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Abstract

Named entities are frequently used in a
metonymic manner. They serve as ref-
erences to related entities such as peo-
ple and organisations. Accurate identifi-
cation and interpretation of metonymy can
be directly beneficial to various NLP ap-
plications, such as Named Entity Recog-
nition and Geographical Parsing. Until
now, metonymy resolution (MR) methods
mainly relied on parsers, taggers, dictio-
naries, external word lists and other hand-
crafted lexical resources. We show how
a minimalist neural approach combined
with a novel predicate window method can
achieve state-of-the-art results on the Se-
mEval 2007 task on Metonymy Resolu-
tion. Additionally, we contribute with a
new Wikipedia-based MR dataset called
RelocaR, which is tailored towards loca-
tions as well as improving previous defi-
ciencies in annotation guidelines.

1 Introduction

In everyday language, we come across many types
of figurative speech. These irregular expressions
are understood with little difficulty by humans but
require special attention in NLP. One of these is
metonymy, a type of common figurative language,
which stands for the substitution of the concept,
phrase or word being meant with a semantically
related one. For example, in “Moscow traded
gas and aluminium with Beijing.”, both location
names were substituted in place of governments.

Named Entity Recognition (NER) taggers have
no provision for handling metonymy, meaning
that this frequent linguistic phenomenon goes
largely undetected within current NLP. Classi-

fication decisions presently focus on the entity
using features such as orthography to infer its
word sense, largely ignoring the context, which
provides the strongest clue about whether a word
is used metonymically. A common classifica-
tion approach is choosing the N words to the
immediate left and right of the entity or the
whole paragraph as input to the model. However,
this “greedy” approach also processes input that
should in practice be ignored.

Metonymy is problematic for applications such
as Geographical Parsing (GP) (see a survey by
Monteiro et al. (2016)) and other information
extraction tasks in NLP. In order to accurately
identify and ground location entities, for example,
we must recognise that metonymic entities consti-
tute false positives and should not be treated the
same way as regular locations. For example, in
“London voted for the change.”, London refers
to the concept of “people” and should not be
classified as a location. There are many types of
metonymy (Shutova et al., 2013), however, in this
paper, we primarily address metonymic location
mentions with reference to GP and NER.

Contributions: 1. We investigate how to
improve classification tasks by introducing a
novel minimalist method called Predicate Window
(PreWin), which is highly discriminating with its
selection of input (achieved SOTA on SemEval
2007 MR task). PreWin outperforms other sys-
tems, which use many external features and tools.
2. We also improve the annotation guidelines in
MR and contribute with a new Wikipedia-based
MR dataset called ReLocaR to address the training
data shortage. 3. We also make an annotated sub-
set of the CoNLL 2003 (NER) Shared Task avail-
able for extra MR training data, alongside models,
tools and other data for full replicability.
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2 Related Work

Some of the earliest work on MR that used an
approach similar to our method (machine learning
and dependency parsing) was by Nissim and
Markert (2003a). The decision list classifier
with backoff was evaluated using syntactic
head-modifier relations, grammatical roles and
a thesaurus to overcome data sparseness and
generalisation problems. However, the method
was still limited for classifying unseen data. Our
method uses the same paradigm but adds more
features, a different machine learning architecture
and a better usage of the parse tree structure.

Much of the later work on MR comes from
the SemEval 2007 Shared Task 8 (Markert and
Nissim, 2007) and later (Markert and Nissim,
2009). The feature set from (Nissim and Markert,
2003a) was updated to include: grammatical
role of the potentially metonymic word (PMW)
(such as subj, obj), lemmatised head/modifier of
PMW, determiner of PMW, grammatical number
of PMW (singular, plural), number of words in
PMW and number of grammatical roles of PMW
in current context. The winning system by Farkas
et al. (2007) used these features and a maximum
entropy classifier to achieve 85.2% accuracy. This
was also the “leanest” system but still made use
of feature engineering and some external tools.
Brun et al. (2007) achieved 85.1% accuracy using
local syntactical and global distributional features
generated with an adapted, proprietary Xerox
deep parser. This was the only unsupervised
approach, based on using syntactic context simi-
larities calculated on large corpora such as the the
British National Corpus (BNC) with 100M tokens.

Nastase and Strube (2009) used a Support Vec-
tor Machine (SVM) with handcrafted features (in
addition to the features provided in Markert and
Nissim (2007)) including grammatical colloca-
tions extracted from the BNC to learn selectional
preferences, WordNet 3.0, Wikipedia’s category
network, whether the entity “has-a-product” such
as Suzuki and whether the entity “has-an-event”
such as Vietnam (both obtained from Wikipedia).
The bigger set of around 60 features and leverag-
ing global (paragraph) context enabled them to
achieve 86.1% accuracy. Once again, we draw
attention to the extra training, external tools and
additional feature generation.

