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Abstract: 

For many years, the impact of hyper- and hypo-thermia on mammalian 
cells has been examined. With the exception of short, low temperature 
storage, which has uses in areas such as preservation for transplantation 
or regenerative medicine, advantages for the use of low temperature 
treatment in hepatocytes have not been previously reported.  
We have observed that alginate encapsulated HepG2 liver spheroids which 
are cryopreserved or experience a cold reduction in temperature (≤10°C) 
for periods between 1 and 90 minutes display an enhanced cell 
proliferation during culture 7-16 days post-treatment compared with 
untreated samples.  

Following 8-12 days post-treatment, alginate encapsulated liver spheroids 
experienced a cell density of 1.71±0.35 times that of control samples 
(p<0.001). This effect occurred in samples with a variety of cold 
treatments.  
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Abstract 

For many years, the impact of hyper- and hypo-thermia on mammalian cells has been examined. 

With the exception of short, low temperature storage, which has uses in areas such as preservation 

for transplantation or regenerative medicine, advantages for the use of low temperature treatment 

in hepatocytes have not been previously reported. 

We have observed that alginate encapsulated HepG2 liver spheroids which are cryopreserved or 

experience a cold reduction in temperature (≤10°C) for periods between 1 and 90 minutes display an 

enhanced cell proliferation during culture 7-16 days post-treatment compared with untreated 

samples. We have termed this effect cryoanaptiksi (cryo – cold; anaptiksi – growth).    

Following 8-12 days post-treatment, alginate encapsulated liver spheroids experienced a cell density 

of 1.71±0.35 times that of control samples (p<0.001). This effect occurred in samples with a variety 

of cold treatments.  
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Cryoanaptiksi This low temperature treatment offers a simple method to rapidly increase cell 

proliferation rates for extended culture systems, such as bioartificial liver devices. This would allow 

for the manufacture of required biomass more rapidly, and to a higher cell density, reducing final 

required biomass volume. This could enable bioartificial liver devices to be prepared more cheaply, 

making them a more cost effective treatment. 

Funding 

Funding for this work was provided through a Medical Research Council (UK) Industrial Case 

Studentship (9203) and by Innovate UK (101103) between University College London and Asymptote 

Ltd and a Medical Research Council (UK) Proximity to Discovery Grant (RG79366) between University 

of Cambridge and Asymptote Ltd. 
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Introduction 

Alginate encapsulation of cells is exploited for several purposes across a range of cell types (1-5). The 

encapsulation of the HepG2 cell line to form alginate encapsulated liver spheroids (ELS) allows the 

HepG2 cells to proliferate using the alginate cross-linked with calcium (3, 6) as a 3-dimensional 

scaffold, increasing per-cell function compared to a cell monolayer (2, 7).  These ELS can be cultured 

in a fluidised bed bioreactor for potential use in an extracorporeal bioartificial liver (6). Culture in a 

fluidised bed bioreactor is time, cost, and labour intensive, adding significantly to the overall cost of 

the device. Methods that reduce the culture time necessary for biomass production are highly 

desirable. 

The cryopreservation of these ELS has been studied previously (8, 9), and groups have examined the 

cryopreservation of other alginate encapsulated cell lines (7, 10, 11). This has been done either to 

preserve ELS once a sufficient cell density has been achieved, or to explore the possibility that 

alginate encapsulation may offer some cryoprotection.  It was in the course of our work that we 

observed a stimulatory effect on cell proliferation within ELS following freezing and thawing (9, 12-

14). In this study, the potential for low temperatures to induce proliferation of alginate encapsulated 

cells upon return to culture conditions has been examined in detail.  We studied both the impact of 

chilling (low temperature exposure without freezing) and freezing (ultralow temperature in the 

presence of ice) in the presence of protective agents such as dimethyl sulfoxide (Me2SO) or those 

found in Viaspan (16, 21, 23-26). 

Materials and Methods 

Cell Culture and Encapsulation 

Cell Culture – Static ELS Culture 

ELS were added to T175 flasks filled with warmed culture medium of modified alpha-MEM, 

supplemented with 50 U/ml penicillin, 50μg/ml streptomycin (all Invitrogen, Paisley, UK) 0.5% 1M 
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CaCl2 (v/v), (Sigma, Gillingham, UK) and, 10% human blood plasma (National Blood Transfusion 

Service) at an ELS medium volumetric ratio of 1:32. The ELS were cultured in a 37°C, 5% CO2 

humidified incubator. 100% medium changes were carried out every 2-3 days.  

Encapsulation 

HepG2 cells were cultured in monolayer (ECACC, Wiltshire, UK). Each experiment used a fresh 

aliquot from our Working Cell Bank at our GMP cryobanking facility (Fisher Bioservices). These cells 

were expanded and passaged twice. At reaching 80-90% confluence after the second passage, cells 

were detached and passaged a third time for encapsulation. An aqueous solution containing 2% 

(w/v) alginate (Manugel, FMC BioPolymers, Philadelphia, PA, USA) and 1.5% (w/v) 10-50μm glass 

beads acting as a buoyancy regulator (Kisker BioTech, Steinfurt, Germany) was mixed volumetrically 

1:1 in culture medium containing 4 million cells/mL. This gave an approximate final solution of 1% 

alginate, 0.75% glass beads and 2 million cells/mL (6).   

