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1 Introduction

The spin of an elementary particle of non-zero mass is determined (e.g. in Wigner’s classi-

fication of unitary irreps of the Poincaré group [1]) by a choice of irreducible representation

of SU(2), the double cover of the rotation group, which is itself determined by the choice

of a non-negative integer or half-integer s. In the context of relativistic particle mechanics,

which is our focus here, the incorporation of spin in a manifestly Lorentz covariant way (e.g.

in Souriau’s classification of classical “elementary systems” [2]) involves the Pauli-Lubanski

(PL) polarization pseudo-vector W . For any representation of the Poincaré group, spanned

by the generators of Minkowski spacetime translations (P ) and Lorentz “rotations” (J),

this is defined as

Wm =
1

2
εmnpqPnJpq . (1.1)

For a quantum system the product is the matrix product in the chosen representation but

for many purposes it is sufficient to consider a Poisson bracket realization of the Poincaré

algebra in terms of classical Noether charges, in which case the product is multiplication

of functions on phase space. The Poincaré Casimirs are then the scalar functions P 2 and

W 2, and for a particle of mass m and spin s we have P 2 = −m2 and W 2 = m2s2. These

Casimirs are zero for zero mass, in which case Wm = hPm for helicity h.

It is convenient to replace the pseudo-vector Wm by the 3-form

Wmnp = P[mJnp] , (1.2)

because this has the advantage of being dimension independent: there is a PL 3-form in

every dimension d ≥ 3. In general there are PL (2n+1)-forms for 2n ≤ d−1. For example,
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for a Minkowski spacetime of dimension 5 or 6 (we abbreviate this to 5D, 6D etc) one also

needs to consider the PL 5-form

Υmnpqr = P[mJnpJqr] . (1.3)

One purpose of this paper is to provide constructions of the super-Pauli-Lubanski

(SPL) tensors that have the same relevance to the classification of elementary superparticles

as PL tensors have to the classification of elementary particles. One might suppose that

this is a straightforward exercise in the conversion of a PL tensor into a super-PL tensor by

the addition of terms that promote translation invariance to super-translation invariance;

however, this is not so simply achieved.

Consider the case of minimal (N = 1) 4D supersymmetry, for which there is just one

4-component Majorana-spinor supersymmetry charge Q. If we assume a Poisson bracket

realization of the super-Poincaré algebra then the components of Q are anticommuting

functions on the phase superspace of some super-Poincaré invariant superparticle mechanics

model. We might try to write down a generalization of the PL 3-form that is super-

translation invariant, i.e. one that has zero Poisson brackets with the generators {P,Q}.
However, if we assume that it is polynomial in super-Poincaré generators with purely

numerical (i.e. dimensionless) coefficients then all candidates have the form1

Wmnp(a) = J[mnPp] −
ia

24
Q̄ΓmnpQ , (1.4)

for some number a; this follows from a rescaling invariance of the super-Poincaré algebra

with scaling weights [J ] = 0, [Pm] = 1 and [Q] = 1
2 . The problem with this formula is that

W (a) is not supertranslation invariant for any value of a.

This is a well-known problem. One standard resolution of it due to Salam and

Strathdee [3] (see also [4], and [5] for a detailed exposition) is to consider the 2-form

P pWmnp(2). This is supertranslation invariant in our conventions (to be spelt out later)

and its norm squared is, in the quantum theory, a super-Poincaré Casimir proportional to

the quadratic Casimir C2 of SU(2). In fact,

9 [P pWnmp(2)] [PqW
mnq(2)] = 2m4C2 . (1.5)

In units for which ~ = 1, one has C2 = s(s + 1) (or s2 in the classical limit) but s has

now to be interpreted (for non-zero mass) as superspin. Although this construction gener-

alises to higher dimensions [6, 7], it appears that its extension to the other super-Poincaré

Casimirs that become relevant in higher dimensions has not yet been explored (except for

a brief discussion specific to the 6D case [8]). In general, this extension will involve the

intermediate construction of supertranslation invariant even-rank forms generalising the

2-form P pWmnp(2).

Whatever the merits of this approach, we think it desirable to have a construction of

super-Poincaré Casimirs that parallels the standard construction of Poincaré Casimirs.

1Here, Q̄ = QTC for charge conjugation matrix C, and we recall that the matrices CΓmnp are antisym-

metric in four spacetime dimensions.
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Progress in this direction was first made, for the zero mass case, by Buchbinder and

Kuzenko [5]. They suggested that the constraint P/Q = 0 should be imposed, which is

reasonable because it is implied by unitarity given P 2 = 0 [9] and the two constraints are

jointly supertranslation invariant. If these constraints are assumed then W (1) turns out

to be supertranslation invariant; in fact, the constraints imply that Wm(1) = HPm where

H is the “classical superhelicity”.2 The same construction, again for zero mass, was later

proposed, and generalized to higher spacetime dimensions, by Pasqua and Zumino [6, 7].

Here we show how this Buchbinder-Kuzenko-Pasqua-Zumino construction can be gen-

eralized to apply to massive superparticles. Our method makes use of the fact that the

universal enveloping algebra of the N = 1 super-Poincaré algebra contains a BPS-saturated

N = 2 super-Poincaré algebra, which is realized as a “hidden” symmetry algebra of mas-

sive superparticle actions [11] (this is related to the “off-shell symmetries” of the massless

superparticle [12, 13]). For this larger N = 2 algebra, one can again impose a constraint

on the supersymmetry charges that allows the construction of a supertranslation invariant

extension of the PL 3-form W that is polynomial in super-Poincaré generators with dimen-

sionless coefficients; we call it Z. Once again, the set of constraints required for the N = 2

super-translational invariance of Z are implied by unitarity.

