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Functionally pathogenic EARS2 variants
in vitro may not manifest a phenotype
in vivo

ABSTRACT

Objective: To investigate the genetic etiology of a patient diagnosed with leukoencephalopathy,
brain calcifications, and cysts (LCC).

Methods:Whole-exome sequencing was performed on a patient with LCC and his unaffected fam-
ily members. The variants were subject to in silico and in vitro functional testing to determine
pathogenicity.

Results: Whole-exome sequencing uncovered compound heterozygous mutations in EARS2,
c.328G.A (p.G110S), and c.1045G.A (p.E349K). This gene has previously been implicated
in the autosomal recessive leukoencephalopathy with thalamus and brainstem involvement and
high lactate (LTBL). The p.G110Smutation has been found in multiple patients with LTBL. In silico
analysis supported pathogenicity in the second variant. In vitro functional testing showed a sig-
nificant mitochondrial dysfunction demonstrated by an ;11% decrease in the oxygen consump-
tion rate and ;43% decrease in the maximum respiratory rate in the patient’s skin fibroblasts
compared with the control. EARS2 protein levels were reduced to 30% of normal controls in the
patient’s fibroblasts. These deficiencies were corrected by the expression of the wild-type
EARS2 protein. However, a further unrelated genetic investigation of our patient revealed the
presence of biallelic variants in a small nucleolar RNA (SNORD118) responsible for LCC.

Conclusions: Here, we report seemingly pathogenic EARS2 mutations in a single patient with LCC
with no biochemical or neuroimaging presentations of LTBL. This patient illustrates that variants with
demonstrated impact on protein function should not necessarily be considered clinically relevant.

ClinicalTrials.gov identifier: NCT00001671. Neurol Genet 2017;3:e162; doi: 10.1212/

NXG.0000000000000162

GLOSSARY
LCC 5 leukoencephalopathy, brain calcifications, and cysts; LTBL 5 leukoencephalopathy with thalamus and brainstem
involvement and high lactate; MAF 5minor allele frequency; MRR 5 maximum respiratory rate; OCR 5 oxygen consumption
rate.

Leukodystrophies and genetic leukoencephalopathies are a heterogeneous group of rare inherit-
able neurologic diseases predominantly affecting the white matter of the brain.1 Specific genetic
diagnosis of these disorders was previously found in only about half of the known cases,2 but
next-generation sequencing has helped to increase the rate of genetic classification up to 80%.3

Next-generation sequencing has been successfully used in the identification of rare mutations
in a number of genes causing many different white matter diseases and mitochondrial disorders.4

Particularly, mutations in the nuclear-encoded aminoacyl tRNA synthetase genes (ARSs) have
been implicated in numerous mitochondrial disorders that cause white matter abnormalities.5

However, the explosive increase in rare genetic variants reported in the population in recent
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years has at times misrepresented the link
between mutation and disease by incorrectly
labeling many genetic variants as pathogenic.6

This is in part due to the lack of experimental
validation of the pathogenicity of variants
through functional in vitro or in vivo experi-
mentation. Thus, clinical reporting of such
variants is reliant on accurate information
about the nature of the variant highlighting
the importance of aggregated population data-
bases for correct assessment of variant frequen-
cies and the need for rigorous functional
assays. As such, mitochondrial dysfunction
can be ascertained through functional mito-
chondrial respiration assays, which are thought
to be helpful in predicting DNA variant path-
ogenicity. However, functionally validated
variants may not always be clinically relevant
to the pathogenesis of the disease in question.

METHODS Standard protocol approvals, registrations,
and patient consents. This study was approved to use human

subjects by the appropriate institutional review board. Biological

samples from the patient and first-degree relatives were collected

subsequent to written informed consent; ClinicalTrials.gov

identifier: NCT00001671. It included a family consisting of 2

parents and their affected son and his 3 unaffected siblings.

Whole-exome sequencing. Each family member was subjected

to whole-exome sequencing and genetic analysis. Briefly, libraries

were constructed from genomic DNA of each family member

using the Illumina TruSeq DNA Sample Prep methodology

(Illumina, San Diego, CA), and exonic targets were captured

using Illumina’s TruSeq Exome Enrichment technology accord-

ing to the manufacturer’s protocols. 2 3 50 bp paired-end

sequencing was performed on the Illumina HiSeq 2000.

