattern of the lower limbs is reverse. Except those of the Tuchengzi, the 

lower limb aggregated scores of all populations are left dominant (Table 6.5). 

It is noteworthy that the Jiangjialiang population shows a relatively high 

magnitude of asymmetry in the lower limb aggregated score. The Jiangjialiang 

and Lamadong populations demonstrate an opposite asymmetric pattern in 

the upper and lower limb entheses, where the upper limbs exhibit a right bias, 

while the lower limbs have an asymmetric bias to the left. Significant 

differences are not observed between the right and left aggregated scores in 

any populations (Wilcoxon Signed Ranks, p>0.05). 

 

 
Table 6.5 Summary of bilateral asymmetry for the upper and lower limb aggregated 

scores (sex-pooled sample) 

Population/time period 
Upper limb  Lower limb 

n BA Significance  n BA Significance 

Jiangjialiang 3 97 0.317  2 125 0.317 

Neiyangyuan 13 100 0.713  20 105 0.691 

Jinggouzi 1 / /  1 / / 

Tuchengzi 5 98 0.157  6 98 0.655 

Lamadong 5 96 0.581  36 105 0.703 

Shenyang 6 101 0.785  8 104 1.000 

Sha Ling 33 101 0.712  38 101 0.933 

 n, number of individuals with paired elements; BA, bilateral asymmetry (a value less 

than 100 indicates a right dominance, while a value more than 100 indicates a left 

dominance); Significance is based upon Wilcoxon Signed Ranks test with =0.05; /, 

no data 
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6.4.4 Inter-population differences in entheseal rank ordering 

This section investigates the patterns in the rank of upper and lower limb 

disaggregated scores across the seven populations. The entheses having the 

highest mean scores were assigned to first rank and so on. If several 

entheses have the same mean disaggregated score, the ranks of these 

entheses were accumulated and then divided by the number of entheses that 

sharing the same score (Field 2005: 522-524; Lieverse et al. 2009). For 

instance, three entheses show a mean score of 1.87 and are assigned to rank 

4th, 5th and 6th. The new rank for each enthesis is calculated as (4+5+6)/3, 

which is 5th. As each movement involves a group of muscles; therefore, ten 

upper limb entheses and five lower limb entheses showing the highest mean 

disaggregated scores were chosen for further discussion. Likewise, the five 

lowest-scored entheses in the upper and lower limbs were considered.  

Females 

Females of the seven populations show slight differences in the ten highest-

ranking upper limb entheses (Table 6.6). The female subsamples have five 

out of the ten highest ranking entheses in common (costoclavicular ligament, 

conoid ligament, pectoralis major, deltoideus, and pronator quadratus(o)22), of 

which the pectoralis major ranks first among the Jinggouzi, Tuchengzi, 

Shenyang and Sha Ling females. These are followed by the teres major and 

supraspinatus which rank highly in six out of seven populations. In addition, 

the extensor carpi radialis longus and pronator teres exhibit relatively high 

scores in four out of seven populations.  

                                            
22 The costoclavicular ligament and conoid ligament were not recorded among the Tuchengzi 

females due to the absence of the clavicles. 
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Table 6.6 Summary of mean disaggregated scores and ranks for the upper limb 

entheses by time period/population (females) (cont’d) 

Entheses 
Jiangjialiang  Neiyangyuan 

n  ̅ rank  n  ̅ rank 

C: Costoclavicular ligament 13  2.19  1  17  1.85  8 

C: Trapezoid ligament 11  1.36  11  15  1.87  7 

C: Conoid ligament 13  2.08  3  17  2.47  2 

S: Triceps brachii (o) 10  1.60  6  17  1.62  11 

S: Trapezius 2  1.00  20.5  12  1.38  14 

H: Supraspinatus 8  1.44  8  11  1.91  6 

H: Infraspinatus 5  1.10  18  10  1.40  13 

H: Subscapularis 9  0.83  23  14  1.21  21 

H: Teres minor 4  0.75  24.5  11  1.23  19.5 

H: Latissimus dorsi 8  0.75  24.5  14  0.96  26 

H: Teres major 9  2.17  2  15  2.53  1 

H: Pectoralis major 12  1.54  7  18  2.14  3 

H: Deltoideus 12  1.63  5  19  1.84  9 

H: Brachioradialis (o) 12  1.29  13.5  17  1.24  18 

H: Extensor carpi radialis longus 11  1.41  9  13  1.31  17 

H: Flexors (o) 10  1.25  15  11  1.36  16 

H: Extensors (o) 5  0.70  26  11  1.23  19.5 

U: Brachialis 12  1.17  16.5  19  1.71  10 

U: Triceps brachii  6  1.17  16.5  16  1.16  23 

U: Supinator (o) 12  1.29  13.5  19  1.42  12 

U: Anconeus 7  1.00  20.5  16  1.13  24 

U: Pronator quadratus (o) 10  1.65  4  20  2.00  5 

R: Biceps brachii 12  1.33  12  19  1.37  15 

R: Pronator teres 8  1.38  10  15  2.07  4 

R: Pronator quadratus 6  1.08  19  14  1.00  25 

R: Brachioradialis 5  1.00  22  9  1.17  22 

Abbreviations: C, clavicle; H, humerus; U, ulna; R, radius; (o), origin site;  ̅, mean 

disaggregated score; n, number of individuals; rank, the ten highest scores are in red 

font and the five lowest scores are in blue font 
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Table 6.6 continued 

Entheses 
Jinggouzi  Tuchengzi 

n  ̅ rank  n  ̅ rank 

C: Costoclavicular ligament 9  2.44  2  0  / / 

C: Trapezoid ligament 8  1.56  10  0  / / 

C: Conoid ligament 9  1.89  5  0  / / 

S: Triceps brachii (o) 8  1.44  13  0  / / 

S: Trapezius 5  1.80  8  0  / / 

H: Supraspinatus 18  1.53  11  10  1.55  8 

H: Infraspinatus 11  2.18  3  9  1.50  10.5 

H: Subscapularis 14  1.07  21  11  1.27  15 

H: Teres minor 13  0.81  26  8  1.19  17 

H: Latissimus dorsi 8  0.88  24  12  1.04  19 

H: Teres major 14  1.71  9  12  2.00  3 

H: Pectoralis major 19  2.63  1  12  2.88  1 

H: Deltoideus 19  1.89  4  12  2.08  2 

H: Brachioradialis (o) 17  1.15  18  12  1.46  13 

H: Extensor carpi radialis longus 11  1.45  12  11  1.82  5 

H: Flexors (o) 15  1.17  17  8  1.63  7 

H: Extensors (o) 14  1.43  14  12  1.50  10.5 

U: Brachialis 16  1.03  23  8  1.25  16 

U: Triceps brachii  13  1.08  20  3  1.00  20 

U: Supinator (o) 16  1.81  7  8  1.50  10.5 

U: Anconeus 10  1.10  19  5  1.50  10.5 

U: Pronator quadratus (o) 16  1.84  6  8  1.94  4 

R: Biceps brachii 15  1.23  16  9  1.67  6 

R: Pronator teres 8  1.06  22  9  1.33  14 

R: Pronator quadratus 6  0.83  25  7  0.93  21 

R: Brachioradialis 8  1.25  15  4  1.13  18 

Abbreviations: C, clavicle; H, humerus; U, ulna; R, radius; (o), origin site;  ̅, mean 

disaggregated score; n, number of individuals; rank, the ten highest scores are in red 

font and the five lowest scores are in blue font; /, no data 
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Table 6.6 continued 

Entheses 
Lamadong  Shenyang 

n  ̅ rank  n  ̅ rank 

C: Costoclavicular ligament 3  2.00  4  8  2.50  1.5 

C: Trapezoid ligament 2  1.00  23  8  1.56  12 

C: Conoid ligament 3  2.33  1  8  1.88  5 

S: Triceps brachii (o) 3  1.83  6  9  1.56  12 

S: Trapezius 1  1.00  23  6  1.25  19 

H: Supraspinatus 29  1.62  8  7  1.57  10 

H: Infraspinatus 23  1.61  9  7  1.07  23 

H: Subscapularis 31  1.08  20  8  1.19  21 

H: Teres minor 17  1.26  16.5  7  1.43  14 

H: Latissimus dorsi 35  0.89  25  8  0.94  25 

H: Teres major 36  2.18  3  8  1.56  12 

H: Pectoralis major 41  2.26  2  8  2.50  1.5 

H: Deltoideus 40  1.68  7  8  2.13  4 

H: Brachioradialis (o) 29  1.09  19  7  1.21  20 

H: Extensor carpi radialis longus 27  1.26  16.5  7  2.43  3 

H: Flexors (o) 16  1.44  10  7  1.29  18 

H: Extensors (o) 22  1.39  14  6  1.42  15 

U: Brachialis 22  1.30  15  7  1.36  16.5 

U: Triceps brachii  8  1.00  23  5  0.90  26 

U: Supinator (o) 20  1.43  11.5  7  1.64  8 

U: Anconeus 14  1.21  18  6  1.17  22 

U: Pronator quadratus (o) 18  1.92  5  7  1.79  6 

R: Biceps brachii 22  1.41  13  7  1.36  16.5 

R: Pronator teres 22  1.43  11.5  7  1.71  7 

R: Pronator quadratus 21  1.02  21  7  1.00  24 

R: Brachioradialis 12  0.54  26  5  1.60  9 

Abbreviations: C, clavicle; H, humerus; U, ulna; R, radius; (o), origin site;  ̅, mean 

disaggregated score; n, number of individuals; rank, the ten highest scores are in red 

font and the five lowest scores are in blue font 
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Table 6.6 continued 

Entheses 
Sha Ling  

Significance* 
n  ̅ rank  

C: Costoclavicular ligament 23 2.13 4   n.s.   

C: Trapezoid ligament 25 1.66 13   n.s.   

C: Conoid ligament 27 2.17 3   n.s.   

S: Triceps brachii (o) 25 1.30 18   n.s.   

S: Trapezius 25 1.34 15   n.s.   

H: Supraspinatus 25 1.72 9.5   n.s.   

H: Infraspinatus 24 1.29 19   n.s.   

H: Subscapularis 26 1.33 16   n.s.   

H: Teres minor 25 1.16 21   n.s.   

H: Latissimus dorsi 27 1.07 26   n.s.   

H: Teres major 27 1.91 6   0.042   

H: Pectoralis major 27 2.69 1   0.000   

H: Deltoideus 27 1.81 7   n.s.   

H: Brachioradialis (o) 26 1.14 22   n.s.   

H: Extensor carpi radialis longus 26 2.29 2   <0.001   

H: Flexors (o) 24 1.46 14   n.s.   

H: Extensors (o) 26 1.67 12   n.s.   

U: Brachialis 28 1.21 20   0.001   

U: Triceps brachii  27 1.11 24   n.s.  

U: Supinator (o) 28 1.70 11   0.031   

U: Anconeus 27 1.31 17   n.s.   

U: Pronator quadratus (o) 27 1.72 9.5   n.s.   

R: Biceps brachii 27 1.74 8   n.s.   

R: Pronator teres 27 1.94 5   0.002   

R: Pronator quadratus 25 1.10 25   n.s.  

R: Brachioradialis 21 1.12 23   0.007   

Abbreviations: C, clavicle; H, humerus; U, ulna; R, radius; (o), origin site;  ̅, mean 

disaggregated score; n, number of individuals; rank, the ten highest scores are in red 

font and the five lowest scores are in blue font; *, Significance is based upon Kruskal-

Wallis with =0.05; n.s., non-significant 
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The pattern of the five lowest ranking upper limb entheses shows 

differences between the seven female populations, however some general 

trends can be observed (Table 6.6). The latissimus dorsi ranks low among all 

female groups. It is followed by the triceps brachii, brachioradialis and 

pronator quadratus, which show relatively low scores in five out of seven 

populations. It is noteworthy that some entheses display relatively high ranks 

among some female groups, while they rank low in others. For instance, the 

trapezius has a relatively high rank among the Jinggouzi females, whereas it 

is ranked low among the Jiangjialiang, Lamadong and Shenyang females. 

Rank discrepancies are also observed in the trapezoid ligament, infraspinatus, 

extensor(o), brachialis, anconeus, pronator teres and brachioradialis. The 

ranks of the Tuchengzi female upper limb entheses is slightly different from 

those of other populations, in which is mainly due to the absence of the 

clavicles.  

In the lower limbs, the five highest ranking entheses are homogenous 

across the seven female subsamples (Table 6.7). The ranks of the gluteus 

maximus, vastus medialis and soleus are relatively high in the seven female 

groups, among which the vastus medialis ranks first in the Jiangjialiang, 

Jinggouzi, Tuchengzi, Shenyang and Sha Ling females. In addition, the 

medial gastrocnemius is ranked highly in five out seven populations (the 

Jiangjialiang, Neiyangyuan, Tuchengzi, Lamadong and Sha Ling). The 

semimembranosus is among the five lowest ranking lower limb entheses 

shared by all female groups (Table 6.7). It is followed by the vastus lateralis 

and patellar ligament, which have relatively low scores in six out of seven 

populations and the vastus intermedius, which exhibits a low rank in five out 

of seven populations. Although the vastus intermedius generally shows a low 

rank among the Holocene females, it ranks fourth in the Jinggouzi females. It 

is noteworthy that the rank of the quadriceps tendon is inconsistent between 

the seven female groups. It is one of the five highest ranking lower limb 

entheses in the Neiyangyuan and Sha Ling females, while it has a relatively 

low rank in the Jinggouzi, Lamadong and Shenyang females.  
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Although the rank orders of the upper and lower limb entheses between 

the seven female groups are relatively homogenous, the disaggregated 

scores of seven out of 26 upper limb entheses (Kruskal-Wallis; p<0.001) and 

six out of 14 lower limb entheses (Kruskal-Wallis; p<0.001) differ significantly 

(Tables 6.6; 6.7). With the exception of the teres major and supinator(o), the 

disaggregated scores of eleven upper and lower limb entheses show 

significant differences in post hoc pairwise comparisons (see Tables A6.8; 

A6.9 in Appendix C). It is noteworthy some populations differ significantly in 

disaggregated scores of several relatively highly ranked entheses such as the 

pectoralis major, gluteus maximus, vastus medialis and soleus. For instance, 

the Jinggouzi, Tuchengzi and Sha Ling females have significantly greater 

disaggregated scores in the pectoralis major than the Jiangjialiang females 

(adjusted p<0.001) and the Tuchengzi females show significantly higher 

pectoralis major score than the Neiyangyuan and Lamadong females 

(adjusted p=0.034-0.036).  

In the lower limbs, the Sha Ling females differ significantly from the 

Jiangjialiang, Neiyangyuan and Lamadong females in the disaggregated 

score of the gluteus maximus (adjusted p<0.001) (see Table A6.9 in Appendix 

C). It is worth noting that except the Lamadong population the Shenyang 

females do not differ significantly from other female groups in the 

disaggregated scores of any entheses. Conversely, the disaggregated scores 

of the Sha Ling females appear to be relatively distinct from those of the 

Jiangjialiang, Neiyangyuan, Jinggouzi and Lamadong females. Overall, the 

seven female subsamples show more significant differences in the upper limb 

disaggregated scores. 
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Males 

The ten highest ranking upper limb entheses show minimal variation across 

males of the seven populations. The costoclavicular ligament, conoid ligament, 

teres major, pectoralis major and deltoideus rank highly among all male 

groups, of which the rank of the costoclavicular ligament is of particularly high 

(1st or 2nd) in all populations (Table 6.8). In addition, the supraspinatus and 

pronator quadratus(o) rank highly in six out of seven populations. These are 

followed by the extensor carpi radialis longus and biceps brachii, which show 

relatively high ranks in four out of seven populations. Similarly, there is no 

marked difference in the five lowest ranking upper limb entheses between the 

seven male groups (Table 6.8). All male groups exhibit relatively low ranks in 

the pronator quadratus and teres minor. They are followed by the latissimus 

dorsi which ranks low in five out of seven populations. Inter-population 

differences in rank are observed in the infraspinatus, extensors(o), brachialis 

and biceps brachii. The ranks of infraspinatus and extensors(o) are generally 

low in most populations, while these locations rank eighth among the 

Jinggouzi and Shenyang males, respectively. Likewise for the brachialis and 

biceps brachii, most male groups show high or moderate ranks in these 

entheses, whereas the Shenyang and Sha Ling males have a relatively low 

rank in the brachialis and the Shenyang males have a low rank in the biceps 

brachii.  

For the lower limb entheses, the variation in rank is not great across the 

seven male groups. Among the five highest ranking lower limb entheses, the 

vastus medialis ranks highly in all populations and ranks first among the 

Neiyangyuan, Jinggouzi and Shenyang males (Table 6.9). Six out of seven 

populations show relatively high ranks in the medial gastrocnemius, which 

ranks first in four of them. It is followed by the gluteus maximus and the 

soleus, which rank highly in five out of seven populations. The vastus lateralis 

and semimembranosus of all males are amongst the five lowest ranking lower 

limb entheses (Table 6.9). Although six out of seven populations demonstrate 

a relatively low rank in the vastus intermedius, it ranks second among the 

Jinggouzi males. Discrepancies in rank between populations are also seen in 

the gluteus minimus, gluteus medius and quadriceps tendon. 
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Table 6.8 Summary of mean disaggregated scores and ranks for the upper limb 

entheses by time period/population (males) (cont’d) 

Entheses 
Jiangjialiang  Neiyangyuan 

n  ̅ rank  n  ̅ rank 

C: Costoclavicular ligament 15  2.77  1  17  3.00  1 

C: Trapezoid ligament 15  1.63  10  18  1.56  14 

C: Conoid ligament 17  2.26  2  20  2.38  5 

S: Triceps brachii (o) 14  2.18  3  21  2.43  4 

S: Trapezius 10  1.10  20  14  1.79  9.5 

H: Supraspinatus 12  1.83  6  15  1.60  13 

H: Infraspinatus 10  1.25  17  15  1.37  20 

H: Subscapularis 12  1.08  21  17  1.24  23 

H: Teres minor 9  1.00  23  16  1.06  26 

H: Latissimus dorsi 15  0.97  24  18  1.11  24 

H: Teres major 18  2.06  5  20  2.60  3 

H: Pectoralis major 19  2.08  4  20  2.83  2 

H: Deltoideus 20  1.75  8  21  2.26  7 

H: Brachioradialis (o) 18  1.19  19  21  1.43  18 

H: Extensor carpi radialis longus 13  1.81  7  20  1.55  15 

H: Flexors (o) 14  1.43  15  16  1.34  21 

H: Extensors (o) 14  0.57  26  20  1.30  22 

U: Brachialis 18  1.44  14  21  1.71  12 

U: Triceps brachii  10  1.45  12.5  20  1.45  17 

U: Supinator (o) 16  1.56  11  21  1.38  19 

U: Anconeus 11  1.23  18  19  1.47  16 

U: Pronator quadratus (o) 15  1.70  9  16  1.75  11 

R: Biceps brachii 20  1.45  12.5  21  1.81  8 

R: Pronator teres 19  1.42  16  21  2.36  6 

R: Pronator quadratus 11  1.05  22  17  1.09  25 

R: Brachioradialis 5  0.60  25  12  1.79  9.5 

Abbreviations: C, clavicle; H, humerus; U, ulna; R, radius; (o), origin site;  ̅, mean 

disaggregated score; n, number of individuals; rank, the ten highest scores are in red 

font and the five lowest scores are in blue font 
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Table 6.8 continued 

Entheses 
Jinggouzi  Tuchengzi 

n  ̅ rank  n  ̅ rank 

C: Costoclavicular ligament 9  4.17  1  6  2.83  2 

C: Trapezoid ligament 9  1.28  20  6  2.33  4 

C: Conoid ligament 9  1.94  9  6  2.17  7 

S: Triceps brachii (o) 11  1.50  12  0  / / 

S: Trapezius 5  1.40  16  0  / / 

H: Supraspinatus 9  2.67  2.5  25  2.12  8 

H: Infraspinatus 8  2.00  8  23  1.37  21 

H: Subscapularis 10  1.35  19  29  1.45  17 

H: Teres minor 7  1.00  24.5  23  1.13  23 

H: Latissimus dorsi 2  1.00  24.5  31  1.42  18 

H: Teres major 9  2.17  4  35  2.73  3 

H: Pectoralis major 12  2.67  2.5  33  2.86  1 

H: Deltoideus 12  2.13  6  34  2.19  6 

H: Brachioradialis (o) 12  1.42  13.5  34  1.56  16 

H: Extensor carpi radialis longus 11  2.14  5  33  1.82  12 

H: Flexors (o) 11  1.36  17.5  25  1.30  22 

H: Extensors (o) 11  1.27  21  30  1.40  19.5 

U: Brachialis 12  1.92  10  22  1.70  13 

U: Triceps brachii  10  0.85  26  20  1.40  19.5 

U: Supinator (o) 13  1.77  11  22  1.68  14 

U: Anconeus 11  1.41  15  20  1.60  15 

U: Pronator quadratus (o) 13  2.08  7  22  2.20  5 

R: Biceps brachii 12  1.42  13.5  26  2.08  9 

R: Pronator teres 11  1.36  17.5  25  2.04  10 

R: Pronator quadratus 7  1.14  23  19  1.00  24 

R: Brachioradialis 9  1.17  22  16  1.94  11 

Abbreviations: C, clavicle; H, humerus; U, ulna; R, radius; (o), origin site;  ̅, mean 

disaggregated score; n, number of individuals; rank, the ten highest scores are in red 

font and the five lowest scores are in blue font; /, no data 
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Table 6.8 continued 

Entheses 
Lamadong  Shenyang 

n  ̅ rank  n  ̅ rank 

C: Costoclavicular ligament 7  3.57  1  9  2.56  2 

C: Trapezoid ligament 6  1.67  10.5  8  1.56  13.5 

C: Conoid ligament 7  2.50  3  9  2.00  5.5 

S: Triceps brachii (o) 6  1.58  12  7  1.64  12 

S: Trapezius 0  / /  2  2.25  4 

H: Supraspinatus 39  1.96  5  10  2.00  5.5 

H: Infraspinatus 36  1.22  20  9  1.06  23 

H: Subscapularis 36  1.23  18.5  8  1.56  13.5 

H: Teres minor 29  1.07  24  6  1.00  25 

H: Latissimus dorsi 41  1.17  23  12  1.00  25 

H: Teres major 43  2.43  4  12  2.33  3 

H: Pectoralis major 45  2.60  2  12  2.63  1 

H: Deltoideus 44  1.93  6  12  1.79  9 

H: Brachioradialis (o) 39  1.21  21  11  1.41  18 

H: Extensor carpi radialis longus 37  1.73  8  10  1.50  16 

H: Flexors (o) 25  1.46  16  6  1.25  21 

H: Extensors (o) 33  1.18  22  8  1.81  8 

U: Brachialis 35  1.47  15  13  1.31  20 

U: Triceps brachii  21  1.40  17  8  1.50  16 

U: Supinator (o) 33  1.68  9  13  1.69  10 

U: Anconeus 19  1.53  13.5  9  1.50  16 

U: Pronator quadratus (o) 29  1.67  10.5  11  1.82  7 

R: Biceps brachii 35  1.90  7  10  1.35  19 

R: Pronator teres 34  1.53  13.5  11  1.68  11 

R: Pronator quadratus 29  1.02  25  13  1.00  25 

R: Brachioradialis 15  1.23  18.5  5  1.20  22 

Abbreviations: C, clavicle; H, humerus; U, ulna; R, radius; (o), origin site;  ̅, mean 

disaggregated score; n, number of individuals; rank, the ten highest scores are in red 

font and the five lowest scores are in blue font; /, no data 
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Table 6.8 continued 

Entheses 
Sha Ling  

Significance* 
n  ̅ rank  

C: Costoclavicular ligament 41 2.91 1   n.s.  

C: Trapezoid ligament 40 1.36 16   n.s.  

C: Conoid ligament 42 2.00 4   n.s.  

S: Triceps brachii (o) 42 1.49 12   <0.001  

S: Trapezius 33 1.64 10   n.s.  

H: Supraspinatus 34 1.99 5   n.s.  

H: Infraspinatus 31 1.00 25   n.s.  

H: Subscapularis 33 1.26 20   n.s.  

H: Teres minor 32 1.16 22   n.s.  

H: Latissimus dorsi 38 1.21 21   0.009  

H: Teres major 41 1.80 6   <0.001  

H: Pectoralis major 42 2.49 2   <0.001  

H: Deltoideus 42 1.77 7   0.001  

H: Brachioradialis (o) 40 1.10 24   0.001  

H: Extensor carpi radialis longus 38 2.08 3   n.s.  

H: Flexors (o) 40 1.44 15   n.s.  

H: Extensors (o) 37 1.31 19   <0.001  

U: Brachialis 42 1.13 23   <0.001  

U: Triceps brachii  37 1.34 17.5   n.s.  

U: Supinator (o) 41 1.45 13.5   n.s.  

U: Anconeus 35 1.34 17.5   n.s.  

U: Pronator quadratus (o) 41 1.65 9   0.008  

R: Biceps brachii 42 1.73 8   0.001  

R: Pronator teres 40 1.45 13.5   <0.001  

R: Pronator quadratus 40 0.98 26   n.s.  

R: Brachioradialis 22 1.50 11   0.010  

Abbreviations: C, clavicle; H, humerus; U, ulna; R, radius; (o), origin site;  ̅, mean 

disaggregated score; n, number of individuals; rank, the ten highest scores are in red 

font and the five lowest scores are in blue font; *, Significance is based upon 

Kruskal-Wallis with =0.05; n.s., non-significant 
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Despite having homogenous rank orders, males from the seven 

populations differ significantly in the disaggregated scores of 12 out of 26 

upper limb entheses (Kruskal Wallis; p<0.001) and 11 out of 14 lower limb 

entheses (Kruskal Wallis; p<0.001) (Tables 6.8; 6.9). The teres major, 

pectoralis major and deltoideus, although rank highly in all male groups, show 

significant differences between some populations in disaggregated scores. 

For instance, the Neiyangyuan, Tuchengzi and Lamadong males have 

significantly greater scores than the Sha Ling males in the teres major 

(adjusted p<0.001) and than the Jiangjialiang males in the pectoralis major 

(adjusted p<0.001) (see Tables A6.10 in Appendix C). Additionally, the 

Neiyangyuan males exhibit significantly larger scores than the Jiangjialiang 

and Sha Ling males for the deltoideus (adjusted p=0.013-0.035) and those of 

the Tuchengzi males are higher than the deltoideus scores of the Sha Ling 

males (adjusted p=0.032).  

Similar patterns are observed in some lower limb entheses. The 

Tuchengzi, Lamadong and Sha Ling males show relatively high ranks in the 

vastus medialis; however, the disaggregated scores of the Tuchengzi males is 

significantly higher than those of the Lamadong and Sha Ling males (adjusted 

p=0.002) (see Tables A6.11 in Appendix C). Likewise, while all male groups 

have a low-ranked semimembranosus, the scores of the Neiyangyuan males 

are significantly greater than those of the Jinggouzi and Sha Ling males 

(adjusted p= 0.017-0.040). In contrast, some populations do not differ 

significantly in the disaggregated scores of any entheses, for instance, the 

Jiangjialiang and Jinggouzi males, the Neiyangyuan and Tuchengzi males 

and the Shenyang and Sha Ling males. Among the seven male groups, the 

Shenyang males have the fewest significant differences from males of other 

populations. Conversely, the differences between the Tuchengzi and 

Jiangjialiang males and between the Tuchengzi and Sha Ling males are 

relatively marked. The Tuchengzi males differ significantly from the 

Jiangjialiang and Sha Ling males in the disaggregated scores of six (five from 

the upper limb and one from the lower limb) and eight entheses (six from the 

upper limb and two from the lower limb), respectively. Similar to their female 

counterparts, most significant differences between the seven male 

subsamples are in the upper limb disaggregated scores. 
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6.4.5 Intra-population sex differences in entheseal rank ordering 

The rank orders of the upper and lower limb entheses for the seven female 

and male groups are presented in Tables 6.6-6.9. Nine out of the ten highest 

ranking upper limb entheses are common to the Jiangjialiang females and 

males (Tables 6.6; 6.8). For the five lowest ranking upper limb entheses, the 

Jiangjialiang females and males have four in common. In general, with the 

exception of the brachioradialis(o) (ranked 13.5th in females, 19th in males) 

and pronator teres (10th in females, 16th in males), the ranks of all upper limb 

entheses do not show great sexual differences. In the lower limbs (Tables 6.7; 

6.9), the vastus medialis, medial gastrocnemius and soleus are amongst the 

five highest ranking entheses shared by the Jiangjialiang females and males 

and four out of five lowest ranking (vastus lateralis, vastus intermedius, 

semimembranosus and patellar ligament) lower limb entheses are common to 

the sexes. Some lower limb entheses show relatively large differences in rank 

between females and males, for instance, the gluteus minimus, quadriceps 

tendon and achilles tendon. 

In the upper limbs of the Neiyangyuan population (Tables 6.6; 6.8), 

females and males have six out of the ten highest ranking entheses and two 

out of five lowest ranking entheses in common. However, in spite of being one 

of the ten highest ranking upper limb entheses, the rank of the costoclavicular 

ligament differ considerably between the Neiyangyuan females and males 

(ranked 8th in females, 1st in males). Sex differences in ranks are also 

observed in the trapezoid ligament, triceps brachii(o), supraspinatus, 

infraspinatus, supinator(o), anconeus, biceps brachii and brachioradialis. For 

lower limb entheses (Tables 6.7; 6.9), the Neiyangyuan females and males 

share four and three out of the five highest ranking and lowest ranking 

entheses, respectively. The ranks of all lower limb entheses between the 

sexes show minimal differences, except for the gluteus minimus (ranked 8th in 

females, 12th in males) and gluteus maximus (2nd in females, 7th in males), 

The Jinggouzi females and males share seven out of the ten highest 

ranking upper limb and three out of the five lowest ranking upper limb 

entheses (Tables 6.6; 6.8). The ranks of some upper limb entheses show 

marked sex differences, for instance, the trapezoid ligament, trapezius, 
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supraspinatus, extensor carpi radialis longus, extensors(o), brachialis and 

brachioradialis. In the lower limb entheses (Tables 6.7; 6.9), the Jinggouzi 

females and males have four out of the five highest ranking entheses and 

three out of the five lowest ranking entheses in commons. Of the five highest 

ranking lower limb entheses, the vastus medialis (rank 1st) and soleus (3rd) 

exhibit the same ranks in both sexes. In general, except for the achilles 

tendon (ranked 5th in females, 9th in males), the Jinggouzi females and males 

display similar ranks in all lower limb entheses. 

The Tuchengzi population shows a reverse pattern from the populations 

discussed previously. Five out of the ten highest ranking upper limb entheses 

are shared by females and males (Tables 6.6; 6.8), while three out of the five 

lowest ranking entheses are the same in both sexes. The Tuchengzi females 

and males show marked differences in the ranks of several upper limb 

entheses, for instance, the infraspinatus, extensor carpi radialis longus, 

flexors(o), extensors(o) and brachioradialis. In contrast, the supraspinatus, 

teres major and pectoralis major have similar ranks in both sexes. Sexual 

differences in the ranks of the upper limb entheses may have partially been 

attributable to the absence of the clavicles and scapulae among females. As 

opposed to the patterns seen in the upper limb entheses, the rank ordering of 

the lower limb entheses between the Tuchengzi females and males are 

relatively homogenous (Tables 6.7; 6.9). Females and males have four out of 

the five highest ranking and lowest ranking lower limb entheses in common. 

With the exception of the gluteus medius (9th in females, 5th in males), all 

lower limb entheses show similar ranks between the sexes.  

The Lamadong females and males have seven out of the ten highest 

ranking upper limb entheses in common, whereas they only share one out of 

the five lowest ranking upper limb entheses (Tables 6.6; 6.8). The Lamadong 

females and males demonstrate pronounced differences in the ranks of some 

upper limb entheses such as the trapezoid ligament, infraspinatus, teres 

minor, extensor carpi radialis longus, extensors(o) and brachioradialis. For the 

lower limbs (Tables 6.7; 6.9), four out of the five highest ranking entheses and 

three out of the five lowest ranking entheses are shared by the Lamadong 

females and males. Sex differences in ranks for the lower limb entheses are 

minimal except for the vastus intermedius (ranked 7.5th in females, 14th in 
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males) and quadriceps tendon (13th in females, 3rd in males). 

Among the Shenyang population, seven out of the ten highest ranking 

entheses and three out of the five lowest ranking entheses of the upper limbs 

are common to females and males (Tables 6.6; 6.8). Nonetheless, the sexes 

show marked rank differences in several upper limb entheses, for example, 

the trapezius, subscapularis, teres minor, teres major, extensor carpi radialis 

longus, extensor(o), triceps brachii and brachioradialis. It is worth noting that 

the Shenyang females and males have the same ranks in the triceps 

brachii(o), infraspinatus, latissimus dorsi, and pectoralis major. The rank 

orders of the lower limb entheses are similar between the Shenyang females 

and males (Tables 6.7; 6.9). The sexes have four out of the five highest 

ranking and lowest ranking lower limb entheses in common. Of the five 

highest ranking entheses, the gluteus maximus and vastus medialis display 

the same ranks in the Shenyang females and males. Except for the achilles 

tendon, both sexes show similar ranks in all lower limb entheses.  

The Sha Ling females and males have nine out of the ten highest ranking 

upper limb entheses in common, while they only share two out of the five 

lowest ranking upper limb entheses (Tables 6.6; 6.8). The ranks of some 

upper limb entheses show marked sex differences, for instance, the 

extensor(o), pronator teres and brachioradialis. In contrast, the Sha Ling 

females and males do not exhibit differences in the ranks of the teres major, 

deltoideus and biceps brachii. For the lower limbs (Tables 6.7; 6.9), three out 

of the five highest ranking and lowest ranking entheses are the same in the 

Sha Ling females and males. Overall, the ranks of all lower limb entheses are 

not marked between the sexes. 
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6.4.6 Intra-population sex differences in patterns of asymmetry 

This section utilises disaggregated data to investigate whether females and 

males within the same population show discrepancies in the patterns of 

asymmetry in upper and lower limb entheses. In order to reduce the bias 

resulting from small sample size, only entheseal scores representing five or 

more individuals were discussed. However, the pitfall is that the number of 

entheses which is available for observation is limited in certain populations 

such as the Jinggouzi and Tuchengzi populations, which may conceal some 

interesting trends and patterns. 

Among the Jiangjialiang females, of the 13 upper limb entheses which are 

available for observation23 , four are right dominant, seven are left dominant 

and two do not show a clear directional asymmetry (Table 6.10a). Among 

males, 7 out of 19 upper limb entheses exhibit an asymmetric bias to the right, 

ten are left-biased and two do not show side dominance. The scores of the 

right and left costoclavicular ligament (p=0.046) and pectoralis major (p=0.02) 

differ significantly among males. In the lower limbs, the Jiangjialiang females 

show lateralisation in four out of six (two are right-biased, two are left-biased) 

entheses and the remaining entheses do not have a clear asymmetric bias 

(Table 6.10b). Among males, four out of eight lower limb entheses show left-

side dominance and no side dominance, respectively. The Jiangjialiang 

females and males show the same side dominance in 10 out of 13 upper limb 

entheses, whereas only two out of six lower limb entheses demonstrate 

similar directional asymmetry between the sexes (Tables 6.10a-b). When only 

the highest ranking 24  upper and lower limb entheses are considered, the 

Jiangjialiang females and males show similar side dominance in the 

costoclavicular ligament, triceps brachii(o), teres major, pectoralis major, 

deltoideus, pronator quadratus(o) and vastus medialis. It is worth noting that 

of the nine highest-ranking entheses which are common to both sexes, six 

and eight entheses show a left bias among females and males, respectively.  

                                            
23 Entheses with less than five individuals are not discussed; therefore, the total number of 

entheses varies in different populations. 
24 Only the highest ranking entheses which are shared by females and males were taken into 

account. 
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Table 6.10a Summary of bilateral asymmetry of the upper limb disaggregated scores 

by time period/population and sex 

 
Jiangjialiang 

 
Neiyangyuan 

Enthesis Females 
 

Males 
 

Females 
 

Males 

Upper Limb n BA 
 

n BA 
 

n BA 
 

n BA 

C: Costoclavicular ligament 10a 114 
 

13 173* 
 

12a 84 
 

15 92 

C: Trapezoid ligament 5 113 
 

13 105 
 

12 106 
 

14 114 

C: Conoid ligament 8a 81 
 

12 111 
 

14a 101 
 

15 101 

S: Triceps brachii (o) 5a 130 
 

10 112 
 

12 122 
 

13 90* 

S: Trapezius 1 / 
 

2 100 
 

6 94 
 

6 100 

H: Supraspinatus 3 133 
 

4 100 
 

5 100 
 

11 102 

H: Infraspinatus 2 150 
 

4 63 
 

3 58 
 

11 145 

H: Subscapularis 2 75 
 

7 89 
 

9 106 
 

11 105 

H: Teres minor 1 / 
 

1 100 
 

4 100 
 

9 100 

H: Latissimus dorsi 3 100 
 

4 100 
 

6 100 
 

14 118 

H: Teres Major 5a 110 
 

12 108 
 

13a 110 
 

16 102 

H: Pectoralis major 11a 95 
 

13 77* 
 

13a 104 
 

18 104 

H: Deltoideus 10a 115 
 

13 104 
 

19a 103 
 

20 112 

H: Brachioradialis (o) 5 100 
 

10 100 
 

12 100 
 

16 97 

H: Extensor carpi radialis longus 4 88 
 

6 117 
 

9 122 
 

15 118 

H: Flexors (o) 4 88 
 

6 83 
 

5 130 
 

9 94 

H: Extensors (o) 1 / 
 

5 100 
 

3 133 
 

12 93 

U: Brachialis 8 100 
 

13 96 
 

14 101 
 

19 89* 

U: Triceps brachii  2 100 
 

4 88 
 

4 67 
 

17 94 

U: Supinator (o) 5 90 
 

11 91 
 

12 90 
 

19 92 

U: Anconeus 2 100 
 

5 90 
 

4 100 
 

16 82* 

U: Pronator quadratus (o) 6a 117 
 

10 120 
 

8 119 
 

10 102 

R: Biceps brachii 7 86 
 

11 95 
 

12 104 
 

17 93 

R: Pronator teres 5 130 
 

12 150 
 

8a 92 
 

13 92 

R: Pronator quadratus 2 150 
 

7 114 
 

7 100 
 

10 110 

R: Brachioradialis 2 100 
 

1 / 
 

3 133 
 

4 113 

n, number of individuals with paired elements; BA, bilateral asymmetry (values less 

than 100 indicate right dominance, values more than 100 indicate left dominance); /, no 

data; a, the highest ranking entheses shared by both sexes; Abbreviation: C, clavicle; 

H, humerus; U, ulna; R, radius; (o), origin site; *, right and left side difference is based 

upon Wilcoxon Signed Rank test, significant at 0.05 level 
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Table 6.10b Summary of bilateral asymmetry of the lower limb disaggregated scores 

by time period/population and sex 

 
Jiangjialiang 

 
Neiyangyuan 

Enthesis Females 
 

Males 
 

Females 
 

Males 

Lower limb n BA 
 

n BA 
 

n BA 
 

n BA 

F: Gluteus minimus 3 133 
 

5 100 
 

5 160 
 

10 115 

F: Gluteus medius 1 / 
 

3 100 
 

6 117 
 

11 114 

F: Gluteus maximus 8 138 
 
10 110 

 
16 114 

 
18 114 

F: Vastus lateralis 1 100 
 

4 100 
 

6 100 
 

8 113 

F: Vastus medialis 9a 144 
 
13 108 

 
13a 104 

 
20 104 

F: Vastus intermedius 7 93 
 
10 100 

 
16 100 

 
16 103 

F: Ilipsoas 6 100 
 

6 108 
 

10 95 
 

10 125 

F: Lateral gastrocnemius 1 / 
 

2 100 
 

7 114 
 

15 117 

F: Medial gastrocnemius 1 / 
 

3 83 
 

15a 103 
 

17 155 

T: Semimembranosus 4 100 
 

0 / 
 

3 100 
 

8 98 

T: Patellar ligament 6 92 
 

9 100 
 

10 98 
 

13 110 

T: Soleus 10a 100 
 
13 115 

 
15a 117 

 
20 100 

P: Quadriceps tendon 0 / 
 

1 / 
 

3 117 
 

9 96 

Ca: Achilles tendon 4 88 
 

8 100 
 

7 90 
 

12 104 

n, number of individuals with paired elements; BA, bilateral asymmetry (values less 

than 100 indicate right dominance, values more than 100 indicate left dominance); /, 

no data; a, the highest ranking entheses shared by both sexes; Abbreviation: F, 

femur; T, tibia; P, patella; Ca, calcaneus; (o), origin site; *, right and left side 

difference is based upon Wilcoxon Signed Rank test, significant at 0.05 level 

 

 

More than half (12/20) of the upper limb entheses among the 

Neiyangyuan females are left-biased and four out of 20 entheses show a right 

dominance and no side bias, respectively (Table 6.10a). Among males, 

except for the trapezius and teres minor, all upper limb entheses demonstrate 

directional asymmetry: 12 are left dominant and 11 are right dominant. The 

scores of the right and left triceps brachii (o) (p=0.046), brachialis (p=0.046) 

and anconeus (p=0.014) show significant differences among males. The 

pattern in the lower limbs is similar to that in the upper limbs, in that most 

entheses show a left bias. Seven out of 12 and eleven out of 14 lower limb 
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entheses are left-side dominant among the Neiyangyuan females and males, 

respectively (Table 6.10b). The side dominance of 11 out of 20 upper limb 

entheses and six out of 12 lower limb entheses are similar between the 

Neiyangyuan females and males (Tables 6.10a-b). Of the nine highest-

ranking upper limb entheses shared by the Neiyangyuan females and males, 

eight exhibit similar side dominance between the sexes. It is worth noting that 

seven and six out of the nine highest-ranking entheses show a left-side 

dominance among females and males, respectively. 