This mix was passed through an encapsulation system (Genialab Jetcutter, Braunschweig, Germany), 

producing spherical droplets with a targeted 500μm radius which was cross-linked in 0.204M CaCl2 

solution. This resulted in spheroids with individual cells distributed internally. The actual achieved 

alginate bead size and cell density on encapsulation is shown below in table 1, which varied due to 

factors such as alginate viscosity, solution surface tension, and cells being lost in washing steps. 

These individual cells develop into spheroids, although the number of ultimate spheroids is lower 

due some initial cell death and separate spheroids merging.  Figure 1 shows microscopy of spheroids 

inside beads as cells proliferated over 12 days.  

Run  Initial Cell Density (millions/ml) Alginate Bead Diameter Average Cells per Bead 

A 1.94 681 μm 428 

B 1.5 573 μm 197 

C 1.76 677 μm 381 
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D 1.77 753 μm 527 

E 1.65 673 μm 360 

F 2.13 689 μm 486 

 

 The encapsulation method has been described previously (6). The entire process is carried out at 

room temperature. 

Cooling/Warming Methods 

Chilling 

Unless otherwise stated, cryoanaptiksi low temperatures wasere induced by plunging the samples 

(1mL solutions of ELS with 1mL excess medium in 2mL cryovials) into the centre of an ice bucket. 

Care was taken to ensure the whole sample was covered in ice and samples were not agitated during 

the chilling test. Upon completion of the test time (1 – 90 minutes), samples were removed from the 

ice bucket and transferred into 37°C culture medium prior to re-culture.  

For cooling rate studies, samples were cooled as above, or in an EF600 freezer (Asymptote, 

Cambridge, UK) at 0.3°C min
-1

 from 20°C to 0°C. Rapid cooling was achieved by pipetting 1mL 

samples of ELS directly into 9mL culture medium precooled at 0°C, to induce classical cold-shock  

(15-17). To test a 10°C chilling condition, samples were placed into an EF600 sample holder which 

had been pre-cooled and maintained at 10°C.  

To determine temperatures in cryovials, a dummy solution containing 10% glycerol (G5516, Sigma) 

in 0.15M NaCl was prepared and added to cryovials with an inserted thermocouple (Picotechnology, 

St Neots, UK). This was attached to a Picologger (Picotechnology) and recorded using a computer. 

This solution has previously been determined to have the same thermal properties as ELS in culture 

medium (9).  

Reagent Studies 
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In experimental conditions where the impact of reagents on cooling was explored, reagent solutions 

were prepared at 2x concentration in 1mL of culture medium, before addition to 1mL sample 

resulting in a 2mL final volume. Samples immediately underwent testing after mixing. 

Cryopreservation Protocol – Me2SO with Viaspan 

Cryoanaptiksi Low temperature treatment induced by cryopreservation was examined through 

cooling ELS to 4°C, and mixed volumetrically 1:1 at 4°C with a solution containing 24% Me2SO 

(D4540, Sigma) in a 76% Viaspan solution (v/v, Bridge-to-Life, Columbia, SC, USA), containing 0.2% 

IceStart (Asymptote, Cambridge, UK) as a nucleating agent, giving a final concentration of 50% ELS, 

12% Me2SO, 38% Viapsan, and 0.1% Icestart. 

This solution was allowed to equilibrate for 5 minutes, before being filled into 5 separate cryovials, 

to a 2mL final volume. The cryovials were then cooled from 4°C to -100°C at 0.3°C min
-1

 in an EF600 

controlled rate freezer. 

Upon completion of the cooling run, cryovials were transferred to liquid nitrogen storage. 

Cryopreservation Thawing Protocol 

Samples were removed from liquid nitrogen storage and thawed in a 37°C water bath until the last 

ice crystal had melted. This process took 330 seconds. The freezing mix was washed out in a 

stepwise manner using culture medium chilled to 4°C (9). Warm culture medium (37°C) was added, 

and the ELS placed in culture at 37°C, in a 5% CO2 humidified incubator. 

Post-thaw Functional Assessments 

Viability 

At designated time points, ELS were removed from culture and stained with 20μl propidium iodine 

solution (PI, 1mg/mL, Sigma) and 10μl fluorescein diacetate solution (FDA 1mg/mL, Sigma) to view 

under a fluorescent microscope. 
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PI (red) only stains the nucleus of cells with a non-functional membrane, indicating dead cells, while 

FDA (green) only stains metabolically active cells. By comparing the intensities of PI and FDA 

emission using a calibrated macro on a phase-contrast microscope; the cell viability can be 

quantified by a method that has previously been outlined (9, 12). 

Cell Counts 

Total cell number was determined using an NC-200 automated counting system (Chemometric, 

Allerod, Denmark). The ELS were liberated from alginate using a 16mM EDTA solution (Applichem, 

Darmstadt, Germany) before being washed in phosphate buffered saline (PBS, Sigma) and 

disaggregated by vigorous syringing through a 21G needle.  