For zero mass the constraints on super-Poincaré generators reduce to P 2 = 0 and

P/Q = 0, and Z reduces to the super PL 3-form W (1). For non-zero mass we have a similar

solution to the problem for an N = 2 BPS saturated super-Poincaré algebra, but the

constraints on the two spinor charges allow one of them to be eliminated. This step yields

Zmnp = J[mnPp] +
i

4m2
Q̄P/Γ[mnQPp] , (1.6)

which is, by construction, N = 1 super-translation invariant. Given that P 2 = −m2 for

non-zero mass m, one may verify that

P pZmnp = P pWmnp(2) . (1.7)

From this fact, and the expression (1.5) for the Casimir C2, it follows that

2m4C2 = 9P pZp[mnPq]Z
mnq = 3P 2ZmnpZ

mnp , (1.8)

where the last equality is a consequence of the identity

Z[mnpPq] ≡ 0 . (1.9)

Using the mass-shell constraint again, we deduce that

2m2C2 = −3ZmnpZ
mnp . (1.10)

This shows that our construction of the Casimir of the N = 1 super-Poincaré algebra

yields the same result as the standard construction, but in a way that parallels the non-

supersymmetric case.

2H contains bi-linears of anticommuting variables; its eigenvalue in the quantum theory is the superhe-

licity shifted by 1/4 [5]; see also [10].
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Another purpose of this paper is to show how SPL tensors, in particular the 3-form Z,

emerge naturally from a supertwistor formulation [14] of massive superparticle mechanics.

This is because, in the supertwistor formulation, (i) the constraints on the supertranslation

charges required for supertranslation invariance of Z become identities, and (ii) for non-zero

mass, all supersymmetries of the action become manifest [15].

The simplest superparticle mechanics model is due to Casalbuoni [16] and Brink and

Schwarz [17], and an action for the 4D N = 1 Casalbuoni-Brink-Schwarz (CBS) superpar-

ticle of mass m is

S =

∫
dt

{
Πm
t Pm −

1

2
e
(
P 2 +m2

)}
, (1.11)

where e(t) is a Lagrange multiplier for the mass-shell constraint, and Πm
t is the pullback

to the worldline, with arbitrary parameter t, of the supertranslation invariant superspace

1-form3

Πm = dXm + iΘ̄ΓmdΘ . (1.12)

The superspace coordinates comprise the Minkowski spacetime coordinates Xm and the

anticommuting 4-component Majorana spinor Θ, with Majorana conjugate Θ̄. As the 4-

momentum P is also supertranslation invariant, the scalar Lagrangian is super-Poincaré

invariant. For zero mass the CBS action is not strictly in Hamiltonian form because the

2-form Ω = d(ΠmPm) is then non-invertible; this is related to the existence of a fermionic

gauge invariance at zero mass [18]. For non-zero mass, the action (1.11) is in Hamiltonian

form and Ω is the symplectic 2-form. The inverse of Ω determines the Poisson bracket

(PB) of any two functions on the phase superspace. In particular, the non-zero PBs of the

canonical variables are

{Xm, Pn}PB = δmn , {Xm,Θα}PB = − 1

2P 2
(P/ΓmΘ)α , (1.13){

Θα,Θβ
}
PB

=
i

2P 2
(P/C)αβ , {Xm, Xn}PB = − i

2P 2
Θ̄ΓmnP/Θ .

From the last of these relations we see that the quantum spacetime coordinates will not

mutually commute, so the usual Pm → −i∂m rule for quantization is not applicable. As a

result, covariant quantization is not straightforward even for non-zero mass.

Supertwistor methods provide a way around this problem, as pointed out by Shirafuji

for the massless N = 4 CBS superparticle [19]. They also allow a simple determination of

the superspin content of a quantum superparticle model. This is because the introduction of

(super)twistor variables introduces new gauge invariances that are associated with “spin-

shell” constraints. As the name suggests, these constraints determine the (super)spin

content because the constraint functions are simply related to the (super)PL 3-form. It

appears that a version of this relation was first noted in the context of particles in Anti-de

Sitter space [20]. The Minkowski space version has played a role previously in the context

of particular 3D [15] and 4D [21] massive particle actions, and the relation of 6D super-PL

tensors to the spin-shell constraints of the massive 6D CBS superparticle was one of the

principal results of [8].

3The factor of i here is due to the convention that complex conjugation inverts the order of anticommuting

variables.
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What we wish to emphasize here is that the extension from PL-tensors to super-PL

tensors becomes trivial in the (super)twistor formulation of (super)particle mechanics be-

cause the relation of (super)PL tensors to spin-shell constraints depends only on the algebra

of the constraints, not on whether they are constraints for a particle or superparticle. To

illustrate this observation in a more generic setting, we consider a novel 4D “superspinning

particle” action inspired by the “spinning particle” [22, 23]; its supertwistor reformulation

shows that it describes, upon quantization, the irreducible 4D N = 1 massive supermulti-

plet of superspin 1/2.

Finally, we unify the results relating (super-)PL tensors to spin-shell constraints of 3D,

4D and 6D (super)particle mechanics by means of an Sl(2;K) bi-spinor notation [24, 25],

where K = R,C,H (the associative normed division algebras). This makes use of the rela-

tion of supersymmetric field theories in Minkowski spacetimes of dimension d = 2 + dimK
to the normed division algebras K = R,C,H,O [26–29], although we have not yet seen

how to use the K = O case of this relation to extend our (S)PL tensor results to 10D.

2 4D super-Pauli-Lubanski

For simplicity, we shall assume that the Poincaré charges are realized as functions on phase

space, so that the Lie product is the Poisson bracket and the associative product of the

enveloping algebra is just the product of functions. The non-zero PB relations of the

Poincaré charges are

{Jmn, Jpq}PB = 2ηp[mJn]q − 2ηq[mJn]p , {Jmn, Pp}PB = 2ηp[mPn] . (2.1)

Our first goal is to find a supertranslation invariant SPL 3-form in the context of an

N = 1 super-Poincaré algebra spanned by the Lorentz generators Jmn and the supertrans-

lation generators (Pm, Q
α), where Qα are the components of a minimal spinor. We assume,

for simplicity of presentation, that the minimal spinor is Majorana, as it is in 4D (in which

case α = 1, 2, 3, 4) but otherwise there is no restriction on the spacetime dimension. We

also continue to assume that the Lie product is a Poisson bracket, now suitably generalized

to accomodate anticommuting functions; in this case the components of Q are mutually

anticommuting and their Poisson brackets are symmetric, rather than antisymmetric, un-

der interchange. The additional non-zero PB relations defining the N = 1 super-Poincaré

algebra are

{Jmn, Qα}PB =
1

2
(ΓmnQ)α , {Qα, Qβ}PB = −i (P/C)αβ . (2.2)

We recall that C is the charge conjugation matrix. Given the restriction we have imposed

on the spacetime dimension, the matrix C is antisymmetric and the matrices ΓmC are

symmetric.