The Jinggouzi females show side dominance in 13 out of 18 upper limb 

entheses, of which six are right-biased and seven are left-biased (Table 

6.11a). For males, five out of 17 upper limb entheses display an asymmetric 

bias to the right, while eight are left dominant. In the lower limbs, of the four 

entheses which are available for observation among the Jinggouzi females, 

two has a left bias and two do not show a clear side dominance. (Table 6.11b) 

Among males, three out of five lower limb entheses are left-biased, while two 

demonstrate a right bias. The scores of the male soleus show a significant 

side difference (p=0.014). Overall the Jinggouzi females and males have little 

similarity in lateralisation: four out of 18 upper limb entheses and one out of 

four lower limb entheses share similar side dominance in both sexes (Tables 

6.11a-b). Similarly, among the highest-ranking entheses, the asymmetric bias 

of the conoid ligament, pectoralis major, deltoideus, and soleus differ between 

females and males. Three and five out of the seven highest-ranking entheses 

show an asymmetric bias to the left among females and males, respectively. 
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Table 6.11a Summary of bilateral asymmetry of the upper limb disaggregated scores 

by time period/population and sex 

 
Jinggouzi 

 
Tuchengzi 

Enthesis Females 
 

Males 
 

Females 
 

Males 

Upper Limb n BA 
 

n BA 
 

n BA 
 

n BA 

C: Costoclavicular ligament 5a  140   7  112   0  /  0  / 

C: Trapezoid ligament 4  88   7  121   0  /  0  / 

C: Conoid ligament 5a  83   7  114   0  /  0  / 

S: Triceps brachii (o) 5  97   5  80   0  /  0  / 

S: Trapezius 4  117   4  100   0  /  0  / 

H: Supraspinatus 9  89   6  114   4  81   7  88  

H: Infraspinatus 7  81   1  100   4  125   4  80  

H: Subscapularis 5  100   1  50   7  100   13  108  

H: Teres minor 4  100   2  100   6  92   9  89  

H: Latissimus dorsi 0  /  0  /  8  113   17  93  

H: Teres Major 5  100   4  92   9a  100   21  108  

H: Pectoralis major 13a  90   8  100   9a  106   21  94  

H: Deltoideus 15a  100   9  106   9a  106   21  107*  

H: Brachioradialis (o) 11  114   8  88   9  111   21  110  

H: Extensor carpi radialis longus 6  133   4  88   7  93   19  91  

H: Flexors (o) 6  108   6  100   2  100   8  94*  

H: Extensors (o) 5  100   5  100   4  88   13  85  

U: Brachialis 9  111   9  100   2  100   12  117  

U: Triceps brachii  5  100   7  90   2  100   7  90  

U: Supinator (o) 10  95   11  102   2  100   12  117  

U: Anconeus 3  100   8  94   3  83   7  100  

U: Pronator quadratus (o) 9a  133   11  102   3  133   12  92  

R: Biceps brachii 5  120   9  109   3  100   10  100  

R: Pronator teres 1  /  6  86   3  100   9  93  

R: Pronator quadratus 2  100   3  100   3  83   7  100  

R: Brachioradialis 0  /  2  100   2  75   5  110  

n, number of individuals with paired elements; BA, bilateral asymmetry (values less 

than 100 indicate right dominance, values more than 100 indicate left dominance); /, 

no data; a, the highest ranking entheses shared by both sexes; Abbreviation: C, 

clavicle; H, humerus; U, ulna; R, radius; (o), origin site; *, right and left side difference 

is based upon Wilcoxon Signed Rank test, significant at 0.05 level 
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Table 6.11b Summary of bilateral asymmetry of the lower limb disaggregated scores 

by time period/population and sex 

 
Jinggouzi 

 
Tuchengzi 

Enthesis Females 
 

Males 
 

Females 
 

Males 

Lower limb n BA 
 

n BA 
 

n BA 
 

n BA 

F: Gluteus minimus 3  100   2  75   5  100   14  114  

F: Gluteus medius 3  100   3  100   4  100   15  120  

F: Gluteus maximus 4  100   5  110   8a  100   22  100  

F: Vastus lateralis 0  /  0  /  2  100   6  92  

F: Vastus medialis 2  125   4  96   8a  88   22  93  

F: Vastus intermedius 5a  113   5  130   8  106   19  103  

F: Ilipsoas 2  100   4  100   6  100   20  96  

F: Lateral gastrocnemius 2  100   4  125   4  125   14  100  

F: Medial gastrocnemius 4  100   2  67   8a  94   20  127  

T: Semimembranosus 2  100   4  100   1  100   2  100  

T: Patellar ligament 7  100   8  113   1  50   4  100  

T: Soleus 11a  100   10  73*   1  100   5  90  

P: Quadriceps tendon 2  150   2  100   0  /  0  / 

Ca: Achilles tendon 6  108   7  95   0  /  0  / 

n, number of individuals with paired elements; BA, bilateral asymmetry (values less 

than 100 indicate right dominance, values more than 100 indicate left dominance); /, 

no data; a, the highest ranking entheses shared by both sexes; Abbreviation: F, 

femur; T, tibia; P, patella; Ca, calcaneus; (o), origin site; *, right and left side 

difference is based upon Wilcoxon Signed Rank test, significant at 0.05 level 

 

 

Among the Tuchengzi females, two and four out of eight upper limb 

entheses show a right bias and left bias, respectively (Table 6.11a). The 

Tuchengzi males demonstrate a right side bias in 10 out of 20 upper limb 

entheses and a left bias in seven out of 20 entheses. The extensor carpi 

radialis longus (p=0.046) and extensors(o) (p=0.046) of the males differ 

significantly in the right and left disaggregated scores. In the lower limbs of 

the Tuchengzi females, three out of six entheses have no clear side 

dominance, two are right-biased and one shows an asymmetric bias to the left 

(Table 6.11b). Among the Tuchengzi males, four out of ten lower limb 
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entheses exhibit a right bias and left bias, respectively. The Tuchengzi 

females and males show different side dominance in four out of eight upper 

limb entheses and in three out of six lower limb entheses (Tables 6.11a-b). 

Nevertheless, the highest-ranking entheses do not demonstrate a distinct sex 

difference as seen above. Of the six highest-ranking entheses shared by the 

Tuchengzi females and males, the deltoideus, gluteus maximus and vastus 

medialis have similar side dominance in both sexes. Four out of the six 

highest-ranking entheses show left dominance among females and males. 

The Lamadong females have a right bias in 7 out of 17 upper limb 

entheses, and a left bias in eight entheses (Table 6.12a). Of the upper limb 

entheses which demonstrate lateralisation, teres major shows a significant 

difference in the right and left scores (p=0.030). Conversely, 13 out of 20 

upper limb entheses among males are left-biased and five have no side 

dominance. Of the two upper limb entheses which are right-biased, the 

latissimus dorsi shows significant differences in the scores between both 

sides (p=0.005). In contrast to the patterns in the upper limb entheses, 

lateralisation of the lower limb entheses are relatively consistent between 

females and males (Table 6.12b). More than half of the entheses in both 

sexes show left-biased asymmetry (6/12 among females and 8/12 among 

males). Right-biased lower limb entheses are only seen in the female vastus 

medialis and vastus intermedius and the male soleus. The right and left 

scores of the female vastus medialis differ significantly (p=0.011). The 

disparities between the Lamadong females and males are relatively marked: 

11 out of 17 upper limb entheses and seven out of 12 lower limb entheses 

show different side dominance (Tables 6.12a-b). For the highest-ranking 

entheses, however, the females and males display a similar asymmetric bias 

in five out of eight (the pectoralis major, deltoideus, pronator quadratus(o), 

gluteus maximus and medial gastrocnemius). It is noteworthy that while the 

Lamadong females have a left-side directional asymmetry in five out of the 

eight highest-ranking entheses, males show left dominance in all the highest-

ranking entheses. 
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Table 6.12a Summary of bilateral asymmetry of the upper limb disaggregated 

scores by time period/population and sex 

 
Lamadong 

 
Shenyang 

Enthesis Females 
 

Males 
 

Females 
 

Males 

Upper Limb n BA 
 

n BA 
 

n BA 
 

n BA 

C: Costoclavicular ligament 2 138  1 /  8a 130  7 124 

C: Trapezoid ligament 1 /  1 /  7 114  5 90 

C: Conoid ligament 2 67  1 67  8a 75*  5 113 

S: Triceps brachii (o) 2 83  2 75  6 86  3 89 

S: Trapezius 0 /  0 /  5 90  1 / 

H: Supraspinatus 12a 98  19 121  2 60  1 / 

H: Infraspinatus 9 91  13 100  2 100  1 50 

H: Subscapularis 11 95  21 110  3 67  4 106 

H: Teres minor 4 88  10 100  2 250  1 / 

H: Latissimus dorsi 16 106  25 84*  6 100  10 100 

H: Teres Major 19a 81*  28 103  7 143  10 93 

H: Pectoralis major 22a 108  31 108  7a 90  8 96 

H: Deltoideus 22a 102  33 104  7a 110  9 111 

H: Brachioradialis (o) 13 108  27 109  6 100  8 113 

H: Extensor carpi radialis longus 11 114  18 109  4 100  6 111 

H: Flexors (o) 5 100  9 100  5 100  2 150 

H: Extensors (o) 9 94  9 100  3 89  4 125 

U: Brachialis 11 95  16 103  6 92  9 106 

U: Triceps brachii  3 100  7 93  5 90  5 110 

U: Supinator (o) 9 94  14 107  6a 92  9 100 

U: Anconeus 2 100  6 108  5 110  5 90 

U: Pronator quadratus (o) 6a 117  12 108  4 104  7 110 

R: Biceps brachii 7 100  15 117  6 100  5 100 

R: Pronator teres 8 106  15 100  5 100  5 130 

R: Pronator quadratus 6 100  12 104  5 90  5 90 

R: Brachioradialis 3 100  4 125  3 100  3 72 

n, number of individuals with paired elements; BA, bilateral asymmetry (values less 

than 100 indicate right dominance, values more than 100 indicate left dominance); /, 

no data; a, the highest ranking entheses shared by both sexes; Abbreviation: C, 

clavicle; H, humerus; U, ulna; R, radius; (o), origin site; *, right and left side difference 

is based upon Wilcoxon Signed Rank test, significant at 0.05 level 
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Table 6.12b Summary of bilateral asymmetry of the lower limb disaggregated scores 

by time period/population and sex 

 
Lamadong 

 
Shenyang 

Enthesis Females 
 

Males 
 

Females 
 

Males 

Lower limb n BA 
 

n BA 
 

n BA 
 

n BA 

F: Gluteus minimus 17 118  19 100  5 67  6 133 

F: Gluteus medius 7 100  13 117  5 120  5 120 

F: Gluteus maximus 26a 102  29 116  8a 113  11 105 

F: Vastus lateralis 12 100  11 100  6 100  7 100 

F: Vastus medialis 32a 90*  32 108  8a 96  10 112 

F: Vastus intermedius 29 99  32 110  8 113  8 100 

F: Ilipsoas 8 106  17 104  8 100  7 82 

F: Lateral gastrocnemius 15 107  14 107  5a 100  5 100 

F: Medial gastrocnemius 33a 144  29 149  8 119  11 98 

T: Semimembranosus 9 100  9 106  3 100  3 100 

T: Patellar ligament 29 103  27 100  5 113  3 100 

T: Soleus 40 100  31 96  6a 100  7 124 

P: Quadriceps tendon 1 /  3 100  1 /  1 / 

Ca: Achilles tendon 3 167  1 /  4 100  1 / 

n, number of individuals with paired elements; BA, bilateral asymmetry (values less 

than 100 indicate right dominance, values more than 100 indicate left dominance); /, 

no data; a, the highest ranking entheses shared by both sexes; Abbreviation: F, 

femur; T, tibia; P, patella; Ca, calcaneus; (o), origin site; *, right and left side 

difference is based upon Wilcoxon Signed Rank test, significant at 0.05 level 

 

 

Among the Shenyang females, eight out of 18 upper limb entheses show 

right dominance and five are left-biased and have no clear side dominance, 

respectively (Table 6.12a). The right and left scores of the female conoid 

ligaments show a marginally significant difference (p=0.046). Among males, 

nine out of 17 upper limb entheses have a left bias and five have a right bias. 

In the lower limbs, while nearly half of the entheses of the Shenyang females 

(5/11) and males (5/10) have left-biased directional asymmetry, two are right-

biased in both sexes (Table 6.12b). The Shenyang females and males show 

different side dominance in nine out of 15 upper limb entheses and six out of 
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10 lower limb entheses (Tables 6.12a-b). Of the nine highest-ranking 

entheses shared by females and males, four (costoclavicular ligament, 

pectoralis major, deltoideus and gluteus maximus) have the same asymmetric 

bias in both sexes. Nearly half (4/9) of the highest-ranking entheses display a 

right dominance among females, whereas six out of the nine highest-ranking 

entheses are left-biased among males. 

The Sha Ling females and males exhibit similar patterns of asymmetry in 

the upper limb entheses (Table 6.13a). The females and males have right 

dominance in eleven and ten out of 26 upper limbs entheses, respectively, 

while 11 entheses exhibit a left-side bias in both sexes. For the lower limbs, 

except the female vastus lateralis, all entheses among the Sha Ling females 

and males are side dominant (Table 6.13b). Half (7/14) of the female lower 

limb entheses are left-biased and six are right biased. In contrast, among 

males, with the exception of the patellar ligament and achilles tendon, all 

lower limb entheses show a left side bias. A significant side difference is 

observed in the scores of female gluteus maximus (p=0.025). The side 

dominance of 19 out of 26 upper limb entheses and seven out of 14 lower 

limb entheses are identical between the Sha Ling females and males (Tables 

6.13a-b). While only the highest-ranking entheses are considered, all 

entheses exhibit the same asymmetric bias in both sexes. It is worth 

mentioning that of the 12 highest-ranking entheses, 11 exhibit a left bias in 

both sexes. 
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Table 6.13a Summary of bilateral asymmetry of the upper limb disaggregated 

scores by time period/population and sex 

 
Sha Ling   

Enthesis Females 
 

Males 
 

   

Upper Limb n BA 
 

n BA 
 

    

C: Costoclavicular ligament 21a  117   35  120        

C: Trapezoid ligament 18  118   31  107        

C: Conoid ligament 24a  104   35  111        

S: Triceps brachii (o) 18  97   29  116        

S: Trapezius 17  97   26  94        

H: Supraspinatus 20a  111   21  110        

H: Infraspinatus 18  97   18  97        

H: Subscapularis 21  101   22  97        

H: Teres minor 20  95   20  95        

H: Latissimus dorsi 24  96   28  96        

H: Teres Major 23a  107   32  102        

H: Pectoralis major 24a  103   31  105        

H: Deltoideus 25a  104   36  106        

H: Brachioradialis (o) 22  105   29  105        

H: Extensor carpi radialis longus 21a  94   27  96        

H: Flexors (o) 15  89   22  100        

H: Extensors (o) 18  100   22  99        

U: Brachialis 26  110   35  97        

U: Triceps brachii  22  96   24  97        

U: Supinator (o) 26  91   32  102        

U: Anconeus 23  96   26  96        

U: Pronator quadratus (o) 23a  118   32  112        

R: Biceps brachii 26a  115   27  105        

R: Pronator teres 24  103   32  104        

R: Pronator quadratus 22  98   27  100        

R: Brachioradialis 12  100   6  100        

n, number of individuals with paired elements; BA, bilateral asymmetry (values less 

than 100 indicate right dominance, values more than 100 indicate left dominance); /, no 

data; a, the highest ranking entheses shared by both sexes; Abbreviation: C, clavicle; 

H, humerus; U, ulna; R, radius; (o), origin site; *, right and left side difference is based 

upon Wilcoxon Signed Rank test, significant at 0.05 level 
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Table 6.13b Summary of bilateral asymmetry of the lower limb disaggregated scores 

by time period/population and sex 

 
Sha Ling 

 
 

Enthesis Females 
 

Males 
 

   

Lower limb n BA 
 

n BA 
 

     

F: Gluteus minimus 16  99   23  118        

F: Gluteus medius 14  118   20  108        

F: Gluteus maximus 25a  110*  38  104        

F: Vastus lateralis 23  100   25  104        

F: Vastus medialis 25a  109   36  109        

F: Vastus intermedius 22  98   23  107        

F: Ilipsoas 17  105   22  105        

F: Lateral gastrocnemius 16  116   24  110        

F: Medial gastrocnemius 22a  103   32  115        

T: Semimembranosus 8  92   11  118        

T: Patellar ligament 24  110   25  97        

T: Soleus 26  97   40  104        

P: Quadriceps tendon 14  98   17  142        

Ca: Achilles tendon 12  89   25  95        

n, number of individuals with paired elements; BA, bilateral asymmetry (values less 

than 100 indicate right dominance, values more than 100 indicate left dominance); /, 

no data; a, the highest ranking entheses shared by both sexes; Abbreviation: F, 

femur; T, tibia; P, patella; Ca, calcaneus; (o), origin site; *, right and left side 

difference is based upon Wilcoxon Signed Rank test, significant at 0.05 level 

6.4.7 Summary 

Hypothesis one: The levels of sexual dimorphism of the populations from  

socio-politically unstable time periods (the Neiyangyuan, Jinggouzi, Tuchengzi 

and Shenyang) will be relatively high due to increases in male entheseal 

scores and minimal changes in female scores. In this context, males from 

these periods are expected to have greater absolute asymmetry in the upper 

limb entheses. 

Results: The aggregated data partially support this hypothesis. The 

Neiyangyuan and Tuchengzi populations show relatively high degrees of 
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sexual dimorphism in the upper and lower limb aggregated scores, which is 

mainly due to considerable changes in male scores. The level of sexual 

dimorphism is moderate in the Jinggouzi lower limb aggregated score and in 

the Shenyang upper limb aggregated score. Contrary to the hypothesis, the 

Jinggouzi and Shenyang populations show relatively low SDI values in the 

upper and lower limb aggregated scores respectively. In addition, results in 

aggregated data do not suggest that males from socio-politically unstable time 

periods have higher absolute asymmetry in the upper limb entheses. 

 

Hypothesis two: A gender-based labour pattern was presumed to have been 

developed in Holocene China and its influences are greater on ancient 

populations than modern populations. On this basis, it is expected that the 

females and males from the Jiangjialiang, Neiyangyuan, Jinggouzi, Tuchengzi, 

Lamadong and Shenyang time periods will exhibit considerable variation in 

rank orders of the upper limb entheses due to different occupational roles, 

while the rank orders of the lower limb entheses between populations will be 

relatively comparable. 

Results: The comparisons of rank orders between the sexes of each 

population do not support the hypothesis that females and males show 

considerable variation in rank orders of the upper limb entheses. With the 

exception of the Tuchengzi population, all ancient populations show minimal 

sex differences in rank orders of the ten highest-ranking upper limb entheses, 

which do not suggest a sexual division of labour. It should be noted that the 

relatively great sex differences among the Tuchengzi populations is likely due 

to the absence of the clavicles and scapulae. However, compared with 

populations from relatively socio-politically stable time periods (i.e. the 

Jiangjialiang and Sha Ling), the Neiyangyuan, Jinggouzi and Shenyang 

populations exhibit slightly large sex differences in rank orders of the ten 

highest-ranking upper limb entheses, indicating that females and males in 

these time periods may have engaged in different tasks from time to time, 

which influenced the usual patterns of muscle use. In contrast, all populations 

have minor sexual differences in rank orders of the five highest-ranking lower 

limb entheses. Unlike the upper limbs, sex differences in the lower limb 

entheses generally result from discrepancies in levels of mobility rather than 
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patterns of muscular activity (i.e. men often show higher entheseal scores 

than women at the same locations of the lower limbs due to higher mobility 

levels).  

 

Hypothesis three: All studied populations will exhibit right-biased directional 

asymmetry in most of the upper limb entheses, in particular those with 

relatively high ranks, as right-handedness is a unique feature of human 

populations. In contrast, the lower limb entheses will be less asymmetric 

and/or they will tend to show a slight left-side bias. Moreover, the Sha Ling 

modern population will exhibit more right-biased upper limb entheses due to 

strong cultural pressures in contemporary Chinese societies and advanced 

technological development. 

Results: The findings in aggregated data do not fully support the hypothesis 

that the seven studied populations tend to have right-biased upper limbs. 

Although the patterns in disaggregated data are complex, in general, the 

results are consistent with those of the aggregated data. Only the Tuchengzi 

males and Shenyang females demonstrate a right-side bias in most of the 

upper limb entheses, whereas other populations, regardless of sex, have 

more left-biased upper limb entheses. Except those of the Jinggouzi and 

Shenyang females, most of the highest ranking upper limb entheses of all 

populations have a left bias. Since the highest ranking entheses represent the 

most frequently utilised muscles, the results imply that the Holocene Chinese 

may have habitually used the left arm more than the right arm. In contrast to 

the hypothesis for the upper limb entheses, the results in aggregated and 

disaggregated data support that the lower limb entheses tend to be left-biased. 

Nevertheless, the lower limb aggregated data do not support the interpretation 

that the lower limb entheses are less asymmetric. 
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6.5 Comparisons within subsistence/cultural categories 

The results in previous sections show that the seven studied populations 

which relied on various socio-economic activities share considerable 

similarities in rank order of entheses. In order to further elucidate the relation 

between entheseal expressions and habitual behaviours, this section 

categorised the populations that practised similar subsistence strategy into 

the same group (Table 4.1). Therefore, the Jiangjialiang, Tuchengzi and 

Shenyang populations were classified as an agricultural group, the 

Neiyangyuan and Jinggouzi populations as a pastoral group, the Lamadong 

population as an agropastoral group and the Sha Ling population as an 

industrial group. Except the southern Sha Ling population, all populations 

were ancient Chinese inhabiting north-eastern China. It is predicted that: 

i) ancient pastoral and agropastoral populations will exhibit relatively higher 

aggregated scores compared with other subsistence groups in the lower 

limb entheses. In addition, since the industrial population was from a low 

socio-economic status, it is expected that their lower limb aggregated 

scores do not show marked differences from those of other subsistence 

groups; 

ii) ancient pastoral and agropastoral groups will exhibit a greater magnitude of 

sexual dimorphism in the lower limb entheses than other subsistence 

groups because the mobility levels of pastoral and agropastoral males are 

expected to be higher; 

iii) pastoral and agropastoral groups will show larger sex differences in rank 

orders of the upper limb entheses. This hypothesis is based upon the 

premises that sexual division of labour was developed in Holocene China 

and that pastoral and agropastoral populations had more distinct labour 

patterns along sex lines. In this light, it is projected that the highest-ranking 

upper limb entheses of females and males of these subsistence groups will 

be different, reflecting engagement in diverse activities; 

iv) regardless of sex and subsistence category, all populations will tend to 

exhibit a right-side bias in the upper limb entheses because of population 
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level right-handedness among living human groups, while the lower limb 

entheses will show less asymmetry or have a slight left bias. 

6.5.1 Inter-subsistence group comparisons in aggregated data  

Sex and age groups 

Among females, the industrial group has the highest aggregated scores in the 

upper and lower limb entheses, whereas the agropastoral and pastoral 

females show the lowest scores in the upper and lower limb entheses, 

respectively (Table 6.19). The four female subsistence groups differ 

significantly in the lower limb aggregated score (Kruskal Wallis, p<0.05). The 

scores of the industrial females are significantly higher than those of the 

pastoral (adjusted p=0.000) and agropastoral females (adjusted p=0.003). 

The pattern among males is different from that of females (Table 6.19). While 

the aggregated scores of the agricultural males are the highest among the 

four subsistence groups in the entheses of both limbs, those of the industrial 

and agropastoral males are the lowest in the upper and lower limb entheses, 

respectively.  

The young adult group in the pastoral population amongst the four 

subsistence categories has the highest aggregated scores in the upper and 

lower limb entheses, whereas the entheses of both limbs of the industrial 

young individuals show the lowest scores (Table 6.19). Among middle-old 

adults, while the upper limb aggregated score of the pastoral population is the 

highest, that of the agricultural population is the smallest. In the lower limbs, 

the middle-old adults of the industrial group have the largest aggregated 

scores but those of the agropastoral group show the smallest scores. No 

significant differences are observed within the young adult and middle-old 

adult groups from the four subsistence categories (Kruskal Wallis, p>0.05). 

218



  

Table 6.19 Summary of mean aggregated scores by subsistence category, sex and 

age groups 

  Agricultural 
group 

Pastoral 
group 

Agropastoral 
group 

Industrial 
group Upper limb  

Femalesa 
n 14 16 4 26 
 ̅ 10.43 11.69 10.05 12.08 

Males 
n 32 20 11 33 
 ̅ 13.55 13.13 13.27 11.95 

 P <0.001 0.016 0.042 0.783 

Young adults 
n 14 17 8 9 
 ̅ 11.43 12.29 11.06 10.11 

Middle-old adults 
n 11 17 5 46 
 ̅ 11.77 13.38 13.00 12.52 

 P 0.373 0.096 0.106 0.002 

      
Lower limb      
Femalesa 

n 20 19 36 25 
 ̅ 8.60 7.26 8.33 10.00 

Males 
n 39 24 36 39 
 ̅ 9.73 9.38 8.82 8.90 

 P 0.045 0.001 0.366 0.066 

Young adults 
n 13 21 32 11 
 ̅ 7.88 8.10 8.06 6.82 

Middle-old adults 
n 17 14 23 49 
 ̅ 8.97 9.82 8.93 10.09 

 P 0.245 0.038 0.176 <0.001 
n, number of individuals;  ̅, mean aggregated score; a, significant difference between 

four subsistence groups is based upon Kruskal-Wallis with =0.05; P, significance is 

based upon Mann-Whitney, significant at 0.05 level (for intra-subsistence group 

comparisons); red font indicates the highest value among four subsistence groups 

and blue font indicates the lowest value 

 

 

Irrespective of sex or age, in general, the agropastoral population 

amongst four subsistence categories shows relatively low aggregated scores 

in the upper and lower limb entheses, while the scores of the pastoral 

population are higher (Table 6.19). The industrial population shows 

ambiguous results. Females and middle-old adults of the industrial population 

exhibit the highest aggregated scores in the upper and/or lower limb entheses, 

whereas males and young adults have the lowest scores amongst the four 
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subsistence categories. 

Sexual dimorphism and asymmetry 

Agropastoral and agricultural groups have relatively high levels of sexual 

dimorphism in the upper limb entheses, with males having 23-24% greater 

aggregated scores than females (Figure 6.11). Conversely, sex differences 

among the industrial population are minimal in the upper limb aggregated 

score, in which females have 1.09% higher scores than their male 

counterparts. In the lower limbs (Figure 6.11), the pastoral group exhibits the 

highest level of sexual dimorphism, in which the aggregated scores of men 

are in average 22% greater than those of women. In contrast to the patterns 

in the upper limbs, the agropastoral group has the lowest value of SDI among 

the four subsistence groups. The agricultural and industrial groups 

demonstrate moderate levels of sexual dimorphism in the lower limb 

aggregated scores, in the range of 11.5-12.5%. While the agricultural males 

have higher scores than females, those of the industrial females are greater 

than males. 

All subsistence groups exhibit lateralisation in the upper and lower limb 

entheses aggregated scores (Table 6.20). Except the industrial group, all 

subsistence groups show a right-side bias in the upper limb aggregated 

scores. However, the absolute asymmetry of the agricultural, pastoral and 

industrial upper limb entheses is relatively low. In the lower limbs, all 

subsistence groups demonstrate an asymmetric bias to the left in the 

aggregated scores. With the exception of the industrial group, all subsistence 

groups have a relatively high absolute asymmetry in the lower limb entheses. 
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Figure 6.11 Sexual dimorphism index (SDI) of the upper and lower limb aggregated 

scores for the four subsistence groups  

 
 

 

 
Table 6.20 Summary of bilateral asymmetry for the upper and lower limb aggregated 

scores (sex-pooled sample) 

 
Upper limb 

 
Lower limb 

 
n BA P-value 

 
n BA P-value 

Agricultural group 14 99 0.279  16 104 0.710 

Pastoral group 14 99 0.581  21 105 0.620 

Agropastoral group 5 96 0.581  36 105 0.703 

Industrial group 33 101 0.712  38 101 0.933 

 n, number of individuals with paired elements; BA, bilateral asymmetry (a value less 

than 100 indicates a right dominance, while a value more than 100 indicates a left 

dominance); P-value is based upon Wilcoxon Signed Ranks test, significant at 0.05 

level; /, no data 
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6.5.2 Intra-subsistence group comparisons in aggregated scores  

With the exception of the industrial group, males of all subsistence categories 

show significantly higher aggregated scores than females in the upper limbs 

(Mann-Whitney, p<0.001) (Table 6.19). Although a significant difference is not 

found, the upper limb aggregated score of the female industrial group is 

greater than that of their male counterparts. In the lower limb (Table 6.19), 

with the exception of the industrial group, all males have higher aggregated 

scores than females, of which the agricultural and pastoral groups show 

significant differences between the sexes (Mann-Whitney, p=0.001-0.045). 

Again, the industrial females have larger lower limb aggregated scores than 

males.  

The middle-old adults of all subsistence categories exhibit higher 

aggregated scores than the young individuals in the upper and lower limb 

entheses (Table 6.19). The industrial population shows significant age 

differences in the aggregated scores of both limbs (Mann-Whitney, p<0.001) 

and the two age groups of the pastoral population differ significantly in the 

lower limb aggregated scores (Mann-Whitney, p=0.038). 

6.5.3 Inter-subsistence group comparison in disaggregated data 

Rank ordering 

The four female subsistence groups have seven out of the ten highest-ranking 

upper limb entheses in common (Table 6.21). It is noteworthy that the ranks of 

the costoclavicular ligament, pectoralis major and conoid ligament are 

relatively high among all female subsistence groups. In addition, the pronator 

teres ranks highly in the agricultural, pastoral and industrial females. In 

contrast, the five entheses that have the lowest rank are slightly different 

between the four female groups. The four female groups have two out of the 

five lowest-ranking entheses in common (latissimus dorsi and triceps brachii). 

In addition, the pronator quadratus show a relatively low rank among the 

agricultural, pastoral and industrial females. When all upper limb entheses are 
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considered, the four female subsistence categories show discrepancies in 

rank orders in some entheses (Table 6.21). For instance, the trapezoid 

ligament ranks 23rd among the agropastoral females, while its rank is 

relatively high in other female groups. The extensor carpi radialis longus is 

one of the ten highest-ranking upper limb entheses among the agricultural 

and industrial females, whereas the pastoral and agropastoral females show a 

rank of 15th and 16.5th in this location, respectively. Additionally, the flexors(o) 

rank low among the agricultural, pastoral and industrial females but they are 

one of the ten highest-ranking entheses among the agropastoral female.  

The four female subsistence groups differ significantly in the 

disaggregated scores of four out of 26 upper limb entheses (Kruskal-Wallis, 

p<0.001) (Table 6.21). Post hoc pairwise comparisons show that differences 

between the female agropastoralists and females of other groups are 

relatively large in the upper limb disaggregated scores (see Table A6.12a in 

Appendix C). The scores of the agropastoral females differ significantly from 

those of the industrial females in the pectoralis major, extensor carpi radialis 

longus and brachioradialis (adjusted p<0.001), from those of the agricultural 

females in the extensor carpi radialis longus and brachioradialis (adjusted 

p=0.004-0.046) and from that of the pastoral females in the brachioradialis 

(adjusted p=0.005). In contrast, the agricultural and pastoral females have 

fewer significant differences from other female groups. The agricultural 

females only differ significantly from the agropastoral females in the scores of 

extensor carpi radialis longus (adjusted p=0.046) and brachioradialis 

(adjusted p=0.004) and the pastoral females demonstrate significant 

differences from the agropastoral and industrial females in the score of 

brachioradialis (adjusted p=0.005) and extensor carpi radialis longus 

(adjusted p=0.001), respectively. 
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The lower limb entheses that rank highly and low are comparable between 

the four female subsistence groups (Table 6.22). Females of all groups show 

relatively high ranks in the vastus medialis, medial gastrocnemius, gluteus 

maximus and soleus. In addition, the achilles tendon, one of the five highest-

ranking entheses, ranks highly among the agricultural, pastoral and industrial 

females. In the lowest-ranking entheses, the four female groups have three 

out of five lowest-ranking entheses in common (the vastus lateralis, 

semimembranosus and patellar ligament). Despite considerable similarities in 

rank orders between the four female groups, the pastoral and industrial 

females exhibit a relatively high rank for the quadriceps tendon (ranked sixth 

and fifth, respectively) but the agricultural and agropastoral females have a 

lower rank at the same location (ranked 13th). 

Differences between the four female groups are greater in the lower limb 

disaggregated scores than those of the upper limbs, in which seven out of 14 

lower limb entheses show significant differences (Kruskal-Wallis, p<0.001; 

Table 6.22). Post-hoc pairwise comparisons show that the industrial females 

are amongst the four female subsistence categories that differ the most from 

other groups (see Table A6.12b in Appendix C). The disaggregated scores of 

the industrial females differ significantly from those of the pastoral females in 

five lower limb entheses (adjusted p=0.001-0.023), from those of the 

agropastoral females in three entheses (adjusted p=0.000-0.022) and from 

those of the agricultural females in one enthesis (adjusted p=0.004). 

Conversely, none the lower limb disaggregated scores of the agricultural 

females differ significantly from those of the other female groups except the 

gluteus maximus of the industrial females (adjusted p=0.004). 
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Despite showing different ranks, the four male subsistence groups have 

seven out of the ten highest-ranking upper limb entheses in common 

(costoclavicular ligament, pectoralis major, conoid ligament, teres major, 

deltoideus, supraspinatus and pronator quadratus(o)) (Table 6.23). It is worth 

noting that the seven highest-ranking upper limb entheses shared by the four 

male groups are also rank highly among the four female groups. The 

costoclavicular ligament and pectoralis major rank first and second, 

respectively, among the four male subsistence groups. These are followed by 

the extensor carpi radialis longus which ranks highly among the agricultural, 

agropastoral and industrial males. However, the four male subsistence groups 

exhibit greater differences in the five lowest-ranking upper limb entheses. 

Only two out the five lowest ranking upper limb entheses (pronator quadratus 

and teres minor) are common to all male groups and the latissimus dorsi is 

among the five lowly ranked entheses that is shared by the agricultural, 

pastoral and industrial males. In general, the rank orders between the four 

male groups are homogenous in the upper limb entheses.  

The four male subsistence groups differ significantly in the disaggregated 

scores of seven out of 26 upper limb entheses (Kruskal-Wallis, p<0.001; 

Table 6.23). Differences between the industrial males and other male groups 

are relatively marked. The scores of the industrial males differ significantly 

from those of the pastoral males in six upper limb entheses (adjusted p<0.001; 

see Table A6.13a in Appendix C), from those of the agricultural male in four 

entheses (adjusted p<0.001) and those of the agropastoral males in two 

entheses (adjusted p=0.004-0.039). In contrast, the agropastoral males have 

the fewest significant differences from other male groups in the upper limb 

disaggregated scores. The agropastoral males differ significantly from the 

industrial males in the scores of two entheses (adjusted p=0.004-0.039) and 

from the pastoral males in one enthesis (adjusted p=0.043). 
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In the lower limbs, the four male groups have two out of the five highest-

ranking entheses in common (the vastus medialis and medial gastrocnemius) 

(Table 6.24). Three out of four groups show relatively high ranks in the 

gluteus maximus (agricultural, agropastoral and industrial males) and achilles 

tendon (pastoral, agropastoral and industrial males). The four male groups 

share three out of five lowly ranked lower limb entheses (the 

semimembranosus, vastus intermedius and vastus lateralis). In addition, the 

patellar ligament has a relatively low rank among the agricultural, pastoral and 

industrial males. It is noteworthy that while the quadriceps tendon 

demonstrates a relatively high rank among the pastoral (ranked fifth) and 

agropastoral (ranked third) males, it is one of the five lowest-ranking lower 

limb entheses for the agricultural males (14th).  

The disaggregated scores of the lower limb entheses across the four male 

subsistence groups are less variable than those of the upper limbs, with four 

out of 14 lower limb entheses exhibiting significant differences across groups 

(Kruskal-Wallis, p=0.001-0.005; Table 6.24). The agricultural males differ 

significantly from the agropastoral males in the disaggregated scores of four 

entheses (adjusted p=0.005-0.01) and from the pastoral and industrial males 

in one enthesis (adjusted p=0.007-0.014) (post hoc tests, see Table A6.13b in 

Appendix C). It is noteworthy that in contrast to the patterns seen in upper 

limb entheses, the industrial males do not show significant differences from 

other male groups in any lower limb entheseal scores except for the vastus 

medialis of the agricultural males (adjusted p=0.007).  
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6.5.4 Intra-subsistence group comparisons in disaggregated data  

Rank ordering 

The agricultural females and males have nine out of the ten highest-ranking 

upper limb entheses and three out of the five lowest-ranking upper limb 

entheses in common (Tables 6.21; 6.23). Except for the flexors(o), 

extensors(o) and triceps brachii, the ranks of all upper limb entheses between 

the sexes do not show marked differences. It is noteworthy that the 

costoclavicular ligament, trapezius, pectoralis major and supinator(o) have 

similar ranks among the agricultural females and males, of which the 

costoclavicular ligament and pectoralis major are amongst the ten highest-

ranking upper limb entheses. The agricultural females and males share 

considerable similarities in the ranking of the lower limb entheses (Tables 

6.22; 6.24). Four out of the five highest-ranking entheses and all lowest-

ranking entheses are common to both females and males. Overall, the 

agricultural females and males exhibit similar rank orders in the lower limb 

entheses except for the achilles tendon. 

Among the ten highest-ranking upper limb entheses, eight are shared by 

both the pastoral females and males (Tables 6.21; 6.23). Similarly, both sexes 

have four out of the five lowest-ranking upper limb entheses in common. 

Nevertheless, when all upper limb entheses are considered, sex differences 

are marked in the ranks of some locations such as the trapezoid ligament, 

triceps brachii(o) and infraspinatus. For the lower limbs, four out of the five 

highest- and lowest-ranking entheses are common to both the pastoral 

females and males (Tables 6.22; 6.24). In general, except for the gluteus 

maximus the ranks of all lower limb entheses are comparable between the 

sexes. It is worth noting that the pastoral females and males have similar 

ranks in the teres major, gluteus minimus, vastus medialis, soleus and 

achilles tendon. 

The agropastoral females and males share seven out of the ten highest-

ranking upper limb entheses (Tables 6.21; 6.23). Nonetheless, despite 

exhibiting considerable similarities in the highest-ranking entheses, the sexes 

show relatively marked rank differences in 10 out of 26 upper limb entheses, 
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for instance, the trapezoid ligament, triceps brachii(o), infraspinatus, teres 

minor, extensor carpi radialis longus, flexors(o), extensors(o), triceps brachii 

and brachioradialis. The sex differences in the lower limb entheses are not as 

great as those seen in the upper limb entheses (Tables 6.22; 6.24). Four out 

of the five highest-ranking entheses and three out five lowest-ranking 

entheses are shared by the agropastoral females and males. Overall, except 

for the vastus intermedius and quadriceps tendon, the ranks of all lower limb 

entheses are relatively consistent between the sexes. It is worth noting that 

the pectoralis major, brachialis, and the lateral gastrocnemius do not show 

sexual differences in rank. 

Among the ten highest-ranking upper limb entheses, nine are common to 

both the industrial females and males (Tables 6.21; 6.23). Conversely, only 

two out of the five lowest-ranking upper limb entheses are shared by both 

sexes. When all upper limb entheses are considered, sex differences in rank 

are observed in six out of 26 entheses, of which the rank of the brachioradialis 

show the greatest sex difference (ranked 23rd among females, 11th among 

males). For the lower limbs, the industrial females and males have three out 

of the five highest- and lowest-ranking entheses in common (Tables 6.22; 

6.24). In contrast to the upper limb entheses, pronounced sexual differences 

in rank are not observed in the lower limbs when all entheses are considered. 

It is noteworthy that the industrial females and males have the same ranks in 

the teres major, deltoideus, biceps brachii and gluteus maximus.  
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Sexual dimorphism 

The agricultural males have higher disaggregated scores than their female 

counterparts in 22 out of 26 upper limb entheses, of which five show 

significant differences (p<0.001; Figure 6.12). Levels of sexual dimorphism in 

the upper limb entheses vary considerably, ranging between 0.95% 

(infraspinatus) and 27.79% (triceps brachii). In the lower limbs, the 

disaggregated scores of the male agriculturalists are greater than those of 

females in 11 out of 14 entheses, three of which show significant differences 

(p=0.006-0.019; Figure 6.12). In general, variation in level of sexual 

dimorphism in the lower limb entheses is not as great as that in the upper limb 

entheses, with values of SDI ranging from 1.61% (vastus intermedius) to 

23.08% (gluteus medius).  