Bioinformatic analysis. Sequence reads were aligned to the

human reference genome hg19 using the Burrows-Wheeler

Aligner v.0.5.9.7 PCR duplicates were marked and removed

using Picard v.1.70 (broadinstitute.github.io/picard/), and local

realignment, quality score recalibration, and SNP and INDEL

variant calling were performed using the Genome Analysis

Toolkit v.1.3.8 The variant calls were subsequently annotated by

Annovar.9 The gene annotations were made against the RefSeq

database, and known variants and allele frequencies were anno-

tated with dbSNP 137, all ethnicities from the 1000 Genomes

Project (April 2012, August 2015 release), the National Heart,

Lung, and Blood Institute (NHLBI) GO Exome Sequencing

Project (ESP, esp6500 release), and the Exome Aggregation

Consortium (ExAC). Nonsynonymous variants were further

annotated with pathogenicity prediction scores from SIFT,10

PolyPhen-2,11 LRT, and MutationTaster.12 Conservation scores

from PhyloP, GERP, and PhastCons were provided by Muta-

tionTaster and Annovar. Multiple sequence alignments were

performed with Clustal Omega in Uniprot (uniprot.org). Variant

prioritization and candidate gene identification used an in-house

workflow that stratified the variant annotation data and white

matter disease association analysis with a recessive or dominant

model of inheritance.

Sanger sequencing. The EARS2 variants were validated using

Sanger sequencing. Genomic DNA was amplified using primers

that targeted the variant location and subsequently sequenced

using Applied Biosystems’ BigDye Terminator v1.1 Sequencing

Kit chemistry on a 3130xl sequencer (Applied Biosystems-

Thermo Fisher Scientific, Waltham, MA). In addition, the

EARS2 genes in 2 unrelated patients diagnosed with leukoence-

phalopathy, brain calcifications, and cysts (LCC) were Sanger

sequenced using primers that spanned all 9 exons and exon-intron

boundaries. PCR amplification was performed using HotStarTaq

Master Mix (Qiagen, Hilden, Germany) according to the man-

ufacturer’s protocols. EARS2 primers are listed in table e-1 at

Neurology.org/ng.

Skin fibroblast cell culture and complementation studies.
Primary skin fibroblasts from the affected patient and controls

were cultured in 13 Dulbecco Modified Eagle Medium

(Corning, Corning, NY) with 4.5 g/L glucose supplemented with

L-glutamine and sodium pyruvate, 10% fetal bovine serum, and

1% antimyotic in a 25-cm2 flask. The medium was changed every

2 days until 90%–100% confluent, at which time the cells were

trypsinized with 0.25% or 0.05% trypsin and washed with 13

phosphate-buffered saline (Gibco-Thermo Fisher Scientific)

without Ca21/Mg21 then subpassaged to a 75 cm2 flask.

Cultures were maintained in a humidified atmosphere at 37°C

with 5% CO2.

Fibroblasts were immortalized with pRNS-1 by transfection

using Lipofectamine2000 (Invitrogen-Thermo Fisher Scientific)

and selected by 100 mg/mL Geneticin G-418 (Gibco-Thermo

Fisher Scientific).13 For complementation, wild-type (wt) cDNAs

of EARS2 from a commercial clone (OCAAo5051A02110D)

(Source BioScience, Nottingham, United Kingdom) were cloned

into the pLenti6.2/V5 TOPOVector (Life Technologies-Thermo

Fisher Scientific), and virions were obtained as previously

described.14 Mutant and control immortalized fibroblasts were

transfected with viral supernatant and selected upon exposure

to 2 mg/mL Blasticidin (Life Technologies-Thermo Fisher

Scientific).

Western blot protein expression. Fibroblasts and immortal-

ized cells from patient and controls were trypsinized, pelleted,

and solubilized in RIPA buffer with protease inhibitors; 50 mg

of protein was loaded for each sample in 12% denaturing sodium

dodecyl sulfate polyacrylamide gel electrophoresis. A rabbit poly-

clonal antibody against EARS2 (SAB2100641) (Sigma-Aldrich,

St. Louis, MO) and a mouse monoclonal antibody against

GAPDH (#MAB374) (Millipore, Billerica, MA) were used.

Mitochondrial respiration assays. Oxygen consumption rate

(OCR) and maximum respiratory rate (MRR) were measured

using a SeaHorse FX-96 apparatus (Agilent Technologies, Santa

Clara, CA)15 in primary fibroblasts and immortalized fibroblasts

in naive conditions and after transduction with wild-type

EARS2 cDNA.