All cells were lysed in solution and the nucleolus stained with PI. This solution was drawn into the 

automated counter and the stained nuclei counted. As HepG2 cells are mono-nuclear, this was 

converted to a cell density for the total ELS present. 

Metabolic Activity Assay 

A tetrazolium salt (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay known as 

MTT (Invitrogen) was used to determine cell viability.  0.5 mL of a 0.75% (w/v) MTT solution was 

added to a small volume of ELS in vials with lids porous to gas. The vials were transferred to a 37°C, 

5% CO2 humidified incubator for 3 h to allow crystal formation. After incubation, 0.5mL acidified 

(4 mM HCl) iso-propanol (W292907, Sigma) solution was added to stop the reaction and dissolve the 

crystals. This solution was added to a 96-well plate, 100μl per well, and the absorbance at 570nm of 

each well was determined with an ANTHOS III plate reader (Biochrom, Cambourn, UK). The 

absorbance values were normalised against a control sample. 

Glucose Consumption 

Healthy HepG2 cells consume glucose during normal cell function. Samples of the culture medium 

were taken throughout the culture process, and the remaining glucose concentration measured with 
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a GM7 reader (Analox, Stourbridge, UK) using oxidase enzyme reactions. This was then related to 

glucose consumption per sample.  

Enzyme-linked Immunosorbent Assay 

Enzyme-linked immunosorbent assays (ELISAs) to determine alpha-1-fetoprotein (AFP) production in 

ELS was carried out on culture medium samples removed during the culture process. A sandwich 

ELISA using mouse monoclonal antibodies ab10071 and ab10072 (Abcam, Cambridge, UK) as a 

capture, and as a horse radish peroxidase linked antibody respectively, with Applichem fetoprotein 

(A6935) used for a standard curve. The values were normalized either to cell density or ELS volume.  

Imaging 

A phase contrast microscope was used to visually inspect ELS, with images recorded using Nikon 

Imaging Software. 

Statistics 

Unless otherwise stated, figures are presented as an average of 5 replicates, ± 1 standard deviation. 

p values were determined through an appropriate t-test, with significance determined at p<0.001 

unless otherwise stated. p values for raw data are stated in figure legends. 

Results 

Cold Treatment in Culture Medium 

Figure 2 shows a summary of 6 different experiments, each with 5 replicates per condition (except C 

where 10 were carried out). For ELS experiencing chilling or cryopreservation on the day of 

encapsulation, viable cell number after 8 days (set C), or 12 days (sets A,B,D,E,F) of culture is on 

average 171% ± 35% of controls p<0.001. Comparing doubling time for the culture process, the cell 

number density in control samples doubled every 3.3 ± 0.8 days on average, while the chilled or 

cryopreserved samples cell numbers doubled every 2.5 ± 0.5 days on average. Inter-experimental 
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variation in cell density occurs due to natural variation in the system, explaining the variations seen 

in control values, which has also been noted previously (6). An increase in cell number was apparent 

following both cryopreservation and chilling for 45 minutes.  

Impact of Duration and Temperature of Cold Exposure 

Figure 3 demonstrates that increasing exposure of cells to low temperatures from 30 to 90 minutes 

does not significantly change the outcome between the sets. All sets achieved significantly improved 

cell numbers over the unchilled control (p<0.001). Cell numbers after 8 days of culture were 

19.1 ± 1.6, 30.7 ± 4.0, 34.6 ± 3.2, and 38.3 ± 3.5 million cells/mL for ELS samples experiencing no low 

temperatures, a 30 minute hold at 0°C, a 45 minute hold at 0°C, and a 90 minute hold at 0°C 

respectively.  

When placed into an ice bucket, the sample temperature fell below 10°C after approximately 80 

seconds, and below 4°C after 3 minutes.  

Cell viability was recorded as 96.5 ± 0.7%, 96.1 ± 0.5%, 95.9 ± 1.1%, and 94.3 ± 1.4% for ELS samples 

experiencing no low temperatures, 30 minute hold at 0°C, 45 minutes at 0°C, and 90 minutes in an 

ice bucket, resulting in a viable cell density of 18.5 ± 1.6, 29.5 ± 3.8, 33.2 ± 3.2, and 

36.1 ± 3.5 million cells/mL respectively.  

While the encapsulation process takes place at room temperature, Figure 3 also demonstrates that 

cooling samples to only 10°C for 45 minutes is sufficient to induce rapid cell growth, with a day 8 cell 

density of 19.1 ± 1.6 and 41.6 ± 4.3 million cells/mL for the control and cooled sample. This 

translates to a viable cell number 2.13 ± 0.22 times that of the control (p<0.001).    

Cooling Rate and Time Dependency of Low Temperature Treatment 

To determine whether the rate of initial cooling was critical for the cryoanaptiksi increased 

proliferation to become apparenteffect, five conditions were tested: 
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(i) Plunging 2 mL samples within cryovials into an ice bucket, and holding for 30 minutes 

prior to re-warming.  

(ii) Plunging 2 mL samples within cryovials into an ice bucket, and holding for 60 minutes 

prior to re-warming.  