In the pastoral group, males show higher disaggregated scores than their 

female counterparts in 20 out of 26 upper limb entheses, of which the scores 

of ten entheses differ significantly (p=0.001-0.043; Figure 6.13). It is 

noteworthy that females have 20.36% significantly larger score than males for 

the trapezoid ligament (p=0.0031). Variation in levels of sexual dimorphism in 

the upper limb entheses is considerable, ranging from 1.24% (conoid ligament) 

to 39.55% (costoclavicular ligament). In the lower limbs, the pastoral males 

have higher disaggregated scores than females for all entheses but the 

vastus lateralis, among which eight exhibit significant differences (p=0.011-

0.05; Table 6.13). Except for the gluteus maximus, vastus lateralis and vastus 

intermedius, overall, the magnitude of sexual dimorphism among the pastoral 

groups is relatively high in all lower limb entheses, in the range of 15.5-30%. 
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Figure 6.12 Sexual dimorphism index (SDI) of the upper and lower limb 

disaggregated scores for the agricultural group 

 

 
Abbreviations: C, clavicle, H, humerus, U, ulna, R, radius, F, femur; T, tibia; P, patella; 
Ca, calcaneus; (o), origin site; * Difference is based upon Mann-Whitney with =0.05 
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Figure 6.13 Sexual dimorphism index (SDI) of the upper and lower limb 

disaggregated scores for the pastoral group 

 

 
Abbreviations: C, clavicle, H, humerus, U, ulna, R, radius, F, femur; T, tibia; P, patella; 
Ca, calcaneus; (o), origin site; * Difference is based upon Mann-Whitney with =0.05 
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Twenty out of 25 upper limb entheses show larger disaggregated scores 

in the agropastoral males than females, of which the scores of seven 

entheses differ significantly (p=0.001-0.047; Table 6.14). The SDI values of 

some upper limb entheses are high such as the brachioradialis (56.08%), 

costoclavicular ligament (44%) and trapezoid ligament (40%), while those of 

the flexors(o) (1.54%) and pronator quadratus (0.65%) are low. It is worth 

noting that the levels of sexual dimorphism in the entheses which female 

agropastoralists have higher scores than males are relatively high, ranging 

between 14.61% and 31.62%. For the lower limbs, 11 out of 14 entheses 

have higher scores in the agropastoral males than females, five of which 

show a significant difference (p=0.027-0.048; Table 6.14). It is noteworthy that 

while the quadriceps tendon shows a high level of sexual dimorphism, with 

males demonstrating a 50% larger score than females, the female 

agropastoralists have 25.43% higher score than males for the vastus 

intermedius. However, the scores of these entheses do not show significant 

sexual differences (p>0.05). 

In contrast to other subsistence groups, the industrial females show higher 

disaggregated scores than males in 17 out of 26 upper limb entheses, of 

which five exhibit significant differences (p=0.001-0.041; Table 6.15). 

Conversely, males exhibit significantly higher scores than females for the 

costoclavicular ligament (p=0.036), trapezius (p=0.049) and brachioradialis 

(p=0.013). The degrees of sexual dimorphism demonstrate considerable 

variation among the upper limb entheses. While the teres minor does not 

show a sexual difference in disaggregated score, the pronator teres score of 

females is 33.79% higher than that of males. Likewise in the lower limbs, the 

disaggregated scores of the industrial females are greater than those of males 

in 10 out of 14 entheses, four of which are significantly different (p<0.001; 

Table 6.15). With a few exceptions, the levels of sexual dimorphism in the 

lower limb entheses are relatively high, in the range of 15-32%. 
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Figure 6.14 Sexual dimorphism index (SDI) of the upper and lower limb 

disaggregated scores for the agropastoral group 

 

 
Abbreviations: C, clavicle, H, humerus, U, ulna, R, radius, F, femur; T, tibia; P, patella; 
Ca, calcaneus; (o), origin site; * Difference is based upon Mann-Whitney with =0.05 
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Figure 6.15 Sexual dimorphism index (SDI) of the upper and lower limb 

disaggregated scores for the industrial group 

 

 
Abbreviations: C, clavicle, H, humerus, U, ulna, R, radius, F, femur; T, tibia; P, patella; 
Ca, calcaneus; (o), origin site; * Difference is based upon Mann-Whitney with =0.05 
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Asymmetry patterns 

Among the agricultural females (Table 6.25a), with the exception of the 

anconeus and pronator quadratus, all upper limb entheses show side 

dominance, of which 12 out of 26 entheses25 demonstrate an asymmetric bias 

to the right and 12 to the left. Similarly, among males, all upper limb entheses 

except the extensor carpi radialis longus are side dominant. Eleven and 13 

out of 25 entheses exhibit a right-side bias and left-side bias, respectively. In 

the lower limbs, while the agricultural females show a right-biased asymmetry 

in three out of 13 entheses and a left-biased asymmetry in six out of 13 

entheses, four out of 13 entheses do not show clear side dominance (Table 

6.25b). Among males, seven out of 13 entheses are left dominant and two are 

right dominant, whereas the asymmetric bias of four out of 13 are not clear. 

The conoid ligament (p=0.011), subscapularis (p=0.014) and teres major 

(p=0.046) of females and the pectoralis major (p=0.002) of males 

demonstrate significant side differences. The agricultural females and males 

show similar side dominance in 15 out of 25 upper limb entheses and five out 

of 13 lower limb entheses. While only the highest ranking-entheses are 

considered26, seven out of nine entheses in the upper limbs and three out of 

four entheses in the lower limbs demonstrate the same asymmetric bias in 

both sexes. It is worth noting that five and six out of the nine highest-ranking 

upper limb entheses show a left-side bias among females and males, 

respectively. The highest-ranking lower limb entheses exhibit a similar pattern, 

where females have left dominance in three out of four entheses and males 

have a left bias in all entheses.  

                                            
25 Entheses with less than five individuals are not discussed; therefore, the total number of 

entheses varies in different populations. 
26 Only the highest-ranking entheses shared by both sexes were taken into account, so the 

number of highest-ranking entheses varies from population to population. 
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Table 6.25a Summary of bilateral asymmetry of the upper limb disaggregated scores by 

subsistence category and sex 

 
Agricultural group 

 
Pastoral group 

Enthesis Females 
 

Males 
 

Females 
 

Males 

Upper Limb n BA 
 

n BA 
 

n BA 
 

n BA 

C: Costoclavicular ligament 18a 121  20 156  17a 100  22 99 

C: Trapezoid ligament 12 114  18 101  16 101  21 117 

C: Conoid ligament 16a 78*  17 112  19a 96  22 105 

S: Triceps brachii (o) 11a 106  13 106  17 115  18 87* 

S: Trapezius 6 92  3 83  10 103  10 100 

H: Supraspinatus 9a 94  12 93  14a 93  17 106 

H: Infraspinatus 8 125  9 69  10 75  12 142 

H: Subscapularis 12 88*  24 102  14 104  12 100 

H: Teres minor 9 128  11 91  8 100  11 100 

H: Latissimus dorsi 17 106  31 96  6 100  14 118 

H: Teres Major 21a 117*  43 105  18a 107  20 100 

H: Pectoralis major 27a 98  42 89*  26a 97  26 103 

H: Deltoideus 26a 110  43 107  34a 101  29 110 

H: Brachioradialis (o) 20 105  39 108  23 107  24 94 

H: Extensor carpi radialis longus 15a 93  31 100  15 127*  19 111 

H: Flexors (o) 11 95  16 97  11 118  15 97 

H: Extensors (o) 8 102  22 95  8 113  17 95 

U: Brachialis 16 97  34 106  23 105  28 93* 

U: Triceps brachii  9 94  16 96  9 85  24 93 

U: Supinator (o) 13 92  32 103  22 92  30 96 

U: Anconeus 10 100  17 94  7 100  24 86* 

U: Pronator quadratus (o) 13a 117  29 106  17a 126  21 102 

R: Biceps brachii 16 94  26 98  17 109  26 99 

R: Pronator teres 13 112  26 126  9a 87  19 90 

R: Pronator quadratus 10 100  19 103  9 100  13 108 

R: Brachioradialis 7 93  9 96  3 133  6 108 

n, number of individuals with paired elements; BA, bilateral asymmetry (values less 

than 100 indicate right dominance, values more than 100 indicate left dominance); a, 

the highest ranking entheses shared by both sexes; Abbreviation: C, clavicle; H, 

humerus; U, ulna; R, radius; (o), origin site; *, right and left side difference is based 

upon Wilcoxon Signed Rank test, significant at 0.05 level 
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Table 6.25b Summary of bilateral asymmetry of the lower limb disaggregated scores by 

subsistence category and sex 

 
Agricultural group 

 
Pastoral group 

Enthesis Females 
 

Males 
 

Females 
 

Males 

Lower limb n BA 
 

n BA 
 

n BA 
 

n BA 

F: Gluteus minimus 13 95  25 116  8 138  12 108 

F: Gluteus medius 10 120  23 117  9 111  14 111 

F: Gluteus maximus 24a 117  43 103  20 111  23 113* 

F: Vastus lateralis 9 100  17 97  6 100  8 113 

F: Vastus medialis 25a 111  45 101  15a 107  24 103 

F: Vastus intermedius 23 104  37 101  21 103  21 110 

F: Ilipsoas 20 100  33 95  12 96  14 117 

F: Lateral gastrocnemius 10 110  21 100  9 111  19 118* 

F: Medial gastrocnemius 17a 112  34 114  19a 102  19 145 

T: Semimembranosus 8 100  5 100  5 100  12 99 

T: Patellar ligament 12 97  16 100  17 99  21 111 

T: Soleus 17a 100  25 113  26a 110  30 91* 

P: Quadriceps tendon 1 100  2 100  5 130  11 97 

Ca: Achilles tendon 8 94  9 100  13a 99  19 101 

n, number of individuals with paired elements; BA, bilateral asymmetry (values less than 100 

indicate right dominance, values more than 100 indicate left dominance); a, the highest ranking 

entheses shared by both sexes; Abbreviation: F, femur; T, tibia; P, patella; Ca, calcaneus; *, right 

and left side difference is based upon Wilcoxon Signed Rank test, significant at 0.05 level 
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Among pastoral females, 13 out of 25 upper limb entheses demonstrate 

an asymmetric bias to the left, while six are right dominant (Table 6.25a). In 

contrast, 11 out of 26 upper limb entheses of males show a right-side bias 

and left-side bias, respectively. Similar to the patterns seen in the upper limb 

entheses, the pastoral females and males have more left-biased lower limb 

entheses. While nine and 11 out of 14 entheses show left dominance among 

females and males respectively, three out of 14 entheses are right-biased in 

both sexes (Table 6.25b). The right and left scores of the extensor carpi 

radialis longus differ significantly among the females (p=0.046). Among males, 

the triceps brachii(o) (p=0.008), brachialis (p=0.046), anconeus (p=0.008), 

gluteus maximus (p=0.046), lateral gastrocnemius (p=0.046) and soleus 

(p=0.033) show significant side differences. On the whole, the pastoral 

females and males show dissimilar side dominance in more than half of the 

upper (17 out of 25) and lower (7 out of 14) limb entheses. In highest-ranking 

entheses comparisons, the side dominance of five out of eight upper limb 

entheses and two out of four lower limb entheses differ between the sexes. Of 

the eight highest-ranking upper limb entheses, half are right biased among 

females, while five are left biased among males. Conversely, three out of four 

highest-ranking lower limb entheses show an asymmetric bias to the left in 

both sexes. 

Of the upper limb entheses which are available for observation, most of 

them (13 out of 20) are left dominant among the agropastoral males, while the 

pattern among females is not clear (7 out of 17 are right-biased and left-

biased, respectively) (Table 6.26a). In the lower limbs, females and males 

have a left bias in most (female: 6 out of 12, males: 8 out of 12) of the lower 

limb entheses (Table 6.26b). The teres major (p=0.03) and vastus medialis 

(p=0.011) of the agropastoral females and the latissimus dorsi (p=0.005) of 

males show significant side differences. Overall, most upper (11 out of 17) 

and lower (7 out of 12) limb entheses between the sexes demonstrate 

dissimilar directional asymmetry. Comparisons of the highest-ranking 

entheses, however, show that three out of five upper limb entheses and two 

out of three lower limb entheses have similar side dominance in both sexes. It 

is noteworthy that except for the female teres major and vastus medialis, all 

the highest-ranking entheses are left-biased. 
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Table 6.26a Summary of bilateral asymmetry of the upper limb disaggregated scores by 

subsistence category and sex 

 
Agropastoral group 

 
Industrial group 

Enthesis Females 
 

Males 
 

Females 
 

Males 

Upper Limb n BA 
 

n BA 
 

n BA 
 

n BA 

C: Costoclavicular ligament 2 138  1 /  21a 117  35 120 

C: Trapezoid ligament 1 /  1 /  18  118  31 107 

C: Conoid ligament 2 67  1 67  24a 104  35 111 

S: Triceps brachii (o) 2 83  2 75  18 97  29 116 

S: Trapezius 0 /  0 /  17 97  26 94 

H: Supraspinatus 12a 98  19 121  20a 111  21 110 

H: Infraspinatus 9 91  13 100  18 97  18 97 

H: Subscapularis 11 95  21 110  21 101  22 97 

H: Teres minor 4 88  10 100  20 95  20 95 

H: Latissimus dorsi 16 106  25 84*  24 96  28 96 

H: Teres Major 19a 81*  28 103  23a 107  32 102 

H: Pectoralis major 22a 108  31 108  24a 103  31 105 

H: Deltoideus 22a 102  33 104  25a 104  36 106 

H: Brachioradialis (o) 13 108  27 109  22 105  29 105 

H: Extensor carpi radialis longus 11 114  18 109  21a 94  27 96 

H: Flexors (o) 5 100  9 100  15 89  22 100 

H: Extensors (o) 9 94  9 100  18 100  22 99 

U: Brachialis 11 95  16 103  26 110  35 97 

U: Triceps brachii  3 100  7 93  22 96  24 97 

U: Supinator (o) 9 94  14 107  26 91  32 102 

U: Anconeus 2 100  6 108  23 96  26 96 

U: Pronator quadratus (o) 6a 117  12 108  23a 118  32 112 

R: Biceps brachii 7 100  15 117  26a 115  27 105 

R: Pronator teres 8 106  15 100  24 103  32 104 

R: Pronator quadratus 6 100  12 104  22 98  27 100 

R: Brachioradialis 3 100  4 125  12 100  6 100 

n, number of individuals with paired elements; BA, bilateral asymmetry (values less than 100 

indicate right dominance, values more than 100 indicate left dominance); a, the highest ranking 

entheses shared by both sexes; /, no data; Abbreviation: C, clavicle; H, humerus; U, ulna; R, 

radius; (o), origin site; *, right and left side difference is based upon Wilcoxon Signed Rank test, 

significant at 0.05 level 
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Table 6.26b Summary of bilateral asymmetry of the lower limb disaggregated scores by 

subsistence category and sex 

 
Agropastoral group 

 
Industrial group 

Enthesis Females 
 

Males 
 

Females 
 

Males 

Lower limb n BA 
 

n BA 
 

n BA 
 

n BA 

F: Gluteus minimus 17 118  19 100  16 99  23 118 

F: Gluteus medius 7 100  13 117  14 118  20 108 

F: Gluteus maximus 26a 102  29 116  25a 110*  38 104 

F: Vastus lateralis 12 100  11 100  23 100  25 104 

F: Vastus medialis 32a 90*  32 108  25a 109  36 109 

F: Vastus intermedius 29 99  32 110  22 98  23 107 

F: Ilipsoas 8 106  17 104  17 105  22 105 

F: Lateral gastrocnemius 15 107  14 107  16 116  24 110 

F: Medial gastrocnemius 33a 144  29 149  22a 103  32 115 

T: Semimembranosus 9 100  9 106  8 92  11 118 

T: Patellar ligament 29 103  27 100  24 110  25 97 

T: Soleus 40 100  31 96  26 97  40 104 

P: Quadriceps tendon 1 /  3 100  14 98  17 142 

Ca: Achilles tendon 3 167  1 /  12 89  25 95 

n, number of individuals with paired elements; BA, bilateral asymmetry (values less than 

100 indicate right dominance, values more than 100 indicate left dominance); a, the 

highest ranking entheses shared by both sexes; /, no data; Abbreviation: F, femur; T, tibia; 

P, patella; Ca, calcaneus; *, right and left side difference is based upon Wilcoxon Signed 

Rank test, significant at 0.05 level 

 

 

The industrial females and males exhibit similar asymmetry patterns in the 

upper limb entheses (Table 6.26a). While half (13 out of 26) of the entheses 

show left dominance in both sexes, 11 and 10 out of 26 are right-biased 

among females and males, respectively. In the lower limbs, 12 out of 14 

entheses have a left-sided directional asymmetry among the industrial males, 

while only two are right dominant. Conversely, the asymmetry pattern of the 

lower limb entheses among females is not as clear as that in males. Six and 

seven out of 14 lower limb entheses demonstrate an asymmetric bias to the 

right and to the left, respectively (Table 6.26b). The right and left scores of the 
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gluteus maximus among females differ significantly (p=0.025). Overall, 19 out 

of 26 upper limb entheses and 7 out of 14 lower limb entheses display similar 

directional asymmetry in females and males. When only the highest-ranking 

entheses are examined, all upper and lower limb entheses demonstrate 

similar directional asymmetry in both sexes. It is worth noting that except for 

the extensor carpi radialis longus of females and males, all the highest-

ranking entheses are left-biased in the industrial females and males. 

6.5.5 Summary 

Hypothesis one: Ancient pastoral and agropastoral males will exhibit 

relatively higher aggregated scores than males of other subsistence groups in 

the lower limb entheses. Also, it is predicted that the industrial population will 

not show marked differences from those of other subsistence groups due to 

the low socio-economic background. 

Results: The results above partially support this hypothesis. The pastoral 

males have higher lower limb aggregated scores than all male groups except 

those of the agricultural population. Nonetheless, the lower limb aggregated 

scores of the agropastoral males are the lowest among the four subsistence 

groups. For the industrial population, the findings are mixed. The results of the 

industrial males and young individuals are contrary to the hypothesis 

proposed, whereas the industrial females and middle-old adults have the 

highest aggregated scores in the upper and lower limb entheses. The 

industrial group consists of homeless individuals living in the 1970’s in 

southern China. The high scores of the industrial females suggest that the 

ancient females of other subsistence groups may have had a relatively 

sedentary lifestyle.  

 

Hypothesis two: Ancient pastoral and agropastoral groups will exhibit greater 

magnitude of sexual dimorphism in the lower limb entheses than other 

subsistence-based populations because the mobility levels of pastoral and 

agropastoral males are expected to be higher. 
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Results: The aggregated data support the hypothesis that the pastoral group 

exhibits relatively great degree of sexual dimorphism compared with other 

subsistence groups, with males having greater scores than females. Likewise 

for the disaggregated data, the values of SDI of most of the lower limb 

entheses among the pastoral group are relatively high. However, the results 

of the agropastoral group do not conform to the hypothesis. Not only do they 

show the smallest magnitude of sexual dimorphism in the lower limb 

aggregated score, but also most of the disaggregated scores of the lower limb 

entheses of the group have relatively low SDI values. The agropastoral group 

studied in this dissertation has been claimed to have undergone a shift from 

pastoralism to agriculture; as a result, a low level of sexual dimorphism in the 

agropastoral group may indicate that: 1.) the agropastoral group only relied 

marginally on pastoralism; and/or 2.) due to a transition in subsistence 

strategy, some male individuals may have spent more time on agricultural 

activities with their female counterparts. 

 

Hypothesis three: Based upon the premises that sexual division of labour 

was developed in Holocene China and that pastoral and agropastoral 

populations have a more distinct labour pattern along sex line, it is predicted 

that the rank orders of the highest ranking upper limb entheses between 

females and males of pastoral and agropastoral groups should be different. 

Results: The findings in disaggregated data do not support the hypothesis. 

The females and males of the pastoral and agropastoral groups show 

considerable similarities in the ranks of the highest ranking upper limb 

entheses, which does not suggest the existence of a sexual division of labour. 

However, it is worth noting that when all entheses are considered, the ranks 

of some entheses exhibit marked differences between the sexes.  

 

Hypothesis four: All subsistence groups will tend to exhibit a right-sided bias 

in most of the upper limb entheses, in particular those with a high rank, 

because of population level right-handedness among living human groups. In 

contrast, the lower limb entheses will be relatively less asymmetric or have a 

slight left bias. 
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Results: The results in aggregated data support the hypothesis that the upper 

limb entheses display an asymmetric bias to the right and the lower limbs tend 

to have a left bias. In contrast, disaggregated data show variable results. The 

findings of the lower limb disaggregated scores show that the four 

subsistence groups, regardless of sex, have more left-biased lower limb 

entheses. However, when all the upper limb entheses are evaluated, females 

of the agricultural and industrial groups and males of the four subsistence 

groups do not demonstrate a clear pattern in asymmetry (i.e. approximately 

half of the entheses are either right dominant or left dominant). Conversely, 

the scores of the highest ranking upper limb entheses suggest a different 

pattern, in which most of the highest-ranking entheses show an asymmetric 

bias to the left.  
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CHAPTER 7  

Cross-sectional geometric properties 

  

 

 

 

 

 

7.1 Aims and hypotheses 

The aims of this chapter are: 

A) to explore the temporal trends of cross-sectional geometric properties 

(total subperiosteal area and cross-sectional shape) among the Holocene 

Chinese in relation to socio-political development and stresses and to 

evaluate the correlation between cross-sectional geometric properties and 

subsistence activity; 

B) to investigate the diachronic patterns of sexual dimorphism in cross-

sectional geometric properties and intra-group sex differences; and 

C) to elucidate the patterns of asymmetry in cross-sectional geometric 

properties of the upper and lower limb long bones and to examine intra-

group differences in bilateral asymmetry. 

 

The first aim of this chapter is to investigate the temporal trends of the 

cross-sectional geometric properties of the clavicles, humeri, radii, ulnae, 

femora and tibiae associated with variation in socio-political condition and 

stress. Moreover, it explores the influence of subsistence strategy on changes 

in bone strength and shape. It is predicted that: 

i) males from the Neiyangyuan, Jinggouzi, Tuchengzi and Shenyang periods, 

when warfare was frequent and socio-political development was unsteady,  

will have higher TA values in the upper and lower limbs and greater Ix/Iy 

ratios of the femoral midshaft, because males in these periods are 
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expected to have been engaged in more physically demanding activities. 

Similarly, their female counterparts will show relatively higher values in TA 

and Ix/Iy compared with females of other time periods; 

ii) the Sha Ling modern population will have relatively low values in the lower 

limb TA and Ix/Iy. However, due to the low socio-economic background, it is 

expected that the values of the Sha Ling population will not show marked 

differences from ancient populations; and 

iii) the prehistoric pastoral and agropastoral groups show relatively large 

means lower limb TAs, i.e. their lower extremities are relatively more 

robust, due to higher levels of mobility, while the industrial group is 

predicted to have more gracile limb bones. However, since the industrial 

sample had a low socio-economic status, their lower limb TAs and femoral 

Ix/Iy ratios may not differ considerably from those of the agricultural group. 

 

The second aim of this chapter is to investigate variation in sexual 

dimorphism in cross-sectional geometric properties among the Holocene 

Chinese. Sexual division of labour is presumed to have been developed 

among the studied Holocene Chinese populations, although variability in its 

expression would be expected. It is predicted that: 

i) the magnitude of sexual dimorphism in diaphyseal strength will be greater 

among populations in time periods characterised by warfare and instability 

of socio-political development (the Neiyangyuan, Jinggouzi, Tuchengzi and 

Shenyang periods). Men may have engaged in battles at a very young age, 

which involved long-distance travel, and/or carried out strenuous tasks that 

increased mechanical loading intensity. It is expected that the physical 

constraints imposed on male upper and lower limbs increase considerably 

in these time periods compared to their female counterparts. Conversely, 

the values of the biomechanical properties among women are projected to 

be relatively constant. In this light, variation in sexual dimorphism in 

diaphyseal strength in Holocene China should be attributable to changes 

among males; and 

iv) ancient pastoral and agropastoral groups will show greater sexual 

dimorphism in cross-sectional geometric properties of the lower limbs 

because males of these subsistence groups are expected to have had 
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higher levels of mobility. In contrast, the level of sexual dimorphism in the 

industrial group should be relatively low. 

 

The third aim of this chapter is to examine the temporal patterns and 

changes in bilateral asymmetry among the Holocene Chinese. It has been 

suggested that approximately 90% of living human groups show right 

handedness, whereas the lower limbs tend to be more symmetric (Auerbach 

and Ruff 2006; McManus 2009). In contemporary Chinese societies, there is a 

strong cultural preference and high pressures for the use of right over left 

hands in fine motor tasks (Teng et al. 1976). On this basis, it is predicted that:  

i) the handedness of the Holocene Chinese, regardless of sex, time period 

and subsistence strategy, will be conform to the universal pattern because 

a strong emphasis on right-hand use is expected to have been developed 

in early Chinese societies. Conversely, the lower limbs will not show clear 

lateralisation or will demonstrate a slight left bias; 

ii) the Sha Ling modern population will show a relatively higher frequency in 

right handedness due to stronger cultural pressures and prevalence of 

right-biased tools and equipment in modern societies; and 

iii) men, in particular those in the more stressful time periods (the 

Neiyangyuan, Jinggouzi, Tuchengzi and Shenyang periods), will show 

higher degree of absolute asymmetry than women in the biomechanical 

properties of the upper limbs. This is based upon the hypothesis that 

males were involved in more strenuous and repetitive activities, which 

increased the diaphyseal strength of the dominant arm. 

 

Right skeletal elements were chosen for statistical analyses in this chapter 

whenever possible. However, if the right element was absent or not suitable to 

provide a mould to quantify biomechanical properties, the left side was used. 

For bilateral asymmetry analyses, only individuals with complete paired bone 

elements were chosen.  

Pearson’s correlation coefficient was used to test whether it was 

appropriate to replace the right elements with the left ones. All samples, 

regardless of site, sex and age, were pooled because the comparisons do not 

examine site or sex variation. The right and left values of the cross-sectional 
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geometric properties (TA, Ix/Iy and Imax/min) for the six long bones (clavicles, 

humeri, radii, ulnae, femora and tibiae) are significantly correlated (r=0.562-

0.938, p<0.001; see Table A7.1 in Appendix D). Therefore, it is appropriate to 

replace the right with the left whenever is necessary. 

7.1 General patterns and changes in cross-sectional 

geometric properties  

This section examines variation in total subperiosteal area (TA) and cross-

sectional shape (Ix/Iy and Imax/Imin ratios) of the clavicles, humeri, radii, ulnae, 

femora and tibiae among the seven studied population. It is predicted that:  

i) males in the socio-politically unstable time periods (the Neiyangyuan, 

Jinggouzi, Tuchengzi and Shenyang periods) will have higher TA in both 

limbs and greater Ix/Iy ratios in the femora due to increased mechanical 

loadings, resulting from more strenuous activities. Likewise, women from 

these periods will show relatively higher values than other female 

subsamples in the same variables; and 

ii) the Sha Ling modern population will have relatively low TA in the lower 

limbs and Ix/Iy, in the femora but it is projected that these variables of the 

Sha Ling population will not differ substantially from ancient populations 

due to a low socio-economic status. 

7.1.1 Inter-population comparisons of total subperiosteal area (TA) 

Females 

The mean TA of the radii (one-way ANOVA; p=0.005), femora (p=0.001) and 

tibiae (p=0.003) show significant differences between females of the seven 

populations (Table 7.1). The Neiyangyuan females have the highest mean TA 

in all long bones except for the humeri (Table 7.1; Figures 7.1-7.6). In post 

hoc pairwise comparisons, the Neiyangyuan females exhibit significant 

differences from the Jinggouzi (adjusted p=0.034; see Table A7.3 in Appendix 
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D) and Sha Ling (adjusted p=0.004) in radial TA, from the Lamadong 

(adjusted p=0.020) and Shenyang (adjusted p=0.004) in femoral TA and from 

the Shenyang (adjusted p<0.001) in tibial TA. The Jiangjialiang females show 

the highest mean humeral TA; nonetheless, no significant differences are 

observed (Table 7.1; Figures 7.1-7.6). Conversely, with the exception of the 

radii, the means of all long bone TA among the Shenyang females are the 

lowest (Table 7.1; Figures 7.1-7.6). The tibial TA values of the Shenyang 

females are significantly lower than those of the Sha Ling females (adjusted 

p=0.026). 

Males 

The seven male subsamples show significant differences in the mean TA of 

the humeri (p=0.040), femora (p=0.012) and tibiae (p=0.020) (Table 7.2), but 

in post hoc pairwise comparisons no differences are found between any 

populations in humeral TA (see Table A7.3 in Appendix D). The Neiyangyuan 

males have the highest femoral mean TA amongst the seven populations, and 

are significantly different from those of the Sha Ling males (adjusted p=0.043) 

(Table 7.2; Figures 7.1-7.6). Additionally, the tibial TA values of the Jinggouzi 

males are significantly higher than those of the Tuchengzi (adjusted p=0.044) 

and Shenyang (adjusted p=0.026) males. It is worth noting that the mean TA 

values of some long bones demonstrate reverse patterns among the 

Jinggouzi and Shenyang males (Table 7.2; Figures 7.1-7.6). The Jinggouzi 

males have the lowest clavicular and radial TAs, whereas their humeral and 

tibial TAs are the highest among the seven populations. Similarly, while the 

Shenyang males exhibit the greatest TA in the clavicles and ulnae, they have 

the smallest means in lower limb TA. 
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Figure 7.1 Inter-population comparisons for clavicular total subperiosteal area (TA). 

Outliers are indicated with an o or .   

 
 

Figure 7.2 Inter-population comparisons for humeral total subperiosteal area (TA). 

Outliers are indicated with an o or . 
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Figure 7.3 Inter-population comparisons for radial total subperiosteal area (TA). 

Outliers are indicated with an o. 

 
 

Figure 7.4 Inter-population comparisons for ulnar total subperiosteal area (TA). 

Outliers are indicated with an o or . 
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Figure 7.5 Inter-population comparisons for femoral total subperiosteal area (TA). 

Outliers are indicated with an o. 

 
 

Figure 7.6 Inter-population comparisons for tibial total subperiosteal area (TA). 

Outliers are indicated with an o. 

 

259



  

7.1.2 Inter-population comparisons of cross-sectional shape: Ix/Iy ratio 

Females 

With the exception of the clavicles, the seven female groups show significant 

differences in the means of all long bone Ix/Iy ratios (one-way ANOVA, 

p<0.001; Table 7.3). Nevertheless, in post hoc pairwise comparisons, none of 

any two female groups differs significantly in radial and ulnar Ix/Iy (see Table 

A7.4 in Appendix D). Although the Neiyangyuan females amongst the seven 

populations do not show the highest means in any long bone Ix/Iy (Table 7.3; 

Figures 7.7-7.12), they exhibit significantly higher Ix/Iy than the Tuchengzi 

females for the humeri (adjusted p=0.047), and than the Lamadong (adjusted 

p<0.001) and Shenyang (adjusted p=0.004) females for the tibiae. The 

Jinggouzi and Sha Ling females have the highest tibial and femoral Ix/Iy, 

respectively, in which the means of the former differ considerably from those 

of the Shenyang (adjusted p<0.001) and Sha Ling (adjusted p=0.006) females, 

whereas the latter show differences from those of the Lamadong (adjusted 

p<0.001) and Shenyang (adjusted p=0.003) females. It is noteworthy that 

females of the Jiangjialiang, Tuchengzi and Shenyang populations exhibit 

opposite trends in some of the long bone mean Ix/Iy (Table 7.3; Figures 7.7-

7.12). For instance, the radial and ulnar Ix/Iy values of the Jiangjialiang 

females are the highest among the seven populations, whereas they have the 

lowest means in humeral Ix/Iy. Similar patterns are observed among the 

Jiangjialiang (highest humeral Ix/Iy, lowest clavicular and radial Ix/Iy) and 

Shenyang (highest clavicular Ix/Iy, lowest femoral and tibial Ix/Iy) females. 

Among the seven female subsamples, the mean Ix/Iy of all upper limbs 

except for the humeri are less than one, indicating greater bending loads in 

medio-lateral planes (Tables 7.3). In contrast, the means of humeral Ix/Iy are 

larger than one among all female groups, which is attributable to more loads 

in antero-posterior planes. In the lower limbs, most female groups have mean 

Ix/Iy close to one in the femora and greater than two in the tibiae (Tables 7.3). 

It suggests that the femora are subjected to similar amount of bending forces 

in the antero-posterior and medio-lateral directions, whereas there is greater 

antero-posterior loading on the tibiae. 
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Figure 7.7 Inter-population comparisons for clavicular Ix/Iy. Outliers are indicated with 

an o or . 

 
Figure 7.8 Inter-population comparisons for humeral Ix/Iy. Outliers are indicated with 

an o or . 
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Figure 7.9 Inter-population comparisons for radial Ix/Iy. Outliers are indicated with an 

o. 

 
Figure 7.10 Inter-population comparisons for ulnar Ix/Iy. Outliers are indicated with an 

o or . 
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Figure 7.11 Inter-population comparisons for femoral Ix/Iy. Outliers are indicated with 

an o or . 

 
Figure 7.12 Inter-population comparisons for tibial Ix/Iy. Outliers are indicated with an 

o. 
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Males 

Table 7.4 shows that the seven male subsamples differ significantly in the 

mean Ix/Iy of the clavicles (one-way ANOVA; p=0.036), femora (p<0.001) and 

tibiae (p<0.001). Among the seven populations, the Jinggouzi males 

demonstrate the greatest means in tibial Ix/Iy (Table 7.4; Figures 7.7-7.12), 

which are significantly different from those of all male groups (adjusted 

p<0.001; see Table A7.5 in Appendix D). The Neiyangyuan males who have 

the highest femoral Ix/Iy show considerable differences from the means of the 

Jiangjialiang, Tuchengzi, Lamadong and Shenyang males (adjusted p<0.001). 

Contrary to the lower limbs, significant differences are only observed in 

clavicular Ix/Iy between the Jiangjialiang and Neiyangyuan males, with the 

former having higher means (adjusted p=0.037). It is worth noting that males 

of the Jiangjialiang, Jinggouzi, Tuchengzi, Lamadong and Shenyang 

populations have relatively high mean Ix/Iy in one long bone yet low means in 

another (Table 7.4; Figures 7.7-7.12). 

Except the humeri, the means of all upper limb Ix/Iy are less than one 

among the seven male groups, suggesting greater mechanical loading on 

medio-lateral planes (Table 7.4). Conversely, all male groups have humeral 

Ix/Iy greater than one, which is an indicative of more antero-posterior loads. It 

is noteworthy that in contrast to other populations the Jiangjialiang males 

show mean Ix/Iy larger than one in the clavicles. Similar to the patterns of 

female lower limbs, the means of femoral Ix/Iy are close to one among the 

seven male groups, while the tibial mean Ix/Iy are greater than two for all 

groups (Table 7.4). The results imply that bending forces are equally imposed 

on the antero-posterior and medio-lateral planes of the femora, whereas the 

tibiae receive relatively more mechanical loading on the antero-posterior 

direction.
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7.1.3 Inter-population comparisons of cross-sectional shape: Imax/Imin 

ratio 

Females 

A one-way ANOVA illustrates that the seven female groups differ significantly 

in the mean Imax/Imin of the humeri (p=0.032), radii (p=0.021) and tibiae 

(p<0.001; Table 7.5). Amongst the seven populations, the Jinggouzi females 

have the highest means in humeral Imax/Imin (Table 7.5; Figures 7.13-7.18), 

and differ significantly from those of the Tuchengzi females (adjusted p=0.015; 

see Table A7.6 in Appendix D). The Jinggouzi females show significant higher 

tibial Imax/Imin than the Tuchengzi (adjusted p=0.048), Lamadong (adjusted 

p=0.004), Shenyang (adjusted p=0.004) and Sha Ling (adjusted p=0.001) 

females. Although a one-way ANOVA demonstrates that the seven female 

groups differ considerably in radial Imax/Imin, significant differences are not 

observed between any two populations (adjusted p>0.05). Clavicular mean 

Imax/Imin values do not exhibit significant differences across the seven groups; 

however, in post hoc tests, the means of the Jiangjialiang females are 

significantly higher than those of the Jinggouzi (adjusted p=0.001) and Sha 

Ling (adjusted p=0.005) females. Of the seven female subsamples, the 

Lamadong population has the highest means in ulnar and femoral Imax/Imin, but 

no significant differences are found (Table 7.5). 
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Figure 7.13 Inter-population comparisons for clavicular Imax/Imin. Outliers are indicated 

with an o or . 

 
 

Figure 7.14 Inter-population comparisons for humeral Imax/Imin. Outliers are indicated 

with an o. 
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Figure 7.15 Inter-population comparisons for radial Imax/Imin. Outliers are indicated 

with an o or . 

 
 

Figure 7.16 Inter-population comparisons for ulnar Imax/Imin. Outliers are indicated 

with an o. 
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Figure 7.17 Inter-population comparisons for femoral Imax/Imin. Outliers are indicated 

with an o. 

 
 

Figure 7.18 Inter-population comparisons for tibial Imax/Imin. Outliers are indicated with 

an o. 
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Males 

Males of the seven populations exhibit significant differences in the means of 

femoral (one-way ANOVA; p=0.002; Table 7.6) and tibial (p<0.001) Imax/Imin. 

Although the Jiangjialiang males have the highest femoral Imax/Imin among the 

seven groups (Table 7.6; Figures 7.13-7.18), the means do not differ 

significantly from those of other populations (post hoc tests; adjusted p>0.05; 

see Table A7.7 in Appendix D). In contrast, post hoc pairwise comparisons 

show that the femoral Imax/Imin of the Neiyangyuan are significantly higher than 

the Lamadong males (adjusted p=0.031). It is noteworthy that the tibial mean 

Imax/Imin of the Jinggouzi males are higher than those of all populations except 

the Jiangjialiang (adjusted p<0.001). 
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7.1.4 Summary 

Hypothesis one: Males of the Neiyangyuan, Jinggouzi, Tuchengzi and 

Shenyang periods, when socio-political conditions were unstable, will have 

higher TA in both limbs and greater Ix/Iy in the femora due to increased 

mechanical loading and higher levels of mobility. Likewise, women of the 

same periods will show relatively higher means than other female groups for 

the same cross-sectional geometric properties. 

Results: The results of TA are variable among the seven male subsamples. 

The clavicular and ulnar TA values of the Shenyang males are the highest 

among the seven groups. Moreover, they show relatively high means in 

humeral and radial TA. Nevertheless, the lower limb means of the Shenyang 

males are the lowest. Similarly, while the Jinggouzi males have relatively high 

lower limb TA, they show the lowest clavicular and radial means. In general, 

the upper limb TA values of the Neiyangyuan males are moderate, but they 

demonstrate relatively great means in the TA of both lower limbs. In contrast, 

the results of the Ix/Iy for males generally support the hypothesis. The 

Neiyangyuan, Jinggouzi and Tuchengzi display relatively high means in 

femora Ix/Iy which are over one, suggesting higher mobility levels, whereas 

those of the Shenyang males are slightly lower than one. 

In contrast to the patterns of males, overall, the findings among females 

conform to the hypothesis proposed. The Neiyangyuan, Jinggouzi, and 

Tuchengzi females exhibit relatively high means in upper limb TA, in particular 

the Neiyangyuan females who are amongst the seven populations to show 

the highest TA in all upper limbs except for the humeri. Likewise, the lower 

limb means of the Neiyangyuan females are the greatest. Conversely, the 

Shenyang females have relatively low TA in all limb bones. The results of 

femoral Ix/Iy for females, nonetheless, display a different pattern. Females in 

the Neiyangyuan, Jinggouzi, Tuchengzi and Shenyang periods do not differ 

significantly from other populations in the means of femoral Ix/Iy, which do not 

support the prediction that they have higher levels of mobility. 

 

274



  

Hypothesis two: The Sha Ling modern population will show relatively low TA 

in the lower limbs and low Ix/Iy in the femora compared with ancient Chinese, 

particularly those in socio-politically unstable time periods.  

Results: With the exception of the lower limb TA of the Sha Ling females, the 

findings do not support the hypothesis proposed. The Sha Ling females have 

relatively high femoral and tibial TAs, whereas the means of their male 

counterparts are low compared with other male groups. It is noteworthy that 

the tibial TA values of the Sha Ling females are significantly higher than those 

of the Shenyang females. Results show that the femoral Ix/Iy values of the Sha 

Ling females are the highest among the seven female groups and the means 

of males are relatively high too. In addition, the Sha Ling females show 

significantly higher femoral Ix/Iy than the Shenyang females. 
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7.2 General patterns and changes in sexual dimorphism  

This section investigates inter- and intra-population differences in sexual 

dimorphism and asymmetry of cross-sectional geometric properties in relation 

to socio-political conditions and levels of stress. It is predicted that: 

i) levels of sexual dimorphism in TA and femoral Ix/Iy will be greater among 

populations in time periods with warfare (the Neiyangyuan, Jinggouzi, 

Tuchengzi and Shenyang periods). Males in these periods are expected to 

have been involved in more physically demanding activities than their 

female counterparts, resulting in greater sex differences due increased 

physical constraints on the upper and lower limbs of men. In this light, it is 

projected that variation in sexual dimorphism in Holocene China will be 

primarily due to changes in males, while those among females should be 

relatively minor; and 

ii) levels of sexual dimorphism of the Sha Ling modern population will be 

relatively low due to low levels of sexual division of labour among modern 

societies. 

7.2.1 Sexual dimorphism in total subperiosteal area (TA) 

Diachronic trends and inter-population comparisons 

In general, the levels of sexual dimorphism27 for all upper limb TAs show 

increasing trends over time (Figures 7.19a). It is noteworthy that while there 

are increases from the Jiangjialiang to Neiyangyuan periods in mean SDI of 

all upper limb TAs, a reduction in the SDI of radial TA is observed during the 

same time frame. Similar patterns are shown in the mean SDI of ulnar TAs in 

the Jinggouzi period and humeral and radial TAs in the Tuchengzi period. 