As remarked in the introduction, there is no N = 1 supertranslation invariant extension

of the PL 3-form (1.2) with purely numerical (dimensionless) coefficients unless one imposes

the (supertranslation invariant) conditions P 2 = 0 and P/Q = 0, but then we are restricted

to massless representations. To generalize this idea to massive representations, for which
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P 2 = −m2 for m 6= 0, we introduce the new supersymmetry charge Q̃ by the relation

P/Q = mQ̃. A computation of the PB relations obeyed by Q̃ yields{
Q̃α, Q̃β

}
PB

= −i (P/C)αβ ,
{
Qα, Q̃β

}
PB

= −imCαβ . (2.3)

These relations confirm that Q̃ is a second supercharge, and they also show that the mass

m is a central charge of the resulting N = 2 supersymmetry algebra. As we explain in

a subsection to follow, it is actually the largest central charge compatible with the BPS

unitarity bound of the quantum theory.

To summarize: we have a generalization of the zero-mass BK constraints to non-zero

mass m, but now in the context of the BPS N = 2 algebra. These constraints are

P 2 +m2 = 0 , P/Q−mQ̃ = 0
(
⇒ P/Q̃+mQ = 0

)
. (2.4)

We now seek an N = 2 supertranslation invariant extension of the PL 3-form (1.2). It is

not difficult to show that the 3-form

Zmnp = J[mnPp] −
i

24

(
Q̄ΓmnpQ+ ¯̃QΓmnpQ̃

)
(2.5)

has this property. Its Poisson bracket with P is obviously zero, and

{Zmnp, Qα}PB =
1

12

[
Γmnp

(
P/Q−mQ̃

)]
α

= 0 ,{
Zmnp, Q̃α

}
PB

=
1

12

[
Γmnp

(
P/Q̃+mQ

)]
α

= 0 . (2.6)

If we use the relation mQ̃ = P/Q to eliminate Q̃ from the expression (2.5), we find that

Zmnp = J[mnPp] +
i

4m2
Q̄P/Γ[mnQPp] , (2.7)

which is the result stated in the Introduction. This is still N = 2 supertranslation in-

variant (because the constraints are N = 2 supertranslation invariant) and hence N = 1

supertranslation invariant.

We have shown in the Introduction how the SPL tensor Z is related to the tensor W (2)

used in the standard construction of the super-Poincaré spin Casimir. We used there the

fact that Z[mnpPq] ≡ 0, which implies that

Zmnp = U[mnPp] (2.8)

for some 2-form U . Clearly, we may add to U the exterior product of P with any 1-form,

but this ambiguity is eliminated if we require that

PmUmn ≡ 0 . (2.9)

In this case,

Umn = Jmn −
2

m2
P[mJn]qP

q +
i

4m2
Q̄P/ΓmnQ . (2.10)
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This expression was originally found by Finkelstein and Villasante [30]. The constraint (2.9)

implies that only the space components of U are non-zero in the rest frame. Notice too that

P pZmnp = −m
2

3
Umn , (2.11)

which confirms that the Casimir C2 is proportional to |U|2. This construction generalizes

to all spin Casimirs of super-Poincaré groups in any higher spacetime dimension [31].

2.1 Quantum unitarity constraints

The quantum (anti)commutation relations for the operator charges spanning the super-

Poincaré algebra can be obtained from the PB relations used above by the usual procedure

of replacing the PB by −i times the (anti)commutator. For the N = 1 super-Poincaré

algebra with charge Q we then have the anticommutation relations

{Qα, Qβ} = (P/C)αβ . (2.12)

Recall that we have restricted our discussion, for simplicity of presentation, to those space-

time dimensions for which Q is a Majorana spinor. We may then choose a real basis for the

Dirac matrices in which C = Γ0. Majorana spinors are real in such a basis, so it would be

natural to suppose that the quantum operator Q should be Hermitian. However, the classi-

cal Q cannot actually be “real” because it is anticommuting, and because of this one should

rather suppose that the quantum operator Q is either Hermitian or anti-Hermitian.4 As

we shall now see, supersymmetry correlates this choice with the sign of the energy, which

is fortunate since both positive and negative energies are needed for second quantization.

Given that C = Γ0, and choosing the rest-frame for a massive particle, we have

{Qα, Qβ} = P 0δαβ ⇒ 2Q2
α = P 0 (no sum). (2.13)

Taking the expectation value in any state |Ψ〉 we deduce that

2‖Qα|Ψ〉‖2 = ±|P 0| (no sum), (2.14)

where the top sign is for hermitian Q and the bottom sign for anti-hermitian Q. Assuming

the absence of negative norm states, i.e. assuming unitarity, we deduce that Q is hermitian

for positive energy and anti-hermitian for negative energy. However, for what follows we

assume that P 0 > 0 and that Q is hermitian.

Now we turn to the N = 2 super-Poincaré algebra with supercharges (Q, Q̃). Relabel-

ing these supercharges as Qi (i = 1, 2), we have the anticommutation relations

{Qiα, Q
j
β} = δij(P/C)αβ + zεijCαβ . (2.15)

4The product H = 2iµν is “real” for anticommuting “real” µ and ν, and this becomes Ĥ = i[µ̂, ν̂] for

the corresponding quantum operators, but hermiticity of Ĥ allows the operators (µ̂, ν̂) to be either both

Hermitian or both anti-Hermitian.
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Here we allow for arbitrary real central charge z, although z = m for the N = 2 algebra

deduced from N = 1 superparticle mechanics. Using these relations, one may show that{(
P/Q−mQ̃

)
α
,
(
P/Q−mQ̃

)
β

}
= 2m(m− z) (P/C)αβ . (2.16)

Again choosing a Dirac matrix basis such that C = Γ0, and the rest-frame for a massive

particle, we deduce that

‖
(
P/Q−mQ̃

)
α
|Ψ〉‖2 = m(m− z)P 0 . (2.17)

Since P 0 = m > 0, we see that unitarity requires z ≤ m. When this “BPS bound” is

saturated, i.e. when z = m, the operator P/Q−mQ̃ has zero norm in any state. Assuming

the absence of zero-norm states, we deduce that(
P/Q−mQ̃

)
α
|Ψ〉 = 0 , (2.18)

for any state |Ψ〉. Classically, this becomes the additional constraint P/Q = mQ̃ of (2.4)

that we used in the construction of the super-PL pseudo-vector for particles of mass m.