(iii) Pipetting 1 mL ELS into 9ml pre-cooled culture medium (at 0°C) to induce immediate 

cooling, and re-warming after 1 minute. 

(iv) Pipetting 1 mL ELS into pre-cooled culture medium (at 0°C) to induce immediate cooling, 

and re-warming after 30 minutes. 

(v) Cooling samples linearly from 20°C to 0°C at 0.3°C min
-1

 in cryovials in an EF600 

controlled rate freezer.  

Cell viabilities for each of the experimental conditions tested were 98.5 ± 0.4%, 98.8 ± 0.2%, 

98.0 ± 1.5%, 98.9 ± 0.2%, and 98.4 ± 1.0% for (i) through (v) respectively (figure 3). 12 days post thaw 

a viable cell number of 27.3 ± 1.8, 24.6 ± 1.8, 31.9 ± 2.4, 29.0 ± 0.9, and 30.9 ± 2.2 million cells/mL 

was recorded for (i) through (v) respectively, as is shown in Figure 4.  Untreated controls had 96.5 ± 

0.7% viability and 15.6 ± 1.6 million cells/mL 12 days post-thaw.  

Effect of Chilling Versus Cryopreservation 

Experiments were carried out to determine if the different stresses, either chilling or 

cryopreservation followed by rapid thaw, have a different effect on the magnitude of cell 

proliferation. Figure 5 shows a representative effect from 12 days of re-culture, for two separate 

experiments (Sets A and B). 

Set A showed chilled and cryopreserved samples with a viable cell number of 35.1 ± 1.3 (p<0.001 vs 

control) and 32.9 ± 1.6 million cells/mL (p<0.005 vs control) respectively compared with 25.6 ± 5.4 

million cells/mL for the control cells. 
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Set B showed chilled and cryopreserved samples with a viable cell number of 25.5 ± 2.3 (p<0.001 vs 

control) and 29.3 ± 0.5 million cells/mL (p<0.001 vs control) respectively compared with 13.7 ± 1.1 

million cells/mL for the control condition. 

Effect of Cryopreservation Reagents 

Cryopreservation, but not chilling, includes the additional experimental variable of exposure to 

cryoprotectants. Thus the effect of chilling with and without these reagents was investigated. 

Furthermore, the addition of Viaspan with no chilling was studied using 45 minutes culture at 37°C. 

At 12 days post-treatment, viable cell density was determined to be significantly improved (p<0.001) 

over the control set for samples ELS chilled in both 12% DMSO and 38% Viaspan, ELS chilled in only 

culture medium, and ELS incubated in 38% Viaspan at 37°C or chilled in Viaspan. Samples thawed 

after cryopreservation showed significant improvement over control (p<0.005) as seen in Figure 6. 

ELS incubated in Viaspan at 37°C showed no significant improvement in cell density over the control 

samples. All chilled and cryopreserved samples apart from when ELS was chilled with only DMSO 

were significantly better than the control (p<0.001). For the Viaspan sets, chilled samples showed 

significant improvement over control samples (p<0.001). 

Time-course of Cell Proliferation 

Figure 7 shows the impact of cryopreservation on cell number over a period of 12 days post-thaw 

culture. Cells were initially encapsulated at a density of 1.92 ± 0.2 million cells mL
-1

. 

For the first 7 days of culture, the cryopreserved samples had a lower viable cell number compared 

to control samples. On day 8, the cryopreserved samples began to show signs of cryoanaptiksi 

increased proliferation and overtook the control samples in terms of viable cell numbers. Viable cell 

numbers were 9.0 ± 1.6 million cells mL
-1

 for the control versus 6.9 ± 1.0 million cells mL
-1

 for 

cryopreserved samples at day 5. Viable cell numbers were 11.5 ± 1.0 million cells mL
-1

 for the control 

versus 12.8 ± 1.0 million cells mL
-1

 for cryopreserved samples at day 8, and 17.9 ± 2.5 million cells 
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mL
-1

 for the control versus 37.3 ± 1.5 million cells mL
-1

 for cryopreserved samples at day 12 showing 

a 2.1 fold increase over the control sample by day 12 (p<0.001). 

A separate experiment considered waiting until 12 days post-encapsulation to chill. After 12 days of 

culture, ELS had a density of 20.2 ± 1.1 million cells mL
-1

 at which point one set was chilled for 45 

minutes while the other remained in culture not experiencing a change in temperature. 120 h after 

treatment no significant difference was observed between the groups with control samples having a 

density of 74.9 ± 7.8 million cells mL
-1

 versus 83.2 ± 7.5 million cells mL
-1

 for chilled samples. 

Significant break-out of spheroids from the alginate was observed above around 50 million cells mL
-

1
, which likely affected growth above this cell density.  

Unencapsulated Cells 

A study was undertaken where a cell suspension in a cryovial was chilled and then returned to T175 

flask culture. Confluence was measured for 7 days after which point the flasks became fully 

confluent. No significant difference was seen between a chilled samples and an unchilled control. 

Cold Impact on Cell Function and Extended Culture 

The metabolic changes of the ELS following chilling or cryopreservation, measured by MTT assay, 

was significantly improved over control samples at days 5, 7, and 11 post-treatment (Figure 8A). 