After a long time period of steady increases between the Tuchengzi and 

Lamadong periods, there are initial decreases in the SDI values of all upper 

limb TAs from the Shenyang period. The Shenyang population show the 

greatest SDI in the TAs of all upper limbs (Table 7.7; Figures 7.19a). In 

                                            
27 In the analyses of temporal trends all negative SDI values were converted to positive values 

in order to present the diachronic patterns in level of sexual dimorphism. 
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general, the Lamadong population have relatively high SDI values in upper 

limb TAs, while those of the Jiangjialiang population are low.  

 

 
Figure 7.19a Temporal trends of mean % dimorphism in TAs of the upper limbs 

 
 

 

On the whole variation in levels of sexual dimorphism for femoral and tibial 

TAs is considerable; however, it is worth noting that both lower limbs show the 

same pattern over time (Figures 7.19b). The mean SDI of femoral and tibial 

TAs display similar increases or decreases in magnitude in all time periods 

except for the Shenyang. While there is a slight reduction between the 

Lamadong and Shenyang periods in the SDI of femoral TA (from 8.62% to 

8.23%), a marked increase is observed during the same time frame in the SDI 

of tibial TA (9.23% to 13.6%; Table 7.7). The Jinggouzi and Shenyang 

populations have the highest SDI in femoral and tibial TAs, respectively, 

whereas the femoral TAs of the Neiyangyuan and tibial TAs of Sha Ling 

populations exhibit the lowest means (Table 7.7; Figure 7.19b). In general, the 

SDI values among the Jiangjialiang, Neiyangyuan, Tuchengzi and Sha Ling 
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populations are low in the TAs of both limbs, while the means of the Jinggouzi 

and Shenyang populations are relatively higher. 

 

 
Table 7.7 Mean % dimorphism in TA for six long bones and intra-population sex 

differences by time period/population 

TA Clavicle Significance Humerus Significance Radius Significance 

Jiangjialiang -0.88 n.s. -1.27 n.s. 6.14 n.s. 

Neiyangyuan -2.50 n.s. 8.97 0.021 2.63 n.s. 

Jinggouzi -9.44 n.s. 12.90 0.004 7.38 n.s. 

Tuchengzi / n.s. 6.32 n.s. 3.44 n.s. 

Lamadong / n.s. 14.90 <0.001 11.97 <0.001 

Shenyang 13.87 n.s. 19.54 0.002 15.76 0.004 

Sha Ling 7.64 n.s. 9.49 0.005 10.63 0.001 

       

 Ulna Significance Femur Significance Tibia Significance 

Jiangjialiang 3.16 n.s. -3.38 n.s. 5.11 n.s. 

Neiyangyuan 4.44 n.s. 2.26 n.s. 4.10 n.s. 

Jinggouzi 2.71 n.s. 8.84 0.007 12.50 0.004 

Tuchengzi 6.99 n.s. 1.96 n.s. 4.65 n.s.  

Lamadong 15.67 <0.001 8.62 <0.001 9.23 <0.001 

Shenyang 21.53 0.002 8.23 n.s. 13.67 0.004 

Sha Ling 9.97 0.003 -2.64 n.s. 3.59 n.s. 

/, no data; bold font, significance is based upon independent t-test with α= 0.05; n.s., 

non-significant; red font; the highest values; positive percentage indicate males have 

larger values, whereas negative percentage indicate those of females are greater   
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Figure 7.19b Temporal trends of mean % dimorphism in TAs of the lower limbs 

 

Intra-population sex differences 

Tables 7.1 and 7.2 show that males of all populations have higher means than 

their female counterparts in the TAs of most limbs. Among the seven 

populations, the Lamadong females and males show the most significant 

differences, with males having higher TA than females in all limbs (p<0.001; 

Table 7.7).  It is followed by the Shenyang population, in which males 

demonstrate significantly greater means than females for humeral, radial, 

ulnar and tibial TAs (p=0.002-0.006). The Sha Ling males demonstrate 

significantly higher TA values than the females for all upper limbs (p=0.001-

0.005), whereas the Jinggouzi males are significantly higher than females for 

the mean TA of both lower limbs (p=0.004-0.007) and humeri (p=0.004). In 

contrast, the Jiangjialiang and Tuchengzi populations do not show significant 

sex differences in the TAs of any limbs. 

Variation in levels of sexual dimorphism of the TAs of several limbs is 

great between some time periods, in which is primarily due to relatively 
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marked increases or decreases in male mean TA (Tables 7.1; 7.2). For 

instance, the SDI of clavicular TA between the Neiyangyuan and Jinggouzi 

periods, humeral TA between the Jinggouzi and Tuchengzi periods, radial TA 

between the Shenyang and Sha Ling periods, femoral TA between the 

Jiangjialiang and Neiyangyuan periods and tibial TA between the Jinggouzi 

and Tuchengzi periods (Table 7.7). Conversely, relatively great changes in 

female TA values have been attributable to variation in levels of sexual 

dimorphism in radial TA between the Jiangjialiang and Tuchengzi periods, 

femora TA between the Neiyangyuan and Jinggouzi periods and between the 

Shenyang and Sha Ling periods and tibiae TA between the Lamadong and 

Sha Ling periods (Tables 7.1; 7.2; 7.7). Nonetheless, some pronounced 

changes in magnitude of sexual dimorphism are due to opposite patterns 

between the sexes (Tables 7.1; 7.2; 7.7). For example, the clavicular TA 

values between the Shenyang and Sha Ling periods, the humeral TAs 

between the Jiangjialiang and Neiyangyuan periods, between the Tuchengzi 

and Lamadong periods, and between the Shenyang and Sha Ling periods, 

the radial TAs between the Tuchengzi and Lamadong periods, the ulnar TAs 

between the Tuchengzi and Sha Ling periods, the femoral TAs between the 

Jinggouzi and Lamadong periods and the tibial TAs between the Neiyangyuan 

and Jinggouzi periods. 

7.2.2 Sexual dimorphism in cross-sectional shape Ix/Iy ratio 

Diachronic trends and inter-population comparisons 

Levels of sexual dimorphism in upper limb Ix/Iy demonstrate considerable 

variation over time (Figure 7.20a). It is noteworthy that the mean SDI of the 

clavicular Ix/Iy for the Jiangjialiang population is substantially higher than those 

of other populations. The temporal trends of the SDI of the upper limb Ix/Iy 

show several differences. The means of humeral and radial TAs exhibit a 

reduction between the Jinggouzi and Tuchengzi periods, whereas that of 

ulnar TA shows an increase (Table 7.8; Figure 7.20a). An opposite pattern 

occurs in the following time periods, during which while there is a decline in 
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the SDI of ulnar TA from the Tuchengzi and Lamadong periods, humeral and 

radial TAs display an increase. Among the seven populations, the 

Jiangjialiang group has the highest mean SDI in clavicular, humeral and radial 

Ix/Iy and the Tuchengzi group shows the greatest sex differences in ulnar Ix/Iy. 

 

 
Figure 7.20a Temporal patterns of mean % dimorphism in Ix/Iy of the upper limbs 

 
 

 

Levels of sexual dimorphism in femoral and tibial Ix/Iy display opposite 

trends between the Jiangjialiang and Lamadong periods, but both lower limbs 

exhibit a reduction in mean SDI after the Shenyang period (Figure 7.20b). The 

Jinggouzi and Tuchengzi populations have the largest SDI in femoral and tibia 

Ix/Iy respectively (Table 7.8). In contrast to the pattern in clavicular Ix/Iy, the 

Jiangjialiang population has a considerably low mean SDI in femoral Ix/Iy 

compared with other populations.  
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Table 7.8 Mean % dimorphism in Ix/Iy for six long bones and intra-population sex 

differences by time period/population 

Ix/Iy Clavicle Significance Humerus Significance Radius Significance 

Jiangjialiang 45.69 <0.001 -15.26 0.018 14.23 0.032 

Neiyangyuan -1.11 n.s. -14.95 0.004 9.39 n.s. 

Jinggouzi 3.97 n.s. -10.82 n.s. -4.78 n.s. 

Tuchengzi / n.s. -2.49 n.s. -0.81 n.s. 

Lamadong / n.s. -14.09 0.001 14.21 0.006 

Shenyang -20.35 n.s. -10.97 n.s. 7.76 n.s. 

Sha Ling -0.84 n.s. -7.05 n.s. 7.68 n.s. 

       

 Ulna Significance Femur Significance Tibia Significance 

Jiangjialiang 1.23 n.s. -5.63 n.s. 6.43 n.s. 

Neiyangyuan 7.74 n.s. 21.84 <0.001 4.64 n.s. 

Jinggouzi 5.27 n.s. 22.01 0.004 10.81 n.s. 

Tuchengzi -19.71 n.s. 14.77 0.015 13.73 0.046 

Lamadong 9.83 n.s. 20.03 <0.001 5.10 n.s. 

Shenyang -1.73 n.s. 18.62 0.006 13.32 0.004 

Sha Ling 5.55 n.s. 10.62 0.042 6.80 n.s. 

/, no data; bold font, significance is based upon independent t-test with α= 0.05; n.s., 

non-significant; red font; the highest values; positive percentage indicate males have 

larger values, whereas negative percentage indicate those of females are greater   

Intra-population sex differences 

Females have higher means than males for several upper limbs Ix/Iy (Tables 

7.3; 7.4), of which the humeral Ix/Iy of the Jiangjialiang (p=0.018), 

Neiyangyuan (p=0.004) and Lamadong (p=0.001) populations show 

significant differences (Table 7.8). Conversely, the means of clavicular and 

radial Ix/Iy among the Jiangjialiang males and radial Ix/Iy among the Lamadong 

males are significantly greater than those of their female counterparts. In the 

lower limbs, males of all populations except for the Jiangjialiang exhibit 

significantly larger means than females in femoral Ix/Iy (p<0.001) (Table 7.8). 

In addition, the tibial Ix/Iy values of the Tuchengzi (p=0.046) and Shenyang 

(p=0.004) males are significantly larger than those of females. 
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Figure 7.20b Temporal patterns of mean % dimorphism in Ix/Iy of the lower limbs 

 
 

 

Levels of sexual dimorphism in some limb Ix/Iy exhibits great variation over 

time, in which is attributable to considerable changes in the means of females 

and/or males (Tables 7.3; 7.4). The marked reduction in the SDI of clavicular 

Ix/Iy from the Jiangjialiang to Neiyangyuan periods is due to the opposite 

patterns between female and male means. Similarly, sex differences in trends 

are the major factors for explaining variation in clavicular Ix/Iy between the 

Shenyang and Sha Ling periods, radial Ix/Iy between the Lamadong and 

Shenyang periods, ulnar Ix/Iy between the Jiangjialiang and Neiyangyuan 

periods, femoral Ix/Iy between the Jinggouzi and Tuchengzi periods and tibial 

Ix/Iy between the Tuchengzi and Lamadong periods.  

Conversely, relative great changes in Ix/Iy values among females are 

attributable to considerable variation in levels of sexual dimorphism in the 

humeral Ix/Iy between the Jinggouzi and Tuchengzi periods, in the radial Ix/Iy 

between the Tuchengzi and Lamadong periods and in the ulnar Ix/Iy between 
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the Jinggouzi and Shenyang periods. Furthermore, changes in female Ix/Iy 

values are the major factors explaining variation in sexual dimorphism in the 

lower limbs: the femoral Ix/Iy between the Tuchengzi and Lamadong periods 

and between the Shenyang and Sha Ling periods; and the tibial Ix/Iy between 

the Lamadong and Sha Ling periods (Tables 7.3; 7.4). Likewise, the relatively 

marked changes in male Ix/Iy means are the primary causes for the great 

variation in levels of sexual dimorphism of the radial Ix/Iy between the 

Lamadong and Shenyang periods, the femoral Ix/Iy between the Jiangjialiang 

and Neiyangyuan periods, the tibial Ix/Iy between the Neiyangyuan and 

Jinggouzi periods (Tables 7.3; 7.4). 

7.2.3 Sexual dimorphism in cross-sectional shape Imax/Imin ratio 

Diachronic trends and inter-population comparisons 

With the exception of clavicular Imax/Imin, levels of sexual dimorphism in Imax/Imin 

of all upper limbs demonstrate considerable variation (Figure 7.21a). The 

means of clavicular Imax/Imin show a gradual reduction over time, from 27.47% 

to 3.74% (Table 7.9). It is noteworthy that the clavicular and radial Imax/Imin of 

the Jiangjialiang population have relatively high SDI compared with other 

populations. The temporal trends of femoral and tibial Imax/Imin are variable 

between the Neiyangyuan and Lamadong periods, in which the mean SDI 

values of femoral Imax/Imin show reductions, while those of tibial Imax/Imin exhibit 

increases (Figure 7.21b). It is worth noting that the Jiangjialiang and 

Neiyangyuan populations have relatively high means in femoral Imax/Imin than 

other populations (Table 7.9).  

Populations in the early periods (the Jiangjialiang an Neiyangyuan) show 

the greatest levels of sexual dimorphism in the Imax/Imin of all upper limbs 

(Table 7.9). In the lower limbs, the Jiangjialiang population among the seven 

groups has the highest SDI in femoral Imax/Imin (Table 7.9). While the SDI 

values of tibial Imax/Imin among the Tuchengzi population are the largest, they 

show the smallest means in femoral Imax/Imin.  
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Figure 7.21a Temporal patterns of mean % dimorphism in Imax/Imin of the upper limbs 

 
 

Figure 7.21b Temporal patterns of mean % dimorphism in Imax/Imin of the lower limbs 
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Table 7.9 Mean % dimorphism in Imax/Imin for six long bones and intra-population sex 

differences by time period/population 

Imax/Imin Clavicle Significance Humerus Significance Radius Significance 

Jiangjialiang -27.47 0.003 -6.78 n.s. -21.39 n.s. 

Neiyangyuan -10.63 n.s. -10.33 0.009 -10.17 n.s. 

Jinggouzi 6.60 n.s. -9.07 n.s. -0.77 n.s. 

Tuchengzi / n.s. 2.82 n.s. -3.06 n.s. 

Lamadong / n.s. -1.32 n.s. -9.36 n.s. 

Shenyang 10.60 n.s. -10.26 n.s. -2.59 n.s. 

Sha Ling 3.74 n.s. -6.68 0.027 -9.35 0.022 

       

 Ulna Significance Femur Significance Tibia Significance 

Jiangjialiang -0.72 n.s. 19.13 0.035 5.55 n.s. 

Neiyangyuan -15.71 n.s. 16.02 0.001 3.82 n.s. 

Jinggouzi 0.63 n.s. 3.73 n.s. 10.74 n.s. 

Tuchengzi 10.06 n.s. 3.40 n.s. 12.67 0.048 

Lamadong -8.25 n.s. -4.15 n.s. 5.43 n.s. 

Shenyang 0.24 n.s. -8.66 0.045 6.86 n.s. 

Sha Ling -5.72 n.s. 5.71 n.s. 6.62 n.s. 

/, no data; bold font, significance is based upon independent t-test with α= 0.05; n.s., 

non-significant; red font; the highest values; positive percentage indicate males have 

larger values, whereas negative percentage indicate those of females are greater 

Intra-population sex differences 

The Jiangjialiang, Neiyangyuan and Lamadong females demonstrate higher 

means than their male counterparts in the Imax/Imin of all upper limbs, among 

which the clavicular Imax/Imin of the Jiangjialiang (p=0.003) and the humeral 

Imax/Imin of the Neiyangyuan (p=0.009) demonstrate significant differences 

(Tables 7.5; 7.6; 7.9). In addition, the humeral Imax/Imin of the Jinggouzi 

(p=0.009) and Sha Ling (p=0.027) females and the radial Imax/Imin of the Sha 

Ling females (p=0.022) are significantly higher than those of males. In the 

lower limbs (Table 7.11), except the femoral Imax/Imin of the Lamadong and 

Shenyang populations, males of the seven populations have higher means 

than females in the Imax/Imin of both lower limbs, of which the femoral Imax/Imin of 
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the Jiangjialiang (p=0.035) and Neiyangyuan (p=0.001) and the tibial Imax/Imin 

of the Tuchengzi (p=0.048) show significant differences. Conversely, the 

Shenyang females have significantly higher femoral Imax/Imin than their male 

counterparts (p=0.045).  

Variation in levels of sexual dimorphism of some limb Imax/Imin are due to 

considerable changes among females and/or males (Tables 7.5; 7.6). The 

contrasting trends between female and male means are attributable to 

considerable changes in the SDI of the clavicular Imax/Imin between the 

Jiangjialiang and Neiyangyuan periods, the humeral Imax/Imin between the 

Lamadong and Shenyang periods, the ulnar Imax/Imin between the Jiangjialiang 

and Jinggouzi periods, the femoral Imax/Imin between the Neiyangyuan and 

Jinggouzi periods and the tibial Imax/Imin between the Tuchengzi and 

Lamadong periods. Nevertheless, marked variation in levels of sexual 

dimorphism in humeral Imax/Imin between the Jinggouzi and Tuchengzi periods, 

in radial Imax/Imin between the Jiangjialiang and Jinggouzi periods and between 

the Tuchengzi and Shenyang periods and in ulnar Imax/Imin between the 

Jinggouzi and Tuchengzi periods is mainly due to relative large changes in 

female means (Tables 7.5; 7.6). Likewise, variation in male means attribute to 

the pronounced alteration in levels of sexual dimorphism in clavicular and 

radial Imax/Imin between the Shenyang and Sha Ling periods and in tibial 

Imax/Imin between the Neiyangyuan and Jinggouzi periods (Tables 7.5; 7.6). 

7.2.4 Summary 

Hypothesis one: Levels of sexual dimorphism in TAs and femoral Ix/Iy will be 

greater among populations in the Neiyangyuan, Jinggouzi, Tuchengzi and 

Shenyang periods, which are characterised by unstable socio-political 

conditions and elevated stresses. It is expected that increases in sexual 

dimorphism levels in these time periods are mainly due to engagement of 

men in more physically demanding activities, including warfare-related tasks. 

On this context, changes in males should be attributable to variation in levels 

of sexual dimorphism in Holocene China.  
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Results: The findings partially support the hypothesis. Except for the femora, 

the Shenyang population have the most sexually dimorphic TAs in all long 

bones, while the Jinggouzi females and males have the most distinct femoral 

TA. In contrast, the radial and femoral TAs of the Neiyangyuan population 

among the seven groups are the least sexually dimorphic. In addition, the 

Tuchengzi population has a relatively low degree of sexual dimorphism in the 

TA of all limbs. The results indicate that males in the Jinggouzi and Shenyang 

periods were exposed to relatively high mechanical environments than males 

in the Neiyangyuan and Tuchengzi periods. On contrary to the pattern of TAs, 

the populations in the Neiyangyuan, Jinggouzi and Shenyang periods have 

great SDI values in femoral Ix/Iy, among which those of the Neiyangyuan 

population are the highest among the seven groups, implying that mobility 

levels are higher among males. Last, the findings do not suggest that variation 

in TAs is mainly due to relatively large changes in the means among males. 

Instead, the results show that the changes in females and males equally 

contribute to the variable trends in levels of sexual dimorphism between 

certain time periods. 

  

Hypothesis two: Levels of sexual dimorphism of the Sha Ling modern 

population will be relatively low due to reduced gender-based labour division 

in modern societies.  

Results: The results lend support to the interpretation that the Sha Ling 

population is less sexually dimorphic than ancient populations for long bone 

TAs, in particular the lower limbs. In addition, the femoral Ix/Iy of the Sha Ling 

has relatively low SDI, suggesting levels of mobility between females and 

males do not show much difference.  
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7.3 General patterns and changes in asymmetry 

This section investigates patterns of bilateral asymmetry in the cross-sectional 

geometric properties of the upper and lower limbs. It is predicted that: 

i) the Holocene Chinese, regardless of sex and time period, will conform to 

the universal pattern and the expectations strong Chinese culture which 

emphasise the use of right hand for fine tasks. Conversely, the lower limb 

properties will not show a clear lateralisation or will demonstrate a slight 

left-bias; 

ii) men, in particular those in the more stressful time periods (the 

Neiyangyuan, Jinggouzi, Tuchengzi and Shenyang periods), will show 

higher degree of absolute asymmetry than women in upper limb TAs. This 

is based upon the premise that males in general engaged in more 

strenuous and repetitive activities, which increased the diaphyseal strength 

of the dominant arm; and 

iii) the Sha Ling modern population will exhibit relatively high frequencies in 

right-handedness due to stronger cultural pressures and advanced 

technology. 

7.3.1 Patterns of asymmetry in total subperiosteal area (TA) 

Inter-population comparisons in directional asymmetry 

Overall, most of the upper limb TAs among the seven female groups tend to 

be right dominant (positive percent directional asymmetry), whereas those of 

the femora and tibiae generally show an asymmetric bias to the left (Table 

7.10). It is noteworthy that all upper and lower limb TAs among the Tuchengzi 

females exhibit a right bias. In addition, all long bones but the radii among the 

Sha Ling females are right dominant. 
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Table 7.10 Mean percent directional asymmetry (%DA) for the TAs of six long bones 

and right/left-biased frequencies (females) (cont’d) 

  
Clavicle Humerus Radius Ulna Femur Tibia 

JJL n 3 4 3 1 2 4 

 
mean %DA 3.45 2.16 -1.03 / -8.82 -4.04 

 
R 3 2 1 0 0 1 

 
L 0 2 2 1 2 3 

 
% Right 100.00 50.00 33.33 / 0.00 25.00 

 
% Left 0.00 50.00 66.67 / 100.00 75.00 

NYY n 7 8 6 2 12 6 

 
mean %DA 1.62 -0.72 0.08 9.97 -4.21 0.71 

 
R 5 3 2 2 3 4 

 
L 2 5 4 0 9 2 

 
% Right 71.43 37.50 33.33 100.00 25.00 66.67 

 
% Left 28.57 62.50 66.67 0.00 75.00 33.33 

JGZ n 1 7 5 2 2 6 

 
mean %DA / -0.36 -6.82 2.64 -5.47 0.44 

 
R 0 3 1 1 1 3 

 
L 1 4 4 1 1 3 

 
% Right / 42.86 20.00 50.00 50.00 50.00 

 
% Left / 57.14 80.00 50.00 50.00 50.00 

TCZ n 0 7 3 2 7 0 

 
mean %DA / 1.35 1.64 3.41 1.17 / 

 
R 0 4 1 2 4 0 

 
L 0 3 2 0 3 0 

 
% Right / 57.14 33.33 100.00 57.14 / 

 
% Left / 42.86 66.67 0.00 42.86 / 

Abbreviations: JJL, Jiangjialiang; NYY, Neiyangyuan; JGZ, Jinggouzi; TCZ, 

Tuchengzi; n, number of individuals with paired bone elements; /, no data; %DA, 

positive values indicate right dominance, while negative values indicate left 

dominance; R, frequencies of right-biased individuals; L, frequencies of left-biased 

individuals 
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Table 7.10 continued 

  
Clavicle Humerus Radius Ulna Femur Tibia 

LMD n 0 14 5 3 25 25 

 
mean %DA / 2.27 4.32 4.18 -3.22 -1.52 

 
R 0 12 4 3 6 8 

 
L 0 2 1 0 19 17 

 
% Right / 85.71 80.00 100.00 24.00 32.00 

 
% Left / 14.29 20.00 0.00 76.00 68.00 

SY n 6 3 4 3 5 5 

 
mean %DA 5.72 -2.88 2.76 -4.70 1.18 -0.97 

 
R 5 1 3 0 4 3 

 
L 1 2 1 3 1 2 

 
% Right 83.33 33.33 75.00 0.00 80.00 60.00 

 
% Left 16.67 66.67 25.00 100.00 20.00 40.00 

SL n 11 17 18 14 20 16 

 
mean %DA 2.05 1.68 -1.04 2.88 0.53 0.83 

 
R 8 13 9 11 9 8 

 
L 3 3 9 3 11 8 

 
% Right 72.73 76.47 50.00 78.57 45.00 50.00 

 
% Left 27.27 17.65 50.00 21.43 55.00 50.00 

Abbreviations: LMD, Lamadong; SY, Shenyang; SL, Sha Ling; n, number of 

individuals with paired bone elements; /, no data; %DA, positive values indicate right 

dominance, while negative values indicate left dominance; R, frequencies of right-

biased individuals; L, frequencies of left-biased individuals 

 

 

A number of female groups show a frequency of 100% right-directional 

asymmetry in some long bone TAs, for instance, the clavicular TA of the 

Jiangjialiang females and the ulnar TA of the Neiyangyuan, Tuchengzi and 

Lamadong females (Table 7.10). However, it should be noted that the number 

of individuals with paired elements are relatively small in these populations, so 

the results may be biased. In addition, over 80% of the Lamadong and 

Shenyang females show right-biased humeral and radial TAs, and clavicular 

and femoral TAs, respectively. It is worth noting that the long bone TAs of 

some populations displays a contrasting pattern between percent directional 
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asymmetry and right-left frequencies (Table 7.10). While the Neiyangyuan 

and Tuchengzi females have positive mean %DA (right-biased) in radial TAs, 

more than 60% of the populations show a left bias in the same properties, 

indicating that individuals who exhibit a right-biased radial TA have relatively 

high means for right radial TAs. Similar patterns are observed in the femoral 

TA of the Sha Ling females and the tibial TA of the Shenyang females.  

Among males, overall, most populations tend to show a right-side bias for 

humeral and radial TAs, while clavicular, femoral and tibial TAs are more 

commonly to be left-biased among the seven male groups (Table 7.11). The 

Jiangjialiang, Neiyangyuan, Tuchengzi, Lamadong males demonstrate an 

asymmetric bias to the left for more than half of long bone TAs, whereas the 

Jinggouzi, Shenyang and Sha Ling groups have more right-biased TAs. The 

Neiyangyuan and Shenyang males exhibit a frequency of 100% right-biased 

asymmetry in radial and humeral TAs, respectively. However, the sample size 

of the Shenyang males is very small (n=2), so the results presented may be 

biased (Table 7.11). Additionally, male groups that show 80% or higher right-

biased asymmetry in long bone TAs include the Neiyangyuan (humeri), 

Jinggouzi (humeri and tibiae), Tuchengzi (radii), Lamadong (radii) and Sha 

Ling (humeri and radii) populations. Some male subsamples demonstrate 

right- or left-biased long bone TAs, but a higher frequency of populations 

shows the other side dominance. For instance, the Jiangjialiang males show a 

negative %DA for humeral TA (left dominant); however, there are over 70% 

right-biased individuals in the Jiangjialiang population. Similar patterns are 

observed in the radial TAs of the Jiangjialiang and Jinggouzi, the ulnar TA of 

the Tuchengzi and the tibial TA of the Sha Ling males. 

 

292



  

Table 7.11 Mean percent directional asymmetry (%DA) for TAs of six long bones and 

right/left-biased frequencies (males) (cont’d) 

  
Clavicle Humerus Radius Ulna Femur Tibia 

JJL n 9 7 5 1 0 5 

 
mean %DA -0.48 -3.23 0.30 / / -1.29 

 
R 4 5 2 0 0 1 

 
L 5 2 3 1 0 4 

 
% Right 44.44 71.43 40.00 / / 20.00 

 
% Left 55.56 28.57 60.00 / / 80.00 

NYY n 10 12 10 8 15 18 

 
mean %DA -5.08 6.28* 7.29 -1.18 -3.65 -1.38 

 
R 3 11 10 3 3 8 

 
L 7 1 0 5 12 10 

 
% Right 30.00 91.67 100.00 37.50 20.00 44.44 

 
% Left 70.00 8.33 0.00 62.50 80.00 55.56 

JGZ n 4 6 5 4 3 5 

 
mean %DA -9.14 7.41 2.64 3.48 4.19 0.59 

 
R 0 5 2 3 2 4 

 
L 4 1 3 1 1 1 

 
% Right 0.00 83.33 40.00 75.00 66.67 80.00 

 
% Left 100.00 16.67 60.00 25.00 33.33 20.00 

TCZ n 0 14 6 6 17 2 

 
mean %DA / 2.69 4.40 -0.69 -1.89 -2.14 

 
R 0 10 5 4 6 0 

 
L 0 4 1 2 11 2 

 
% Right / 71.43 83.33 66.67 35.29 0.00 

 
% Left / 28.57 16.67 33.33 64.71 100.00 

Abbreviations: JJL, Jiangjialiang; NYY, Neiyangyuan; JGZ, Jinggouzi; TCZ, 

Tuchengzi; n, number of individuals with paired bone elements; /, no data; %DA, 

positive values indicate right dominance, while negative values indicate left 

dominance; R, frequencies of right-biased individuals; L, frequencies of left-biased 

individuals 
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Table 7.11 continued 

  
Clavicle Humerus Radius Ulna Femur Tibia 

LMD n 1 15 7 6 26 20 

 
mean %DA / 2.22 4.48 -3.26 -0.64 -0.88 

 
R 1 11 6 0 9 8 

 
L 0 4 1 6 17 12 

 
% Right / 73.33 85.71 0.00 34.62 40.00 

 
% Left / 26.67 14.29 100.00 65.38 60.00 

SY n 1 2 2 4 11 4 

 
mean %DA / 1.06 0.47 3.36 -4.18 1.84 

 
R 1 2 1 3 4 2 

 
L 0 0 1 1 7 2 

 
% Right / 100.00 50.00 75.00 36.36 50.00 

 
% Left / 0.00 50.00 25.00 63.64 50.00 

SL n 13 25 21 13 29 28 

 
mean %DA 2.26 4.39 4.91 3.57 -1.19 0.06 

 
R 7 22 17 9 9 13 

 
L 6 3 4 4 20 15 

 
% Right 53.85 88.00 80.95 69.23 31.03 46.43 

 
% Left 46.15 12.00 19.05 30.77 68.97 53.57 

Abbreviations: LMD, Lamadong; SY, Shenyang; SL, Sha Ling; n, number of 

individuals with paired bone elements; /, no data; %DA, positive values indicate right 

dominance, while negative values indicate left dominance; R, frequencies of right-

biased individuals; L, frequencies of left-biased individuals 

Intra-population sex differences in directional asymmetry 

The Jiangjialiang females and males exhibit different directional asymmetry in 

the TAs of all upper limbs, in which those of females tend to be right-biased 

and those of males show a left bias (Tables 7.10; 7.11). Conversely, the lower 

limb TAs of both sexes demonstrate an asymmetric bias to the left. Although 

most of the upper limb TAs among the Jiangjialiang females are right 

dominant, frequencies of right-directional asymmetry are relatively low, in 

which can be attributable to a small sample size. The Neiyangyuan females 

and males show the same directional asymmetry in the TAs of the radii (right   
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dominant) and femora (left dominant), whereas the clavicles, humeri, ulnae 

and tibiae have contralateral side dominance (Tables 7.10; 7.11). Significant 

sex differences are observed in the %DA of humeral (p=0.002) and ulnar 

(p=0.037) TAs, which females and males have different asymmetric biases. 

More than half (4/6) of the long bone TAs among the Neiyangyuan females 

are right-biased but the opposite is true for males. It is noteworthy that the 

male humeral and radial TAs which show a right bias have a frequencies of 

over 90%. Among the Jinggouzi population, females and males demonstrate 

different side bias in humeral, radial and femoral TAs, of which the %DA of 

humeral TA exhibit significant sex differences (p=0.022; Tables 7.10; 7.11). 

The TAs of the upper and lower limbs among females tend towards left-

biased directional asymmetry. Conversely, except for the clavicles, males 

have an asymmetric bias to the right for all long bone TAs, of which the 

humeri and tibiae have frequencies of over 80%.  

Of the long bones which are available for observation, the Tuchengzi 

females and males demonstrate the same directional asymmetry in humeral 

and radial TAs (right-sided bias), while the asymmetric bias of ulnar and 

femoral TAs are different (Tables 7.10; 7.11). The TAs of all long bones 

among females are right dominant; however, the frequencies are relatively 

low. Conversely, three (ulnae, femora and tibiae) out of five long bone TAs 

among males show a left bias. Except for the ulnae, the directional asymmetry 

of the TA of all long bones is similar between the Lamadong females and 

males, among whom the humeral and radial TAs show a right lateralisation, 

while the lower limb TAs have a left-sided asymmetry (Tables 7.10; 7.11). 

Although both sexes have same side dominance for femoral TA, the %DA 

values differ significantly (p=0.014). In addition, %DA of ulnar TA show 

significant sex differences (p=0.02). It is worth noting that, regardless of side 

dominance, frequencies of asymmetry are relatively high among females and 

males of the Lamadong populations. The Shenyang females and males show 

different directional asymmetry in the TAs of all long bones except for the radii 

(Tables 7.10; 7.11). While most of the long bone TAs among males tend to 

have a right bias, half (3/6) of those among females exhibit an asymmetric 

bias to the left. The Sha Ling females and males have similar directional 

asymmetry for clavicular, humeral, ulnar and tibial TAs, which show a right 
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bias (Tables 7.10; 7.11). However, %DA values of humeral TA exhibit 

significant sex differences (p=0.023). Moreover, the Sha Ling females and 

males differ significantly in the %DA values of radial TA (p=0.001), which 

exhibit different side dominance between the sexes. It is noteworthy that over 

80% of male individuals have right-directional asymmetry in humeral and 

radial TAs.  

Inter-population comparisons in absolute asymmetry28 

While mean percent absolute asymmetry (%AA) of the upper limb TAs 

demonstrates considerable variation over time, those of the lower limb TAs 

show a reduction, followed by an initial increase after the Shenyang period 

(Figures 7.12a-b). The greatest mean %AA values in the upper limb TAs are 

found among the Shenyang (clavicles, ulnae), Jiangjialiang (humeri) and 

Jinggouzi (radii) populations, but the right and left means do not show 

significant differences (p>0.05; Table 7.12). The right humeral TAs of the 

Lamadong (p=0.003) and Sha Ling (p=0.038) females and the right ulnar TAs 

of the Sha Ling (p=0.047) females are considerably higher than the left 

elements. In the lower limbs, the Jinggouzi and Jiangjialiang females exhibit 

the highest %AA values among the seven populations for femoral and tibial 

TAs, respectively; however, significant differences are not observed (p>0.05; 

Table 7.12). The lower limb TAs among the Lamadong females demonstrate 

significant side differences, with the left side having significantly higher means 

than the right side (p<0.001; Table 7.12). 

Males of the seven populations demonstrate considerable variation 

through time in percent absolute asymmetry (%AA) of the TAs of the upper 

and lower limbs (Figures 7.13a-b). Among the seven groups, the Jinggouzi 

males have the greatest %AA in clavicular, humeral and tibial TAs, of which 

the means of the left clavicular TAs are significantly higher than those of the 

right side (p=0.021; Table 7.13). The Shenyang males show the largest %AA 

in ulnar and femoral TAs, but significant differences are not found. The radial 
                                            
28 Populations that show less than five individuals (n<5) were not considered in the statistical 

analyses in this sub-section. 
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TAs of the Neiyangyuan males among seven groups have the highest %AA, 

where the right means are significantly greater than the left ones (p=0.027). 

Additionally, the humeri of the Neiyangyuan (p<0.001), Tuchengzi (p=0.02) 

and Sha Ling (p<0.001) males, the radii of Lamadong (p=0.025) and Sha Ling 

(p<0.001) males and the ulnae of the Sha Ling (p=0.035) males demonstrate 

significantly greater mean TAs for the right side than the left. In contrast, the 

left means of the Neiyangyuan femoral TAs are significantly higher than the 

right ones (p=0.005; Table 7.13). 
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Figure 7.22a Temporal patterns of mean %AA for upper limb TAs (females) 

 
 

Figure 7.22b Temporal patterns of mean %AA for lower limb TAs (females) 

 

298



  

Table 7.12 Mean percent absolute asymmetry (%AA) for the TAs of six long bones 

(females) 

  
Clavicle Humerus Radius Ulna Femur Tibia 

JJL n 3 4 3 1 2 4 

 
 ̅R 135.42  430.88  188.84  / 746.38  637.86  

 
 ̅L 130.52  421.60  191.73  / 814.43  667.46  

 
mean %AA 3.45  4.54  4.42  / 8.82*   7.27  

NYY n 7 8 6 2 12 6 

 
 ̅R 152.46  414.08  199.28  182.76  831.45  669.14  

 
 ̅L 149.29  417.02  198.99  165.46  868.27  662.74  

 
mean %AA 6.04  2.15  6.64  9.97   5.73  3.90  

JGZ n 1 7 5 2 2 6 

 
 ̅R / 393.30  152.97  185.22  721.49  623.05  

 
 ̅L / 394.05  163.02  180.21  760.86  619.66  

 
mean %AA / 2.99  7.27  3.43  5.79  2.30  

TCZ n 0  7 3 2 7 0 

 
 ̅R / 385.63  172.75  191.31  797.73  / 

 
 ̅L / 380.63  169.69  184.88  789.31  / 

 
mean %AA / 3.13  2.91  3.41  4.35  / 

LMD n 0 14 5 3 25 25 

 
 ̅R / 371.47  160.37  173.85  745.81  601.88  

 
 ̅L / 363.03  153.32  166.47  770.21  611.57  

 
mean %AA / 2.49*  5.91  4.18  3.58*   2.18*   

SY n 6 3 4 3 5 5 

 
 ̅R 139.73  363.41  163.25  173.97  738.43  520.67  

 
 ̅L 132.08  373.74  158.66  182.95  729.87  525.87  

 
mean %AA 8.04  3.63  3.45  4.70  1.95  1.52  

SL n 11 17 18 14 20 16 

 
 ̅R 145.48  387.16  158.77  183.45  802.62  634.48  

 
 ̅L 141.82  380.57  160.52  178.13  798.31  629.35  

 
mean %AA 6.15  3.18*   3.81  4.45*   2.58  3.43  

Abbreviations: JJL, Jiangjialiang; NYY, Neiyangyuan; JGZ, Jinggouzi; TCZ, 

Tuchengzi; LMD, Lamadong; SY, Shenyang; SL, Sha Ling; n, number of individuals 

with paired bone elements; /, no data;  ̅R, mean value of right elements;  ̅L, mean 

value of left elements; *, means of the right and left sides show significant differences 

based upon paired t-test with α=0.05 (bold font) 
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Figure 7.23a Temporal patterns of mean %AA for upper limb TAs (males) 

 
Figure 7.23b Temporal patterns of mean %AA for lower limb TAs (males) 

 

300



  

Table 7.13 Mean percent absolute asymmetry (%AA) for the TAs of six long 

bones (males) 

  
Clavicle Humerus Radius Ulna Femur Tibia 

JJL n 9 7 5 1 0 5 

 
 ̅R 139.73  410.81  182.84  / / 649.76  

 
 ̅L 140.48  424.47  181.74  / / 657.84  

 
mean %AA 3.91  6.22  4.25  5.42  / 3.14  

NYY n 10 12 10 8 15 18 

 
 ̅R 150.58  446.51  199.01  205.86  823.80  685.44  

 
 ̅L 158.04  419.44  184.20  208.47  855.63  694.36  

 
mean %AA 8.67  6.45*  7.29*  2.70  4.43*  2.52  

JGZ n 4 6 5 4 3 5 

 
 ̅R 149.29  464.28  178.57  200.22  815.05  721.61  

 
 ̅L 163.70  431.84  174.10  192.66  780.97  716.66  

 
mean %AA 9.14*  7.42  4.19  5.83  4.49  4.57  

TCZ n 0 14 6 6 17 2 

 
 ̅R / 420.62  182.43  199.57  817.19  634.04  

 
 ̅L / 409.24  174.57  200.72  832.36  648.07  

 
mean %AA / 3.20*  5.61  4.91  3.69  2.14  

LMD n 1 15 7 6 26 20 

 
 ̅R / 452.15  199.43  200.81  815.31  669.90  

 
 ̅L / 442.06  190.64  207.42  820.77  675.57  

 
mean %AA 2.99  5.43  4.81*  3.26  2.65  2.57  

SY n 1 2 2 4 11 4 

 
 ̅R / 416.49  183.76  214.76  775.70  604.79  

 
 ̅L / 412.14  182.88  207.23  802.01  593.97  

 
mean %AA 3.72  1.06  1.16  7.65  5.44  4.12  

SL n 13 25 21 13 29 28 

 
 ̅R 153.45  419.53  182.42  201.48  779.58  647.65  

 
 ̅L 149.37  401.54  173.66  194.58  788.28  646.77  

 
mean %AA 6.74  5.15*  5.37*  5.34*  2.75  3.26  

Abbreviations: JJL, Jiangjialiang; NYY, Neiyangyuan; JGZ, Jinggouzi; TCZ, 

Tuchengzi; LMD, Lamadong; SY, Shenyang; SL, Sha Ling; n, number of individuals 

with paired bone elements; /, no data;  ̅R, mean value of right elements;  ̅L, mean 

value of left elements; *, means of the right and left sides show significant differences 

based upon paired t-test with α=0.05 (bold font) 
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Intra-population comparisons in absolute asymmetry29 

Among the Jiangjialiang population, while males show greater mean percent 

absolute asymmetry (%AA) in clavicular and humeral TAs, females have 

higher %AA in radial and tibial TAs (Tables 7.12; 7.13). The sexes do not 

demonstrate significant differences in the %AA of any long bone TAs (p>0.05). 

The Neiyangyuan males have greater %AA than their female counterparts in 

clavicular, humeral and radial TAs, of which the %AA values of humeral TA 

show significant sex differences (p=0.014; Tables 7.12; 7.13). In contrast, the 

%AA values of ulnar, femoral and tibial TAs are higher among females than 

males, of which the %AA values of ulnar TA between the sexes differ 

significantly (p=0.037). Among the Jinggouzi population, males have higher 

%AA in humeral, ulnar and tibial TAs, of which the %AA values of tibial TA 

exhibit significant sex differences (p=0.045; Tables 7.12; 7.13). Conversely, 

the values of %AA are higher in the radial and femoral TAs among females, 

but none of them differs significantly from males (p>0.05). 