RESULTS Clinical profile. A 6-year-old male patient
born to healthy nonconsanguineous parents pre-
sented with a progressive encephalopathy consisting
of intractable seizures, dystonia, chorea, and spasticity
with severely impaired cognitive function. MRI
(figure 1, A–D) and CT (figure 1E) showed diffuse
white matter signal abnormalities and numerous
calcifications throughout the brain in gray matter
nuclei and juxtacortical U-fibers as well as the

2 Neurology: Genetics

http://ClinicalTrials.gov
http://broadinstitute.github.io/picard/
http://www.uniprot.org
http://ng.neurology.org/lookup/doi/10.1212/NXG.0000000000000162


periventricular white matter, brainstem, the dentate
nucleus of the cerebellum, and the subcortical white
matter of both cerebral hemispheres. White matter
abnormalities were observed through increased sig-
nals in the white matter in T2-weighted (figure 1C)
and fluid-attenuated inversion recovery (FLAIR)
(figure 1D) images and decreased signals on sagittal
(figure 1A) and T1-weighted images (figure 1B). MR
spectroscopy showed decrease in N-acetyl aspartate
and no lactate peak. A number of large cysts were also
present in the cerebellum and the supratentorial
region (figure 1, A–D). Anatomically, lateral ven-
tricles were enlarged with a missing septum pelluci-
dum, atrophy of the corpus callosum, and basal
ganglia volume loss. Routine laboratory testing re-
vealed normal values and complete blood count.
Extensive biochemical investigations were all normal
except for a CNS folate deficiency from decreased
concentrations of 5-MTHF of unknown cause.
Muscle biopsy demonstrated a normal histopathology
and mitochondria that were normal in number, dis-
tribution, and morphology with no mtDNA abnor-
malities. Cellular lactate-to-pyruvate ratio was normal
in cultured skin fibroblasts. Skeletal muscle showed
normal carnitine profiles and normal activity of the
electron transport chain complexes I, II, III, and IV

with citrate synthase at the upper limits of normal,
which may indicate an increase in mitochondrial
content. Glucose, lactate, and total protein were
normal in the CSF.

The patient died at 16 years of age. Autopsy
showed that the entire CNS was devastated by a vas-
culopathy with secondary ischemic lesions
and mineralization, leading to the progressive obliter-
ation of the blood vessel lumina and gliosis resulting
in the presence of Rosenthal fibers. Necrosis, dystro-
phic calcifications, white matter degeneration, and
cyst formation were found. There were no abnormal-
ities outside the CNS. The patient was diagnosed
with the cerebral microangiopathy LCC.16 LCC is
a rare disorder, as fewer than 50 cases have ever been
reported in the literature.17

Exome sequencing and genetic analysis. Whole-exome
sequencing generated an average of 3.2 Gb of
sequence and 61–73 million reads per individual that
mapped uniquely to the genome with a mean
sequence coverage of 263. LCC is an assumed auto-
somal recessive disorder due to the occurrence of sib-
ling pairs, which include females, but variants
following both an autosomal recessive and autosomal
dominant inheritance pattern were interrogated. Fol-
lowing a candidate gene prioritization and filtering
strategy that enriched for rare (minor allele frequency
[MAF] of ,1%) nonsynonymous exonic/splice var-
iants that both segregated in a recessive or dominant
manner and may or may not be associated with white
matter disease pathogenesis, only 2 recessive variants
in the EARS2 gene segregated in a compound hetero-
zygous manner, c.328G.A (p.Gly110Ser) and
c.1045G.A (Glu349Lys). No other obvious exonic
or splice variants were observed. The presence or
absence of the 2 variants and their segregation within
the family were validated with Sanger sequencing
(figure e-1). The patient was compound heterozygous
for the 2 variants, the mother was heterozygous for
the c.328G.A variant, and the father was heterozy-
gous for the c.1045G.A variant. Two of the siblings
were heterozygous for either variant. Sanger sequenc-
ing of the exon and exon/intron boundaries of EARS2
in 2 unrelated patients with LCC revealed only com-
mon polymorphisms and no rare mutations.

In silico analysis of EARS2 variants. The EARS2 var-
iants were analyzed in silico to determine the MAF
within the population, predicted pathogenicity, and
evolutionary conservation. The c.1045G.A nucleo-
tide resides in exon 5 of EARS2 in the anticodon
binding domain, resulting in a missense amino acid
change from a large acidic negatively charged glutamic
acid to a large positively charged basic lysine at residue
349 (Grantham Score: 56). It was present at low fre-
quencies in 1000 Genomes (MAF 0.10%), ESP (MAF

Figure 1 Patient with leukoencephalopathy brain imaging

MRIs (A–D) and CT (E) indicate white matter signal abnormalities, cysts, and calcifications
throughout the cerebral hemispheres. Diffuse cerebral white matter lesions are present,
which is demonstrated by hypointense signals in the sagittal (A) and axial T1-weighted (B)
images and the CT (E) and by the hyperintense signals in the axial T2-weighted (C) and axial
fluid-attenuated inversion recovery (FLAIR) images. The CT (E) shows extensive calcifica-
tions in the subcortical white matter and along the periventricular white matter. Large cystic
lesions can be seen along the quadrigeminal plane and parieto-occipital regions (B–D).
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0.18%), and ExAC (MAF 0.13%). It was also present
in dbSNP (rs#187662524). The variant was predicted
as benign by PolyPhen-2, damaging or disease causing
by SIFT and MutationTaster, and neutral by LRT.
This position is conserved according to GERP, PhyloP,
and PhastCons.