3 Massive superparticles and supertwistors

We now aim to show how the above construction of a super-PL 3-form emerges naturally

from a supertwistor formulation of massive superparticle mechanics. To do so it is simplest

to first replace 4-component Majorana spinors by two-component Weyl spinors. Specif-

ically, the anticommuting Majorana spinor Θ becomes the complex Sl(2;C) doublet ΘA

with complex conjugate ΘA′
(A,A′ = 1, 2) and the position 4-vector becomes the hermitian

bi-spinor XAA′
, with canonically conjugate 4-momentum PAA′ . The 4D CBS superparticle

action (1.11) in this notation is5

S =

∫
dt

{
−1

2
ΠAA′
t PAA′ − 1

2
e
(
P 2 +m2

)}
, (3.1)

where

ΠAA′
t = ẊAA′

+ i
(

ΘA′
Θ̇A − Θ̇A′

ΘA
)

(3.2)

and

P 2 = −1

2
PAA

′
PAA′ , PAA

′
= εABεA

′B′
PBB′ . (3.3)

Next, we express PAA′ in terms of an SU(2) doublet of (commuting) Weyl spinors UA
I

(I = 1, 2), with complex conjugates UA′ I , as follows:

PAA′ = ∓UAIUA′ I . (3.4)

The top (bottom) sign corresponds to the choice of positive (negative) energy. The mass-

shell constraint is now

0 = ϕ := | detU |2 −m2 , (3.5)

where U is the complex 2× 2 matrix with entries UA
I .

5See [32] for details of the conversion from Lorentz-vector notation in our conventions.
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Substitution also yields

− 1

2
ΠAA′
t PAA′ = U̇A

IWI
A + U̇A′ IW

I A′ ± iµ̄I µ̇I +
d

dt
(· · · ) , (3.6)

where

µI = ΘAUA
I , µ̄I = ΘA′

UA′ I , (3.7)

and

WI
A = ∓1

2

[
XAA′

UA′ I + iµ̄IΘ
A
]
. (3.8)

This last expression (together with its complex conjugate) implies the identity

0 ≡ GI0J := UA
IWJ

A − UA′ JW
I A′ ∓ iµI µ̄J . (3.9)

Notice that GI0J are the entries of an anti-hermitian matrix. Its trace is

G0 := GI0I = UA
IWI

A − UA′ IW
I A′ ∓ iµI µ̄I . (3.10)

The identity (3.9) ceases to be an identity if WI
A is interpreted as an independent

variable canonically conjugate to UA
I , so this interpretation requires us to impose the

equations GI0J = 0 as constraints by means of Lagrange multipliers. Taking into account

the mass-shell constraint ϕ = 0, we thus arrive at the equivalent action

S =

∫
dt
{
U̇A

IWI
A + U̇A′ IW

I A′ ± iµ̄I µ̇I − sJ IGI0J − ρϕ
}
, (3.11)

where sJ I and ρ are Lagrange multipliers for 4 + 1 = 5 first-class constraints. The gauge

invariance generated by ϕ is equivalent to a time reparametrization.6

The above is a summary of the appendix to [32] expressed in a slightly different nota-

tion. Some further details may be found there; in particular the Poisson bracket relations,

which may be used to show that the constraints GI0J span the Lie algebra U(2) with respect

to Poisson brackets. As the mass-shell constraint is manifestly U(2) invariant, all five con-

straints are first-class and hence generate gauge invariances. The variables (UA
I ,WI

A;µI)

may be viewed, for each I = 1, 2, as a (4|1)-plet of SU(2, 2|1), which is a cover of the N = 1

4D superconformal group. In other words, the phase space is parametrized by a pair of

supertwistors, and only the mass-shell term breaks the SU(2, 2|1) invariance.

In addition to its worldline diffeomorphism and U(2) gauge invariances, the

action (3.11) is N = 1 super-Poincaré invariant. The Lorentz charges are

JA
B = UA

IWI
B − 1

2
δBA
(
UC

KWK
C
)
, (3.12)

and complex conjugates. The anticommuting variables do not appear here because they are

now Lorentz scalars; this is one of the simplifying features of the supertwistor formulation.

The supersymmetry spinor charge (and complex conjugate) is

QA = ∓UAI µ̄I , QA′ = ∓UA′ Iµ
I . (3.13)

6It differs by a “trivial” gauge transformation; see [8] for a discussion of this point.
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However, there is a further “hidden” supersymmetry [11], with spinor charge (and complex

conjugate)

Q̃A =
det Ū

m
UA

IµI , Q̃A′ = −detU

m
UA′ I µ̄

I . (3.14)

Notice that these charges satisfy the identity

PAA′QA
′
+mQ̃A ≡ 0 . (3.15)

The non-zero Poisson brackets of both supercharges are

{QA, QA′}PB = iPAA′ ,
{
Q̃A, Q̃A′

}
PB

= iPAA′ ,{
QA, Q̃B

}
PB

= im εAB ,
{
QA′ , Q̃B′

}
PB

= im εA′B′ . (3.16)

We see that the N = 2 supersymmetry algebra has a central charge, and it follows from

the identity (3.15) that it saturates the BPS bound.

We now turn to the super-PL 3-form Z as given in (2.8), with U as given in (2.10). In

Weyl spinor notation (2.8) becomes

ZAA′ =
(
UABPBA′ − UA′B

′
PAB′

)
. (3.17)

Both terms on the right hand side contribute equally as a consequence of (2.9) so we may

simplify this formula to

ZAA′ = 2UABPBA′ , (3.18)

where

UAB = JA
B − 1

m2
PBC

′
JC′D

′
PAD′ − i

2m2

(
QAP

BC′
QC′ +QBPA

C′
QC′

)
, (3.19)

which is (2.10) in Weyl spinor notation. Notice that Z is now represented by an anti-

hermitian matrix.7 When this matrix is expressed in terms of supertwistor variables, one

finds that

ZAA′ = ∓UAJUA′ I

(
GI0J −

1

2
δIJG0

)
. (3.20)

That is, Z is the Lorentz tensor associated to the triplet of SU(2) spin-shell constraint

functions of the massive 4D CBS superparticle action, and these constraints tell us that the

super-PL 3-form is zero and hence that the quantum superparticle associated to this action

has zero superspin (this motivates the zero subscript on the spin-shell constraint functions).