The Tuchengzi males have greater %AA than females for all long bone 

TAs except the femur (Tables 7.12; 7.13); however, significant sex differences 

are not observed in any long bones. The Lamadong females show greater 

values of %AA for radial, ulnar and femoral TAs, while absolute asymmetry of 

humeral and tibial TAs are greater among males (Tables 7.12; 7.13). The 

Shenyang females have higher values of %AA in humeral and radial TAs, 

whereas the males demonstrate larger values in the TAs of the ulnae and 

both lower limbs (Tables 7.12; 7.13). None of the long bone TAs shows 

significant differences in %AA values between the sexes (p>0.05). Except for 

the tibiae, the Sha Ling males have greater %AA than females in the TAs of 

all long bones, of which the %AA values of humeral TA show significant sex 

differences (p=0.032) (Tables 7.12; 7.13). 

                                            
29 Populations that show less than five individuals (n<5) were not considered in the statistical 

analyses in this sub-section. 
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7.3.2 Summary 

Hypothesis one: The seven studied populations, regardless of sex and time 

period, will conform to the universal pattern (90% of right-handedness) and 

the expectations strong Chinese culture which emphasise the use of right 

hand for fine tasks. Conversely, the lower limb properties will not show a clear 

lateralisation or will demonstrate a slight left-bias. 

Results: With some exceptions, the results of directional asymmetry for upper 

and lower limb TAs across the seven populations generally support the 

hypothesis. Overall, most of the female subsamples tend to have right 

dominant upper limb TAs, while most of the lower limb TAs are often to be 

left-biased. Although the sample size of some female groups is fairly small, 

which may be biased the results, frequencies of right-handedness among 

most groups are lower than the 90%-frequency observed in living human 

populations. Similarly, most of the upper limb TAs among males are right-

biased, whereas those of the lower limbs tend to have an asymmetric bias to 

the left. In contrast to the patterns of females, right-directional asymmetry 

frequencies are relatively high in the upper limb TAs of some male 

subsamples. 

 

Hypothesis two: The Sha Ling modern population will exhibit relatively high 

frequencies in right-handedness compared to ancient populations due to 

stronger cultural pressures and advanced technology. 

Results: Overall, the findings are consistent with the hypothesis proposed. All 

upper limb TAs of the Sha Ling males are right dominant, of which the right-

biased frequencies of humeral and radial TAs show a percentage of over 80%. 

Likewise, three out of four upper limb TAs among the Sha Ling females have 

a right bias and show right-directional asymmetry frequencies in the range of 

72-78%. In comparison to most of the ancient groups, right-handedness 

frequencies of the Sha Ling population are relatively high. 

 

Hypothesis three: Men, in particular those in the more stressful time periods 

(the Neiyangyuan, Jinggouzi, Tuchengzi and Shenyang periods), will show 

higher degree of absolute asymmetry than women in upper limb TAs. This is 
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based upon the premise that males in general engaged in more strenuous 

and repetitive activities, which increased the diaphyseal strength of the 

dominant arm. 

Results: The seven studied populations show variable findings. On the whole 

males of the seven populations show higher %AA in some upper limb TAs, 

while the radial TAs of most of the female groups are more asymmetric than 

those of their male counterparts. Among the populations in socio-politically 

unstable periods, the Tuchengzi males have higher %AA in the TAs of all long 

bones except for the femora. Conversely, most of the upper limb TAs among 

the Shenyang males are less asymmetric than their female counterparts. 

7.4 Comparison of variation within subsistence/cultural 

categories 

This section investigates the influence of subsistence strategy on the cross-

sectional geometric properties of long bones, sexual dimorphism and 

asymmetric patterns. As stated in Section 5.4, the seven studied populations 

were divided into four subsistence groups according to the socioeconomic 

type listed in Table 4.1. On this basis, the Jiangjialiang, Tuchengzi and 

Shenyang populations were classified as an agricultural group, the 

Neiyangyuan and Jinggouzi populations as a pastoralist group, the Lamadong 

population as an agropastoral group and the Sha Ling population as an 

industrial group. It should be borne in mind that apart from the southern Sha 

Ling population, all populations were from ancient Northeast China. It is 

predicted that:  

i) the prehistoric pastoral and agropastoral groups show larger TAs in the 

lower limb bones than the agricultural and industrial groups due to 

higher levels of mobility, However, since the industrial sample had a 

low socio-economic status, their lower limb TAs and femoral Ix/Iy ratios 

may not differ considerably from those of the agricultural group; 

ii) ancient pastoral and agropastoral groups will show greater sexual 

dimorphism of the lower limbs in cross-sectional geometric properties 
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than the agricultural and industrial groups because males from these 

subsistence groups are expected to have had higher levels of mobility. 

In contrast, the level of sexual dimorphism among industralised groups 

should be relatively low; and 

iii) the handedness of the four subsistence groups, regardless of sex, will 

be conform to the universal right-biased pattern. In addition, it is 

expected that the upper limb TAs of the industrial group will exhibit 

relative high right-biased frequencies because of cultural pressures 

and prevalence of right-biased tools and equipment in modern 

societies. 

7.4.1 Total subperiosteal area (TA) 

Inter-subsistence group comparisons 

Females of the four subsistence groups differ significantly in tibial mean TA 

(one-way ANOVA, p=0.040; Table 7.14). Post hoc pairwise comparisons 

illustrate that the means of pastoral females are significantly higher than those 

of the agricultural females (p=0.046, all pairwise comparisons are presented 

in Table A7.8 in Appendix D). Female pastoralists have the highest TAs in all 

long bones but the femora, while the largest femoral TA is among the 

industrial females (Table 7.14). In contrast, the agropastoral females show the 

lowest mean TAs in the humeri, ulnae and femora. Additionally, the 

agricultural females exhibit the smallest means in the clavicles and tibiae and 

the lowest radial TA is among the industrial females. In general, the females 

of the agricultural and agropastoral groups have relatively low TAs in the 

lower limbs.  

305



 
 

T
a

b
le

 7
.1

4
 D

es
cr

ip
tiv

e 
st

at
is

tic
s 

fo
r m

ea
n 

TA
 o

f s
ix

 lo
ng

 b
on

es
 b

y 
su

bs
is

te
nc

e 
ca

te
go

ry
 a

nd
 s

ex
 

TA
 

 
 

Ag
ric

ul
tu

ra
l g

ro
up

 
 

 
Pa

st
or

al
 g

ro
up

 
 

 
Ag

ro
pa

st
or

al
 g

ro
up

 
 

 
In

du
st

ria
l g

ro
up

 
 

 Si
gn

ifi
ca

nc
e 

 
Fe

m
al

es
 

 
 n

 
m

ea
n 

SD
 

 
 n

 
m

ea
n 

SD
 

 
 n

 
m

ea
n 

SD
 

 
 n

 
m

ea
n 

SD
 

 
 

C
la

vi
cl

e 
 

13
 

1
4
1

.3
5
 

19
.5

1 
 

16
 

1
5
2

.5
4
 

31
.8

7 
 

0 
/ 

/ 
 

15
 

14
2.

59
 

23
.2

3 
 

n.
s.

 

H
um

er
us

 
 

24
 

38
9.

62
 

39
.7

5 
 

27
 

3
9
5

.5
5
 

43
.1

7 
 

25
 

3
7
9

.7
9
 

29
.8

5 
 

20
 

38
3.

7 
41

.7
7 

 
n.

s.
 

R
ad

iu
s 

 
23

 
17

0.
37

 
20

 
 

28
 

1
7
4

.6
5
 

26
.3

1 
 

19
 

16
9.

61
 

14
.7

5 
 

20
 

1
6
0

.1
9
 

14
.4

2 
 

n.
s.

 

U
ln

a 
 

17
 

18
0.

94
 

16
.4

2 
 

22
 

1
9
0

.8
8
 

17
.8

 
 

10
 

1
7
7

.4
8
 

11
.7

2 
 

22
 

17
9.

47
 

17
.4

3 
 

n.
s.

 

Fe
m

ur
 

 
26

 
77

6.
05

 
87

.7
2 

 
31

 
79

5.
23

 
65

.0
5 

 
42

 
7

5
8

.3
4
 

66
.2

2 
 

22
 

7
9
8

.8
9
 

72
.8

6 
 

n.
s.

 

Ti
bi

a 
 

21
 

5
9
1

.4
4
 

63
.4

2 
 

25
 

6
3
6

.2
8
 

62
.8

3 
 

36
 

60
4.

81
 

47
.1

 
 

21
 

62
0.

26
 

52
.9

5 
 

0.
04

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

M
al

es
 

 
 

Ag
ric

ul
tu

ra
l g

ro
up

 
 

 
Pa

st
or

al
 g

ro
up

 
 

 
Ag

ro
pa

st
or

al
 g

ro
up

 
 

 
In

du
st

ria
l g

ro
up

 
 

 S
ig

ni
fic

an
ce

 

C
la

vi
cl

e 
 

20
 

14
8.

27
 

22
.9

0 
 

20
 

1
4
6

.0
4
 

23
.8

0 
 

3 
1

5
6

.5
4
 

17
.1

2 
 

31
 

15
4.

39
 

28
.0

3 
 

n.
s.

 

H
um

er
us

 
 

45
 

4
2
0

.3
1
 

37
.2

1 
 

26
 

44
1.

64
 

40
.7

1 
 

31
 

4
4
6

.2
8
 

40
.8

2 
 

37
 

42
3.

93
 

52
.8

5 
 

0.
03

1 

R
ad

iu
s 

 
35

 
18

4.
14

 
17

.1
0 

 
23

 
18

6.
70

 
26

.1
4 

 
19

 
1

9
2

.6
7
 

14
.3

7 
 

35
 

1
7
9

.2
5
 

25
.4

0 
 

n.
s.

 

U
ln

a 
 

22
 

20
2.

95
 

20
.7

2 
 

20
 

19
9.

90
 

17
.0

7 
 

13
 

2
1
0

.4
6
 

22
.8

1 
 

29
 

1
9
9

.3
5
 

27
.4

8 
 

n.
s.

 

Fe
m

ur
 

 
46

 
80

1.
59

 
83

.7
8 

 
31

 
8

4
2

.0
8
 

74
.4

3 
 

42
 

82
9.

88
 

64
.9

9 
 

40
 

7
7
8

.3
4
 

86
.5

4 
 

0.
00

2 

Ti
bi

a 
 

41
 

6
4
0

.4
5
 

45
.8

2 
 

27
 

6
9
2

.8
5
 

64
.7

0 
 

32
 

66
6.

33
 

56
.9

9 
 

38
 

64
3.

35
 

79
.0

3 
 

0.
00

4 

n,
 n

um
be

r o
f i

nd
iv

id
ua

ls
; S

D
, s

ta
nd

ar
d 

de
vi

at
io

n;
 b

ol
d 

fo
nt

, r
ed

 in
di

ca
te

s 
th

e 
hi

gh
es

t v
al

ue
s,

 w
hi

le
 b

lu
e 

in
di

ca
te

s 
th

e 
lo

w
es

t v
al

ue
s;

 s
ig

ni
fic

an
ce

 

is
 b

as
ed

 u
po

n 
on

e-
w

ay
 A

N
O

VA
 w

ith
 α

=0
.0

5 

306



  

A one-way ANOVA demonstrates that significant differences are found 

across the four male subsistence groups in the means of humeral (p=0.031), 

femoral (p=0.002) and tibial (p=0.003) TAs (Table 7.14). The pastoral males 

have significant higher TAs than the agricultural males for the tibiae (post hoc, 

adjusted p=0.004; all pairwise comparisons are presented in Table A7.8 in 

Appendix D) and than the industrial males for the femora (adjusted p=0.005) 

and tibiae (adjusted p=0.036). In addition, the agropastoral and industrial 

males show significant differences in femoral TA, with the agropastoral group 

having higher means (adjusted p=0.020).In contrast to the patterns of their 

female counterparts, the agropastoral males have the greatest mean TAs in 

all upper limb bones (Table 7.14). The pastoral males have the largest TAs in 

the lower limbs. Moreover, the lower limb TAs of the male agropastoralists are 

relatively high. Conversely, the industrial males show the smallest mean TAs 

in the radii, ulnae and femora, while the agricultural males have the lowest 

means in the humeri and tibiae.  

Intra-subsistence group sex differences 

The agropastoral group has the highest levels of sexual dimorphism in the TA 

of all long bones except for the clavicles, all of which show significant 

differences, with males having higher means than females (p<0.001; Table 

7.15). Within the agricultural group, means of male humeral (p=0.002), radial 

(p=0.007), ulnar (p=0.001) and tibial (p=0.004) TAs are significantly higher 

than those of females. Three out of six long bone TAs are considerably 

sexually dimorphic in the pastoral (humeri p<0.001; femora p=0.011; tibiae 

p=0.002) and industrial (humeri p=0.005; radii p=0.001; ulnae p=0.003) 

groups, with males exhibiting higher means than females. It is noteworthy that 

the pastoral and industrial females have higher means than their male 

counterparts for clavicular and femoral TAs respectively, but no significant 

differences are observed. Among the four subsistence groups, the pastoral 

population shows the lowest SDI values in three out of four upper limb TAs, 

while the agricultural population has the least sexually dimorphic lower limbs. 
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Table 7.15 Mean % dimorphism for TA of six long bones and intra-population sex 

differences by subsistence category 

TA Clavicle Significance Humerus Significance Radius Significance 

Agricultural 4.67 n.s. 7.30 0.002 7.48 0.007 

Pastoral -4.45 n.s. 10.44 <0.001 6.45 n.s. 

Agropastoral / n.s. 14.90 <0.001 11.97 <0.001 

Industralised 7.64 n.s. 9.49 0.005 10.63 0.001 

       

 Ulna Significance Femur Significance Tibia Significance 

Agricultural 10.85 0.001 3.19 n.s. 7.65 0.004 

Pastoral 4.51 n.s. 5.56 0.011 8.16 0.002 

Agropastoral 15.67 <0.001 8.62 <0.001 9.23 <0.001 

Industralised 9.97 0.003 -2.64 n.s. 3.59 n.s. 

/, no data; bold font, significance is based upon independent t-test with α= 0.05; n.s., non-

significant; positive percentage indicate males have larger values, whereas negative 

percentage indicate those of females are greater 

7.4.2 Cross-sectional shape: Ix/Iy ratio 

Inter-subsistence group comparisons 

The females of the four subsistence groups exhibit significant differences in 

the means of ulnar (one-way ANOVA; p=0.013; Table 7.16), femoral (p<0.001) 

and tibial (p=0.001) Ix/Iy. The female pastoralists among four groups show the 

largest Ix/Iy values in the humeri, radii and tibiae, values which differ 

significantly from the industrial females for humeral (post hoc; adjusted 

p=0.044, all pairwise comparisons are presented in Table A7.9 in Appendix D) 

and tibial (adjusted p=0.004) Ix/Iy and from the agricultural females for tibial 

(adjusted p=0.024) Ix/Iy. The industrial females have considerably higher 

femoral Ix/Iy than the agricultural (adjusted p=0.011) and agropastoral 

(adjusted p<0.001) groups. It is noteworthy that the industrial females show 

means more than one in femoral Ix/Iy, whereas those of other female groups 

are less than one (Table 7.16). The agricultural females exhibit the highest 
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ulnar Ix/Iy values, which are significantly different from those of the 

agropastoral (adjusted p=0.037) and industrial (adjusted p=0.026) females.  

A one-way ANOVA illustrates that the means of femoral (p<0.001) and 

tibial (p=0.003) Ix/Iy differ significantly across the four male subsistence groups 

(Table 7.16). The pastoral males show the greatest humeral, ulnar, femoral 

and tibial Ix/Iy, among which the means of femoral Ix/Iy are significantly 

different from those of the agricultural (post hoc; adjusted p=0.001; all 

pairwise comparisons are presented in Table A7.9 in Appendix D) and 

agropastoral (adjusted p=0.001) groups. Moreover, the means of tibial Ix/Iy 

among the pastoral males are significantly higher than those of the 

agricultural (adjusted p=0.029) and industrial (adjusted p=0.002) groups. The 

femoral Ix/Iy ratios of the industrial males differ significantly from the 

agricultural (adjusted p=0.018) and agropastoral (adjusted p=0.021) groups.  

Intra-subsistence group sex differences 

Except for the clavicles, the upper limb Ix/Iy ratios of the agropastoral 

population are the most sexually dimorphic, among which humeral and radial 

Ix/Iy exhibit significant sex differences (Table 7.17). While males have higher 

means than females for radial Ix/Iy (p=0.006), the opposite is true for humeral 

Ix/Iy (p= 0.001). In addition, the male agropastoralists demonstrate significantly 

greater femoral Ix/Iy than their female counterparts (p<0.001). The female 

agriculturalists exhibit larger humeral and ulnar Ix/Iy ratios than males, of 

which the means of humeral Ix/Iy between the sexes differ significantly 

(p=0.001). Conversely, the agricultural males have significantly higher radial 

(p=0.032), femoral (p=0.007) and tibial (p=0.021) Ix/Iy than females. Likewise, 

the pastoral females demonstrate higher means than males for humeral Ix/Iy 

(p=0.001), while femoral Ix/Iy shows a reverse pattern (p<0.001). It is worth 

noting that the femoral Ix/Iy of the pastoral population and the tibial Ix/Iy of the 

agricultural population are the most sexually dimorphic among the four 

subsistence groups.  
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Table 7.17 Mean % dimorphism for Ix/Iy of six long bones and intra-population sex 

differences by subsistence category 

Ix/Iy Clavicle Significance Humerus Significance Radius Significance 

Agricultural 19.16 n.s. -11.13 0.001 8.51 0.032 

Pastoral 1.11 n.s. -12.73 0.001 1.74 n.s. 

Agropastoral / n.s. -14.09 0.001 14.21 0.006 

Industralised -0.84 n.s. -7.05 n.s. 7.68 n.s. 

       

 Ulna Significance Femur Significance Tibia Significance 

Agricultural -6.57 n.s. 12.96 0.007 10.95 0.021 

Pastoral 6.32 n.s. 22.98 <0.001 4.29 n.s. 

Agropastoral 9.83 n.s. 20.03 <0.001 5.10 n.s. 

Industralised 5.55 n.s. 10.62 0.042 6.80 n.s. 

/, no data; bold font, significance is based upon independent t-test with α= 0.05; n.s., non-

significant; positive percentage indicate males have larger values, whereas negative 

percentage indicate those of females are greater 

7.4.3 Cross-sectional shape: Imax/Imin ratio 

Inter-subsistence group comparisons 

Females of the four subsistence groups show significant differences in tibial 

Imax/Imin (one-way ANOVA; p=0.003; Table 7.18). Post hoc pairwise 

comparisons demonstrate that the tibial Imax/Imin ratios of the female 

pastoralists are significantly higher than those of the agricultural (adjusted 

p=0.013; all pairwise comparisons are presented in Table A7.10 in Appendix 

D) and industralised (adjusted p=0.007) females. The agropastoral females 

have the highest means for radial, ulnar and femoral Imax/Imin (Table 7.18). 

While the pastoral females show the highest humeral and tibial Imax/Imin, the 

clavicular Imax/Imin of the agricultural females is the greatest. 
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Femoral (p=0.019) and tibial (p=0.011) Imax/Imin exhibit significant 

differences among the males of the four subsistence groups (Table 7.18). 

Pastoral males have significantly higher femoral Imax/Imin than the agropastoral 

males (post hoc; adjusted p=0.012; all pairwise comparisons are presented in 

Table A7.10 in Appendix D) and tibial Imax/Imin than the agricultural (adjusted 

p=0.044) and industrial (adjusted p=0.011) males. In addition, the clavicular 

Imax/Imin ratios of the pastoral and industrial males are the greatest, but 

significant differences are not found (p>0.05; Table 7.18). Similar patterns are 

seen in the humeral, radial and ulnar Imax/Imin among the agropastoral males. 

Intra-subsistence group sex differences 

The industrial females have higher means than their male counterparts for 

humeral, radial and ulnar Imax/Imin, of which humeral (p=0.027) and radial 

(p=0.022) Imax/Imin exhibit significant sex differences (Table 7.19). The humeral 

and femoral Imax/Imin of the pastoral population are the most sexually dimorphic 

among the four subsistence groups. While females have significantly greater 

humeral Imax/Imin (p=0.001) than males, the opposite is true for femoral Imax/Imin 

(p=0.002). Likewise, the agricultural populations exhibit the largest SDI values 

in radial and tibial Imax/Imin, in which the former shows higher means among 

females than males (p=0.014), whereas the latter displays the opposite 

pattern (p=0.048). 
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Table 7.19 Mean % dimorphism for Imax/Imin of six long bones and intra-population sex 

differences by subsistence category 

Imax/Imin Clavicle Significance Humerus Significance Radius Significance 

Agricultural -11.65 n.s. -4.23 n.s. -11.30a 0.014 

Pastoral -2.90 n.s. -10.32b 0.001 -4.80 n.s. 

Agropastoral / n.s. -1.32 n.s. -9.36 n.s. 

Industralised 3.74 n.s. -6.68a 0.027 -9.35a 0.022 

       

 Ulna Significance Femur Significance Tibia Significance 

Agricultural 3.07 n.s. 3.59 n.s. 8.56a 0.048 

Pastoral -6.65 n.s. 10.94b 0.002 3.92 n.s. 

Agropastoral -8.25 n.s. -4.15 n.s. 5.43 n.s. 

Industralised -5.72 n.s. 5.71 n.s. 6.62 n.s. 

/, no data; bold font, significance is based upon independent t-test with α= 0.05; n.s., non-

significant; positive percentage indicate males have larger values, whereas negative 

percentage indicate those of females are greater 

7.4.4 Patterns of asymmetry in total subperiosteal area (TA) 

Inter-subsistence group comparisons 

Except for female pastoralists, all female subsistence groups generally show 

a right bias for most of the upper limb TAs, whereas those of the lower limbs 

tend to be left dominant (Table 7.20). Females differ significantly in percent 

directional asymmetry (%DA) of femora TA (Kruskal-Wallis; p=0.005). 

However, no significant differences are observed in any post hoc pairwise 

comparisons (adjusted p>0.05). 
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Table 7.20 Descriptive statistics for mean percent directional asymmetry (%DA) and 

right/left-biased frequencies of TAs by subsistence category (females) 

  
Clavicle Humerus Radius Ulna Femur Tibia 

Agricultural 

group 

n 9 14 10 6 14 9 

mean %DA 4.96 0.67 1.29 -1.28 -0.25 -2.33 

 
R 8 7 5 2 8 4 

 
L 1 7 5 4 6 5 

 
% Right 88.89 50.00 50.00 33.33 57.14 44.44 

 
% Left 11.11 50.00 50.00 66.67 42.86 55.56 

Pastoral 

group 

n 8 15 11 4 14 12 

mean %DA 1.41 -0.55 -3.06 6.30 -4.39 0.57 

 
R 5 6 3 3 4 7 

 
L 3 9 8 1 10 5 

 
% Right 62.50 40.00 27.27 75.00 28.57 58.33 

 
% Left 37.50 60.00 72.73 25.00 71.43 41.67 

Agropastoral 

group 

n 0 14 5 3 25 25 

mean %DA / 2.27 4.32 4.18 -3.22 -1.52 

 
R / 12 4 3 6 8 

 
L / 2 1 0 19 17 

 
% Right / 85.71 80.00 100.00 24.00 32.00 

 
% Left / 14.29 20.00 0.00 76.00 68.00 

Industrial 

group 

n 11 17 18 14 20 16 

mean %DA 2.05 1.68 -1.04 2.88 0.53 0.83 

 
R 8 13 9 11 9 8 

 
L 3 4 9 3 11 8 

 
% Right 72.73 76.47 50.00 78.57 45.00 50.00 

 
% Left 27.27 23.53 50.00 21.43 55.00 50.00 

n, number of individuals with paired bone elements; n, number of individuals with 

paired bone elements; /, no data; %DA, positive values indicate right dominance, 

while negative values indicate left dominance; R, frequencies of right-biased 

individuals; L, frequencies of left-biased individuals 
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While three (clavicles, humeri and radii) out of four upper limb TAs among 

the agricultural females have an asymmetric bias to the right, both lower limb 

TAs exhibit left-lateralisation. Over 88% of female agriculturalists demonstrate 

right-biased clavicular TA, whereas only half of the agricultural female 

individuals have right-dominant humeral and radial TAs. It is noteworthy that 

although femoral TA presents a negative %DA, over half of the agricultural 

females show right-directional asymmetry in femoral TA, indicating that those 

having left-biased femoral TA have relatively high mean TA values. The 

percent absolute asymmetry (%AA) of clavicular, humeral and tibial TAs of the 

agricultural females are the greatest among the four subsistence groups, but 

the right and left means do not show significant differences (p>0.05; Table 

7.21). 

The patterns of asymmetry among the pastoral females are not clear 

(Table 7.20). While the TAs of the clavicles, ulnae and tibiae exhibit a right 

bias, the humeral, radial and femoral TAs are left dominant. In general, the 

frequencies of right-biased individuals among the pastoral population are 

relatively low. Although ulnar TA demonstrates a frequency of 75% right-

directional asymmetry, the sample size is small (n=4). The pastoral females 

have the most asymmetric radial, ulnar and femora TAs, of which the left 

means of femoral TA are significantly higher than those of the right side 

(p=0.031; Table 7.21). 

The agropastoral females demonstrate right-biased asymmetry in all 

upper limb TAs, whereas those of the lower limbs are left dominant (Table 

7.20). Compared with other female subsistence groups, the agropastoral 

females have relatively high right-handedness frequencies. More than 80% of 

agropastoral women demonstrate right-biased humeral and radial TAs and all 

individuals of the population have left dominant ulnar TA. Again, the sample 

size for ulnar TA is small (n=3). Although the humeral (p=0.003) and tibial 

(p=0.003) TAs among the agropastoral females are the least asymmetric 

among the four subsistence groups, the right and left means show 

considerable differences (Table 7.21). Moreover, the left femoral TA has 

significantly greater means than the right side (p<0.001). 

In contrast to other female subsistence groups, the industralised females 

have right-directional asymmetry in the TAs of both lower limbs (Table 7.20). 
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In the upper limbs, the TAs of all long bones except for the radii are right-

biased. Over 75% of the industralised females show right-directional 

asymmetry in humeral and ulnar TAs and about 72% have right-lateralised 

clavicular TA. The %AA values for the upper and lower limb TAs are generally 

low among the industrial females, but the right humeral (p=0.038) and ulnar 

(p=0.047) TAs exhibit higher means than the left ones (Table 7.21) 

 

 
Table 7.21 Descriptive statistics for mean percent absolute asymmetry (%AA) of TAs 

by subsistence category (females) 

  
Clavicle Humerus Radius Ulna Femur Tibia 

AGRI n 9 14 10 6 14 9 

  ̅R 138.29  393.80  173.77  183.50  769.21  572.76  

  ̅L 131.56  390.86  171.89  185.98  771.67  588.80  

 mean %AA 6.51  3.64  3.58  3.55  4.13  4.08  

 Significance n.s.  n.s.  n.s.  n.s.  n.s.  n.s.  

PAST n 8 15 11 4 14 12 

  ̅R 151.78  404.38  178.23  183.99  815.74  646.10  

  ̅L 149.03  406.30  182.64  172.84  852.93  641.20  

 mean %AA 5.29  2.54  6.92  6.70  5.74  3.10  

 Significance n.s.  n.s.  n.s.  n.s.  0.031  n.s. 

AGRO n 0 14 5 3 25 25 

  ̅R / 371.47  160.37  173.85  745.81  601.88  

  ̅L / 363.03  153.32  166.47  770.21  611.57  

 mean %AA / 2.49  5.91  4.18  3.58  2.18  

 Significance / 0.003  n.s.  n.s.  <0.001 0.003  

INDU n 11 17 18 14 20 16 

  ̅R 145.48  387.16  158.77  183.45  802.62  634.48  

 
 ̅L 141.82  380.57  160.52  178.13  798.31  629.35  

 
mean %AA 6.15  3.18  3.81  4.45  2.58  3.43  

 Significance n.s. 0.038  n.s. 0.047  n.s.  n.s.  

Abbreviations: AGRI, agricultural group; PAST, pastoral group; AGRO, agropastoral 

group; INDU, industrial group; n, number of individuals with paired bone elements; /, 

no data;  ̅R, mean value of right elements;  ̅L, mean value of left elements; bold font, 

means of the right and left sides show significant differences, based upon paired t-

test with α=0.05; n.s.; non-significant  

317



  

The upper limb TAs of the four male subsistence groups generally show 

an asymmetric bias to the right, while the lower limb TAs tend to be left-biased 

(Table 7.22). Males differ significantly in the percent directional asymmetry 

(%DA) of humeral TA (Kruskal-Wallis; p=0.038) between subsistence groups; 

however, none show significant differences in post hoc pairwise comparisons 

(adjusted p>0.05). 

The agricultural and pastoral males show similar patterns of limb 

lateralisation (Table 7.22). While the TAs of three out of four upper limbs 

(humeri, radii and ulnae) exhibit right-directional asymmetry, all lower limb 

TAs are left-biased. The frequencies of right-handedness individuals are 

relatively low among the agricultural males, in which approximately 74% of the 

population have right-biased humeral TA and over 60% show right-

lateralisation in radial and ulnar TAs. In contrast, the pastoral males 

demonstrate 89% and 80% right-directional asymmetry in the TAs of the 

humeri and radii, respectively. It is noteworthy that the pastoral males have a 

very low frequency of right-biased individuals in clavicular TA (21.43%). The 

agricultural males among the four subsistence groups demonstrate the most 

asymmetric TAs in the ulnae, femora and tibiae, of which the right ulnar TA 

has a significantly higher mean than the left side (p=0.005; Table 7.23). 

Among the pastoral males, the clavicular (p=0.014), humeral (p<0.001) and 

radial (p=0.021) TAs show the greatest %AA values, all of which display 

significant side differences.  

Among the agropastoral males, three out of five long bone TAs (ulnae, 

femora and tibiae) show an asymmetric bias to the left, whereas humeral and 

radial TAs are right dominant (Table 7.22). Over 85% of the population have 

right-biased radial TAs, followed by humeral TA with over 70% individuals are 

right dominant. It is worth noting that all agropastoral males demonstrate left-

lateralisation in ulnar TA. The agropastoral males have the least asymmetric 

ulnar, femora and tibial TAs, while the right radial TA shows a significantly 

higher mean than the left side (p=0.025; Table 7.23).  
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Table 7.22 Descriptive statistics for mean percent directional asymmetry (%DA) and 

right/left-biased frequencies of TAs by subsistence category (males) 

  
Clavicle Humerus Radius Ulna Femur Tibia 

Agricultural 

group 

n 10 23 13 11 28 11 

mean %DA -0.06 0.75 2.22 0.35 -2.79 -0.31 

 
R 5 17 8 7 10 3 

 
L 5 6 5 4 18 8 

 
% Right 50.00 73.91 61.54 63.64 35.71 27.27 

 
% Left 50.00 26.09 38.46 36.36 64.29 72.73 

Pastoral 

group 

n 14 18 15 12 18 23 

mean %DA -6.24 6.65 5.74 0.38 -2.34 -0.95 

 
R 3 16 12 6 5 12 

 
L 11 2 3 6 13 11 

 
% Right 21.43 88.89 80.00 50.00 27.78 52.17 

 
% Left 78.57 11.11 20.00 50.00 72.22 47.83 

Agropastoral 

group 

n 1 15 7 6 26 20 

mean %DA / 2.22 4.48 -3.26 -0.64 -0.88 

 
R 1 11 6 0 9 8 

 
L / 4 1 6 17 12 

 
% Right / 73.33 85.71 0.00 34.62 40.00 

 
% Left / 26.67 14.29 100.00 65.38 60.00 

Industrial 

group 

n 13 25 21 13 29 28 

mean %DA 2.26 4.39 4.91 3.57 -1.19 0.06 

 
R 7 22 17 9 9 13 

 
L 6 3 4 4 20 15 

 
% Right 53.85 88.00 80.95 69.23 31.03 46.43 

 
% Left 46.15 12.00 19.05 30.77 68.97 53.57 

n, number of individuals with paired bone elements; n, number of individuals with 

paired bone elements; /, no data; %DA, positive values indicate right dominance, 

while negative values indicate left dominance; R, frequencies of right-biased 

individuals; L, frequencies of left-biased individuals 
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Table 7.23 Descriptive statistics for mean percent absolute asymmetry (%AA) of TAs 

by subsistence category (males) 

  
Clavicle Humerus Radius Ulna Femur Tibia 

AGRI n 10 23 13 11 28 11 

  ̅R 145.17  417.27  182.79  203.67  800.89  630.55  

  ̅L 145.13  414.12  178.60  202.50  820.44  632.84  

 mean %AA 3.89  3.93  4.41  5.96  4.38  3.32  

 Significance n.s.  n.s n.s 0.005  n.s n.s 

PAST n 14 18 15 12 18 23 

  ̅R 150.21  452.43  192.20  203.98  822.34  693.30  

  ̅L 159.65  423.57  180.83  203.20  843.18  699.20  

 mean %AA 8.81  6.77  6.26  3.74  4.44  2.97  

 Significance 0.014  <0.001 0.021  n.s n.s n.s 

AGRO n 1 15 7 6 26 20 

  ̅R / 452.15  199.43  200.81  815.31  669.90  

  ̅L / 442.06  190.64  207.42  820.77  675.57  

 mean %AA 2.99  5.43  4.81  3.26  2.65  2.57  

 Significance / n.s 0.025  n.s n.s n.s 

INDU n 13 25 21 13 29 28 

  ̅R 153.45  419.53  182.42  201.48  779.58  647.65  

 
 ̅L 149.37  401.54  173.66  194.58  788.28  646.77  

 
mean %AA 6.74  5.15  5.37  5.34  2.75  3.26  

 Significance n.s <0.001 <0.001 0.035  n.s n.s 

Abbreviations: AGRI, agricultural group; PAST, pastoral group; AGRO, agropastoral 

group; INDU, industrial group; n, number of individuals with paired bone elements; /, 

no data;  ̅R, mean value of right elements;  ̅L, mean value of left elements; bold font, 

means of the right and left sides show significant differences, based upon paired t-

test with α=0.05; n.s.; non-significant 

 

 

Contrary to other male subsistence groups, the industralised males exhibit 

right-directional asymmetry in the TAs of all limb bones but the femora (Table 

7.22). While the humeral and radial TAs show 88% and 81% right-biased 

individuals, respectively, the clavicular (54%) and ulnar (69%) TAs have 

relatively low frequencies. The right humeral (p<0.001), radial (p<0.001) and 

ulnar (p=0.035) TAs of the industrial males exhibit significantly greater means 
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than the left elements (Table 7.23).  

7.4.5 Summary 

Hypothesis one: The pastoral and agropastoral groups show larger TAs in 

the lower limb bones than the agricultural and industrial groups due to higher 

levels of mobility. However, since the industrial sample had a low socio-

economic status, their lower limb TAs and femoral Ix/Iy ratios may not differ 

considerably from those of the agricultural group. 

Results: The findings partially support the hypothesis proposed. The pastoral 

females have the largest TA values in most of the upper and lower limbs, 

whereas those of the agropastoral females are relatively low. The industrial 

females show the greatest means in femoral TA and the means of the other 

limb bone TA are moderate. In addition, the femoral Ix/Iy ratios of the industrial 

females are significantly higher than those of the agricultural and agropastoral 

females. In contrast, the four male subsistence groups demonstrate different 

patterns. The pastoral and agropastoral males show relatively high means for 

lower limb TAs, whereas the industrial males have relatively low TA values in 

both upper and lower limbs. Moreover, the femoral Ix/Iy ratios of the pastoral 

and industrial males are significantly higher than those of the agricultural and 

agropastoral groups. Apart from the industrial male femoral TA, the lower limb 

TAs of the industrial females and males are larger than those of the 

agricultural group.  

  

Hypothesis two: The pastoral and agropastoral groups will show greater 

sexual dimorphism in cross-sectional geometric properties of the lower limbs 

than agricultural and industrial because males from these subsistence groups 

are expected to have higher levels of mobility. In contrast, the levels of sexual 

dimorphism among industralised groups should be relatively low. 

Results: The findings support that among the four subsistence categories, 

the agropastoral group shows the greatest levels of sexual dimorphism in the 

TAs of all long bones except for the clavicles. Additionally, the SDI values of 

the pastoral lower limb TAs are relatively high compared with other 
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subsistence groups. Conversely, the lower limb TAs of the industrial group are 

the least sexually dimorphic. Likewise, the pastoral and agropastoral 

populations demonstrate relatively high SDI values for femoral Ix/Iy ratios, 

whereas those of the industrial population are the lowest. 

 

Hypothesis three: The handedness of the four subsistence groups, 

regardless of sex, will be conform to the universal right-biased pattern. In 

addition, it is expected that the upper limb TAs of the industrial group will have 

more right-handedness individuals due to cultural pressures and prevalence 

of right-biased tools and equipment in modern societies. 

Results: Overall, the findings suggest that the four subsistence groups, 

irrespective of sex, exhibit a right bias for most of the upper limb TAs. 

However, with the exception of the agropastoral female ulnar TA, none of the 

long bones show a right-biased frequency of 90% as seen in living human 

groups. Among the industrial group, frequencies of right-handedness vary 

between skeletal elements. Approximately 72-78% female individuals exhibit 

right dominance for clavicular, humeral and ulnar TAs, whereas only half of 

the industrial females have right-biased ulnar TA. In general, right-biased 

frequencies of the industrial females are not particularly high. Conversely, 

88% and 81% male individuals show a right bias in humeral and radii TAs 

respectively. However, clavicular (54%) and ulnar (69%) TAs among industrial 

males show relatively low frequencies.  
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CHAPTER 8 

Discussion & Conclusion 

 

 

 

 

8.1 Hypotheses revisited 

This dissertation set out to investigate the impacts of climatic and 

environmental factors on skeletal morphology among Chinese populations in 

the Holocene. Some of the findings presented in Chapters five, six and seven 

support the hypothesis that variation in body proportions, body size, entheseal 

expressions and cross-sectional geometric properties of long bones are 

closely correlated with latitude, socio-political condition and subsistence 

strategy. However, some suggest that human biological responses to 

environmental changes are complicated, as evidenced by the diverse patterns 

observed among the Holocene Chinese studied in this dissertation. This 

section reviews the hypotheses outlined in Chapter three and attempts to 

disentangle the effects of climatic and environmental factors on human 

morphological variability in Holocene China. 

8.1.1 Morphological variation in relation to climate 

The diverse climate and geography in China have given rise to a distinct 

demarcation of the North and the South regions. The deeply rooted 

assumption among Chinese that “Northern people are taller and more robust” 

is believed to be primarily based upon the discrepancies between northern 

and southern China. Nevertheless, the validity of this belief had never been 

tested using human skeletal remains. Variation in human body proportions in 

relation to climatic variables is known as ecogeographic patterning, which 

suggests that populations inhabiting colder regions (i.e. higher latitudes) tend 
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to have larger body mass and shorter appendages compared with low-latitude 

populations. On this basis, the body proportions of the northern and southern 

Chinese are expected to reflect different climatic adaptation and conform to 

ecogeographic expectations. In addition, some studies show that body 

proportions are highly conserved characteristics which reflect ancestral 

climatic adaptation (Auerbach 2007; Ruff 2002). Given this, it was predicted 

that the northern Chinese will exhibit reduced distal relative to proximal limb 

segment lengths and shorter limbs relative to body mass compared with the 

southern Chinese. Moreover, this dissertaion tested the extent to which the 

body proportions of the Holocene Chinese is a biological adjustment to the 

early/mid-Holocene climate and/or retention of the traits of their Palaeolithic 

ancestors who migrated to northern East Asia via the Southern Route. 

 The findings in section 5.2 show that compared with their southern 

counterparts the northern Chinese have relatively reduced distal relative to 

proximal limb segment lengths, shorter limbs relative to body mass and larger 

body mass relative to stature. Clearly, the results do not fully support the 

assumption that “Northern people are taller and more robust”. Although the 

northern Chinese demonstrate greater mean intralimb and body shape indices, 

the former does not differ significantly from that of the southern Chinese. 

These are further supported by the results of the Tsutakawa and Hewett quick 

tests in section 5.2.1, which illustrate that there is considerable overlap 

between the northern and southern males for brachial and crural indices. 

Moreover, more than two-third of southern females demonstrate reduced 

radial relative to humeral lengths (the mean brachial index of the southern 

females is also lower than that of the northern females). Similarly, the 

northern Chinese, particularly females, show ambiguous patterns in quick 

tests for most of the ratios of limb lengths relative to body mass. Half of the 

population shows northern body proportions, while those of the other half are 

more southern-like. The findings in this dissertation accord with the results of 

a study by Fukase and colleagues (2012). They compared the intralimb 

proportions of five Jomon groups in Japan, ranging from northern Hokkaido to 

the southern Okinawa Islands; however, no significant differences were 

observed across these Jomon groups. This suggests that within 

genealogically close human groups correlation of intralimb proportions with 
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climate is minor. Rather, genetic and developmental constraints may play a 

more important role in the expression of population-specific intralimb 

proportions.   

Current genetic evidence suggests that anatomically modern humans 

migrated to East Asia via the Southern Route (mainland Southeast Asia) 

during the Palaeolithic (Rootsi et al. 2006; Shi et al. 2005; Shi et al. 2008; 

Zhong et al. 2010). Therefore, it was expected that the body proportions of the 

Holocene Chinese to some extent will show retention of ancestral traits – 

subtropical/tropical-adapted intralimb proportions and will express 

comparatively longer distal to proximal limb segment lengths than the recent 

populations inhabiting similar latitude. Results in section 5.2.3 demonstrate 

mixed patterns. The northern Chinese display higher brachial indices than the 

recent Japanese and South European females who lived at similar latitude. In 

comparison with males of the two populations, the brachial indices of the 

northern Chinese are slightly lower than those of the recent Japanese but are 

higher than the recent South Europeans. In contrast, all Holocene Chinese 

populations exhibit lower crural indices than the recent North and South 

Europeans. The late Pleistocene Tianyuan 1 hominin fossil discovered in 

Beijing, Northeast China, shows similar brachial index to the Holocene 

Chinese, while it has a comparatively higher mean crural index. It is 

noteworthy that the Tianyuan 1 exhibits relatively large body mass relative to 

stature, which is closer to those of the European Neanderthals, than other 

populations in the comparative studies in this dissertation.  