The c.328G.A nucleotide change resides in exon 3
in the catalytic domain of EARS2, resulting in a mis-
sense amino acid change from a small polar glycine to
a small polar serine at residue 110 (Grantham Score:
56). It was not present in the 1000 Genomes, but it
was present at low frequencies in the ESP (MAF
0.03%) and ExAC (MAF 0.04%) databases. It was also
present in dbSNP (rs#201842633). Pathogenicity pre-
diction programs considered this variant as damaging/
disease causing by SIFT, PolyPhen2, MutationTaster,
and LRT. GERP, PhyloP, and PhastCons also pre-
dicted high conservation at this position.

Multiple sequence alignment (figure e-2) showed
that the G110 residue is invariant from humans

through Caenorhabditis elegans, and the E349 residue
showed amino acid class conservation through C.
elegans. The c.328G.A variant was also found in 3
other unrelated patients with leukoencephalopathy
with thalamus and brainstem involvement and high
lactate (LTBL),18,19 whereas the c.1045G.A vari-
ant has never been reported to be associated with
human diseases. According to the ACMG and AMP
recommended guidelines for interpreting sequence
variants, both variants demonstrate evidence for
pathogenicity.20

Biochemical/protein studies on patient’s fibroblasts. Skin
fibroblasts from the proband were analyzed to evalu-
ate the effect of the identified EARS2 variants. The
total amount of EARS2 protein detected by Western
blot analysis was reduced to 30% in the patient’s
fibroblasts compared with controls (figure 2A). Oxy-
gen consumption, which depends on and reflects the
cumulative proficiency of the whole set of

Figure 2 Functional characterization of EARS2 variants on fibroblasts

(A) EARS2 protein amount in the patient’s (Pt) and control (CT1, CT2, and CT3) fibroblasts, obtained by Western blot using an anti-EARS2 antibody. An anti-
GAPDH antibody was used as a loading control. (B) Oxygen consumption analysis in the patient’s (Pt) and control fibroblasts. Histograms show OCR (B.a and
D.a) and MRR (B.b and D.b). OCR and MRR values (mean of 6–8 replicates) are expressed as picomoles of O2 per minute and normalized by cell number.
p value obtainedwith 2-tailed Student t test, *p,0.05; **p,0.01. (C) EARS2 protein amount in the patient’s (iPt) and control (iCT) immortalized fibroblasts,
in basal conditions and after transduction with wt EARS2 (1EARS2); Western blot analysis was performed as described in A. (D) Oxygen consumption
analysis, as reported in B, performed in patient’s (iPt) and control (iCT) immortalized fibroblasts, in basal conditions and after transduction with wild-type
EARS2 (1EARS2). ***p , 0.001. MRR 5 maximum respiration rate; OCR 5 oxygen consumption rate.
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mitochondrial respiratory chain complexes, was mea-
sured. Significant reductions of both OCR andMRR,
indicating reduced electron flow through the respira-
tory chain, were observed (figure 2B). These altera-
tions were also confirmed in patient-derived
immortalized fibroblasts (figure 2, C and D), which
were then used for complementation through trans-
duction of wild-type EARS2. Overexpression of
EARS2 protein in both control and mutant trans-
duced cells (figure 2C) was associated with the
recovery of defective respiratory parameters (OCR
and MRR) to normal values (figure 2D).

DISCUSSION Using whole-exome sequencing and
ad hoc strategic filtering with integration of gene
information and disease association, 2 rare EARS2
(MIM 612799) mutations were observed to be seg-
regating in a compound heterozygous manner within
a single family with an individual presenting with
LCC (MIM 614561; Labrune Syndrome). EARS2 is
targeted to the mitochondria and functions as a cru-
cial component of mitochondrial translation by cat-
alyzing the ligation of glutamate to its cognate tRNA
molecule; however, all its functions have not yet been
elucidated. Previous genetic studies identified muta-
tions in EARS2 as the cause of combined oxidative
phosphorylation deficiency 12 (COXPD12), also
known as LTBL (MIM 614924).18 Biochemical and
neuroimaging features of LTBL associated with
EARS2 mutations include characteristic lactate ele-
vation in MR spectroscopy and body fluids, variable
corpus callosum involvement, and symmetric white
matter signal abnormalities in the cerebral
white matter, thalami, brainstem, and cerebellar
white matter with sparing of the periventricular rim
(figure 3, A–D).18,19