A curiosity of this 4D case is that there is also a U(1) “spin-shell” constraint that has

no direct relation to spin. One might be concerned about the possibility of a global U(1)

anomaly due to the “worldline fermions” [10, 33] but there is no anomaly here because the

number of fermi oscillators is even.

7Multiplication by i would yield an Hermitian matrix but this would be less natural, for reasons to be

explained in the following section.
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3.1 The superspinning particle

Now we generalize by adding, to the action (3.1), terms that are bilinear in additional

anticommuting variables: a Lorentz vector λAA
′

and a scalar ξ. This new “superspinning

particle” action is

S =

∫
dt

{
− 1

2
ΠAA′
t PAA′ − i

4
λAA

′
λ̇AA′ +

i

2
ξξ̇

− 1

2
e
(
P 2 +m2

)
+
i

4
ζ
(
λAA

′
PAA′ − 2mξ

)}
, (3.21)

where ζ is a new anticommuting Lagrange multiplier for a new constraint; the new con-

straint function generates a local worldline supersymmetry (exactly as it does for the

massive spinning particle of [23] because the Θ-dependent terms are invariant under this

new gauge transformation).

If the mass is set to zero and the anticommuting scalar variable ξ is omitted then we

get the “spinning superparticle” of [34, 35]. We are thus considering a very simple exten-

sion to non-zero mass of the spinning superparticle. A much more complicated “massive

spinning superparticle” action was proposed in [36] but we postpone comment on this to

our concluding discussion.

Now we set

PAA′ = ∓UAIUA′ I , λAA
′

=
1

m

[
UA

IUA′ J σ
J
I ·ψ + PAA′ ξ

]
, (3.22)

where σ is the triplet of hermitian Pauli-matrices and ψ a triplet of “real” anticommuting

variables. The constraints are solved by this substitution provided that we impose the new

mass shell constraint (3.5), and substitution yields

− 1

2
ΠAA′
t PAA′ = U̇A

IWI
A + U̇A′ IW

I A′ ± iµ̄I µ̇I +
i

2
ψ · ψ̇ +

d

dt
(· · · ) , (3.23)

but now with

WI
A = ∓1

2

(
XAA′

UA′ I + iµ̄Iθ
A
)
∓ i det Ū

2m2
εABUB

JεJK σ
K
I · (ψξ ±Σ) , (3.24)

where Ū is the complex conjugate of the matrix U and

Σ = − i
2
ψ ×ψ . (3.25)

The identity (3.9) is now modified to

0 ≡ GIJ = GI0J − iσIJ ·Σ , (3.26)

where GI0J is the matrix of spin-shell constraint functions of (3.9). This is the same as

the spin-shell constraint found in [32] for the massive spinning particle except that GI0J
now includes a term quadratic in the anticommuting variables µI . Notice that the other

anticommuting variables appear only in the traceless part of the matrix GIJ , so its trace

(G) equals G0.
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As for the CBS superparticle, we may interpret WI
A as the set of complex variables

canonically conjugate to UA
I by imposing the equations GIJ = 0 as constraints via La-

grange multipliers. We thus find the following equivalent version of the superspinning

particle action:

S =

∫
dt

{
U̇A

IWI
A + U̇A′ IW

I A′ ± iµ̄I µ̇I +
i

2
ψ · ψ̇ − sJ IGIJ − ρϕ

}
. (3.27)

The non-zero Poisson brackets of the canonical variables are{
UA

I ,WJ
B
}
PB

= δBAδ
I
J ,

{
UA′ I , W̄

J B′
}
PB

= δB
′

A′ δJI ,{
µI , µ̄J

}
PB

= ∓ iδIJ , {ψi, ψj}PB = −iδij , (3.28)

where ψi (i = 1, 2, 3) are the components of ψ. All constraints are first class and they

generate gauge transformations of the action. The constraint functions GIJ generate a

local U(2) invariance, just as they did for the CBS superparticle.

Using (3.26) we may rewrite the relation (3.20) between the SPL tensor Z and the

CBS massive superparticle constraint functions as

ZAA′ ± iUAJUA′ I σ
I
J ·Σ = ∓UAJUA′ I

(
GIJ −

1

2
δIJG

)
. (3.29)

The additional Σ-dependent term on the left hand side cancels with the same term on

the right hand side coming from the Σ-dependence of the traceless part of the spin-shell

constraint matrix GIJ . These SU(2) spin-shell constraints now tell us that

ZAA′ = ∓iUAJUA′ I σ
I
J ·Σ . (3.30)

This is essentially the same result as that found in [32] for the massive spinning particle,

but now it is a result for the SPL 3-form Z rather than the PL 3-form W .

Passing to the quantum theory we have8

|Ẑ|2 =
1

2
ZAA

′
ZAA′ = m2|Σ̂|2 , (3.31)

where the second equality uses the mass-shell constraint. As explained in detail in [32],

where it was used to confirm that the spinning particle has spin 1
2 , the operator Σ̂ is

such that

|Σ̂|2 =
3

4
. (3.32)

In the present context this implies that the superspinning particle has superspin 1
2 . That is,

it describes a particle supermultiplet with eight polarization states: the three helicity states

of a spin-1 particle, the four helicity states of two spin- 12 particles and two spin-0 states.

8There is a sign difference in the norm of Z relative to that of P in (3.3) because Z is anti-hermitian

rather than hermitian.
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4 (S)PL tensors for dimensions d = 3, 4, 6

We have seen that the spin-shell constraints arising in the (super)twistor formulation of

4D massive (super)particle dynamics are directly related to the (super)PL 3-form that

determines the (super)particle’s (super)spin. These results complement those found for

the 6D CBS superparticle in [8]. In fact, the relation of (super-)PL tensors to spin-shell

constraints arising in the (super)twistor formulation of the 4D and 6D (super)particle can

be understood in a unified way that deals simultaneously with the 3D, 4D and 6D cases.