A number of studies demonstrate that limb proportion variation related to 

climate is often more pronounced in the lower limb than the upper limb 

(Temple et al. 2008; Trinkaus 1981; Yamaguchi 1989). In addition, the lower 

limb shows a relatively faster rate of change following migration and 

environmental diversification (Auerbach 2007). Given this and the intralimb 

proportions of the Tianyuan 1, it is likely that the elongated radial to humeral 

lengths of the northern Chinese indicate retention of warm-adapted 

morphology (i.e. an ancestral trait), while the reduced tibial to femoral lengths 

imply that the ancestors of the northern Chinese were initially from warmer 

environments, but after experiencing colder climate in Northeast China over 

considerable amounts of time the intralimb proportions changed. This 
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explanation appears to fit in the Southern Route hypothesis proposed by 

genetic evidence. Nevertheless, it is important to note that these 

interpretations are based upon an adaptive viewpoint, the influence of genetic 

drift, mutation and dietary induced stress on variation in limb proportions 

cannot be ruled out. 

8.1.2 Morphological variation in relation to socio-political condition and 

stress 

This dissertation predicted that populations from socio-politically unstable time 

periods will show an overall decrease in body size due to poverty, famine and 

disease. The time periods of the Neiyangyuan, Jinggouzi and Tuchengzi sites 

correspond with the Spring and Autumn period and the Warring States period, 

which is one of the most volatile time periods in Chinese history (Hsu 1999; 

Lewis 1999). The cooler and drier climate during these periods may further 

deteriorated the health of the populations (see section 2.1 for palaeoclimate of 

China). During the transition from the Spring and Autumn period to the 

Warring States period infantry army replaced war chariots as the main force 

on battlefield (Lewis 1999; Pletcher 2011), so it was expected that prevalence 

of warfare will lead to greater mechanical loading and higher mobility levels. In 

this context, the populations of the Neiyangyuan, Jinggouzi, and Tuchengzi 

periods should show increased entheseal expression and bone strength, in 

particular in the lower limbs. The Shenyang site is dated to the late Qing 

Dynasty, which was characterised by rebellion, civil war, foreign invasion, 

increasing population size and great famine (Feuerwerker 1980). These 

environmental stresses were expected to have negative influence on the 

skeletal morphology of the Shenyang population. 

The findings for stature and body mass in sections 5.3.1 and 5.3.2 

partially support the prediction that populations experiencing greater levels of 

stress exhibit a decline in body size. There are reductions in the stature of the 

Jinggouzi and Shenyang females and the Jinggouzi males. For body mass, 

decreases are observed among the Jinggouzi and Shenyang males and the 

Neiyangyuan and Jinggouzi females. Although a slight increase in stature is 
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observed between the Lamadong and Shenyang periods among males, on a 

whole the Shenyang males were relatively short compared with other 

populations. The Jinggouzi population demonstrates lower values in stature 

and body mass than their ancestors, indicating a decline in overall body size. 

In contrast, amongst the six populations, the Neiyangyuan females and males 

have the largest stature and body mass, respectively. The body size of the 

Tuchengzi population in general is relatively great.  

The findings for entheseal expression and cross-sectional geometric 

properties are variable (see sections 6.3; 7.1). In general, the Neiyangyuan 

population demonstrates relatively high aggregated entheseal scores and TA 

values for both upper and lower limbs, indicating high levels of muscular 

activity and mechanical loading. Noteworthy is that among the seven 

populations, the Neiyangyuan females have the greatest TA values for most 

of the limb bones. Except for the lower limb TAs, the Jinggouzi males as a 

whole have gracile limbs and weak entheseal expressions. Conversely, the 

Jinggouzi females exhibit comparatively strong upper limb entheses and bone 

strength. The entheseal expressions of the Tuchengzi population are 

pronounced in both upper and lower limbs, whereas they show moderate 

bone strength in limb bones. The Shenyang population shows different trends 

in entheses and bone strength. While females have relatively strong 

entheseal expressions in both upper and lower limbs, their lower limb bones 

are gracile. The Shenyang males have relatively robust upper limb bones but 

the entheseal expressions do not correspond with the patterns of bone 

strength. 

The variable results observed in body size, entheseal expressions and 

cross-sectional geometric properties among the Holocene Chinese do not 

imply that populations from socio-politically stable environments were 

healthier or received less stresses. A close scrutiny of Chinese history may 

help reveal the factors underlying these differences. The Neiyangyuan sample 

studied in this dissertation spreads over a broad range of time periods: from 

the Xia Dynasty (4020-3550 B.P.) to the Warring States periods (2720-2171 

B.P.). It is not impossible that the wide time range has prevented the 

Neiyangyuan population from being an appropriate representative sample to 

test the hypotheses which focus on certain time periods (i.e. the Spring and 
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Autumn period and the Warring States period). Although the Neiyangyuan 

population does not exhibit a decrease in body size, the results for entheseal 

expression and bone strength suggest that they were involved in physically 

demanding activities. The Jinggouzi sample, in contrast, is dated to the 

transition from the Spring and Autumn period to the Warring States period, 

which was characterised by increasing warfare and reliance on infantry army. 

The relatively low values in lower limb entheses and bone strength among the 

Jinggouzi male sample imply that they did not participate in military forces, 

while a reduction in body size may indicate that they suffered from 

malnutrition which was probably caused by regular warfare in the 

country/community. Another plausible scenario would be that the Jinggouzi 

males studied in this dissertation were not chosen for military service because 

of their small body size. Although there is no direct evidence showing that the 

Shenyang population were involved in warfare to any extent, they appears to 

have been considerably influenced by the political chaos in the late Qing 

Dynasty. Not only were they the shortest population among the six groups, 

the elevated entheses among females and the robust limb bones among 

males demonstrate that they habitually engaged in strenuous activities.  

8.1.3 Morphological variation in relation to subsistence strategy 

Variation in skeletal biomechanics and entheseal morphology associated with 

subsistence strategy has been intensively investigated in different 

geographical settings in the world. In this dissertation, four subsistence 

groups (agricultural, pastoral, agropastoral and industrial groups) were 

studied to elucidate the relationship between habitual behaviour and 

morphological changes in Holocene China.  

It was predicted that pastoral and agropastoral males will exhibit higher 

entheseal aggregated scores and more robust bone strength in the lower limb 

bones than males of other subsistence groups. Due to low socio-economic 

background, the industrial population was expected to show higher values in 

lower limb entheses and bone strength than agricultural group who had a 

more sedentary lifestyle. The findings presented in sections 6.5.1 (entheses) 
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and 7.4.1 (cross-sectional geometric properties) partially support the 

predictions. The entheseal morphology and bone strength of some 

subsistence groups show consistent responses to environmental stresses, 

while some demonstrate different patterns. Compared with other subsistence 

categories, the pastoral males have relatively high values in lower limb 

entheses and bone strength. Conversely, while the lower limb bone strength 

of the agropastoral males is moderate, they have the lowest aggregated 

scores for the lower limb entheses. Similarly, the agricultural males are 

among the four subsistence groups to show the highest entheseal aggregated 

scores in the lower limb, whereas their lower limbs are relatively gracile. 

Entheseal morphology and bone strength have been widely used to 

investigate issues pertaining to habitual behaviour and mobility levels, so it 

was expected that the studied subsistence groups will display similar patterns 

of responses for entheseal aggregated scores and long bone robusticity. 

Nonetheless, the results presented in this dissertation suggest that although 

variation in entheses and skeletal biomechanics are good indicators for 

behavioural changes, they track different kinds of mechanical stresses. 

Behaviour induced sexual dimorphism was investigated in this dissertation. 

It was predicted that pastoral and agropastoral groups will show higher levels 

of sexual dimorphism than agricultural and industrial groups in the diaphyseal 

strength and entheseal expression of the lower limbs due to greater mobility 

levels. Pastoral males exhibit 23% higher aggregated scores than females in 

the lower limb entheses, while the SDI value of the agropastoral group is 

relatively low (5%), implying that female and male agropastoralists may have 

engaged in similar muscular activities. Since the agropastoral males have the 

smallest lower limb aggregated scores among the four subsistence groups, it 

is likely that they only marginally relied on pastoralism, instead agriculture 

may have played a more crucial role in their life. The relative high SDI value 

(24%) in the upper limb entheses among the agropastoral group lends further 

support to this interpretation. The agricultural group shows a SDI of 23% in 

the upper limb entheseal scores, which is similar to that of the 

agropastoralists. It may suggest that the agropastoral males were involved in 

agricultural activities which require the frequent use of the upper limbs. It is 

noteworthy that the upper and lower limb aggregated scores for the 
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agricultural and agropastoral groups are very similar. In contrast, the findings 

for diaphyseal strength proposed a different story. The agropastoral group 

shows the highest levels of sexual dimorphism in the TAs of all long bones. 

These variable results again indicate that entheseal morphology and skeletal 

biomechanics are two completely different approaches which should be 

employed in caution when investigating behavioural patterns among human 

populations because a high level of sexual dimorphism in entheses does not 

imply similar magnitude of sex differences in diaphyseal strength.  

The last main hypothesis in this dissertation was that the Chinese 

populations, regardless of sex, time period and subsistence strategy, will 

demonstrate a high frequency of right-biased in entheseal expression and 

diaphyseal strength. In addition, the industrial population will show greater 

right-biased frequencies than ancient Chinese as it is evident that right-

handedness is highly correlated with technological advancement. The results 

for disaggregated entheseal scores are rather surprising. It is observed that 

most of the Chinese populations studied in this dissertation, irrespective of 

sex, demonstrate more left-biased entheseal scores. In addition, when only 

the highest ranking entheses are considered, the left-handedness pattern 

remains unchanged. Since the highest ranking entheses represent the most 

frequently utilised muscles, the results imply that the Holocene Chinese may 

have habitually used the left arm more than the right arm. Although it is 

impossible to infer the exact handedness frequency among ancient Chinese 

populations, the findings in this dissertation are unusual in contemporary 

Chinese societies which have a stronger cultural pressures for the use of right 

hands. By contrast, most Holocene Chinese populations tend to exhibit right 

dominance in long bone TAs. 

8.2 Conclusion 

This dissertation investigated the influence of climatic factors and 

environmental stresses on skeletal morphology of the Holocene Chinese. It 

set out to study three main areas of enquiry: 1) climatic adaptation of 
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Holocene Chinese; 2) temporal variation and changes in skeletal morphology 

in relation to socio-political conditions and stress; and 3) correlation of 

subsistence strategy with skeletal biomechanics and entheseal expressions. 

The diversity of China has made this region an ideal setting to examine 

human biological responses to changes in climate and the environment. It can 

avoid inconsistency in biological affinity which result from comparing 

populations from different areas on the one hand, while on the other, it is 

possible to scrutinise the importance of regional and local factors on 

morphological variation. 

The bioarchaeological approaches employed in this dissertation not only 

can be used independently to assess specific research questions, but also 

can be integrated to help shed further light on broader research interests such 

as human skeletal adaptation. Body size and shape can be used to infer 

health status of past populations as well as short-term evolutionary trajectory 

of humans. Entheseal expression is a useful indicator for reconstructing 

patterns of labour and habitual activities. Skeletal biomechanics are indicative 

of mechanical environments, which can be used to track workloads at 

different periods of life history. 

The analyses in Chapter 5 of climatic adaption of the Holocene Chinese 

reveal that the northern and southern Chinese demonstrate a great deal of 

similarities in body proportions than had previously thought, which suggests 

non-climatic variables may have played a equally crucial role in shaping 

Chinese physique. Furthermore, these similarities imply retention of ancestral 

traits, which can provide insights into the dispersals of anatomically modern 

humans. Stature and body mass are proxy of health. However, they often do 

not present the same trends and patterns even though individuals are placed 

under similar levels of stress. These variables are genetically controlled, but 

body mass appears to be more plastic and flexible. In Chapter 5, results show 

that there are discrepancies between the temporal trends in stature and body 

mass among the Holocene Chinese, which may imply that body mass 

appears to continue to be influenced by environmental variables after puberty. 

Conversely, stature is more susceptible to childhood stresses. Once 

individuals achieve their genetic maximum height, environmental stresses 

which they received after physical maturity less likely negatively affect adult 
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stature. This interpretation explains minimal variation in male stature during 

the socio-politically unstable periods. It was predicted that entheseal 

expression and diaphyseal strength studied in Chapter 6 and 7 will show 

similar responses to environmental stresses. The results in this dissertation 

do not support this hypothesis. These two “activity” indicator not only show 

differences in sensitivity for mechanical stresses, but also in expressions of 

sexual dimorphism and bilateral asymmetry. As discussed in sections above, 

investigations into human skeletal variation in relation to stresses must be 

treated with great caution. Although bones are highly plastic, they are greatly 

sensitive.  

 It is undeniable that the findings in this dissertation are complicated. It 

seems that they adds more confusion rather than clarification to the 

understanding of human adaptation in Holocene China. Integration of 

numerous methods can efficiently reveal subtle yet interesting trends 

underneath a big picture. Bioarchaeological research in China has been very 

active in the past decades; nevertheless, the scarcity of publication has 

limited our understanding of human adaptation and microevolution in this 

region.   
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Appendix A 

 

 

 

 

 
Figure A4.1 Sex differences in the subpubic region (from Buikstra and Ubelaker 

1994) 
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Figure A4.2 Sex differences and scoring system for the greater sciatic notch (from 

Buikstra and Ubelaker 1994) 

 

 
 

 

 

 

Figure A4.3 Sex differences and scoring system for the preauricular sulcus (from 

Buikstra and Ubelaker 1994) 
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Figure A4.4 Todd’s pubic symphysis scoring system. Abbreviation: D, dorsal; V, 

ventral (from Buikstra and Ubelaker 1994) 

 

 
 

 
Figure A4.5 The region of auricular surface utilised for age determination (from 

Lovejoy et al. 1985) 
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Table A4.1 Definitions of osteological measurements (from Buikstra and Ubelaker 

1994) (cont’d) 

Bone Variable Definition Abbreviation* 

Clavicle  maximum 

length 

maximum distance between the 

medial and lateral ends 

 

Humerus maximum 

length 

direct distance from the most superior 

point on the head to the most inferior 

point 

HXL 

 vertical 

diameter of 

head 

direct distance between the most 

superior and inferior points on the 

border on the articular surface 

HHD 

 epipcondylar 

breadth 

distance between the most laterally 

protruding point on the lateral 

epicondyle from the corresponding 

projection of the medial epicondyle 

HEB 

Radius maximum 

length 

distance from the most proximally 

positioned point on the head to the tip 

of the styloid process without regard 

for the long axis of the bone 

RXL 

Ulna maximum 

length 

distance from the most proximal point 

on the olecranon to the most distal 

point on the styloid process 

UXL 

Femur maximum 

length 

distance from the most superior point 

on the head of the femur to the most 

inferior point on the distal condyles 

FXL 

 bicondylar 

length 

distance from the most superior point 

on the head to a plane drawn along 

the inferior surfaces of the distal 

condyles 

FBL 

 maximum 

head diameter 

the maximum diameter of the femoral 

head between the most superior and 

inferior points 

FHD 

 distal 

epipcondylar 

breadth 

distance between the two most 

laterally projecting points on the 

epicondyles 

FEB 

* only the abbreviations of the skeletal variables used in Chapter 5 are listed 
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Table A4.1 continued 

Bone Variable Definition Abbreviation* 

Tibia lateral length distance from the superior articular 

surface of the lateral condyle to the 

tip of the medial malleolus 

TLL 

 distal epiphyseal 

breadth 

maximum distance between the most 

laterally projecting points on the 

medial malleolus and the lateral 

surface of the distal articular region 

TDB 

 proximal 

epiphyseal breadth 

maximum distance between the most 

laterally projecting points on the 

medial condyles of the proximal 

articular region 

TPB 

* only the abbreviations of the skeletal variables used in Chapter 5 are listed 
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Figure A4.6a Muscle and ligament attachment sites on the inferior surface of the 

right clavicle (adapted from Drake et al. 2008) 

 

 
 

 

 

 
Figure A4.6b Muscle and ligament attachment sites on the left scapula: (A) costal 

surface; (B) dorsal surface (adapted from McMinn and Hutchings 1977) 

 

 
                    (A)                                                                          (B) 
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Figure A4.6c Muscle and ligament attachment sites on the right humerus: (A) 

posterior surface; (B) anterior surface (adapted from Drake et al. 2008) 

 
                                  (A)                                            (B) 

 

Figure A4.6d Muscle and ligament attachment sites on the right radius and ulna: (A) 

posterior surface; (B) anterior surface (adapted from Drake et al. 2008) 

 
                                           (A)                          (B) 
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Figure A4.6e Muscle and ligament attachment sites on the right femur: (A) anterior 

surface; (B) posterior surface (adapted from Drake et al. 2008) 

 

 
                                     (A)                                   (B)                
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Figure A4.6f Muscle and ligament attachment sites on the right tibia: (A) anterior 

surface; (B) posterior surface (adapted from Drake et al. 2008) 

 

 
(A)                                                                 (B) 

 

 

 
Figure A4.6g Muscle and ligament attachment sites on the left calcaneus (from 

behind) and left patella (anterior surface) (adapted from Drake et al. 2008) 
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Table A4.2 Descriptions of robusticity and stress lesions (Hawkey 1988; Rodrigues 

2005) 

 Feature Score Description 

Robusticity 0 (Score 0) Absent, no marking is seen. 

 R1 (Score 1) Faint expression. The cortex is only slightly rounded, 

and often not visible without viewing under a strong 

light. The elevation is palpable, although no distinct 

crests or ridges have formed. For tendinous 

attachment type, there is a slight indentation at the 

site of attachment, but no well-defined surrounding 

margin of bone. 

 R2 (Score 2) Moderate expression. The cortical surface is uneven, 

with a mound-shaped elevation that is easily 

observable; no sharp ridges or crests have formed. 

For tendinous attachment type, roughening of the 

attachment site occurs, most often with well-defined 

surrounding margin of bone. 

 R3 (Score 3) Strong expression. Strong, distinct, sharp crests or 

ridges have formed. Sometimes there is a slight 

depression forming between the crests, but this does 

not extend into the cortex, and does not have the 

characteristic lesion appearance of the stress MSM. 

For tendinous attachment type, deep indentation 

occurs with a clearly defined margin of bone. Usually 

the roughened area has developed crests of bone. 

Stress 

Lesion 

0 (Score 0) Absent, no marking is seen. 

 S1 (Score 4) Faint expression. There is a shallow furrow into the 

cortex with a lytic-like appearance. The pitting is less 

than 1mm in depth. 

 S2 (Score 5) Moderate expression. The pitting is deeper and 

covers more surface area. It is more than 1 mm, but 

less than 3 mm in depth. Its length varies, but is 

never longer than 5mm. 

 S3 (Score 6) Strong expression. Pitting is marked, and is more 

than 3 mm in depth and 5 mm in length. 
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Appendix B 

 

 

 

 

 
Table A5.1 Comparison between the right and left sides for twelve osteometric 

measurements  

 n  ̅R  ̅L r Significance 

HXL 188 302.04 299.43 0.976 <0.001 
HHD 156 42.66 42.61 0.954 <0.001 
HEB 135 58.36 57.73 0.941 <0.001 
RXL 129 230.31 228.03 0.984 <0.001 
UXL 90 248.51 246.47 0.973 <0.001 
FXL 224 421.32 422.03 0.991 <0.001 
FHD 200 44.69 44.50 0.979 <0.001 
FEB 94 77.51 77.36 0.986 <0.001 
TLL 162 339.16 338.89 0.990 <0.001 
TPB 63 69.91 69.84 0.967 <0.001 
TDB 115 50.83 50.84 0.954 <0.001 
FiXL 39 335.24 335.06 0.984 <0.001 

Abbreviations: HXL, maximum length of humerus; HHD, humeral head diameter; 

RXL, maximum length of radius; UXL, maximum length of ulna; FXL, maximum 

length of femur; FHD, femoral head diameter; FEB, femoral epicondylar breadth; 

TLL, lateral length of tibia; TPB, proximal epiphyseal breadth of tibia; TDB, distal 

epiphyseal breadth of tibia; FiXL; maximum length of fibula; n, number of individuals 

(pooled sample);  ̅R, mean value of right element;  ̅L, mean value of left element; r, 

Pearson’s correlation coefficient; significant is based upon paired t-test with α=0.05 
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Appendix C 

 
Table A6.1a Correlations of disaggregated scores of the right upper limb with sex, 

age, limb size and body mass (females) (cont'd) 

Enthesis  
 

Age1 
Upper limb 

size2 

Lower limb 

size2 
Body mass2 

C: Costoclavicular ligament rs -0.040 0.109 0.123 0.205 

 
Sig. n.s. n.s. n.s. n.s. 

C: Trapezoid ligament rs 0.235 0.072 -0.093 0.105 

 
Sig. n.s. n.s. n.s. n.s. 

C: Conoid ligament rs 0.027 0.082 -0.281 -0.033 

 
Sig. n.s. n.s. n.s. n.s. 

S: Triceps brachii (o) rs 0.011 0.014 0.354 0.226 

 
Sig. n.s. n.s. n.s. n.s. 

S: Trapezius rs 0.338 0.331 0.372 0.343 

 
Sig. 0.044 n.s. n.s. n.s. 

H: Supraspinatus rs 0.332 0.254 0.182 -0.057 

 
Sig. 0.009 n.s. n.s. n.s. 

H: Infraspinatus rs 0.137 0.127 0.415 -0.096 

 
Sig. n.s. n.s. n.s. n.s. 

H: Subscapularis rs 0.393 0.028 0.181 0.177 

 
Sig. 0.001 n.s. n.s. n.s. 

H: Teres minor rs 0.245 0.212 0.286 0.084 

 
Sig. n.s. n.s. n.s. n.s. 

H: Latissimus dorsi rs 0.126 -0.004 0.408 -0.029 

 
Sig. n.s. n.s. n.s. n.s. 

H: Teres Major rs -0.027 0.012 -0.397 0.005 

 
Sig. n.s. n.s. n.s. n.s. 

H: Pectoralis major rs 0.281 0.013 0.223 -0.080 

 
Sig. 0.012 n.s. n.s. n.s. 

H: Deltoideus rs 0.133 -0.098 0.299 -0.032 

 
Sig. n.s. n.s. n.s. n.s. 

Abbreviations: C, clavicle, H, humerus, U, ulna, R, radius, (o), origin site; 1 samples 

with known and estimated age; 2 pooled samples; rs, Spearman's correlation; bold 

font, significance based upon Spearman’s correlation coefficient with =0.05; n.s., 

non-significant 
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Table A6.1a continued 

Enthesis  
 

Age1 
Upper limb 

size2 

Lower limb 

size2 
Body mass2 

H: Brachioradialis (o) rs 0.027 0.166 0.656 0.344 

 
Sig. n.s. n.s. 0.008 0.009 

H: Extensor carpi radialis 

longus 

rs 0.286 -0.160 0.183 -0.206 

Sig. 0.029 n.s. n.s. n.s. 

H: Flexors (o) rs 0.403 0.280 0.749 0.359 

 
Sig. 0.008 n.s. 0.008 0.027 

H: Extensors (o) rs 0.474 0.053 -0.156 -0.043 

 
Sig. 0.001 n.s. n.s. n.s. 

U: Brachialis rs 0.179 0.160 0.151 0.207 

 
Sig. n.s. n.s. n.s. n.s. 

U: Triceps brachii  rs 0.232 0.150 0.742 0.389 

 
Sig. n.s. n.s. 0.014 0.012 

U: Supinator (o) rs 0.428 0.159 0.063 0.057 

 
Sig. <0.001 n.s. n.s. n.s. 

U: Anconeus rs 0.096 0.020 0.070 -0.168 

 
Sig. n.s. n.s. n.s. n.s. 

U: Pronator quadratus (o) rs 0.118 0.084 0.299 0.205 

 
Sig. n.s. n.s. n.s. n.s. 

R: Biceps brachii rs 0.427 -0.011 0.041 0.030 

 
Sig. <0.001 n.s. n.s. n.s. 

R: Pronator teres rs 0.440 0.064 0.406 0.018 

 
Sig. <0.001 n.s. n.s. n.s. 

R: Pronator quadratus rs -0.060 -0.249 -0.129 -0.056 

 
Sig. n.s. n.s. n.s. n.s. 

R: Brachioradialis rs 0.300 -0.063 0.717 0.144 

 
Sig. n.s. n.s. 0.013 n.s. 

Abbreviations: C, clavicle, H, humerus, U, ulna, R, radius, (o), origin site; 1 samples 

with known and estimated age; 2 pooled samples; rs, Spearman's correlation; bold 

font, significance based upon Spearman’s correlation coefficient with =0.05; n.s., 

non-significant 
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Table A6.1b Correlations of disaggregated scores of the right lower limb with sex, 

age, limb size and body mass (females) 

Enthesis  
 

Age1 
Upper limb 

size2 

Lower limb 

size2 
Body mass2 

F: Gluteus minimus rs 0.475 -0.168 0.181 -0.057 

 
Sig. <0.001 n.s. n.s. n.s. 

F: Gluteus medius rs 0.424 0.143 0.600 0.200 

 
Sig. 0.001 n.s. 0.005 n.s. 

F: Gluteus maximus rs 0.507 0.081 0.040 0.011 

 
Sig. <0.001 n.s. n.s. n.s. 

F: Vastus lateralis rs 0.350 0.052 0.381 0.044 

 
Sig. 0.007 n.s. n.s. n.s. 

F: Vastus medialis rs 0.227 0.121 0.441 0.085 

 
Sig. n.s. n.s. 0.035 n.s. 

F: Vastus intermedius rs -0.089 -0.115 -0.320 -0.005 

 
Sig. n.s. n.s. n.s. n.s. 

F: Ilipsoas rs 0.334 0.240 0.514 0.234 

 
Sig. 0.008 n.s. 0.014 n.s. 

F: Lateral gastrocnemius rs 0.244 0.161 0.338 0.218 

 
Sig. n.s. n.s. n.s. n.s. 

F: Medial gastrocnemius rs 0.062 0.047 -0.163 -0.002 

 
Sig. n.s. n.s. n.s. n.s. 

T: Semimembranosus rs 0.340 0.220 0.290 0.441 

 
Sig. 0.049 n.s. n.s. n.s. 

T: Patellar ligament rs 0.255 0.103 -0.237 0.102 

 
Sig. 0.023 n.s. n.s. n.s. 

T: Soleus rs 0.317 -0.187 0.150 -0.057 

 
Sig. 0.002 n.s. n.s. n.s. 

P: Quadriceps tendon rs 0.447 -0.232 -0.045 -0.185 

 
Sig. 0.020 n.s. n.s. n.s. 

Ca: Achilles tendon rs 0.331 -0.247 0.584 0.142 

 
Sig. 0.040 n.s. 0.036 n.s. 

Abbreviations: F, femur, T, tibia, P, patella, Ca, calcaneus, (o), origin site; 1 samples 

with known and estimated age; 2 pooled samples; rs, Spearman's correlation; bold 

font, significance based upon Spearman’s correlation coefficient with =0.05; n.s., 

non-significant 
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Table A6.2a Correlations of disaggregated scores of the left upper limb with sex, age, 

limb size and body mass (females) (cont'd) 

Enthesis  
 

Age1 
Upper limb 

size2 

Lower limb 

size2 
Body mass2 

C: Costoclavicular ligament rs 0.123  -0.036  0.102  0.150  

 
Sig. n.s. n.s. n.s. n.s. 

C: Trapezoid ligament rs 0.321  0.232  -0.070  0.001  

 
Sig. 0.030 n.s. n.s. n.s. 

C: Conoid ligament rs 0.017  0.287  -0.113  0.127  

 
Sig. n.s. n.s. n.s. n.s. 

S: Triceps brachii (o) rs 0.034  0.059  0.178  0.130  

 
Sig. n.s. n.s. n.s. n.s. 

S: Trapezius rs 0.209  0.220  -0.229  0.174  

 
Sig. n.s. n.s. n.s. n.s. 

H: Supraspinatus rs 0.439  0.029  0.149  -0.119  

 
Sig. 0.001 n.s. n.s. n.s. 

H: Infraspinatus rs 0.207  0.148  0.416  0.196  

 
Sig. n.s. n.s. n.s. n.s. 

H: Subscapularis rs 0.416  0.118  0.283  -0.032  

 
Sig. 0.001 n.s. n.s. n.s. 

H: Teres minor rs 0.197  0.107  0.608  -0.038  

 
Sig. n.s. n.s. 0.021 n.s. 

H: Latissimus dorsi rs 0.316  0.148  0.344  0.109  

 
Sig. 0.013 n.s. n.s. n.s. 

H: Teres Major rs 0.103  -0.042  -0.192  -0.029  

 
Sig. n.s. n.s. n.s. n.s. 

H: Pectoralis major rs 0.427  0.169  0.182  -0.019  

 
Sig. <0.001 n.s. n.s. n.s. 

H: Deltoideus rs 0.138 -0.099 -0.004 -0.095 

 
Sig. n.s. n.s. n.s. n.s. 

Abbreviations: C, clavicle, H, humerus, U, ulna, R, radius, (o), origin site; 1 samples 

with known and estimated age; 2 pooled samples; rs, Spearman's correlation; bold 

font, significance based upon Spearman’s correlation coefficient with =0.05; n.s., 

non-significant 
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Table A6.2a continued 

Enthesis  
 

Age1 
Upper limb 

size2 

Lower limb 

size2 
Body mass2 

H: Brachioradialis (o) rs -0.086  0.034  0.375  0.205  

 
Sig. n.s. n.s. n.s. n.s. 

H: Extensor carpi radialis 

longus 

rs 0.300  -0.300  0.104  -0.321  

Sig. 0.017 0.029 n.s. 0.017 

H: Flexors (o) rs 0.215  0.062  0.258  0.224  

 
Sig. n.s. n.s. n.s. n.s. 

H: Extensors (o) rs 0.504  0.121  0.529  -0.112  

 
Sig. <0.001 n.s. 0.024 n.s. 

U: Brachialis rs 0.210  0.151  0.044  0.074  

 
Sig. n.s. n.s. n.s. n.s. 

U: Triceps brachii  rs 0.097  0.170  0.304  0.230  

 
Sig. n.s. n.s. n.s. n.s. 

U: Supinator (o) rs 0.211  0.055  0.476  0.234  

 
Sig. n.s. n.s. n.s. n.s. 

U: Anconeus rs 0.199  0.289  0.146  0.078  

 
Sig. n.s. n.s. n.s. n.s. 

U: Pronator quadratus (o) rs -0.157  -0.159  0.065  0.050  

 
Sig. n.s. n.s. n.s. n.s. 

R: Biceps brachii rs 0.332  0.041  -0.208  -0.026  

 
Sig. 0.008 n.s. n.s. n.s. 

R: Pronator teres rs 0.479  0.099  0.701  0.105  

 
Sig. <0.001 n.s. 0.016 n.s. 

R: Pronator quadratus rs 0.065  -0.084  0.218  -0.079  

 
Sig. n.s. n.s. n.s. n.s. 

R: Brachioradialis rs 0.320 -0.078 -0.016 0.037 

 
Sig. n.s. n.s. n.s. n.s. 

Abbreviations: C, clavicle, H, humerus, U, ulna, R, radius, (o), origin site; 1 samples 

with known and estimated age; 2 pooled samples; rs, Spearman's correlation; bold 

font, significance based upon Spearman’s correlation coefficient with =0.05; n.s., 

non-significant 
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Table A6.2b Correlations of disaggregated scores of the left lower limb with sex, age, 

limb size and body mass (females) 

Enthesis  
 

Age1 
Upper limb 

size2 

Lower limb 

size2 
Body mass2 

F: Gluteus minimus rs 0.310  0.158  0.424  0.161  

 
Sig. 0.013 n.s. n.s. n.s. 

F: Gluteus medius rs 0.296  0.035  0.564  0.141  

 
Sig. 0.043 n.s. 0.023 n.s. 

F: Gluteus maximus rs 0.444  0.041  -0.034  -0.029  

 
Sig. <0.001 n.s. n.s. n.s. 

F: Vastus lateralis rs 0.129  0.024  0.066  -0.003  

 
Sig. n.s. n.s. n.s. n.s. 

F: Vastus medialis rs 0.250  0.146  0.242  0.063  

 
Sig. 0.019 n.s. n.s. n.s. 

F: Vastus intermedius rs -0.023  -0.123  -0.161  0.039  

 
Sig. n.s. n.s. n.s. n.s. 

F: Ilipsoas rs 0.328  -0.067  0.449  0.064  

 
Sig. 0.006 n.s. 0.036 n.s. 

F: Lateral gastrocnemius rs 0.268  0.035  0.228  0.426  

 
Sig. 0.044 n.s. n.s. 0.001 

F: Medial gastrocnemius rs -0.070  0.068  -0.032  0.137  

 
Sig. n.s. n.s. n.s. n.s. 

T: Semimembranosus rs 0.138  -0.243  / 0.088  

 
Sig. n.s. n.s. n.s. n.s. 

T: Patellar ligament rs 0.282  0.045  -0.016  0.037  

 
Sig. 0.011 n.s. n.s. n.s. 

T: Soleus rs 0.363  -0.172  0.161  -0.086  

 
Sig. <0.001 n.s. n.s. n.s. 

P: Quadriceps tendon rs 0.464  0.041  0.338  -0.214  

 
Sig. 0.004 n.s. n.s. n.s. 

Ca: Achilles tendon rs 0.133 -0.462 0.185 -0.161 

 
Sig. n.s. 0.015 n.s. n.s. 

Abbreviations: F, femur, T, tibia, P, patella, Ca, calcaneus, (o), origin site; 1 samples 

with known and estimated age; 2 pooled samples; rs, Spearman's correlation; bold 

font, significance based upon Spearman’s correlation coefficient with =0.05; n.s., 

non-significant 
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Table A6.3a Correlations of disaggregated scores of the right upper limbs with sex, 

age, limb size and body mass (males) (cont'd) 

Enthesis  
 

Age1 
Upper limb 

size2 

Lower limb 

size2 
Body mass2 

C:Costoclavicular ligament rs -0.063 -0.212 -0.176 0.150 

 
Sig. n.s. n.s. n.s. n.s. 

C: Trapezoid ligament rs -0.081 0.068 -0.042 0.209 

 
Sig. n.s. n.s. n.s. n.s. 

C: Conoid ligament rs -0.150 0.189 0.063 0.116 

 
Sig. n.s. n.s. n.s. n.s. 

S: Triceps brachii (o) rs -0.038 0.217 0.015 0.282 

 
Sig. n.s. n.s. n.s. 0.019 

S: Trapezius rs 0.358 0.023 -0.281 -0.041 

 
Sig. 0.009 n.s. n.s. n.s. 

H: Supraspinatus rs 0.102 0.074 0.190 -0.162 

 
Sig. n.s. n.s. n.s. n.s. 

H: Infraspinatus rs 0.103 0.108 / 0.154 

 
Sig. n.s. n.s. n.s. n.s. 

H: Subscapularis rs 0.278 0.063 0.000 0.025 

 
Sig. 0.013 n.s. n.s. n.s. 

H: Teres minor rs -0.043 -0.004 0.058 0.026 

 
Sig. n.s. n.s. n.s. n.s. 

H: Latissimus dorsi rs 0.095 0.185 -0.055 0.015 

 
Sig. n.s. n.s. n.s. n.s. 

H: Teres Major rs 0.130 0.059 -0.185 0.215 

 
Sig. n.s. n.s. n.s. 0.035 

H: Pectoralis major rs -0.023 0.243 -0.153 0.125 

 
Sig. n.s. 0.030 n.s. n.s. 

H: Deltoideus rs 0.111 -0.102 -0.050 0.052 

 
Sig. n.s. n.s. n.s. n.s. 

Abbreviations: C, clavicle, H, humerus, U, ulna, R, radius, (o), origin site; 1 samples 

with known and estimated age; 2 pooled samples; rs, Spearman's correlation; bold 

font, significance based upon Spearman’s correlation coefficient with =0.05; n.s., 

non-significant 
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Table A6.3a continued 

Enthesis  
 

Age1 
Upper limb 

size2 

Lower limb 

size2 
Body mass2 

H: Brachioradialis (o) rs -0.002 -0.025 0.265 0.128  

 
Sig. n.s. n.s. n.s. n.s. 

H: Extensor carpi radialis 

longus 

rs 0.122 0.085 0.312 0.084  

Sig. n.s. n.s. n.s. n.s. 

H: Flexors (o) rs 0.183 0.173 0.118 0.150  

 
Sig. n.s. n.s. n.s. n.s. 

H: Extensors (o) rs 0.295 0.116 0.184 0.061  

 
Sig. 0.010 n.s. n.s. n.s. 

U: Brachialis rs -0.198 0.207 0.192 0.195  

 
Sig. 0.045 n.s. n.s. n.s. 

U: Triceps brachii  rs 0.231 0.212 0.113 0.003  

 
Sig. n.s. n.s. n.s. n.s. 

U: Supinator (o) rs -0.011 -0.131 -0.343 0.110  

 
Sig. n.s. n.s. n.s. n.s. 

U: Anconeus rs 0.088 -0.028 -0.035 0.070  

 
Sig. n.s. n.s. n.s. n.s. 

U: Pronator quadratus (o) rs -0.006 0.203 0.415 0.227  

 
Sig. n.s. n.s. 0.039 0.041 

R: Biceps brachii rs 0.127 0.268 0.130 0.165  

 
Sig. n.s. 0.026 n.s. n.s. 

R: Pronator teres rs 0.258 0.108 0.114 0.099  

 
Sig. 0.012 n.s. n.s. n.s. 

R: Pronator quadratus rs 0.062 -0.019 / 0.092  

 
Sig. n.s. n.s. n.s. n.s. 

R: Brachioradialis rs 0.069 0.219 -0.161 0.005  

 
Sig. n.s. n.s. n.s. n.s. 

Abbreviations: C, clavicle, H, humerus, U, ulna, R, radius, (o), origin site; 1 samples 

with known and estimated age; 2 pooled samples; rs, Spearman's correlation; bold 

font, significance based upon Spearman’s correlation coefficient with =0.05; n.s., 

non-significant 
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Table A6.3b Correlations of disaggregated scores of the right lower limb with sex, 

age, limb size and body mass (males) 

Enthesis  
 

Age1 
Upper limb 

size2 

Lower limb 

size2 
Body mass2 

F: Gluteus minimus rs 0.151 -0.103 0.065 0.065  

 
Sig. n.s. n.s. n.s. n.s. 

F: Gluteus medius rs 0.095 0.141 -0.253 -0.004  

 
Sig. n.s. n.s. n.s. n.s. 

F: Gluteus maximus rs 0.513 -0.093 -0.112 -0.046  

 
Sig. <0.001 n.s. n.s. n.s. 

F: Vastus lateralis rs 0.193 0.182 0.047 0.174  

 
Sig. n.s. n.s. n.s. n.s. 

F: Vastus medialis rs 0.161 0.154 -0.017 0.083  

 
Sig. n.s. n.s. n.s. n.s. 

F: Vastus intermedius rs -0.131 -0.005 -0.168 0.054  

 
Sig. n.s. n.s. n.s. n.s. 

F: Ilipsoas rs 0.272 -0.201 -0.302 0.043  

 
Sig. 0.015 n.s. n.s. n.s. 

F: Lateral gastrocnemius rs 0.013 0.313 0.212 0.163  

 
Sig. n.s. 0.016 n.s. n.s. 

F: Medial gastrocnemius rs 0.084 0.034 0.065 0.056  

 
Sig. n.s. n.s. n.s. n.s. 

T: Semimembranosus rs 0.059 -0.013 0.169 0.292  

 
Sig. n.s. n.s. n.s. n.s. 

T: Patellar ligament rs 0.306 0.161 0.163 -0.067  

 
Sig. 0.004 n.s. n.s. n.s. 

T: Soleus rs 0.093 -0.069 -0.105 -0.057  

 
Sig. n.s. n.s. n.s. n.s. 

P: Quadriceps tendon rs 0.155 0.131 0.006 0.182  

 
Sig. n.s. n.s. n.s. n.s. 

Ca: Achilles tendon rs 0.313 -0.032 -0.217 0.025 

 
Sig. 0.013 n.s. n.s. n.s. 

Abbreviations: F, femur, T, tibia, P, patella, Ca, calcaneus, (o), origin site; 1 samples 

with known and estimated age; 2 pooled samples; rs, Spearman's correlation; bold 

font, significance based upon Spearman’s correlation coefficient with =0.05; n.s., 

non-significant 
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Table A6.4a Correlations of disaggregated scores of the left upper limbs with sex, 

age, limb size and body mass (males) (cont'd) 

Enthesis  
 

Age1 
Upper limb 

size2 

Lower limb 

size2 
Body mass2 

C:Costoclavicular ligament rs -0.219  -0.097  -0.066  0.153  

 
Sig. 0.046 n.s. n.s. n.s. 

C: Trapezoid ligament rs 0.021  0.012  -0.208  0.000  

 
Sig. n.s. n.s. n.s. n.s. 

C: Conoid ligament rs 0.000  0.146  -0.198  0.192  

 
Sig. n.s. n.s. n.s. n.s. 