Glucose consumption per mL biomass over 24 h is indicative of cell metabolism. There was no 

significant difference between the rate of glucose consumption in the ELS at any measured 

timepoint (days 7, 8, and 12) in line with their increase in cell numbers (Figure 8B). However, alpha-

fetoprotein (AFP) production per mL biomass over 24 h was significantly higher in fresh samples over 

cryopreserved samples.  

Viable cell number and cell performance of samples examined days 13-15 post-treatment are shown 

in Figures 8D-F. Chilled and cvryopreservaed samples had significantly higher viable cell numbers at 

all measured time points (p<0.001). Glucose consumption per ml ELS per 24 h (Image E) was 
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significantly higher (p<0.001) between day 13 and day 15 for samples experiencing cryoanaptiksi 

cold treatment over the control. 

Day 13 AFP production (Image F) per ml ELS per 24 h was significantly worse in samples experiencing 

cryoanaptiksi cold treatment over the control (p<0.002). Cryoanaptiksi experiencing sSamples 

experiencing cold treatment exhibited significantly improved performance per ml ELS per 24 at days 

14 and 15 (p<0.001). 

Discussion 

In this paper we have demonstrated that alginate encapsulated liver spheroids that are 

cryopreserved or experience a reduction in temperature (≤10°C) for periods between 1 and 90 

minutes display a greatly enhanced cell proliferation during culture 7-16 days post-treatment 

compared with untreated samples.  

There is an extensive literature of the effects of low temperatures on mammalian cells and tissues, 

but we are not aware of any instances where an increase in cell proliferation was reported.  We have 

termed this new phenomenon cryoanaptiksi (cryo – cold; anaptiksi – growth).  

The majority of studies examining low temperature exposure on cells report negative consequences 

of low temperatures. The extent of these reports range from slower cell proliferation through to 

apoptosis and necrosis (16, 18-25).  Specific stages of the cell cycle can be disproportionately 

affected (26), the G1 of the cell cycle seems particularly sensitive to the impact of low temperatures, 

with cells being observed to accumulate in this phase (16, 24, 27). The only field in which low 

temperatures are regularly used on mammalian tissues without freezing are in cell/tissue 

preservation and surgery (16, 22, 28, 29). 

To our knowledge, no studies have reported the effects of cold culture temperatures to induce rapid 

cell proliferation; indeed, the consensus is that low temperatures are to be strenuously avoided.  
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We have not investigated the underlying mechanisms of cryoanaptiksi this effect in this study. They 

may be related to cold-shock proteins, or recovery mechanisms remaining active when the initial 

insult of temperature reduction has passed. A previous study found no differences in alginate 

measured by FTIR between cryopreserved and non-cryopreserved (or chilled) control samples (30). 

The effect was not seen in cell suspensions, however as rapid growth may have only been apparent 

around 7 days post-treatment, the effect may have been masked as culture beyond this point in 

T175 flasks results in cell detachment in the HepG2 system.  

Accelerated cell growth was seen at all initial cell densities tested, varying between 1.5 million 

cells/ml and 2.13 million cells/ml. A 45 minute chill test carried out at a higher cell density of 20 

million cells/ml (12 days after encapsulation) did not result in increased proliferation, however this 

may have been a consequence of cell break-out from the cell beads, resulting in an upper cap on ELS 

cell density. 

Cryoanaptiksi Low temperature treatment has little time dependence, with samples cooled and 

warmed over the space of a minute still displaying increased cell proliferation compared to the 

uncooled control, indicating that the mechanism for inducing increased growthcryoanaptiksi is 

triggered very rapidly. While many cell types cannot survive rapid temperature fluctuations (12, 19), 

encapsulated HepG2 cells seem largely immune to above zero temperature fluctuations. This, 

combined with observed cryoanaptiksi for cold storage times between 1 and 90 minutes all inducing 

increased proliferation will allow this method to be used robustly in large volumes, where consistent 

cooling and warming times and rates are difficult to obtain across a sample.  The biophysical 

mechanism response for this phenomenon is unclear but could be related to phase changes in 

membrane lipids, alteration in the cytoskeleton coupled with the unique physical environment that 

the cells encounter within the cross-linked alginate.  

Inducing cryoanaptiksiCold treatment reduces cell number relative to the control for several days, 

consistent with previous literature (9, 31, 32). It can take up to 7 days for the cell spheroids to 
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recover from cold induced damage and reduction in cell numbers, and to overtake the control 

values. This makes the technique it a potentially useful manufacturing step for systems such as 

bioartificial livers. The observation that cryopreserved samples display cryoanaptiksi increased 

proliferation to the same degree as chilled-only samples is encouraging. Manufacturing a large 

quantity of ELS followed by cryopreservation allows for rapid delivery on demand. Cryopreservation 

is necessary for most BAL or tissue engineered constructs to be viable treatments (8, 23, 33). 