This is made possible by the observation that the Lorentz group for Minkowski spacetime

of dimension d = 3, 4, 6 is Sl(2;K) for K = R,C,H, the three associative normed division

algebras over the reals [26], and the related observation that the conformal group in these

dimensions is Sp(4;K) [27]. Here we shall follow a recent application of these observations

to the (super)twistor formulation of (super)particle mechanics [24, 25], initially focusing

on the non-supersymmetric case.

Minkowski coordinates in dimension d = 2 + dimK correspond to entries of a 2 × 2

hermitian matrix X over K, and the transformation

X→ LXL† , det(LL†) = 1 (4.1)

is a Lorentz transformation, although it includes an additional U(1) transformation in the

K = C case because the unit determinant condition is on LL† rather than L; this is natural

in the current context since the determinant of a quaternionic matrix is intrinsically defined

only if it is (quaternionic) Hermitian.

If X(t) represents the position of a particle at parameter time t on its worldline,

then an hermitian matrix P(t) represents the particle’s d-momentum but with Lorentz

transformation

P→ (L†)−1PL−1 . (4.2)

We may therefore get a Poincaré invariant from the matrix product ẊP by taking the real

part of its trace, which we shall call the “real-trace” and denote by trR; the real-trace has

the cyclicity property trR(ABC) = trR(CAB) even for quaternionic matrices.

We may get another Poincaré invariant by taking the determinant of P. We choose a

normalisation of P, and a “mostly plus” Minkowski metric convention, such that

detP = −p2 . (4.3)

For a similar normalisation of X, the standard manifestly Poincaré-invariant phase-space

action for the relativistic point particle of mass m becomes

S =

∫
dt

{
1

2
trR

(
ẊP
)
− 1

2
e
(
detP−m2

)}
, (4.4)

where e(t) is a Lagrange multiplier for the mass-shell constraint.

Now we write

P = ∓UU† , (4.5)
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where the top/bottom sign is for positive/negative energy, and U is a 2× 2 matrix subject

to the transformations

U(t)→ (L†)−1U(t)N(t) , NN† = I , (4.6)

where N(t) parametrises a map from the particle’s worldline to the rotation group O(2;K);

this is defined to preserve a K-hermitian quadratic form on K2, so that

O(2;R) ∼= O(2) , O(2;C) ∼= U(2) , O(2;H) ∼= Spin(5) . (4.7)

Notice that the “rotation” group for K = C has an additional U(1) factor, consistent with

the additional U(1) factor in the d = 4 “Lorentz” group.

Substitution for P now yields the new mass-shell constraint

det(UU†) = m2 . (4.8)

In addition,
1

2
trR(ẊP) = trR(U̇W†) +

d

dt
(· · · ) , (4.9)

where

W = ±XU . (4.10)

This “incidence relation” implies the identity

0 ≡ G0 := U†W−W†U . (4.11)

In order to interpret the 2×2 matrix W as canonically conjugate to U we drop the incidence

relation and impose G0 = 0 as a constraint with an anti-hermitian Lagrange multiplier S.

This yields the action

S =

∫
dt
{

trR

(
U̇W†

)
− trR (SG0)− `

[
det(UU†)−m2

]}
. (4.12)

This action is Poincaré invariant with Noether charges

P = ∓UU† , J = UW† − 1

2
trR(UW†)I . (4.13)

The anti-hermitian matrix constraint function G0 is the generator of an O(2;K) gauge

transformation. In particular, G0 itself transforms by conjugation with an element N
of O(2;K)

G0 → N†G0N (N†N = I). (4.14)

With the exception of the mass-shell constraint term, the rest of the action is invariant

under the larger group Sp(4;K), defined to preserve a skew-hermitian quadratic form on

K4. This is the conformal group of d-dimensional Minkowski spacetime for d = 2 + dimK,

except that Sp(4;C) ∼= U(2, 2), which implies that there is again an additional U(1) factor

for d = 4. The 4-plet of Sp(4;K) is equivalent to a twistor (a spinor of the conformal

group) and the 4× 2 matrix

Z =

(
U
W

)
(4.15)
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constitutes a pair of twistors, acted upon from the left by Sp(4;K) and from the right by

the O(2;K) gauge group.

The above is a summary of some results of [24, 25], which we now use to investigate

(S)PL tensors.

4.1 Spin-shell constraints and the quadratic Casimir

Because the Poincaré Noether charges of the action (4.12) are gauge invariant, they have

zero Poisson brackets with the spin-shell constraint functions G0. It follows that these

constraint functions are translation invariant. As the matrix U is also translation invariant,

it also follows that the Lorentz tensor

Z+ = ±UG0U† (4.16)

is translation invariant and hence represents a PL tensor if it can be re-expressed in terms

of the Poincaré Noether charges. Substitution for G yields

Z+ = JP− PJ† , (4.17)

showing that Z+ is indeed a PL tensor. Notice that Z+ is anti-hermitian, which implies that

it has (3 dimK−2) independent real components. It is equivalent to a Lorentz pseudo-scalar

for d = 3 and a Lorentz pseudo-vector for d = 4. For d = 6 it is equivalent to a Lorentz

3-form that is either self-dual or anti-self-dual, and we may suppose it to be self-dual.

In general, if a Lorentz vector h is represented by an Hermitian matrix H transforming

as P then

H̃ = H− trR(H) (4.18)

is the hermitian matrix representing the corresponding co-vector [37]; i.e. it transforms as

X. This follows from the identity HH̃ = h2I [38]. Applying this result to P we have.

P̃ = P− (trRP)I , (4.19)

which we can also write, for non-zero mass, as

P̃ = ±(detP)V†V , (4.20)

where V is the inverse9 to U:

VU = UV = I , V→ N†VL† . (4.21)

Using P̃ instead of P we may construct the PL tensor

Z− = P̃J− J†P̃ = ∓(detP)V†GV . (4.22)

For d = 4 this is just the co-vector version of the vector Z+ but for d = 6 it is an anti-self-

dual PL 3-form (assuming Z+ to be self-dual). The PL tensors Z± are related by

Z+P̃ = PZ− , P̃Z+ = Z−P . (4.23)

For d = 6 this is equivalent to a relation found in [8] using SU∗(4) notation.