S: Triceps brachii (o) rs -0.113  0.236  0.265  0.336  

 
Sig. n.s. n.s. n.s. 0.005 

S: Trapezius rs 0.449  -0.053  -0.146  0.061  

 
Sig. 0.002 n.s. n.s. n.s. 

H: Supraspinatus rs 0.240  -0.029  -0.211  -0.076  

 
Sig. 0.033 n.s. n.s. n.s. 

H: Infraspinatus rs 0.142  0.206  0.210  0.010  

 
Sig. n.s. n.s. n.s. n.s. 

H: Subscapularis rs 0.301  0.027  -0.134  0.025  

 
Sig. 0.007 n.s. n.s. n.s. 

H: Teres minor rs 0.081  0.011  0.040  -0.097  

 
Sig. n.s. n.s. n.s. n.s. 

H: Latissimus dorsi rs 0.074  0.081  -0.147  0.072  

 
Sig. n.s. n.s. n.s. n.s. 

H: Teres Major rs 0.051  0.195  0.010  0.195  

 
Sig. n.s. n.s. n.s. n.s. 

H: Pectoralis major rs 0.131  0.102  -0.150  -0.006  

 
Sig. n.s. n.s. n.s. n.s. 

H: Deltoideus rs 0.111 -0.052 -0.116 0.058 

 
Sig. n.s. n.s. n.s. n.s. 

Abbreviations: C, clavicle, H, humerus, U, ulna, R, radius, (o), origin site; 1 samples 

with known and estimated age; 2 pooled samples; rs, Spearman's correlation; bold 

font, significance based upon Spearman’s correlation coefficient with =0.05; n.s., 

non-significant 
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Table A6.4a continued 

Enthesis  
 

Age1 
Upper limb 

size2 

Lower limb 

size2 
Body mass2 

H: Brachioradialis (o) rs -0.004  0.202  0.236  0.163  

 
Sig. n.s. n.s. n.s. n.s. 

H: Extensor carpi radialis 

longus 

rs 0.057  -0.110  -0.181  -0.061  

Sig. n.s. n.s. n.s. n.s. 

H: Flexors (o) rs 0.279  0.080  0.108  -0.075  

 
Sig. 0.020 n.s. n.s. n.s. 

H: Extensors (o) rs 0.331  -0.086  -0.117  -0.141  

 
Sig. 0.003 n.s. n.s. n.s. 

U: Brachialis rs -0.103  0.133  0.037  0.160  

 
Sig. n.s. n.s. n.s. n.s. 

U: Triceps brachii  rs 0.198  0.022  0.207  -0.151  

 
Sig. n.s. n.s. n.s. n.s. 

U: Supinator (o) rs 0.142  -0.133  0.104  -0.027  

 
Sig. n.s. n.s. n.s. n.s. 

U: Anconeus rs 0.042  -0.047  0.146  -0.060  

 
Sig. n.s. n.s. n.s. n.s. 

U: Pronator quadratus (o) rs 0.150  0.108  0.059  0.214  

 
Sig. n.s. n.s. n.s. n.s. 

R: Biceps brachii rs 0.285 0.160  -0.129  -0.080  

 
Sig. 0.005 n.s. n.s. n.s. 

R: Pronator teres rs 0.266  -0.049  0.155  -0.015  

 
Sig. 0.010 n.s. n.s. n.s. 

R: Pronator quadratus rs 0.058  -0.116  0.123  0.066  

 
Sig. n.s. n.s. n.s. n.s. 

R: Brachioradialis rs 0.034 0.104 -0.185 0.119 

 
Sig. n.s. n.s. n.s. n.s. 

Abbreviations: C, clavicle, H, humerus, U, ulna, R, radius, (o), origin site; 1 samples 

with known and estimated age; 2 pooled samples; rs, Spearman's correlation; bold 

font, significance based upon Spearman’s correlation coefficient with =0.05; n.s., 

non-significant 
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Table A6.4b Correlations of disaggregated scores of the left lower limb with sex, age, 

limb size and body mass (males) 

Enthesis  
 

Age1 
Upper limb 

size2 

Lower limb 

size2 
Body mass2 

F: Gluteus minimus rs 0.036  -0.019  0.092  0.156  

 
Sig. n.s. n.s. n.s. n.s. 

F: Gluteus medius rs -0.063  0.178  0.111  0.208  

 
Sig. n.s. n.s. n.s. n.s. 

F: Gluteus maximus rs 0.393  -0.052  -0.106  -0.040  

 
Sig. <0.001 n.s. n.s. n.s. 

F: Vastus lateralis rs 0.109  -0.054  0.052  0.075  

 
Sig. n.s. n.s. n.s. n.s. 

F: Vastus medialis rs 0.062  0.103  0.038  -0.008  

 
Sig. n.s. n.s. n.s. n.s. 

F: Vastus intermedius rs -0.202  -0.126  -0.225  0.001  

 
Sig. 0.036 n.s. n.s. n.s. 

F: Ilipsoas rs 0.155  -0.118  -0.081  0.094  

 
Sig. n.s. n.s. n.s. n.s. 

F: Lateral gastrocnemius rs 0.024  0.195  0.185  0.231  

 
Sig. n.s. n.s. n.s. n.s. 

F: Medial gastrocnemius rs 0.094  0.105  -0.122  0.221  

 
Sig. n.s. n.s. n.s. 0.027 

T: Semimembranosus rs 0.051  -0.034  0.016  -0.017  

 
Sig. n.s. n.s. n.s. n.s. 

T: Patellar ligament rs 0.374  -0.059  0.107  -0.155  

 
Sig. <0.001 n.s. n.s. n.s. 

T: Soleus rs 0.218  -0.006  -0.058  -0.060  

 
Sig. 0.020 n.s. n.s. n.s. 

P: Quadriceps tendon rs 0.225  -0.005  -0.043  -0.192  

 
Sig. n.s. n.s. n.s. n.s. 

Ca: Achilles tendon rs 0.229 0.264  0.101 0.203 

 
Sig. n.s. n.s. n.s. n.s. 

Abbreviations: F, femur, T, tibia, P, patella, Ca, calcaneus, (o), origin site; 1 samples 

with known and estimated age; 2 pooled samples; rs, Spearman's correlation; bold 

font, significance based upon Spearman’s correlation coefficient with =0.05; n.s., 

not significant 
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Table A6.5a Correlations between the right and left entheseal scores of the upper 

limb (samples from seven populations were pooled) 

Enthesis 

Upper limb 
n  ̅R  ̅L rs Significance* 

C: Costoclavicular ligament 146 2.77 2.69 0.408 <0.001 

C: Trapezoid ligament 128 1.54 1.52 0.503 <0.001 

C: Conoid ligament 153 2.16 2.07 0.559 <0.001 

S: Triceps brachii (o) 119 1.75 1.66 0.540 <0.001 

S: Trapezius 75 1.61 1.48 0.708 <0.001 

H: Supraspinatus 130 1.89 1.85 0.652 <0.001 

H: Infraspinatus 106 1.42 1.23 0.452 <0.001 

H: Subscapularis 150 1.32 1.23 0.551 <0.001 

H: Teres minor 100 1.20 1.09 0.547 <0.001 

H: Latissimus dorsi 187 1.16 1.10 0.460 <0.001 

H: Teres Major 230 2.27 2.20 0.526 <0.001 

H: Pectoralis major 261 2.53 2.48 0.718 <0.001 

H: Deltoideus 288 1.90 1.94 0.753 <0.001 

H: Brachioradialis (o) 213 1.25 1.29 0.676 <0.001 

H: Extensor carpi radialis longus 164 1.82 1.79 0.710 <0.001 

H: Flexors (o) 114 1.45 1.35 0.543 <0.001 

H: Extensors (o) 121 1.48 1.41 0.685 <0.001 

U: Brachialis 212 1.42 1.38 0.664 <0.001 

U: Triceps brachii  125 1.38 1.21 0.643 <0.001 

U: Supinator (o) 198 1.63 1.52 0.590 <0.001 

U: Anconeus 129 1.41 1.26 0.581 <0.001 

U: Pronator quadratus (o) 160 1.83 1.89 0.506 <0.001 

R: Biceps brachii 170 1.66 1.64 0.653 <0.001 

R: Pronator teres 158 1.78 1.76 0.699 <0.001 

R: Pronator quadratus 129 1.07 1.01 0.242 <0.001 

R: Brachioradialis 54 1.24 1.19 0.746 <0.001 

Abbreviations: C, clavicle, H, humerus, U, ulna, R, radius, (o), origin site; n, number 

of individuals;  ̅R, mean right score;  ̅L, mean left score; rs, Spearman’s correlation; 

*based upon Spearman’s correlation coefficient, significant at 0.05 level 
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Table A6.5b Correlations between the right and left entheseal scores of the lower 

limb (samples from seven populations were pooled) 

Enthesis 

Lower limb 
n  ̅R  ̅L rs Significance* 

F: Gluteus minimus 145 1.33 1.36 0.386 <0.001 

F: Gluteus medius 115 1.39 1.49 0.606 <0.001 

F: Gluteus maximus 284 1.83 1.90 0.774 <0.001 

F: Vastus lateralis 136 0.98 1.01 0.409 <0.001 

F: Vastus medialis 305 2.05 2.04 0.634 <0.001 

F: Vastus intermedius 302 1.13 1.12 0.597 <0.001 

F: Ilipsoas 161 1.42 1.37 0.704 <0.001 

F: Lateral gastrocnemius 135 1.64 1.70 0.631 <0.001 

F: Medial gastrocnemius 258 2.00 2.08 0.449 <0.001 

T: Semimembranosus 75 1.16 1.16 0.642 <0.001 

T: Patellar ligament 211 1.29 1.25 0.661 <0.001 

T: Soleus 301 1.83 1.79 0.631 <0.001 

P: Quadriceps tendon 58 1.55 1.66 0.649 <0.001 

Ca: Achilles tendon 97 1.77 1.72 0.672 <0.001 

Abbreviations: C, clavicle, H, humerus, U, ulna, R, radius, F, femur, T, tibia, P, 

patella, Ca, calcaneus, (o), origin site; n, number of individuals;  ̅R, mean right 

score;  ̅L, mean left score; rs, Spearman’s correlation; *based upon Spearman’s 

correlation coefficient, significant at 0.05 level 
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Table A6.6 Sexual dimorphism index (SDI) and intra-population sexual differences 

of the upper limb disaggregated data for seven populations (cont’d) 

Enthesis Jiangjialiang Neiyangyuan Jinggouzi 

Upper limb SDI Sig. SDI Sig. SDI Sig. 

C: Costoclavicular ligament 20.76 n.s. 38.24 0.005 41.33 n.s. 

C: Trapezoid ligament 16.51 n.s. -20.00 n.s. -22.28 n.s. 

C: Conoid ligament 8.29 n.s. -4.03 n.s. 2.85 n.s. 

S: Triceps brachii (o) 26.56 0.024 33.39 0.000 4.17 n.s. 

S: Trapezius 9.09 n.s. 23.00 n.s. -28.57 n.s. 

H: Supraspinatus 21.59 n.s. -19.32 n.s. 42.71 0.031 

H: Infraspinatus 12.00 n.s. -2.44 n.s. -9.09 n.s. 

H: Subscapularis 23.08 n.s. 1.70 n.s. 20.64 n.s. 

H: Teres minor 25.00 n.s. -15.51 n.s. 19.23 n.s. 

H: Latissimus dorsi 22.42 n.s. 13.21 n.s. 12.50 n.s. 

H: Teres major -5.40 n.s. 2.57 n.s. 20.88 n.s. 

H: Pectoralis major 25.84 n.s. 24.29 0.001 1.32 n.s. 

H: Deltoideus 7.14 n.s. 18.56 0.001 10.84 n.s. 

H: Brachioradialis (o) -8.15 n.s. 13.53 n.s. 19.03 n.s. 

H: Extensor carpi radialis longus 22.05 n.s. 15.63 n.s. 31.92 n.s. 

H: Flexors (o) 12.50 n.s. -1.47 n.s. 14.44 n.s. 

H: Extensors (o) -22.51 n.s. 5.59 n.s. -12.25 n.s. 

U: Brachialis 19.23 n.s. 0.22 n.s. 46.19 <0.001 

U: Triceps brachii  19.54 n.s. 20.26 n.s. -26.69 n.s. 

U: Supinator (o) 17.33 n.s. -2.90 n.s. -2.45 n.s. 

U: Anconeus 18.52 n.s. 23.66 0.012 21.94 n.s. 

U: Pronator quadratus (o) 2.94 n.s. -14.29 n.s. 11.22 n.s. 

R: Biceps brachii 8.05 n.s. 24.38 0.006 12.95 n.s. 

R: Pronator teres 3.24 n.s. 12.32 n.s. 22.08 n.s. 

R: Pronator quadratus -3.62 n.s. 8.11 n.s. 27.09 n.s. 

R: Brachioradialis -66.67 n.s. 34.88 0.016 -7.14 n.s. 

Abbreviations: C, clavicle, H, humerus, U, ulna, R, radius, (o), origin site; Sig., 

significance is based upon Mann-Whitney with =0.05; n.s., not significant; negative 

value, female disaggregated scores greater than those of males 
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Table A6.6 cotinued 

Enthesis Tuchengzi Lamadong Shenyang 

Upper limb SDI Sig. SDI Sig. SDI Sig. 

C: Costoclavicular ligament / / 44.00 0.045 2.18 n.s. 

C: Trapezoid ligament / / 40.00 n.s. 0.00 n.s. 

C: Conoid ligament / / 6.67 n.s. 6.25 n.s. 

S: Triceps brachii (o) / / -15.79 n.s. 5.31 n.s. 

S: Trapezius / / / / 44.44 n.s. 

H: Supraspinatus 26.89 n.s. 17.37 n.s. 21.43 n.s. 

H: Infraspinatus -9.52 n.s. -31.62 n.s. -1.50 n.s. 

H: Subscapularis 12.12 n.s. 12.26 n.s. 24.00 n.s. 

H: Teres minor -5.05 n.s. -18.31 n.s. -42.86 n.s. 

H: Latissimus dorsi 26.61 0.021 24.34 0.001 6.25 n.s. 

H: Teres major 26.70 0.001 10.27 n.s. 33.03 0.002 

H: Pectoralis major -0.40 n.s. 13.23 0.005 4.76 n.s. 

H: Deltoideus 4.92 n.s. 13.29 n.s. -18.60 n.s. 

H: Brachioradialis (o) 6.45 n.s. 9.87 n.s. 13.82 n.s. 

H: Extensor carpi radialis longus 0.00 n.s. 27.20 0.007 -61.91 0.031 

H: Flexors (o) -25.00 n.s. 1.54 n.s. -2.86 n.s. 

H: Extensors (o) -7.14 n.s. -17.31 n.s. 21.84 n.s. 

U: Brachialis 26.66 n.s. 11.95 n.s. -3.78 n.s. 

U: Triceps brachii  28.57 n.s. 28.82 0.047 40.00 n.s. 

U: Supinator (o) 10.81 n.s. 15.27 n.s. 2.92 n.s. 

U: Anconeus 6.25 n.s. 20.44 n.s. 22.22 n.s. 

U: Pronator quadratus (o) 12.11 n.s. -14.61 n.s. 1.79 n.s. 

R: Biceps brachii 19.75 n.s. 25.84 0.004 -0.53 n.s. 

R: Pronator teres 34.64 n.s. 6.38 n.s. -1.93 n.s. 

R: Pronator quadratus 7.14 n.s. -0.65 n.s. 0.00 n.s. 

R: Brachioradialis 41.94 0.039 56.08 0.024 -33.33 n.s. 

Abbreviations: C, clavicle, H, humerus, U, ulna, R, radius, (o), origin site; Sig., 

significance is based upon Mann-Whitney with =0.05; n.s., not significant; negative 

value, female disaggregated scores greater than those of males; /, no data 
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Table A6.6 continued 

Enthesis Sha Ling   

Upper limb SDI Sig.     

C: Costoclavicular ligament 26.80 0.036     

C: Trapezoid ligament -22.06 0.013     

C: Conoid ligament -8.50 n.s.     

S: Triceps brachii (o) 12.75 n.s.     

S: Trapezius 18.29 0.049     

H: Supraspinatus 13.57 n.s.     

H: Infraspinatus -29.00 n.s.     

H: Subscapularis -5.56 n.s.     

H: Teres minor 0.00 n.s.     

H: Latissimus dorsi 11.57 n.s.     

H: Teres major -6.11 n.s.     

H: Pectoralis major -8.03 n.s.     

H: Deltoideus -2.26 n.s.     

H: Brachioradialis (o) -3.64 n.s.     

H: Extensor carpi radialis longus -10.10 n.s.     

H: Flexors (o) -1.39 n.s.     

H: Extensors (o) -27.48 0.035     

U: Brachialis -7.08 n.s.     

U: Triceps brachii  17.16 n.s.     

U: Supinator (o) -17.24 0.037     

U: Anconeus 2.24 n.s.     

U: Pronator quadratus (o) -4.24 n.s.     

R: Biceps brachii -0.58 n.s.     

R: Pronator teres -33.79 0.001     

R: Pronator quadratus -12.24 0.041     

R: Brachioradialis 25.33 0.013     

Abbreviations: C, clavicle, H, humerus, U, ulna, R, radius, (o), origin site; Sig., 

significance is based upon Mann-Whitney with =0.05; n.s., not significant; negative 

value, female disaggregated scores greater than those of males 
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Table A6.7 Sexual dimorphism index (SDI) and intra-population sexual differences 

of the lower limb disaggregated data for seven populations (cont’d) 

Enthesis Jiangjialiang Neiyangyuan Jinggouzi 

Lower limb SDI Sig. SDI Sig. SDI Sig. 

F: Gluteus minimus 29.41 n.s. 13.65 n.s. 27.78 n.s. 

F: Gluteus medius 28.70 n.s. 30.00 n.s. -1.54 n.s. 

F: Gluteus maximus -3.45 n.s. 8.21 n.s. -2.22 n.s. 

F: Vastus lateralis 8.34 n.s. 4.17 n.s. / / 

F: Vastus medialis 1.23 n.s. 32.98 0.002 -9.31 n.s. 

F: Vastus intermedius 23.08 n.s. 7.46 n.s. 14.98 n.s. 

F: Ilipsoas 22.22 n.s. 30.86 0.004 29.49 n.s. 

F: Lateral gastrocnemius 27.08 n.s. 23.36 n.s. 12.19 n.s. 

F: Medial gastrocnemius 27.45 n.s. 20.57 n.s. 30.50 n.s. 

T: Semimembranosus 20.00 n.s. 29.41 0.027 -5.56 n.s. 

T: Patellar ligament 1.48 n.s. 37.26 0.011 11.12 n.s. 

T: Soleus 22.49 n.s. 28.57 0.003 6.43 n.s. 

P: Quadriceps tendon -33.33 n.s. 16.36 n.s. 28.41 n.s. 

Ca: Achilles tendon -8.33 n.s. 32.80 0.007 -7.70 n.s. 
       

 
Tuchengzi Lamadong Shenyang 

F: Gluteus minimus 11.11 n.s. 15.09 0.027 8.33 n.s. 

F: Gluteus medius 28.98 0.004 15.83 n.s. -18.42 n.s. 

F: Gluteus maximus 19.64 0.023 12.78 0.048 -6.06 n.s. 

F: Vastus lateralis 9.09 n.s. 7.35 n.s. 4.76 n.s. 

F: Vastus medialis 9.55 n.s. -4.71 n.s. 1.33 n.s. 

F: Vastus intermedius -13.13 n.s. -25.43 n.s. -33.33 n.s. 

F: Ilipsoas 21.34 n.s. 19.42 0.047 6.25 n.s. 

F: Lateral gastrocnemius 4.90 n.s. 16.05 0.029 -8.33 n.s. 

F: Medial gastrocnemius 18.87 0.036 7.23 n.s. 4.27 n.s. 

T: Semimembranosus 7.14 n.s. -6.77 n.s. -16.67 n.s. 

T: Patellar ligament 6.94 n.s. 5.52 n.s. -6.06 n.s. 

T: Soleus 16.35 n.s. 9.45 n.s. -4.06 n.s. 

P: Quadriceps tendon / / 50.00 n.s. 4.00 n.s. 

Ca: Achilles tendon / / 45.45 0.032 -35.00 n.s. 

Abbreviations: F, femur, T, tibia, P, patella, Ca, calcaneus, (o), origin site; Sig., 

significance is based upon Mann-Whitney with =0.05; n.s., not significant; negative 

value, female disaggregated scores greater than those of males; /, no data 
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Table A6.7 continued 

Enthesis Sha Ling   

Lower limb SDI Sig.     

F: Gluteus minimus -3.55 n.s.     

F: Gluteus medius -32.03 n.s.     

F: Gluteus maximus -19.49 0.011     

F: Vastus lateralis -4.00 n.s.     

F: Vastus medialis -32.22 0.000     

F: Vastus intermedius -6.00 n.s.     

F: Ilipsoas -15.15 n.s.     

F: Lateral gastrocnemius 1.72 n.s.     

F: Medial gastrocnemius 2.51 n.s.     

T: Semimembranosus -29.13 0.015     

T: Patellar ligament 7.64 n.s.     

T: Soleus -19.08 0.032     

P: Quadriceps tendon -21.71 n.s.     

Ca: Achilles tendon 0.57 n.s.     

Abbreviations: F, femur, T, tibia, P, patella, Ca, calcaneus, (o), origin site; Sig., 

significance is based upon Mann-Whitney with =0.05; n.s., not significant; negative 

value, female disaggregated scores greater than those of males; /, no data 

414



  

Table A6.8 Inter-population comparisons of disaggregated data for the upper limb 

entheses (females) 

Enthesis Jiangjialiang vs. 

Upper limb NYY JGZ TCZ LMD SY SL 

C: Costoclavicular ligament n.s. n.s. n.s. n.s. n.s. n.s. 

C: Trapezoid ligament n.s. n.s. n.s. n.s. n.s. n.s. 

C: Conoid ligament n.s. n.s. n.s. n.s. n.s. n.s. 

S: Triceps brachii (o) n.s. n.s. n.s. n.s. n.s. n.s. 

S: Trapezius n.s. n.s. n.s. n.s. n.s. n.s. 

H: Supraspinatus n.s. n.s. n.s. n.s. n.s. n.s. 

H: Infraspinatus n.s. n.s. n.s. n.s. n.s. n.s. 

H: Subscapularis n.s. n.s. n.s. n.s. n.s. n.s. 

H: Teres minor n.s. n.s. n.s. n.s. n.s. n.s. 

H: Latissimus dorsi n.s. n.s. n.s. n.s. n.s. n.s. 

H: Teres Major n.s. n.s. n.s. n.s. n.s. n.s. 

H: Pectoralis major n.s. 0.001  0.000  n.s. n.s. 0.000  

H: Deltoideus n.s. n.s. n.s. n.s. n.s. n.s. 

H: Brachioradialis (o) n.s. n.s. n.s. n.s. n.s. n.s. 

H: Extensor carpi radialis longus n.s. n.s. n.s. n.s. n.s. 0.022  

H: Flexors (o) n.s. n.s. n.s. n.s. n.s. n.s. 

H: Extensors (o) n.s. n.s. n.s. n.s. n.s. n.s. 

U: Brachialis 0.000  n.s. n.s. n.s. n.s. n.s. 

U: Triceps brachii  n.s. n.s. n.s. n.s. n.s. n.s. 

U: Supinator (o) n.s. n.s. n.s. n.s. n.s. n.s. 

U: Anconeus n.s. n.s. n.s. n.s. n.s. n.s. 

U: Pronator quadratus (o) n.s. n.s. n.s. n.s. n.s. n.s. 

R: Biceps brachii n.s. n.s. n.s. n.s. n.s. n.s. 

R: Pronator teres n.s. n.s. n.s. n.s. n.s. n.s. 

R: Pronator quadratus n.s. n.s. n.s. n.s. n.s. n.s. 

R: Brachioradialis n.s. n.s. n.s. n.s. n.s. n.s. 

Abbreviations: NYY, Neiyangyuan; JGZ, Jinggouzi; TCZ, Tuchengzi; LMD, Lamadong; 

SY, Shenyang; SL, Sha Ling; C, clavicle; H, humerus; U, ulna; R, radius; (o), origin site; 

bold font, significance based upon Kruskal-Wallis and Dun-Bonferroni post hoc tests with 

=0.05; n.s., non-significant 
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Table A6.8 continued 

Enthesis Neiyangyuan vs. 

Upper limb JGZ TCZ LMD SY SL 

C: Costoclavicular ligament n.s. n.s. n.s. n.s. n.s. 

C: Trapezoid ligament n.s. n.s. n.s. n.s. n.s. 

C: Conoid ligament n.s. n.s. n.s. n.s. n.s. 

S: Triceps brachii (o) n.s. n.s. n.s. n.s. n.s. 

S: Trapezius n.s. n.s. n.s. n.s. n.s. 

H: Supraspinatus n.s. n.s. n.s. n.s. n.s. 

H: Infraspinatus n.s. n.s. n.s. n.s. n.s. 

H: Subscapularis n.s. n.s. n.s. n.s. n.s. 

H: Teres minor n.s. n.s. n.s. n.s. n.s. 

H: Latissimus dorsi n.s. n.s. n.s. n.s. n.s. 

H: Teres Major n.s. n.s. n.s. n.s. n.s. 

H: Pectoralis major n.s. 0.036  n.s. n.s. n.s. 

H: Deltoideus n.s. n.s. n.s. n.s. n.s. 

H: Brachioradialis (o) n.s. n.s. n.s. n.s. n.s. 

H: Extensor carpi radialis longus n.s. n.s. n.s. n.s. 0.005  

H: Flexors (o) n.s. n.s. n.s. n.s. n.s. 

H: Extensors (o) n.s. n.s. n.s. n.s. n.s. 

U: Brachialis 0.000  n.s. 0.030  n.s. 0.008  

U: Triceps brachii  n.s. n.s. n.s. n.s. n.s. 

U: Supinator (o) n.s. n.s. n.s. n.s. n.s. 

U: Anconeus n.s. n.s. n.s. n.s. n.s. 

U: Pronator quadratus (o) n.s. n.s. n.s. n.s. n.s. 

R: Biceps brachii n.s. n.s. n.s. n.s. n.s. 

R: Pronator teres 0.022  n.s. n.s. n.s. n.s. 

R: Pronator quadratus n.s. n.s. n.s. n.s. n.s. 

R: Brachioradialis n.s. n.s. n.s. n.s. n.s. 

Abbreviations: JGZ, Jinggouzi; TCZ, Tuchengzi; LMD, Lamadong; SY, Shenyang; SL, 

Sha Ling; C, clavicle; H, humerus; U, ulna; R, radius; (o), origin site; bold font, 

significance based upon Kruskal-Wallis and Dun-Bonferroni post hoc tests with =0.05; 

n.s., not significant 
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Table A6.8 continued 

Enthesis Jinggouzi vs. 

Upper limb TCZ LMD SY SL 

C: Costoclavicular ligament n.s. n.s. n.s. n.s. 

C: Trapezoid ligament n.s. n.s. n.s. n.s. 

C: Conoid ligament n.s. n.s. n.s. n.s. 

S: Triceps brachii (o) n.s. n.s. n.s. n.s. 

S: Trapezius n.s. n.s. n.s. n.s. 

H: Supraspinatus n.s. n.s. n.s. n.s. 

H: Infraspinatus n.s. n.s. n.s. n.s. 

H: Subscapularis n.s. n.s. n.s. n.s. 

H: Teres minor n.s. n.s. n.s. n.s. 

H: Latissimus dorsi n.s. n.s. n.s. n.s. 

H: Teres Major n.s. n.s. n.s. n.s. 

H: Pectoralis major n.s. n.s. n.s. n.s. 

H: Deltoideus n.s. n.s. n.s. n.s. 

H: Brachioradialis (o) n.s. n.s. n.s. n.s. 

H: Extensor carpi radialis longus n.s. n.s. n.s. n.s. 

H: Flexors (o) n.s. n.s. n.s. n.s. 

H: Extensors (o) n.s. n.s. n.s. n.s. 

U: Brachialis n.s. n.s. n.s. n.s. 

U: Triceps brachii  n.s. n.s. n.s. n.s. 

U: Supinator (o) n.s. n.s. n.s. n.s. 

U: Anconeus n.s. n.s. n.s. n.s. 

U: Pronator quadratus (o) n.s. n.s. n.s. n.s. 

R: Biceps brachii n.s. n.s. n.s. n.s. 

R: Pronator teres n.s. n.s. n.s. 0.020  

R: Pronator quadratus n.s. n.s. n.s. n.s. 

R: Brachioradialis n.s. n.s. n.s. n.s. 

Abbreviations: TCZ, Tuchengzi; LMD, Lamadong; SY, Shenyang; SL, Sha Ling; C, 

clavicle; H, humerus; U, ulna; R, radius; (o), origin site; bold font, adjusted P-values 

based upon Kruskal-Wallis and Dun-Bonferroni post hoc tests, significant at 0.05 

level; /, no data; n.s., not significant 
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Table A6.8 continued 

Enthesis Tuchengzi vs.  Lamadong vs.  SY vs. 

Upper limb LMD SY SL  SY SL  SL 

C: Costoclavicular ligament n.s. n.s. n.s.  n.s. n.s.  n.s. 

C: Trapezoid ligament n.s. n.s. n.s.  n.s. n.s.  n.s. 

C: Conoid ligament n.s. n.s. n.s.  n.s. n.s.  n.s. 

S: Triceps brachii (o) n.s. n.s. n.s.  n.s. n.s.  n.s. 

S: Trapezius n.s. n.s. n.s.  n.s. n.s.  n.s. 

H: Supraspinatus n.s. n.s. n.s.  n.s. n.s.  n.s. 

H: Infraspinatus n.s. n.s. n.s.  n.s. n.s.  n.s. 

H: Subscapularis n.s. n.s. n.s.  n.s. n.s.  n.s. 

H: Teres minor n.s. n.s. n.s.  n.s. n.s.  n.s. 

H: Latissimus dorsi n.s. n.s. n.s.  n.s. n.s.  n.s. 

H: Teres Major n.s. n.s. n.s.  n.s. n.s.  n.s. 

H: Pectoralis major 0.034  n.s. n.s.  n.s. n.s.  n.s. 

H: Deltoideus n.s. n.s. n.s.  n.s. n.s.  n.s. 

H: Brachioradialis (o) n.s. n.s. n.s.  n.s. n.s.  n.s. 

H: Extensor carpi radialis longus n.s. n.s. n.s.  0.015  0.000   n.s. 

H: Flexors (o) n.s. n.s. n.s.  n.s. n.s.  n.s. 

H: Extensors (o) n.s. n.s. n.s.  n.s. n.s.  n.s. 

U: Brachialis n.s. n.s. n.s.  n.s. n.s.  n.s. 

U: Triceps brachii  n.s. n.s. n.s.  n.s. n.s.  n.s. 

U: Supinator (o) n.s. n.s. n.s.  n.s. n.s.  n.s. 

U: Anconeus n.s. n.s. n.s.  n.s. n.s.  n.s. 

U: Pronator quadratus (o) n.s. n.s. n.s.  n.s. n.s.  n.s. 

R: Biceps brachii n.s. n.s. n.s.  n.s. n.s.  n.s. 

R: Pronator teres n.s. n.s. n.s.  n.s. n.s.  n.s. 

R: Pronator quadratus n.s. n.s. n.s.  n.s. n.s.  n.s. 

R: Brachioradialis n.s. n.s. n.s.  0.006  n.s.  n.s. 

Abbreviations: LMD, Lamadong, SY, Shenyang, SL, Sha Ling, C, clavicle, H, humerus, U, 

ulna, R, radius; (o), origin site; bold font, adjusted P-values based upon Kruskal-Wallis and 

Dun-Bonferroni post hoc tests, significant at 0.05 level; /, no data; n.s., not significant 
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Table A6.9 Inter-population comparisons of disaggregated data for the lower limb 

entheses (females) 

Enthesis Jiangjialiang vs. 

Lower limb NYY JGZ TCZ LMD SY SL 

F: Gluteus minimus n.s. n.s. n.s. n.s. n.s. 0.005  

F: Gluteus medius n.s. n.s. n.s. n.s. n.s. n.s. 

F: Gluteus maximus n.s. n.s. n.s. n.s. n.s. n.s. 

F: Vastus lateralis n.s. n.s. n.s. n.s. n.s. n.s. 

F: Vastus medialis n.s. n.s. n.s. n.s. n.s. n.s. 

F: Vastus intermedius n.s. n.s. n.s. n.s. n.s. n.s. 

F: Ilipsoas n.s. n.s. n.s. n.s. n.s. n.s. 

F: Lateral gastrocnemius n.s. n.s. n.s. n.s. n.s. n.s. 

F: Medial gastrocnemius n.s. n.s. n.s. n.s. n.s. n.s. 

T: Semimembranosus n.s. n.s. n.s. n.s. n.s. n.s. 

T: Patellar ligament n.s. n.s. n.s. n.s. n.s. n.s. 

T: Soleus n.s. n.s. n.s. n.s. n.s. n.s. 

P: Quadriceps tendon n.s. n.s. n.s. n.s. n.s. n.s. 

Ca: Achilles tendon n.s. n.s. n.s. n.s. n.s. n.s. 

Abbreviations: NYY, Neiyangyuan, JGZ, Jinggouzi, TCZ, Tuchengzi, LMD, Lamadong, 

SY, Shenyang, SL, Sha Ling, F, femur, T, tibia, P, patella, Ca, calcaneus; bold font, 

significance based upon Kruskal-Wallis and Dun-Bonferroni post hoc tests with =0.05; 

n.s., not significant 

 

419



  

Table A6.9 continued 

Enthesis Neiyangyuan vs. 

Lower limb JGZ TCZ LMD SY SL 

F: Gluteus minimus n.s. n.s. n.s. n.s. 0.007  

F: Gluteus medius n.s. n.s. n.s. n.s. n.s. 

F: Gluteus maximus n.s. n.s. n.s. n.s. n.s. 

F: Vastus lateralis n.s. n.s. n.s. n.s. n.s. 

F: Vastus medialis n.s. n.s. n.s. n.s. 0.000  

F: Vastus intermedius n.s. 0.038  n.s. n.s. n.s. 

F: Ilipsoas n.s. n.s. n.s. n.s. n.s. 

F: Lateral gastrocnemius n.s. n.s. n.s. n.s. n.s. 

F: Medial gastrocnemius n.s. n.s. n.s. n.s. n.s. 

T: Semimembranosus n.s. n.s. n.s. n.s. n.s. 

T: Patellar ligament n.s. n.s. n.s. n.s. n.s. 

T: Soleus n.s. n.s. n.s. n.s. n.s. 

P: Quadriceps tendon n.s. n.s. n.s. n.s. n.s. 

Ca: Achilles tendon n.s. n.s. n.s. n.s. n.s. 

Abbreviations: JGZ, Jinggouzi, TCZ, Tuchengzi, LMD, Lamadong, SY, Shenyang, SL, 

Sha Ling, F, femur, T, tibia, P, patella, Ca, calcaneus; bold font, adjusted P-values 

based upon Kruskal-Wallis and Dun-Bonferroni post hoc tests, significant at 0.05 level; 

n.s., not significant 
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Table A6.9 continued  

Enthesis Jinggouzi vs. 

Lower limb TCZ LMD SY SL 

F: Gluteus minimus n.s. n.s. n.s. n.s. 

F: Gluteus medius n.s. n.s. n.s. n.s. 

F: Gluteus maximus n.s. n.s. n.s. n.s. 

F: Vastus lateralis n.s. n.s. n.s. n.s. 

F: Vastus medialis n.s. n.s. n.s. n.s. 

F: Vastus intermedius n.s. n.s. n.s. n.s. 

F: Ilipsoas n.s. n.s. n.s. n.s. 

F: Lateral gastrocnemius n.s. n.s. n.s. n.s. 

F: Medial gastrocnemius n.s. 0.005  n.s. n.s. 

T: Semimembranosus n.s. n.s. n.s. n.s. 

T: Patellar ligament n.s. n.s. n.s. 0.015  

T: Soleus n.s. n.s. n.s. n.s. 

P: Quadriceps tendon n.s. n.s. n.s. n.s. 

Ca: Achilles tendon n.s. n.s. n.s. n.s. 

Abbreviations: TCZ, Tuchengzi, LMD, Lamadong, SY, Shenyang, SL, Sha Ling, F, 

femur, T, tibia, P, patella, Ca, calcaneus; bold font, adjusted P-values based upon 

Kruskal-Wallis and Dun-Bonferroni post hoc tests, significant at 0.05 level; n.s., not 

significant 
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Table A6.9 continued  

Enthesis Tuchengzi vs.  Lamadong vs.  SY vs. 

Lower limb LMD SY SL  SY SL  SL 

F: Gluteus minimus n.s. n.s. n.s.  n.s. 0.000   n.s. 

F: Gluteus medius n.s. n.s. n.s.  n.s. n.s.  n.s. 

F: Gluteus maximus n.s. n.s. n.s.  n.s. n.s.  n.s. 

F: Vastus lateralis n.s. n.s. n.s.  n.s. n.s.  n.s. 

F: Vastus medialis n.s. n.s. n.s.  n.s. n.s.  n.s. 

F: Vastus intermedius n.s. n.s. n.s.  n.s. n.s.  n.s. 

F: Ilipsoas n.s. n.s. n.s.  n.s. n.s.  n.s. 

F: Lateral gastrocnemius n.s. n.s. n.s.  n.s. n.s.  n.s. 

F: Medial gastrocnemius n.s. n.s. n.s.  n.s. n.s.  n.s. 

T: Semimembranosus n.s. n.s. n.s.  n.s. n.s.  n.s. 

T: Patellar ligament n.s. n.s. n.s.  n.s. n.s.  n.s. 

T: Soleus n.s. n.s. n.s.  n.s. 0.001   n.s. 

P: Quadriceps tendon n.s. n.s. n.s.  n.s. n.s.  n.s. 

Ca: Achilles tendon n.s. n.s. n.s.  n.s. n.s.  n.s. 

Abbreviations: LMD, Lamadong, SY, Shenyang, SL, Sha Ling, F, femur, T, tibia, P, 

patella, Ca, calcaneus; bold font, adjusted P-values based upon Kruskal-Wallis and 

Dun-Bonferroni post hoc tests, significant at 0.05 level; /, no data; n.s., not significant
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Table A6.10 Inter-population comparisons of disaggregated data for the upper limb 

entheses (males) 

Enthesis Jiangjialiang vs. 

Upper limb NYY JGZ TCZ LMD SY SL 

C: Costoclavicular ligament n.s. n.s. n.s. n.s. n.s. n.s. 

C: Trapezoid ligament n.s. n.s. n.s. n.s. n.s. n.s. 

C: Conoid ligament n.s. n.s. n.s. n.s. n.s. n.s. 

S: Triceps brachii (o) n.s. n.s. n.s. n.s. n.s. 0.015  

S: Trapezius n.s. n.s. n.s. n.s. n.s. n.s. 

H: Supraspinatus n.s. n.s. n.s. n.s. n.s. n.s. 

H: Infraspinatus n.s. n.s. n.s. n.s. n.s. n.s. 

H: Subscapularis n.s. n.s. n.s. n.s. n.s. n.s. 

H: Teres minor n.s. n.s. n.s. n.s. n.s. n.s. 

H: Latissimus dorsi n.s. n.s. 0.009  n.s. n.s. n.s. 

H: Teres Major n.s. n.s. n.s. n.s. n.s. n.s. 

H: Pectoralis major 0.001  n.s. 0.000  0.006  n.s. n.s. 

H: Deltoideus 0.035  n.s. n.s. n.s. n.s. n.s. 

H: Brachioradialis (o) n.s. n.s. n.s. n.s. n.s. n.s. 

H: Extensor carpi radialis longus n.s. n.s. n.s. n.s. n.s. n.s. 

H: Flexors (o) n.s. n.s. n.s. n.s. n.s. n.s. 

H: Extensors (o) 0.031  n.s. 0.001  n.s. 0.001  0.004  

U: Brachialis n.s. n.s. n.s. n.s. n.s. n.s. 

U: Triceps brachii  n.s. n.s. n.s. n.s. n.s. n.s. 

U: Supinator (o) n.s. n.s. n.s. n.s. n.s. n.s. 

U: Anconeus n.s. n.s. n.s. n.s. n.s. n.s. 

U: Pronator quadratus (o) n.s. n.s. n.s. n.s. n.s. n.s. 

R: Biceps brachii n.s. n.s. 0.049  n.s. n.s. n.s. 

R: Pronator teres 0.002  n.s. n.s. n.s. n.s. n.s. 

R: Pronator quadratus n.s. n.s. n.s. n.s. n.s. n.s. 

R: Brachioradialis n.s. n.s. 0.034  n.s. n.s. n.s. 

Abbreviations: NYY, Neiyangyuan, JGZ, Jinggouzi, TCZ, Tuchengzi, LMD, Lamadong, 

SY, Shenyang, SL, Sha Ling, C, clavicle, H, humerus, U, ulna, R, radius; (o), origin site; 

bold font, significance based upon Kruskal-Wallis and Dun-Bonferroni post hoc tests with 

=0.05; n.s., not significant 
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Table A6.10 continued 

Enthesis Neiyangyuan vs. 

Upper limb JGZ TCZ LMD SY SL 

C: Costoclavicular ligament n.s. n.s. n.s. n.s. n.s. 

C: Trapezoid ligament n.s. n.s. n.s. n.s. n.s. 

C: Conoid ligament n.s. n.s. n.s. n.s. n.s. 

S: Triceps brachii (o) 0.011  n.s. n.s. <0.001  n.s. 

S: Trapezius n.s. n.s. n.s. n.s. n.s. 