Alpha-1-fetoprotein (AFP) production tends to be reduced during rapid proliferation. In these data, 

the overall performance was slightly reduced in the cryopreserved samples. As cell density was 

higher in the cryoanaptiksicold-experienced sample, this indicates a large reduction of around 50% 

in per-cell performance during the 12-day growth period. In this system, protein production tends to 

be inversely proportional to cell proliferation, as during the growth cycle cellular resources are 

directed to proliferation and not protein production. Studies examining the effects of low 

temperatures on hepatocytes found that when holding the cells for 30 minutes at 4°C, albumin 

production was reduced up until around 7 days post-thaw, agreeing with observations in this study 

around the decreased AFP production. This decrease could be mitigated with addition of 

polyethylene glycol (34). Albumin quantification was not undertaken in this study owing to the 

presence of human plasma in our culture medium, thus AFP was chosen as the indicative protein.  

MTT and glucose consumption was maintained after cryoanaptiksi cold treatment indicating that the 

cell spheroids were healthy. Viability tends to be slightly lower after cold treatment, this is due to 

the higher cell density making nutrient transfer more difficult. In most cases the effect was <3%, and 

was taken into account in viable cell numbers. Viability remained suitably high throughout, above 

90% in all test conditions.  

The BAL is intended for use after a 12 day initial growth period, between approximately 12-15 days 

post-encapsulation (6). Cell function in this study shows increased protein production as cell growth 

rate slows. For effective delivery of these treatments, it would be beneficial to develop a method to 
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arrest cell proliferation once a desired cell number is achieved to increase protein production. This 

would also eliminate the risk of spheroid break-out observed in 50 million cells/ml and above. 

Methods such as adding a small extra layer to the outside of alginate beads have been shown to stop 

cell proliferation when the alginate bead is full and prevent cell break-out (3).  

A major consideration when developing bioartificial organs is the prolonged time required for cell 

culture to achieve sufficient cell number for therapeutic use. By employing low temperature 

treatment to ELS, we have shown that cell proliferation can be greatly upregulated, allowing a more 

economical cell-growth regime, reducing biomass volume required for treatment, and so 

substantially reducing costs. In summary, making these devices cheaper to culture, quicker to 

prepare, and more practical. 

Cold treatment could also allow for the possibility of very large volumes of ELS being prepared at the 

same encapsulation, with cryopreservation and thaw on demand and treatment commencing within 

8-9 days as opposed to 26 days which is the current set-up (6, 8, 9, 30).  Exact volumes dependant on 

patient needs could also be determined prior to thaw, removing the one-size-fits-all of many BAL 

systems, and instead tailoring to specific patient needs without the requirement of an additional 

thaw.  

Optimal growth has been observed in this system when the ELS have an initial cell density of 2 

million cells/mL at the start of the culture period. For cell types that experience a reduced viable cell 

number post-thaw, it would be feasible to have a pre-freeze cell density proportionally above the 

optimal level, which reduces to the optimum on thaw, resulting in ideal cell growth conditions. 
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Dear Prof Jansen and Reviewer, 

 

Thank you again for the time you have taken to consider and review this paper. We agree with the 

reviewer that the term cryoanaptiksi is premature until we have demonstrated more mechanical 

insight to the effect, and as such we have removed it from the manuscript replacing it with a 

descriptive term. 

 

We have revised the manuscript before the June 1
st

 data as requested and hope this will help with 

the expedited publication. 

 

Best Wishes, 

 

Peter and authors 

 

 

 

Reviewer Comments: 

 

I am satisfied with the corrections and recommend this manuscript is accepted with one minor 

revision, to remove the newly minted term "cryoanaptiksi" from the manuscript. I don't think the 

authors have demonstrated enough mechanistic insights to bridge correlation and causation, even 

though the authors do intend to do it in the future. 

Having said this, the paper is relevant and original for the tissue engineering field and should be 

accepted after the minor correction. 
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Figure 1 - Top, an image of ELS immediately following encapsulation, showing the size and shape range of 
alginate encapsulated HepG2 cells. The lower images show a single alginate bead at 1 day post-

encapsulation (1.92 million cells/mL), 7 days post-encapsulation (8.9 million cells/mL), and 12 days post 

encapsulation (17.9 million cells/mL). The proliferation of single cells into spheroids is apparent.  
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Figure 2 - Comparison in viable cell number between samples following chilling or cryopreservation (black), 
and untreated control samples (grey). Data is presented as average of 5 samples ± one SD, except set C 
where the control is average of n=10. Set A, B, and F experienced cryopreservation immediately post 

encapsulation, while sets C, D, and E were chilled to 0°C for 45 minutes immediately following 
encapsulation. All data is 12 days after treatment, except for set C which is 8 days. Initial cell concentration 
can be found in table 1. All sets experience a significant improvement in performance, * indicated p<0.001, 
+ denotes p<0.005. Combination of all sets A-F is significant at p<0.001 using a 2 tailed unpaired student’s 

t-test.  
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Figure 3 - Viable cell number of samples experiencing various chilling times and temperatures, 12 days after 
treatment. Samples within 2ml cryovials were either plunged into an ice bucket (0°C samples), or held at 
10°C in an Asymptote EF600 controlled rate freezer immediately following encapsulation. All conditions (*) 

showed significantly higher viable cell number over the control at p<0.001, using a 2 tailed unpaired 
student’s t-test, though no significant difference between sets was observed at that threshold. The initial cell 