9The left and right inverse are equal, even for K = H.
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Using the mass-shell constraint in the form (4.8) we have

trR(Z+Z−) = −m2trRG2
0 . (4.24)

Whereas the left hand side is, by construction a Poincaré Casimir, the right hand side is

proportional to the quadratic Casimir of the rotation group. This is to be expected from

the fact that the Poincaré group representations are induced, for massive particles, by those

of the rotation group.

4.2 The 6D quartic Casimir

For d = 6 we still need to consider the PL 5-form Υ that is quadratic in J; this is equivalent

to a pseudo-vector that we shall call y and represent by a quaternionic hermitian matrix

Y. As p · y = 0, an obvious guess is that

Y = ±U
[
G2

0 −
1

2
trR(G2

0)

]
U† , (4.25)

but we need to show that this expression can be rewritten as a polynomial in Poincaré

Noether charges. Substitution for G0 yields

2Y =

[
Y+ −

trR(PZ−J)

det(UU†)
P
]

+ (detP)−1P
[
Y− +

trR(PZ−J)

det(UU†)
P̃
]
P , (4.26)

where

Y+ = Z+J† − JZ+ , Y− = Z−J− J†Z− . (4.27)

In the rest frame we have (supposing m to be positive) that

P = −P̃ = ±mI (rest frame) . (4.28)

In this frame we have

trR

[
Y− +

trR(PZ−J)

detP P̃
]

= 0 (rest frame) . (4.29)

This fact allows us to make use of the following lemma:

• Lemma: given a hermitian matrix M (over K = R,C,H) transforming as P̃ and

such that trR(M) = 0 in the rest-frame, then

PMP = (detP) M̃ . (4.30)

Proof : both sides transform as P and are equal in the rest frame.

Applying this lemma for M equal to the matrix [Y−+ · · · ] appearing in (4.26) we find that

Y =
1

2

[
Y+ + Ỹ−

]
. (4.31)

This expression is polynomial in the Noether charges, so Y is indeed a PL vector, as shown

in [8] using SU∗(4)-spinor notation. We may use it to construct the quartic Poincaré

Casimir

trR(ỸY) = m2trR

[
G2

0 −
1

2
trRG2

0

]2
, (4.32)

where the mass-shell constraint is used to get the right hand side.
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4.3 From PL to SPL

In the (super)twistor formalism of 3D,4D and 6D particle mechanics, the generalization

from PL tensor to SPL tensor is immediate. We have now seen that one gets all PL

tensors relevant for 3D, 4D and 6D by an appropriate “dressing” of powers of the spin-

shell constraint matrix. We arrived at this result by considering the bi-twistor action for

a massive particle of zero spin, with spin-shell constraint matrix G0. In the context of

superparticle mechanics we get the analogous SPL tensors in the same way from the bi-

supertwistor action for the massive CBS superparticle, which has zero superspin. We just

have to interpret G0 as the spin-shell constraint matrix of this superparticle action.

5 Discussion

Elementary particles are associated with irreducible unitary representations of the Poincaré

group, which are classified by a mass m and the eigenvalues of a set of Casimirs that

determine the spin. In four-dimensional Minkowski spacetime there is only one such spin

Casimir and it is the norm of the translation-invariant Pauli-Lubanski (PL) pseudo-vector,

which is equivalent to a 3-form. For the super-Poincaré algebra, the original construction by

Salam and Strathdee [3] of the analogous superspin Casimir proceeded differently because of

difficulties in constructing a supertranslation invariant extension of the PL pseudo-vector.

These difficulties were partially circumvented by Buchbinder and Kuzenko [5] and by

Pasqua and Zumino [7] via the proposal that a set of supertranslation invariant constraints

should be imposed on the super-Poincaré charges. However, as one of these was P 2 = 0 the

method was limited to massless particles. We have shown how to generalise the construction

to non-zero mass by consideration of an implicit BPS-saturated extended super-Poincaré

algebra, and we have also explained how the final results agree, where applicable, with

both the Salam-Strathdee and Finkelstein-Villasante constructions.

We have also shown how the super-Pauli-Lubanski 3-form resulting from our construc-

tion arises naturally in the supertwistor formulation of superparticle mechanics. This is

because the required constraints on super-Poincaré Noether charges become identities in

this formulation, and the super-Pauli-Lubanski 3-form becomes a “dressed” version of the

spin-shell constraint functions that appear in the simplest (CBS) superparticle action; this

is perhaps the simplest way to see why the quantum CBS superparticle has zero superspin.

It also suggests that the supertwistor formalism is ideally suited for the determination

of the superspin for generic superparticle mechanics models. As confirmation of this sug-

gestion, we considered a simple “superspinning particle” action and used its supertwistor

formulation to show that the quantum superspinning particle has superspin 1
2 . There is an

obvious generalization to an “extended superspinning particle” modelled on the massive

spinning particle with N > 1 local worldline supersymmetries [39], for which a supertwistor

formulation was given in [32]. We expect this to have a superspin content that is the same

as the spin content of its non-supersymmetric analog.

As confirmed in section 3, the supertwistor formulation of massive N = 1 superpar-

ticle models makes manifest a “hidden” N = 2 supersymmetry [11], which is the implicit
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BPS-saturated extended supersymmetry mentioned above. Whether this additional su-

persymmetry survives quantization depends on whether a reality condition is imposed on

the particle’s wavefunction. For example, we found that quantization of the massive CBS

superparticle yields the N = 1 supermultiplet of superspin zero, which has helicity content

(−1
2 , 0, 0,

1
2), because we implicitly chose to ignore the “hidden” supersymmetry. If we had

chosen to quantize preserving the BPS-saturated N = 2 supersymmetry then we would

have found the N = 2 hypermultiplet, which has the helicity content of a doubled N = 1

superspin-zero supermultiplet. Imposing a reality condition eliminates this doubling and

breaks the N = 2 supersymmetry to N = 1 supersymmetry.

The same quantum option arises for the superspinning particle. Our claim that its

quantization yields the supermultiplet with superspin 1
2 implicitly assumed a quantization

preserving only the original “built-in” N = 1 supersymmetry. If instead we had quantized

preserving N = 2 supersymmetry then we would have found a doubled helicity content.