Conversely, LCC is strictly a neurologic disorder
limited to the CNS and consisting of a cerebral mi-
croangiopathy resulting in presumed tissue hypoxia,

which leads to microcystic and macrocystic parenchy-
mal degeneration with white matter changes second-
ary to brain edema rather than primary
demyelination.16,17,21 MRI of the patient was consis-
tent with LCC and not LTBL. The patient’s pathol-
ogy was also consistent with LCC including
angiomatous-like rearrangements of microvessels
with secondary degeneration of cellular constituents
such as gliosis and aggregates of intermediate fila-
ments called Rosenthal fibers,16,22 none of which are
known to be found in LTBL. LCC and LTBL have
strikingly different neuroimaging and pathologic fea-
tures, suggesting that EARS2 is not involved in the
pathogenesis of LCC.

However, functional studies on the LCC patient’s
fibroblasts clearly demonstrated a mitochondrial dys-
function due to abnormal mitochondrial respiration
with significantly decreased MRR and OCR and
decreased EARS2 protein levels suggestive of a patho-
genic role of the EARS2 variants; nonetheless, LCC
does not present with mitochondrial abnormalities.
Abnormal mitochondrial respiration and decreased
protein levels as seen in this patient have both been
confirmed in other patients with LTBL.18,19,23 Pa-
tients with LTBL have seen up to a ;70% decrease
in the MRR,18 and our patient showed a less severe
but still a significant decrease of ;43% in the MRR.
Despite these abnormalities, increased lactate, which
is a hallmark of LTBL and a consequence of patho-
genic EARS2 mutations,18,19 was not seen in MR
spectroscopy or body fluids in the present patient
with LCC.

Recently, mutations in the SNORD118 gene
located in the 39 UTR region of the TMEM107 gene
were identified in the pathogenesis of LCC.24

SNORD118 encodes the box C/D snoRNA U8
important for ribosome biosynthesis. In that publica-
tion, family member 1A from family F278, which was
this study’s patient with LCC, was found to have

Figure 3 LTBL brain imaging

Axial T2-weighted (A–C) and T1-weighted (D) MRIs demonstrate T2-hyperintensities and T1-hypointensities respectively,
indicating lesions in the deep cerebral white matter and periventricular white matter with sparing of the periventricular rim.
Signal hyperintensities are also present in the thalami (B) and dorsal part of the midbrain (C). Modified from reference 18.
LTBL 5 leukoencephalopathy with thalamus and brainstem involvement and high lactate.
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compound heterozygous mutations in SNORD118:
a novel n.75A.G mutation and a very rare n.8G.C
mutation. The presence of the SNORD118 muta-
tions as the pathogenic driver of LCC relegates the
functionally pathogenic EARS2 variants in this case to
an unknown status; however, EARS2 as a genetic dis-
ease modifier or the additional presence of protective
alleles from defective EARS2 cannot be ruled out.

The absence of a clear LTBL phenotype in
a patient with apparent functionally validated patho-
genic EARS2 variants, and the presence of other path-
ogenic variants (i.e., SNORD118 mutations) strongly
associated with the patient’s phenotype, throws doubt
on our ability to infer the clinical pathogenic effect of
a variant through in vitro experiments. According to
the standards and guidelines for the interpretation of
sequence variants set in place by the American Col-
lege of Medical Genetics and Genomics (ACMG),20

the EARS2 variants are considered pathogenic on
their own and should be labeled as such in clinical
reports. The functional assays indicating mitochon-
drial dysfunction through respiration defects as pre-
sented in this study are typically sufficient to
demonstrate clinical relevance of EARS2 variants18

and other variants in mitochondrial-related genes.25,26

It is important that this indicates that one cannot
simply always assume that putative functionally dam-
aging variants ascertained from in vitro experimenta-
tion are clinically relevant. In vitro observations about
the deleterious effects of a given variant on biochem-
ical functionalities do not necessarily translate to
in vivo pathogenicity or strict clinical causality; a sec-
ond, possibly more relevant, genetic or epigenetic
factor should always be taken into account, especially
for cases with previously unreported genotype/phenotype
correlations. This further complicates the pathogenic
validation of rare genetic variants and their role in disease,
underscoring the need for more robust and precise
validation methods.
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