concentration was 1.77 million cells/mL Data is displayed as average of 5 ± SD.    
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Figure 4 - Viable cell number after 12 days of culture following various cooling conditions. Samples marked 
30 and 60 minutes 0°C chill were 2ml samples containing 1ml ELS in cryovials that were plunged directly 
into an ice bucket. All 5 tested conditions show significant increase in viable cell numbers over control at 
p=0.002 (*), using a 2 tailed unpaired student’s t-test. The initial cell concentration was 1.65 million 

cells/mL. All data is average of n=5 ± SD.  
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Figure 5 - Comparison between viable cell number 12 days after either simple chilling through plunging vials 
into an ice bucket (centre, black), or cryopreservation (light grey, right) of two separate tests compared 
with control (darker grey, left). All tested conditions show significant improvement over control (Set A, 

chilled p<0.001(*), cryopreserved p<0.003(+); Set B chilled p<0.001 both sets). No significant difference 
was seen between samples which were chilled or cryopreserved at p<0.01 level.  Set A had an initial cell 
density of 1.76 million cells/mL while set B had an initial cell density of 1.5 million cells/mL. All data is 
average of n=5 ± SD except set A where the control is average of n=10, comparisons done using an 

unpaired student’s t-test.  
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Figure 6 - Viable cell number of samples exposed to different reagents when undergoing chilling in an ice 
bucket or cryopreservation. All samples’ viable cell number are significantly increased over the uncooled 
control at p<0.001 (*) levels except the cryopreserved sample which improved at p<0.02 and those 

experiencing only DMSO or Viaspan at 37°C where no significant difference was noted. Samples 
experiencing Viaspan at 37°C and Viaspan when chilled in a water bath are significantly different to each 

other. Initial cell density was 1.76 million cells/mL. All data is average of n=5 ± SD except the control which 
is average of n=10, and significance determined through unpaired student’s t-tests.  
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Figure 7 - Comparing temporal cell growth between samples following cryopreservation (black) and an 
untreated control (grey). Cryopreserved samples show a lower viable cell number for the first 7 days of 

culture, a consequence of damage induced during the cryopreservation cycle, however by the end of the 12 
day culture the cell count is significantly higher (p<0.001) in the cryopreserved samples. N=5 ± SD, 

p<0.001, using a two-tailed unpaired student’s t-test.  
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Figure 8 – Functional assays of ELS having undergone cold treatment. Cell number for images A-C is shown 
in Figure 7. Image A shows MTT viability of ELS having experienced low temperature as a fraction of 

uncooled control samples as chosen time points post treatment (p=0.008, 0.002, and 0.004 left to right 
where significance is indicated). Image B shows relative glucose consumption per ml ELS per 24 h (Control 

values of 0.06 ± 0.01, 0.12 ± 0.03 and 0.10 ± 0.01 mmol glucose/ml ELS/24 h for D7, D8 and D11 
respectively). Image C shows alpha-1-fetoprotein production per ml ELS per 24 h as a fraction of control (p 
< 0.001, left to right where significance is indicated, control values were 301.2 ± 15.1, 402.3 ± 12.3, and 
667.1 ± 18.9 µg AFP/mL ELS/24 h for D7, 8, and 11 respectively). Images D-F show functionality for ELS 

days 13-15 post treatment (potential BAL usage time). Image D shows viable cell number of chilled samples 
(black) compared to an untreated control (grey) p<0.001 where significance is indicated. Image E shows 

relative glucose consumption (p<0.001 where significance is indicated, control value of 0.15 ± 0.02, 0.18 ± 
0.02, and 0.22 ± 0.05 mmol glucose/ml ELS/24 h for D13, 14, and 15 respectively) and F relative alpha-1-
fetoprotein production (p<0.001 where significance is indicated, control values of 323.0 ± 17.1, 362.6 ± 
16.0, and 462.7 ± 13.9 µg AFP/mL ELS/24 h for D13, 14, and 15 respectively). Significance from control is 
indicated as * for p<0.001, and + for p<0.02. All data points are average of n=5 ± one combined SD and 

statistics defined through 2-tailed unpaired students t-tests.  
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Figure Legends 

Table 1 – The initial cell density achieved after each alginate encapsulation. This, combined with the 

measured average bead size has been used to determine the initial number of cells per alginate 

bead at the start of the culture period.  

Figure 1 – Top, an image of ELS immediately following encapsulation, showing the size and shape 

range of alginate encapsulated HepG2 cells. The lower images show a single alginate bead at 1 day 

post-encapsulation (1.92 million cells/mL), 7 days post-encapsulation (8.9 million cells/mL), and 12 

days post encapsulation (17.9 million cells/mL). The proliferation of single cells into spheroids is 

apparent.  

Figure 2 - Comparison in viable cell number between samples following chilling or cryopreservation 

(black), and untreated control samples (grey). Data is presented as average of 5 samples ± one SD, 

except set C where the control is average of n=10. Set A, B, and F experienced cryopreservation 

immediately post encapsulation, while sets C, D, and E were chilled to 0°C for 45 minutes 

immediately following encapsulation. All data is 12 days after treatment, except for set C which is 8 

days. Initial cell concentration can be found in table 1. All sets experience a significant improvement 

in performance, * indicated p<0.001, + denotes p<0.005. Combination of all sets A-F is significant at 

p<0.001 using a 2 tailed unpaired student’s t-test. 