Precisely this doubled superspin- 12 spectrum was found previously from quantisation of an

apparently very different “massive spinning superparticle” which has a “built-in” BPS sat-

urated N = 2 supersymmetry [35, 36]. This quantum coincidence suggests an equivalence

between the “massive spinning superparticle” and our “superspinning particle”. In fact,

this equivalence can be proved by adapting the proof in [11] for the “non-spinning” case,

which is based on a gauge-fixing that breaks N = 2 to N = 1 supersymmetry.

Our 4D results complement those obtained for the 6D massive superparticle in [8],

where the relation between spin-shell constraints and (super-)Pauli-Lubanski tensors was

also explored. Here we have shown how this relation can be understood in a unified way

for Minkowski spacetimes of dimension d = 3, 4, 6 by formulating the (super)particle in

these dimensions in terms of Sl(2;K) spinors, where K = R,C,H are the three associative

normed division algebras over the real numbers.

As the massless 10D superparticle can be written in Sl(2;O) spinor notation [40]

it seems likely that there exists an Sl(2;O) bi-spinor formulation of the massive 10D

superparticle. If so, it would be of interest if some of the results reported here could be

extended to 10D by means of an Sp(4;O) twistor reformulation, but we leave this to future

investigations.
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various dimensions, hep-th/0411046 [INSPIRE].

[7] A. Pasqua and B. Zumino, Constraints and superspin for superPoincaré algebras in diverse
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SuperPoincaré Algebra and the Reduction of the Ten-dimensional Massless Scalar Superfield,

J. Math. Phys. 29 (1988) 560 [INSPIRE].

[32] L. Mezincescu, A.J. Routh and P.K. Townsend, Twistors and the massive spinning particle,

J. Phys. A 49 (2016) 025401 [arXiv:1508.05350] [INSPIRE].

[33] S. Elitzur, Y. Frishman, E. Rabinovici and A. Schwimmer, Origins of Global Anomalies in

Quantum Mechanics, Nucl. Phys. B 273 (1986) 93 [INSPIRE].

[34] J. Kowalski-Glikman, J.W. van Holten, S. Aoyama and J. Lukierski, The Spinning

Superparticle, Phys. Lett. B 201 (1988) 487 [INSPIRE].

[35] E. Bergshoeff and J.W. van Holten, The Spectrum of Spinning Superparticles, Phys. Lett. B

226 (1989) 93 [INSPIRE].

[36] J. Kowalski-Glikman and J. Lukierski, Massive spinning superparticle, Mod. Phys. Lett. A 4

(1989) 2437 [INSPIRE].

[37] J. Schray, The general classical solution of the superparticle, Class. Quant. Grav. 13 (1996)

27 [hep-th/9407045] [INSPIRE].

[38] J.C. Baez and J. Huerta, Division Algebras and Supersymmetry II, Adv. Theor. Math. Phys.

15 (2011) 1373 [arXiv:1003.3436] [INSPIRE].

[39] P.S. Howe, S. Penati, M. Pernici and P.K. Townsend, A Particle Mechanics Description of

Antisymmetric Tensor Fields, Class. Quant. Grav. 6 (1989) 1125 [INSPIRE].

[40] I. Oda, T. Kimura and A. Nakamura, Superparticles and Division Algebras. 2.

Ten-dimension and Octonions, Prog. Theor. Phys. 80 (1988) 367 [INSPIRE].

– 20 –

https://doi.org/10.1016/j.physletb.2014.04.059
https://arxiv.org/abs/1403.4127
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B733,309%22
https://doi.org/10.1016/0370-2693(76)90115-5
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B64,435%22
https://doi.org/10.1016/0550-3213(77)90364-9
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B118,76%22
https://doi.org/10.1103/PhysRevLett.118.141601
https://arxiv.org/abs/1608.04380
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,118,141601%22
https://doi.org/10.1016/0550-3213(83)90584-9
https://doi.org/10.1016/0550-3213(83)90584-9
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B221,357%22
http://dx.doi.org/10.1088/0305-4470/17/5/018
http://dx.doi.org/10.1088/0305-4470/17/5/018
https://doi.org/10.1016/0550-3213(88)90305-7
https://doi.org/10.1016/0550-3213(88)90305-7
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B298,92%22
https://arxiv.org/abs/0909.0551
https://inspirehep.net/search?p=find+EPRINT+arXiv:0909.0551
https://doi.org/10.1063/1.527074
https://inspirehep.net/search?p=find+J+%22J.Math.Phys.,27,1595%22
https://doi.org/10.1063/1.528203
https://inspirehep.net/search?p=find+J+%22J.Math.Phys.,29,560%22
https://doi.org/10.1088/1751-8113/49/2/025401
https://arxiv.org/abs/1508.05350
https://inspirehep.net/search?p=find+J+%22J.Phys.,A49,025401%22
https://doi.org/10.1016/0550-3213(86)90042-8
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B273,93%22
https://doi.org/10.1016/0370-2693(88)90605-3
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B201,487%22
https://doi.org/10.1016/0370-2693(89)90294-3
https://doi.org/10.1016/0370-2693(89)90294-3
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B226,93%22
https://doi.org/10.1142/S0217732389002720
https://doi.org/10.1142/S0217732389002720
https://inspirehep.net/search?p=find+J+%22Mod.Phys.Lett.,A4,2437%22
https://doi.org/10.1088/0264-9381/13/1/004
https://doi.org/10.1088/0264-9381/13/1/004
https://arxiv.org/abs/hep-th/9407045
https://inspirehep.net/search?p=find+EPRINT+hep-th/9407045
https://doi.org/10.4310/ATMP.2011.v15.n5.a4
https://doi.org/10.4310/ATMP.2011.v15.n5.a4
https://arxiv.org/abs/1003.3436
https://inspirehep.net/search?p=find+EPRINT+arXiv:1003.3436
https://doi.org/10.1088/0264-9381/6/8/012
https://inspirehep.net/search?p=find+J+%22Class.Quant.Grav.,6,1125%22
https://doi.org/10.1143/PTP.80.367
https://inspirehep.net/search?p=find+J+%22Prog.Theor.Phys.,80,367%22

	Introduction
	4D super-Pauli-Lubanski
	Quantum unitarity constraints

	Massive superparticles and supertwistors
	The superspinning particle

	(S)PL tensors for dimensions d=3,4,6
	Spin-shell constraints and the quadratic Casimir
	The 6D quartic Casimir
	From PL to SPL

	Discussion