H: Supraspinatus n.s. n.s. n.s. n.s. n.s. 

H: Infraspinatus n.s. n.s. n.s. n.s. n.s. 

H: Subscapularis n.s. n.s. n.s. n.s. n.s. 

H: Teres minor n.s. n.s. n.s. n.s. n.s. 

H: Latissimus dorsi n.s. n.s. n.s. n.s. n.s. 

H: Teres Major n.s. n.s. n.s. n.s. 0.001  

H: Pectoralis major n.s. n.s. n.s. n.s. n.s. 

H: Deltoideus n.s. n.s. n.s. n.s. 0.013  

H: Brachioradialis (o) n.s. n.s. n.s. n.s. n.s. 

H: Extensor carpi radialis longus n.s. n.s. n.s. n.s. n.s. 

H: Flexors (o) n.s. n.s. n.s. n.s. n.s. 

H: Extensors (o) n.s. n.s. n.s. n.s. n.s. 

U: Brachialis n.s. n.s. n.s. n.s. <0.001  

U: Triceps brachii  n.s. n.s. n.s. n.s. n.s. 

U: Supinator (o) n.s. n.s. n.s. n.s. n.s. 

U: Anconeus n.s. n.s. n.s. n.s. n.s. 

U: Pronator quadratus (o) n.s. n.s. n.s. n.s. n.s. 

R: Biceps brachii n.s. n.s. n.s. n.s. n.s. 

R: Pronator teres 0.010  n.s. 0.001  n.s. <0.001  

R: Pronator quadratus n.s. n.s. n.s. n.s. n.s. 

R: Brachioradialis n.s. n.s. n.s. n.s. n.s. 

Abbreviations: JGZ, Jinggouzi, TCZ, Tuchengzi, LMD, Lamadong, SY, Shenyang, 

SL, Sha Ling, C, clavicle, H, humerus, U, ulna, R, radius; (o), origin site; bold font, 

adjusted P-values based upon Kruskal-Wallis and Dun-Bonferroni post hoc tests, 

significant at 0.05 level; /, no data; n.s., not significant 
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Table A6.10 continued 

Enthesis Jinggouzi vs. 

Upper limb TCZ LMD SY SL 

C: Costoclavicular ligament n.s. n.s. n.s. n.s. 

C: Trapezoid ligament n.s. n.s. n.s. n.s. 

C: Conoid ligament n.s. n.s. n.s. n.s. 

S: Triceps brachii (o) n.s. n.s. n.s. n.s. 

S: Trapezius n.s. n.s. n.s. n.s. 

H: Supraspinatus n.s. n.s. n.s. n.s. 

H: Infraspinatus n.s. n.s. n.s. n.s. 

H: Subscapularis n.s. n.s. n.s. n.s. 

H: Teres minor n.s. n.s. n.s. n.s. 

H: Latissimus dorsi n.s. n.s. n.s. n.s. 

H: Teres Major n.s. n.s. n.s. n.s. 

H: Pectoralis major n.s. n.s. n.s. n.s. 

H: Deltoideus n.s. n.s. n.s. n.s. 

H: Brachioradialis (o) n.s. n.s. n.s. n.s. 

H: Extensor carpi radialis longus n.s. n.s. n.s. n.s. 

H: Flexors (o) n.s. n.s. n.s. n.s. 

H: Extensors (o) n.s. n.s. n.s. n.s. 

U: Brachialis n.s. n.s. n.s. <0.001  

U: Triceps brachii  n.s. n.s. n.s. n.s. 

U: Supinator (o) n.s. n.s. n.s. n.s. 

U: Anconeus n.s. n.s. n.s. n.s. 

U: Pronator quadratus (o) n.s. n.s. n.s. n.s. 

R: Biceps brachii 0.013  0.039  n.s. n.s. 

R: Pronator teres n.s. n.s. n.s. n.s. 

R: Pronator quadratus n.s. n.s. n.s. n.s. 

R: Brachioradialis n.s. n.s. n.s. n.s. 

Abbreviations: TCZ, Tuchengzi, LMD, Lamadong, SY, Shenyang, SL, Sha Ling, C, 

clavicle, H, humerus, U, ulna, R, radius; (o), origin site; bold font, adjusted P-values 

based upon Kruskal-Wallis and Dun-Bonferroni post hoc tests, significant at 0.05 

level; /, no data; n.s., not significant 
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Table A6.10 continued 

Enthesis Tuchengzi vs.  Lamadong vs.  SY vs. 

Upper limb LMD SY SL  SY SL  SL 

C: Costoclavicular ligament n.s. n.s. n.s.  n.s. n.s.  n.s. 

C: Trapezoid ligament n.s. n.s. n.s.  n.s. n.s.  n.s. 

C: Conoid ligament n.s. n.s. n.s.  n.s. n.s.  n.s. 

S: Triceps brachii (o) n.s. n.s. n.s.  n.s. n.s.  n.s. 

S: Trapezius n.s. n.s. n.s.  n.s. n.s.  n.s. 

H: Supraspinatus n.s. n.s. n.s.  n.s. n.s.  n.s. 

H: Infraspinatus n.s. n.s. n.s.  n.s. n.s.  n.s. 

H: Subscapularis n.s. n.s. n.s.  n.s. n.s.  n.s. 

H: Teres minor n.s. n.s. n.s.  n.s. n.s.  n.s. 

H: Latissimus dorsi n.s. n.s. n.s.  n.s. n.s.  n.s. 

H: Teres Major n.s. n.s. <0.001   n.s. 0.016   n.s. 

H: Pectoralis major n.s. n.s. n.s.  n.s. n.s.  n.s. 

H: Deltoideus n.s. n.s. 0.032   n.s. n.s.  n.s. 

H: Brachioradialis (o) 0.035  n.s. 0.001   n.s. n.s.  n.s. 

H: Extensor carpi radialis longus n.s. n.s. n.s.  n.s. n.s.  n.s. 

H: Flexors (o) n.s. n.s. n.s.  n.s. n.s.  n.s. 

H: Extensors (o) n.s. n.s. n.s.  n.s. n.s.  n.s. 

U: Brachialis n.s. n.s. 0.003   n.s. n.s.  n.s. 

U: Triceps brachii  n.s. n.s. n.s.  n.s. n.s.  n.s. 

U: Supinator (o) n.s. n.s. n.s.  n.s. n.s.  n.s. 

U: Anconeus n.s. n.s. n.s.  n.s. n.s.  n.s. 

U: Pronator quadratus (o) n.s. n.s. 0.011   n.s. n.s.  n.s. 

R: Biceps brachii n.s. n.s. n.s.  n.s. n.s.  n.s. 

R: Pronator teres n.s. n.s. 0.019   n.s. n.s.  n.s. 

R: Pronator quadratus n.s. n.s. n.s.  n.s. n.s.  n.s. 

R: Brachioradialis n.s. n.s. n.s.  n.s. n.s.  n.s. 

Abbreviations: LMD, Lamadong, SY, Shenyang, SL, Sha Ling, C, clavicle, H, humerus, U, 

ulna, R, radius; (o), origin site; bold font, adjusted P-values based upon Kruskal-Wallis and 

Dun-Bonferroni post hoc tests, significant at 0.05 level; /, no data; n.s., not significant 
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Table A6.11 Inter-population comparisons of disaggregated data for the lower limb 

entheses (males) 

Enthesis Jiangjialiang vs. 

Lower limb NYY JGZ TCZ LMD SY SL 

F: Gluteus minimus n.s. n.s. n.s. n.s. n.s. n.s. 

F: Gluteus medius n.s. n.s. n.s. n.s. n.s. n.s. 

F: Gluteus maximus n.s. n.s. <0.001  n.s. n.s. n.s. 

F: Vastus lateralis n.s. n.s. n.s. n.s. n.s. n.s. 

F: Vastus medialis n.s. n.s. n.s. n.s. n.s. n.s. 

F: Vastus intermedius 0.004  n.s. n.s. n.s. n.s. n.s. 

F: Ilipsoas n.s. n.s. n.s. n.s. n.s. n.s. 

F: Lateral gastrocnemius n.s. n.s. n.s. n.s. n.s. n.s. 

F: Medial gastrocnemius n.s. n.s. n.s. n.s. n.s. n.s. 

T: Semimembranosus n.s. n.s. n.s. n.s. n.s. n.s. 

T: Patellar ligament n.s. n.s. n.s. n.s. n.s. n.s. 

T: Soleus n.s. n.s. n.s. n.s. n.s. n.s. 

P: Quadriceps tendon n.s. n.s. n.s. n.s. n.s. n.s. 

Ca: Achilles tendon n.s. n.s. n.s. 0.040  n.s. n.s. 

Abbreviations: NYY, Neiyangyuan, JGZ, Jinggouzi, TCZ, Tuchengzi, LMD, Lamadong, 

SY, Shenyang, SL, Sha Ling, F, femur, T, tibia, P, patella, Ca, calcaneus; bold font, 

significance based upon Kruskal-Wallis and Dun-Bonferroni post hoc tests with =0.05; 

n.s., not significant 

 

427



  

Table A6.11 continued 

Enthesis Neiyangyuan vs. 

Lower limb JGZ TCZ LMD SY SL 

F: Gluteus minimus n.s. n.s. n.s. n.s. n.s. 

F: Gluteus medius n.s. n.s. n.s. n.s. n.s. 

F: Gluteus maximus n.s. n.s. n.s. n.s. n.s. 

F: Vastus lateralis n.s. n.s. n.s. n.s. n.s. 

F: Vastus medialis n.s. n.s. n.s. n.s. n.s. 

F: Vastus intermedius n.s. n.s. n.s. n.s. n.s. 

F: Ilipsoas n.s. n.s. n.s. n.s. n.s. 

F: Lateral gastrocnemius n.s. n.s. n.s. n.s. n.s. 

F: Medial gastrocnemius n.s. n.s. n.s. n.s. n.s. 

T: Semimembranosus 0.017  n.s. n.s. n.s. 0.040  

T: Patellar ligament 0.010  n.s. n.s. n.s. n.s. 

T: Soleus n.s. n.s. n.s. n.s. n.s. 

P: Quadriceps tendon n.s. n.s. n.s. n.s. n.s. 

Ca: Achilles tendon n.s. n.s. n.s. n.s. n.s. 

Abbreviations: JGZ, Jinggouzi, TCZ, Tuchengzi, LMD, Lamadong, SY, Shenyang, SL, 

Sha Ling, F, femur, T, tibia, P, patella, Ca, calcaneus; bold font, adjusted P-values 

based upon Kruskal-Wallis and Dun-Bonferroni post hoc tests, significant at 0.05 level; 

n.s., not significant 
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Table A6.11 continued  

Enthesis Jinggouzi vs. 

Lower limb TCZ LMD SY SL 

F: Gluteus minimus n.s. n.s. n.s. n.s. 

F: Gluteus medius n.s. n.s. n.s. n.s. 

F: Gluteus maximus n.s. n.s. n.s. n.s. 

F: Vastus lateralis n.s. n.s. n.s. n.s. 

F: Vastus medialis n.s. n.s. n.s. n.s. 

F: Vastus intermedius 0.003  0.000  0.000  0.001  

F: Ilipsoas n.s. n.s. n.s. n.s. 

F: Lateral gastrocnemius n.s. n.s. n.s. n.s. 

F: Medial gastrocnemius n.s. n.s. n.s. n.s. 

T: Semimembranosus n.s. n.s. n.s. n.s. 

T: Patellar ligament n.s. n.s. n.s. 0.019  

T: Soleus n.s. n.s. n.s. n.s. 

P: Quadriceps tendon n.s. n.s. n.s. n.s. 

Ca: Achilles tendon n.s. 0.049  n.s. n.s. 

Abbreviations: TCZ, Tuchengzi, LMD, Lamadong, SY, Shenyang, SL, Sha Ling, F, 

femur, T, tibia, P, patella, Ca, calcaneus; bold font, adjusted P-values based upon 

Kruskal-Wallis and Dun-Bonferroni post hoc tests, significant at 0.05 level; n.s., not 

significant 
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Table A6.11 continued  

Enthesis Tuchengzi vs.  Lamadong vs.  SY vs. 

Lower limb LMD SY SL  SY SL  SL 

F: Gluteus minimus n.s. n.s. n.s.  n.s. n.s.  n.s. 

F: Gluteus medius n.s. 0.018  0.042   n.s. n.s.  n.s. 

F: Gluteus maximus n.s. n.s. n.s.  n.s. n.s.  n.s. 

F: Vastus lateralis n.s. n.s. n.s.  n.s. n.s.  n.s. 

F: Vastus medialis 0.002  n.s. 0.002   n.s. n.s.  n.s. 

F: Vastus intermedius n.s. n.s. n.s.  n.s. n.s.  n.s. 

F: Ilipsoas n.s. n.s. n.s.  n.s. n.s.  n.s. 

F: Lateral gastrocnemius n.s. n.s. n.s.  n.s. n.s.  n.s. 

F: Medial gastrocnemius n.s. n.s. n.s.  n.s. n.s.  n.s. 

T: Semimembranosus n.s. n.s. n.s.  n.s. n.s.  n.s. 

T: Patellar ligament n.s. n.s. n.s.  n.s. n.s.  n.s. 

T: Soleus 0.005  n.s. n.s.  n.s. n.s.  n.s. 

P: Quadriceps tendon n.s. n.s. n.s.  n.s. n.s.  n.s. 

Ca: Achilles tendon n.s. n.s. n.s.  0.043  n.s.  n.s. 

Abbreviations: LMD, Lamadong, SY, Shenyang, SL, Sha Ling, F, femur, T, tibia, P, 

patella, Ca, calcaneus; bold font, adjusted P-values based upon Kruskal-Wallis and 

Dun-Bonferroni post hoc tests, significant at 0.05 level; /, no data; n.s., not significant
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Table A6.12a Inter-subsistence group comparisons of disaggregated data for the 

upper limb entheses (females) 

Enthesis A vs. 
 

P vs. 
 

AG vs. 

Upper limb P AG I 
 

AG I 
 

I 

C: Costoclavicular ligament n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

C: Trapezoid ligament n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

C: Conoid ligament n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

S: Triceps brachii (o) n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

S: Trapezius n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

H: Supraspinatus n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

H: Infraspinatus n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

H: Subscapularis n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

H: Teres minor n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

H: Latissimus dorsi n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

H: Teres Major n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

H: Pectoralis major n.s. n.s. n.s. 
 

n.s. n.s. 
 

0.035 

H: Deltoideus n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

H: Brachioradialis (o) n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

H: Extensor carpi radialis longus n.s. 0.046 n.s. 
 

n.s. 0.001 
 

0.000 

H: Flexors (o) n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

H: Extensors (o) n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

U: Brachialis n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

U: Triceps brachii  n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

U: Supinator (o) n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

U: Anconeus n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

U: Pronator quadratus (o) n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

R: Biceps brachii n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

R: Pronator teres n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

R: Pronator quadratus n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

R: Brachioradialis n.s. 0.004 n.s. 
 

0.005 n.s. 
 

0.045 

Abbreviations: A, agricultural group, P, pastoral group, AG, agropastoral group, I, 

industrial group, C, clavicle, H, humerus, U, ulna, R, radius; (o), origin site; bold font, 

adjusted P-values based upon Kruskal-Wallis and Dun-Bonferroni post hoc tests, 

significant at 0.05 level; n.s., not significant 
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Table A6.12b Inter-subsistence group comparisons of disaggregated data for the 

lower limb entheses (females) 

Enthesis A vs. 
 

P vs. 
 

AG vs. 

Lower limb P AG I 
 

AG I 
 

I 

F: Gluteus minimus n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

F: Gluteus medius n.s. n.s. n.s. 
 

n.s. 0.015 
 

n.s. 

F: Gluteus maximus n.s. n.s. 0.004 
 

n.s. 0.001 
 

0.000 

F: Vastus lateralis n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

F: Vastus medialis n.s. n.s. n.s. 
 

n.s. 0.003 
 

0.022 

F: Vastus intermedius n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

F: Ilipsoas n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

F: Lateral gastrocnemius n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

F: Medial gastrocnemius n.s. n.s. n.s. 
 

0.016 n.s. 
 

n.s. 

T: Semimembranosus n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

T: Patellar ligament n.s. n.s. n.s. 
 

n.s. 0.018 
 

n.s. 

T: Soleus n.s. n.s. n.s. 
 

n.s. 0.023 
 

0.000 

P: Quadriceps tendon n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

Ca: Achilles tendon n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

Abbreviations: A, agricultural group; P, pastoral group; AG, agropastoral group; I, 

industrial group; F, femur; T, tibia; P, patella; Ca, calcaneus; bold font, adjusted P-

values based upon Kruskal-Wallis and Dun-Bonferroni post hoc tests, significant at 

0.05 level; n.s., not significant 
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Table A6.13a Inter-subsistence group comparisons of disaggregated data for the 

upper limb entheses (males) 

Enthesis A vs. 
 

P vs. 
 

AG vs. 

Upper limb P AG I 
 

AG I 
 

I 

C: Costoclavicular ligament n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

C: Trapezoid ligament n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

C: Conoid ligament n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

S: Triceps brachii (o) n.s. n.s. 0.021 
 

n.s. 0.001 
 

n.s. 

S: Trapezius n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

H: Supraspinatus n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

H: Infraspinatus n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

H: Subscapularis n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

H: Teres minor n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

H: Latissimus dorsi n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

H: Teres Major n.s. n.s. 0.000 
 

n.s. 0.002 
 

0.004 

H: Pectoralis major n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

H: Deltoideus n.s. n.s. n.s. 
 

n.s. 0.003 
 

n.s. 

H: Brachioradialis (o) n.s. n.s. 0.008 
 

n.s. 0.020 
 

n.s. 

H: Extensor carpi radialis longus n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

H: Flexors (o) n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

H: Extensors (o) n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

U: Brachialis n.s. n.s. 0.003 
 

n.s. 0.000 
 

0.039 

U: Triceps brachii  n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

U: Supinator (o) n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

U: Anconeus n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

U: Pronator quadratus (o) n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

R: Biceps brachii n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

R: Pronator teres n.s. n.s. n.s. 
 

n.s. 0.007 
 

n.s. 

R: Pronator quadratus n.s. n.s. n.s. 
 

0.043 n.s. 
 

n.s. 

R: Brachioradialis n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

Abbreviations: A, agricultural group, P, pastoral group, AG, agropastoral group, I, 

industrial group, C, clavicle, H, humerus, U, ulna, R, radius; (o), origin site; bold font, 

adjusted P-values based upon Kruskal-Wallis and Dun-Bonferroni post hoc tests, 

significant at 0.05 level; n.s., not significant 
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Table A6.13b Inter-subsistence group comparisons of disaggregated data for the 

lower limb entheses (males) 

Enthesis A vs. 
 

P vs. 
 

AG vs. 

Lower limb P AG I 
 

AG I 
 

I 

F: Gluteus minimus n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

F: Gluteus medius n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

F: Gluteus maximus n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

F: Vastus lateralis n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

F: Vastus medialis n.s. 0.008 0.007 
 

n.s. n.s. 
 

n.s. 

F: Vastus intermedius n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

F: Ilipsoas n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

F: Lateral gastrocnemius n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

F: Medial gastrocnemius n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

T: Semimembranosus n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

T: Patellar ligament n.s. n.s. n.s. 
 

n.s. n.s. 
 

n.s. 

T: Soleus n.s. 0.010 n.s. 
 

0.037 n.s. 
 

n.s. 

P: Quadriceps tendon 0.014 0.008 n.s. 
 

n.s. n.s. 
 

n.s. 

Ca: Achilles tendon n.s. 0.005 n.s. 
 

n.s. n.s. 
 

n.s. 

Abbreviations: A, agricultural group; P, pastoral group; AG, agropastoral group; I, 

industrial group; F, femur; T, tibia; P, patella; Ca, calcaneus; bold font, adjusted P-

values based upon Kruskal-Wallis and Dun-Bonferroni post hoc tests, significant at 

0.05 level; n.s., not significant 
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Appendix D 

 

 

 

 

 
Table A7.1 Correlations between the right and left values of the cross-sectional 

geometric properties for the six long bones (samples of the seven populations pooled) 

TA n  ̅R  ̅L r Significance 

Clavicle 69 105.33 103.15 0.878 <0.001 

Humerus 147 415.09 404.81 0.871 <0.001 

Radius 103 178.60 174.35 0.875 <0.001 

Ulna 71 194.70 191.43 0.890 <0.001 

Femur 196 796.57 811.03 0.878 <0.001 

Tibia 161 647.80 650.34 0.938 <0.001 

      
Ix/Iy      

Clavicle 77 0.767 0.808 0.570 <0.001 

Humerus 178 1.120 1.147 0.784 <0.001 

Radius 122 0.647 0.673 0.659 <0.001 

Ulna 82 0.629 0.620 0.606 <0.001 

Femur 207 1.064 1.006 0.839 <0.001 

Tibia 186 2.232 2.166 0.825 <0.001 

      
Imax/Imin 

     
Clavicle 77 1.657 1.582 0.637 <0.001 

Humerus 178 1.242 1.279 0.686 <0.001 

Radius 122 1.673 1.642 0.719 <0.001 

Ulna 82 1.842 1.840 0.562 <0.001 

Femur 207 1.290 1.287 0.687 <0.001 

Tibia 186 2.304 2.310 0.864 <0.001 

TA, total subperiosteal area, standardised by estimated body mass; n, number of 

individuals;  ̅R, mean value of the right element;  ̅L, mean value of the left element; r, 

Pearson’s correlation coefficient, significant level at 0.05 
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Table A7.2 Inter-population comparisons of TAs for six long bones (females) (con’td) 

 Jiangjialiang vs. 

TA NYY JGZ TCZ LMD SY SL 

Clavicle n.s. n.s. n.s. n.s. n.s. n.s. 

Humerus n.s. n.s. n.s. n.s. n.s. n.s. 

Radius n.s. n.s. n.s. n.s. n.s. n.s. 

Ulna n.s. n.s. n.s. n.s. n.s. n.s. 

Femur n.s. n.s. n.s. n.s. n.s. n.s. 

Tibia n.s. n.s. n.s. n.s. n.s. n.s. 

       

 Neiyangyuan vs. 

TA JGZ TCZ LMD SY SL 

Clavicle n.s. n.s. n.s. n.s. n.s. 

Humerus n.s. n.s. n.s. n.s. n.s. 

Radius 0.034 n.s. n.s. n.s. 0.004 

Ulna n.s. n.s. n.s. n.s. n.s. 

Femur n.s. n.s. 0.020 0.004 n.s. 

Tibia n.s. n.s. n.s. <0.001 n.s. 

      

 Jinggouzi vs. 

TA TCZ LMD SY SL 

Clavicle n.s. n.s. n.s. n.s. 

Humerus n.s. n.s. n.s. n.s. 

Radius n.s. n.s. n.s. n.s. 

Ulna n.s. n.s. n.s. n.s. 

Femur n.s. n.s. n.s. n.s. 

Tibia n.s. n.s. n.s. n.s. 

Abbreviations: NYY, Neiyangyuan; JGZ, Jinggouzi; TCZ, Tuchengzi; LMD, 

Lamadong; SY, Shenyang; SL, Sha Ling; TA, total subperiosteal area, standardised 

by estimated body mass; significance is based upon Hochberg’s GT2 and Games-

Howell post hoc tests with =0.05; n.s., non-significant 
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Table A7.2 continued 

 Tuchengzi vs.  Lamadong vs.  Shenyang vs. 

TA LMD SY SL  SY SL  SL 

Clavicle n.s. n.s. n.s.  n.s. n.s.  n.s. 

Humerus n.s. n.s. n.s.  n.s. n.s.  n.s. 

Radius n.s. n.s. n.s.  n.s. n.s.  n.s. 

Ulna n.s. n.s. n.s.  n.s. n.s.  n.s. 

Femur n.s. n.s. n.s.  n.s. n.s.  n.s. 

Tibia n.s. n.s. n.s.  n.s. n.s.  0.026. 

Abbreviations: LMD, Lamadong; SY, Shenyang; SL, Sha Ling; TA, total subperiosteal 

area, standardised by estimated body mass; significance is based upon Hochberg’s 

GT2 and Games-Howell post hoc tests with =0.05; n.s., non-significant 
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Table A7.3 Inter-population comparisons of TAs for six long bones (males) (con’td) 

 Jiangjialiang vs. 

TA NYY JGZ TCZ LMD SY SL 

Clavicle n.s. n.s. n.s. n.s. n.s. n.s. 

Humerus n.s. n.s. n.s. n.s. n.s. n.s. 

Radius n.s. n.s. n.s. n.s. n.s. n.s. 

Ulna n.s. n.s. n.s. n.s. n.s. n.s. 

Femur n.s. n.s. n.s. n.s. n.s. n.s. 

Tibia n.s. n.s. n.s. n.s. n.s. n.s. 

       

 Neiyangyuan vs. 

TA JGZ TCZ LMD SY SL 

Clavicle n.s. n.s. n.s. n.s. n.s. 

Humerus n.s. n.s. n.s. n.s. n.s. 

Radius n.s. n.s. n.s. n.s. n.s. 

Ulna n.s. n.s. n.s. n.s. n.s. 

Femur n.s. n.s. n.s. n.s. 0.043 

Tibia n.s. n.s. n.s. n.s. n.s. 

      

 Jinggouzi vs. 

TA TCZ LMD SY SL 

Clavicle n.s. n.s. n.s. n.s. 

Humerus n.s. n.s. n.s. n.s. 

Radius n.s. n.s. n.s. n.s. 

Ulna n.s. n.s. n.s. n.s. 

Femur n.s. n.s. n.s. n.s. 

Tibia 0.044 n.s. 0.026 n.s. 

Abbreviations: NYY, Neiyangyuan; JGZ, Jinggouzi; TCZ, Tuchengzi; LMD, 

Lamadong; SY, Shenyang; SL, Sha Ling; TA, total subperiosteal area, standardised 

by estimated body mass; significance is based upon Hochberg’s GT2 and Games-

Howell post hoc tests with =0.05; n.s., non-significant 
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Table A7.3 continued 

 Tuchengzi vs.  Lamadong vs.  Shenyang vs. 

TA LMD SY SL  SY SL  SL 

Clavicle n.s. n.s. n.s.  n.s. n.s.  n.s. 

Humerus n.s. n.s. n.s.  n.s. n.s.  n.s. 

Radius n.s. n.s. n.s.  n.s. n.s.  n.s. 

Ulna n.s. n.s. n.s.  n.s. n.s.  n.s. 

Femur n.s. n.s. n.s.  n.s. n.s.  n.s. 

Tibia n.s. n.s. n.s.  n.s. n.s.  n.s. 

Abbreviations: LMD, Lamadong; SY, Shenyang; SL, Sha Ling; TA, total subperiosteal 

area, standardised by estimated body mass; significance is based upon Hochberg’s 

GT2 and Games-Howell post hoc tests with =0.05; n.s., non-significant 
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Table A7.4 Inter-population comparisons of Ix/Iy for six long bones (females) (con’td) 

 Jiangjialiang vs. 

Ix/Iy NYY JGZ TCZ LMD SY SL 

Clavicle n.s. n.s. n.s. n.s. n.s. n.s. 

Humerus n.s. n.s. n.s. n.s. n.s. n.s. 

Radius n.s. n.s. n.s. n.s. n.s. n.s. 

Ulna n.s. n.s. n.s. n.s. n.s. n.s. 

Femur n.s. n.s. n.s. n.s. n.s. n.s. 

Tibia n.s. n.s. n.s. n.s. n.s. n.s. 

       

 Neiyangyuan vs. 

Ix/Iy JGZ TCZ LMD SY SL 

Clavicle n.s. / n.s. n.s. n.s. 

Humerus n.s. 0.047 n.s. n.s. n.s. 

Radius n.s. n.s. n.s. n.s. n.s. 

Ulna n.s. n.s. n.s. n.s. n.s. 

Femur n.s. n.s. 0.004 0.035. n.s. 

Tibia n.s. n.s. n.s. n.s. n.s. 

      

 Jinggouzi vs. 

Ix/Iy TCZ LMD SY SL 

Clavicle n.s. n.s. n.s. n.s. 

Humerus n.s. n.s. n.s. n.s. 

Radius n.s. n.s. n.s. n.s. 

Ulna n.s. n.s. n.s. n.s. 

Femur n.s. n.s. n.s. n.s. 

Tibia n.s. n.s. <0.001 0.006 

Abbreviations: NYY, Neiyangyuan; JGZ, Jinggouzi; TCZ, Tuchengzi; LMD, 

Lamadong; SY, Shenyang; SL, Sha Ling; significance is based upon Hochberg’s 

GT2 and Games-Howell post hoc tests with =0.05; n.s., non-significant 
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Table A7.4 continued 

 Tuchengzi vs.  Lamadong vs.  Shenyang vs. 

Ix/Iy LMD SY SL  SY SL  SL 

Clavicle n.s. n.s. n.s.  n.s. n.s.  n.s. 

Humerus n.s. n.s. n.s.  n.s. n.s.  n.s. 

Radius n.s. n.s. n.s.  n.s. n.s.  n.s. 

Ulna n.s. n.s. n.s.  n.s. n.s.  n.s. 

Femur n.s. n.s. n.s.  n.s. <0.001  0.003 

Tibia n.s. n.s. n.s.  0.01 n.s.  n.s. 

Abbreviations: LMD, Lamadong; SY, Shenyang; SL, Sha Ling; significance is based 

upon Hochberg’s GT2 and Games-Howell post hoc tests with =0.05; n.s., non-

significant
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Table A7.5 Inter-population comparisons of Ix/Iy for six long bones (males) (con’td) 

 Jiangjialiang vs. 

Ix/Iy NYY JGZ TCZ LMD SY SL 

Clavicle 0.037 n.s. n.s. n.s. n.s. n.s. 

Humerus n.s. n.s. n.s. n.s. n.s. n.s. 

Radius n.s. n.s. n.s. n.s. n.s. n.s. 

Ulna n.s. n.s. n.s. n.s. n.s. n.s. 

Femur 0.005 n.s. n.s. n.s. n.s. n.s. 

Tibia n.s. 0.011 n.s. n.s. n.s. n.s. 

       

 Neiyangyuan vs. 

Ix/Iy JGZ TCZ LMD SY SL 

Clavicle n.s. n.s. n.s. n.s. n.s. 

Humerus n.s. n.s. n.s. n.s. n.s. 

Radius n.s. n.s. n.s. n.s. n.s. 

Ulna n.s. n.s. n.s. n.s. n.s. 

Femur n.s. 0.029 <0.001 0.001 n.s. 

Tibia <0.001 n.s. n.s. n.s. n.s. 

      

 Jinggouzi vs. 

Ix/Iy TCZ LMD SY SL 

Clavicle n.s. n.s. n.s. n.s. 

Humerus n.s. n.s. n.s. n.s. 

Radius n.s. n.s. n.s. n.s. 

Ulna n.s. n.s. n.s. n.s. 

Femur n.s. n.s. n.s. n.s. 

Tibia <0.001 <0.001 <0.001 <0.001 

Abbreviations: NYY, Neiyangyuan; JGZ, Jinggouzi; TCZ, Tuchengzi; LMD, 

Lamadong; SY, Shenyang; SL, Sha Ling; significance is based upon Hochberg’s 

GT2 and Games-Howell post hoc tests with =0.05; n.s., non-significant 
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Table A7.5 continued 

 Tuchengzi vs.  Lamadong vs.  Shenyang vs. 

Ix/Iy LMD SY SL  SY SL  SL 

Clavicle n.s. n.s. n.s.  n.s. n.s.  n.s. 

Humerus n.s. n.s. n.s.  n.s. n.s.  n.s. 

Radius n.s. n.s. n.s.  n.s. n.s.  n.s. 

Ulna n.s. n.s. n.s.  n.s. n.s.  n.s. 

Femur n.s. n.s. n.s.  n.s. n.s.  n.s. 

Tibia n.s. n.s. n.s.  n.s. n.s.  n.s. 

Abbreviations: LMD, Lamadong; SY, Shenyang; SL, Sha Ling; significance is based 

upon Hochberg’s GT2 and Games-Howell post hoc tests with =0.05; n.s., non-

significant 
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Table A7.6 Inter-population comparisons of Imax/Imin for six long bones (females) 

(con’td) 

 Jiangjialiang vs. 

Imax/Imin NYY JGZ TCZ LMD SY SL 

Clavicle n.s. 0.001 / / n.s. 0.005 

Humerus n.s. n.s. n.s. n.s. n.s. n.s. 

Radius n.s. n.s. n.s. n.s. n.s. n.s. 

Ulna n.s. n.s. n.s. n.s. n.s. n.s. 

Femur n.s. n.s. n.s. n.s. n.s. n.s. 

Tibia n.s. n.s. n.s. n.s. n.s. n.s. 

       

 Neiyangyuan vs. 

Imax/Imin JGZ TCZ LMD SY SL 

Clavicle n.s. / / n.s. n.s. 

Humerus n.s. n.s. n.s. n.s. n.s. 

Radius n.s. n.s. n.s. n.s. n.s. 

Ulna n.s. n.s. n.s. n.s. n.s. 

Femur n.s. n.s. n.s. n.s. n.s. 

Tibia n.s. n.s. n.s. n.s. n.s. 

      

 Jinggouzi vs. 

Imax/Imin TCZ LMD SY SL 

Clavicle / / n.s. n.s. 

Humerus 0.015 n.s. n.s. n.s. 

Radius n.s. n.s. n.s. n.s. 

Ulna n.s. n.s. n.s. n.s. 

Femur n.s. n.s. n.s. n.s. 

Tibia 0.048 0.004 0.004 0.001 

Abbreviations: NYY, Neiyangyuan; JGZ, Jinggouzi; TCZ, Tuchengzi; LMD, 

Lamadong; SY, Shenyang; SL, Sha Ling; significance is based upon Hochberg’s 

GT2 and Games-Howell post hoc tests with =0.05; n.s., non-significant 
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Table A7.6 continued 

 Tuchengzi vs.  Lamadong vs.  Shenyang vs. 

Imax/Imin LMD SY SL  SY SL  SL 

Clavicle n.s. n.s. n.s.  n.s. n.s.  n.s. 

Humerus n.s. n.s. n.s.  n.s. n.s.  n.s. 

Radius n.s. n.s. n.s.  n.s. n.s.  n.s. 

Ulna n.s. n.s. n.s.  n.s. n.s.  n.s. 

Femur n.s. n.s. n.s.  n.s. n.s.  n.s. 

Tibia n.s. n.s. n.s.  n.s. n.s.  n.s. 

Abbreviations: LMD, Lamadong; SY, Shenyang; SL, Sha Ling; significance is based 

upon Hochberg’s GT2 and Games-Howell post hoc tests with =0.05; n.s., non-

significant 
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Table A7.7 Inter-population comparisons of Imax/Imin for six long bones (males) (con’td) 

 Jiangjialiang vs. 

Imax/Imin NYY JGZ TCZ LMD SY SL 

Clavicle n.s. n.s. n.s. n.s. n.s. n.s. 

Humerus n.s. n.s. n.s. n.s. n.s. n.s. 

Radius n.s. n.s. n.s. n.s. n.s. n.s. 

Ulna n.s. n.s. n.s. n.s. n.s. n.s. 

Femur n.s. n.s. n.s. n.s. n.s. n.s. 

Tibia n.s. n.s. n.s. n.s. n.s. n.s. 

       

 Neiyangyuan vs. 

Imax/Imin JGZ TCZ LMD SY SL 

Clavicle n.s. n.s. n.s. n.s. n.s. 

Humerus n.s. n.s. n.s. n.s. n.s. 

Radius n.s. n.s. n.s. n.s. n.s. 

Ulna n.s. n.s. n.s. n.s. n.s. 

Femur n.s. n.s. 0.031 n.s. n.s. 

Tibia 0.005 n.s. n.s. n.s. n.s. 

      

 Jinggouzi vs. 

Imax/Imin TCZ LMD SY SL 

Clavicle n.s. n.s n.s. n.s. 

Humerus n.s n.s. n.s. n.s. 

Radius n.s. n.s. n.s. n.s. 

Ulna n.s. n.s. n.s. n.s. 

Femur n.s. n.s. n.s. n.s. 

Tibia 0.012 0.009 <0.001 0.003 

Abbreviations: NYY, Neiyangyuan; JGZ, Jinggouzi; TCZ, Tuchengzi; LMD, 

Lamadong; SY, Shenyang; SL, Sha Ling; significance is based upon Hochberg’s 

GT2 and Games-Howell post hoc tests with =0.05; n.s., non-significant 
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Table A7.7 continued 

 Tuchengzi vs.  Lamadong vs.  Shenyang vs. 

Imax/Imin LMD SY SL  SY SL  SL 

Clavicle n.s. n.s. n.s.  n.s. n.s.  n.s. 

Humerus n.s. n.s. n.s.  n.s. n.s.  n.s. 

Radius n.s. n.s. n.s.  n.s. n.s.  n.s. 

Ulna n.s. n.s. n.s.  n.s. n.s.  n.s. 

Femur n.s. n.s. n.s.  n.s. n.s.  n.s. 

Tibia n.s. n.s. n.s.  n.s. n.s.  n.s. 

Abbreviations: LMD, Lamadong; SY, Shenyang; SL, Sha Ling; significance is based 

upon Hochberg’s GT2 and Games-Howell post hoc tests with =0.05; n.s., non-

significant 

 

 

Table A7.8 Inter-subsistence group comparisons of TA for six long bones by sex 

TA AGRI 

 

PAST 

 

AGRO 

Females PAST AGRO INDU 

 

AGRO INDU 

 

INDU 

Clavicle n.s. / n.s. 

 

/ n.s. 

 

/ 

Humerus n.s. n.s. n.s. 

 

n.s. n.s. 

 

n.s. 

Radius n.s. n.s. n.s. 

 

n.s. n.s. 

 

n.s. 

Ulna n.s. n.s. n.s. 

 

n.s. n.s. 

 

n.s. 

Femur n.s. n.s. n.s. 

 

n.s. n.s. 

 

n.s. 

Tibia 0.046 n.s. n.s. 

 

n.s. n.s. 

 

n.s. 

         Males 

        Clavicle n.s. n.s. n.s. 

 

n.s. n.s. 

 

n.s. 

Humerus n.s. n.s. n.s. 

 

n.s. n.s. 

 

n.s. 

Radius n.s. n.s. n.s. 

 

n.s. n.s. 

 

n.s. 

Ulna n.s. n.s. n.s. 

 

n.s. n.s. 

 

n.s. 

Femur n.s. n.s. n.s. 

 

n.s. 0.005 

 

0.020 

Tibia 0.004 n.s. n.s. 

 

n.s. 0.036 

 

n.s. 

Abbreviations: AGRI, agricultural group; PAST, pastoral group; AGRO, agropastoral 

group; INDU, industrial group; /, no data; bold font, significance is based upon 

Hochberg’s GT2 and Games-Howell post hoc tests with =0.05; n.s., non-significant 
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Table A7.9 Inter-subsistence group comparisons of Ix/Iy for six long bones by sex 

Ix/Iy AGRI 

 

PAST 

 

AGRO 

Females PAST AGRO INDU 

 

AGRO INDU 

 

INDU 

Clavicle n.s. / n.s.  / n.s.  / 

Humerus n.s. n.s. n.s.  n.s. 0.044  n.s. 

Radius n.s. n.s. n.s.  n.s. n.s.  n.s. 

Ulna n.s. 0.037 0.026  n.s. n.s.  n.s. 

Femur n.s. n.s. 0.011  0.012 n.s.  0.000 

Tibia 0.024 n.s. n.s.  n.s. 0.004  n.s. 

         Males 

        Clavicle n.s. n.s. n.s.  n.s. n.s.  n.s. 

Humerus n.s. n.s. n.s.  n.s. n.s.  n.s. 

Radius n.s. n.s. n.s.  n.s. n.s.  n.s. 

Ulna n.s. n.s. n.s.  n.s. n.s.  n.s. 

Femur 0.001 n.s. 0.018  0.001 n.s.  0.021 

Tibia 0.029 n.s. n.s.  n.s. 0.002  n.s. 

Abbreviations: AGRI, agricultural group; PAST, pastoral group; AGRO, agropastoral 

group; INDU, industrial group; /, no data; bold font, significance is based upon 

Hochberg’s GT2 and Games-Howell post hoc tests with =0.05; n.s., non-significant 

 

 

448



  

Table A7.10 Inter-subsistence group comparisons of Imax/Imin for six long bones by 

sex 

Imax/Imin AGRI 

 

PAST 

 

AGRO 

Females PAST AGRO INDU 

 

AGRO INDU 

 

INDU 

Clavicle n.s. / n.s.  / n.s.  / 

Humerus n.s. n.s. n.s.  n.s. n.s.  n.s. 

Radius n.s. n.s. n.s.  n.s. n.s.  n.s. 

Ulna n.s. n.s. n.s.  n.s. n.s.  n.s. 

Femur n.s. n.s. n.s.  n.s. n.s.  n.s. 

Tibia 0.013 n.s. n.s.  n.s. 0.007  n.s. 

         Males 

        Clavicle n.s. n.s. n.s.  n.s. n.s.  n.s. 

Humerus n.s. n.s. n.s.  n.s. n.s.  n.s. 

Radius n.s. n.s. n.s.  n.s. n.s.  n.s. 

Ulna n.s. n.s. n.s.  n.s. n.s.  n.s. 

Femur n.s. n.s. n.s.  0.012 n.s.  n.s. 

Tibia 0.044 n.s. n.s.  n.s. 0.011  n.s. 

Abbreviations: AGRI, agricultural group; PAST, pastoral group; AGRO, 

agropastoral group; INDU, industrial group; /, no data; bold font, significance 

is based upon Hochberg’s GT2 and Games-Howell post hoc tests with =0.05; 

n.s., non-significant 
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