Figure 3 - Viable cell number of samples experiencing various chilling times and temperatures, 12 

days after treatment. Samples within 2ml cryovials were either plunged into an ice bucket (0°C 

samples), or held at 10°C in an Asymptote EF600 controlled rate freezer immediately following 

encapsulation. All conditions (*) showed significantly higher viable cell number over the control at 

p<0.001, using a 2 tailed unpaired student’s t-test, though no significant difference between sets 

was observed at that threshold. The initial cell concentration was 1.77 million cells/mL Data is 

displayed as average of 5 ± SD.   
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Figure 4 - Viable cell number after 12 days of culture following cryoanaptiksi induced through 

various cooling conditions. Samples marked 30 and 60 minutes 0°C chill were 2ml samples 

containing 1ml ELS in cryovials that were plunged directly into an ice bucket. All 5 tested conditions 

show significant increase in viable cell numbers over control at p=0.002 (*), using a 2 tailed unpaired 

student’s t-test. The initial cell concentration was 1.65 million cells/mL. All data is average of n=5 ± 

SD.  

Figure 5 - Comparison between viable cell number 12 days after either simple chilling through 

plunging vials into an ice bucket (centre, black), or cryopreservation (light grey, right) of two 

separate tests compared with control (darker grey, left). All tested conditions show significant 

improvement over control (Set A, chilled p<0.001(*), cryopreserved p<0.003(+); Set B chilled 

p<0.001 both sets). No significant difference was seen between samples which were chilled or 

cryopreserved at p<0.01 level.  Set A had an initial cell density of 1.76 million cells/mL while set B 

had an initial cell density of 1.5 million cells/mL. All data is average of n=5 ± SD except set A where 

the control is average of n=10, comparisons done using an unpaired student’s t-test.  

Figure 6 - Viable cell number of samples exposed to different reagents when undergoing chilling in 

an ice bucket or cryopreservation. All samples’ viable cell number are significantly increased over the 

uncooled control at p<0.001 (*) levels except the cryopreserved sample which improved at p<0.02 

and those experiencing only DMSO or Viaspan at 37°C where no significant difference was noted. 

Samples experiencing Viaspan at 37°C and Viaspan when chilled in a water bath are significantly 

different to each other. Initial cell density was 1.76 million cells/mL. All data is average of n=5 ± SD 

except the control which is average of n=10, and significance determined through unpaired 

student’s t-tests. 

Figure 7 - Comparing temporal cell growth between samples following cryopreservation (black) and 

an untreated control (grey). Cryopreserved samples show a lower viable cell number for the first 7 

days of culture, a consequence of damage induced during the cryopreservation cycle, however by 

Page 31 of 31

Mary Ann Liebert, Inc.,140 Huguenot Street, New Rochelle, NY 10801

Tissue Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

NLY/ Not for Distribution3 

the end of the 12 day culture the cell count is significantly higher (p<0.001) in the cryopreserved 

samples. N=5 ± SD, p<0.001, using a two-tailed unpaired student’s t-test. 

Figure 8 – Functional assays of ELS having undergone cryoanaptiksicold treatment. Cell number for 

images A-C is shown in Figure 7. Image A shows MTT viability of ELS having undergone experienced 

cryoanaptiksi low temperature as a fraction of uncooled control samples as chosen time points post 

treatment (p=0.008, 0.002, and 0.004 left to right where significance is indicated). Image B shows 

relative glucose consumption per ml ELS per 24 h (Control values of 0.06 ± 0.01, 0.12 ± 0.03 and 0.10 

± 0.01 mmol glucose/ml ELS/24 h for D7, D8 and D11 respectively). Image C shows alpha-1-

fetoprotein production per ml ELS per 24 h as a fraction of control (p < 0.001, left to right where 

significance is indicated, control values were 301.2 ± 15.1, 402.3 ± 12.3, and 667.1 ± 18.9 μg AFP/mL 

ELS/24 h for D7, 8, and 11 respectively). Images D-F show functionality for ELS days 13-15 post 

treatment (potential BAL usage time). Image D shows viable cell number of cryoanaptiksi chilled 

samples (black) compared to an untreated control (grey) p<0.001 where significance is indicated. 

Image E shows relative glucose consumption (p<0.001 where significance is indicated, control value 

of 0.15 ± 0.02, 0.18 ± 0.02, and 0.22 ± 0.05 mmol glucose/ml ELS/24 h for D13, 14, and 15 

respectively) and F relative alpha-1-fetoprotein production (p<0.001 where significance is indicated, 

control values of 323.0 ± 17.1, 362.6 ± 16.0, and 462.7 ± 13.9 μg AFP/mL ELS/24 h for D13, 14, and 

15 respectively). Significance from control is indicated as * for p<0.001, and + for p<0.02. All data 

points are average of n=5 ± one combined SD and statistics defined through 2-tailed unpaired 

students t-tests. 
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