Similar recent work by Nastase and Strube
(2013), extending Nastase et al. (2012) involved
transforming Wikipedia into a large-scale mul-
tilingual concept network called WikiNet. By
building on Wikipedia’s existing network of
categories and articles, their method automatically
discovers new relations and their instances on a
large scale. As one of their extrinsic evaluation
tasks, metonymy resolution was tested. Global
context (whole paragraph) was used to interpret
the target word. Using an SVM and the powerful
knowledge base built from Wikipedia, the highest
performance to date (a 0.1% improvement from
Nastase and Strube (2009)) was achieved at
86.2%, which has remained the SOTA until now.

The related work on MR so far has made limited
use of dependency trees. Typical features came in
the form of a head dependency of the target en-
tity, its dependency label and its role (subj-of-win,
dobj-of-visit, etc). However, other classification
tasks made good use of dependency trees. Liu
et al. (2015) used the shortest dependency path and
dependency sub-trees successfully to improve re-
lation classification (new SOTA on SemEval 2010
Shared Task). Bunescu and Mooney (2005) show
that using dependency trees to generate the input
sequence to a model performs well in relation ex-
traction tasks. Dong et al. (2014) used dependency
parsing for Twitter sentiment classification to find
the words syntactically connected to the target of
interest. Joshi and Penstein-Rosé (2009) used de-
pendency parsing to explore how features based
on syntactic dependency relations can be used to
improve performance on opinion mining. In unsu-
pervised lymphoma (type of cancer) classification,
(Luo et al., 2014) constructed a sentence graph
from the results of a two-phase dependency parse
to mine pathology reports for the relationships be-
tween medical concepts. Our methods also exploit
the versatility of dependency parsing to leverage
information about the sentence structure.

2.1 SemEval 2007 Dataset

Our main standard for performance evaluation is
the SemEval 2007 Shared Task 8 (Markert and
Nissim, 2007) dataset first introduced in Nissim
and Markert (2003b). Two types of entities were
evaluated, organisations and locations, randomly
retrieved from the British National Corpus (BNC).



We only use the locations dataset, which com-
prises a train (925 samples) and a test (908 sam-
ples) partition. For coarse evaluation, the classes
are literal (geographical territories and political
entities), metonymic (place-for-people, place-for-
product, place-for-event, capital-for-government
or place-for-organisation) and mixed (metonymic
and literal frames invoked simultaneously or un-
able to distinguish). The metonymic class further
breaks down into two levels of subclasses allowing
for medium and fine evaluation. The class distri-
bution within SemEval is approx 80% literal, 18%
metonymic and 2% mixed. This seems to be the
approximate natural distribution of the classes for
location metonymy, which we have also observed
while sampling Wikipedia for our new dataset.

3 Our Approach

Our contribution broadly divides into two main
parts, data and methodology. Section 3 introduces
our new dataset, Section 4 introduces our new fea-
ture extraction method.

3.1 Design and Motivation
As part of our contribution, we created a new MR
dataset called ReLocaR (Real Location Retrieval),
partly due to the lack of quality annotated train/test
data and partly because of the shortcomings with
the SemEval 2007 dataset (see Section 3.2). Our
corpus is designed to evaluate the capability of
a classifier to distinguish literal, metonymic and
mixed location mentions. In terms of dataset size,
ReLocaR contains 1,000 training and 1,000 test in-
stances. The data was sampled using Wikipedia’s
Random Article API1. We kept the sentences,
which contained at least one of the places from a
manually compiled list2 of countries and capitals
of the world. The natural distribution of literal ver-
sus metonymic examples is approximately 80/20
so we had to discard the excess literal examples
during sampling to balance the classes.

3.2 ReLocaR - Improvements over SemEval
1. We do not break down the metonymic class
further as the distinction between the subclasses
is subtle and hard to agree on.

2. The distribution of the three classes in ReLo-
caR (literal, metonymic, mixed) is approximately
1https://www.mediawiki.org/wiki/API:Random
2https://github.com/milangritta/Minimalist-Location-
Metonymy-Resolution/data/locations.txt

(49%, 49%, 2%) eliminating the high bias (80%,
18%, 2%) of SemEval. We will show how such
a high bias transpires in the test results (Section 5).

3. We have reviewed the annotation of the test
partition and found that we disagreed with up
to 11% of the annotations. Zhang and Gelernter
(2015) disagreed with the annotation 8% of
the time. Poibeau (2007) also challenged some
annotation decisions. ReLocaR was annotated by
4 trained linguists (undergraduate and graduate)
and 2 computational linguists (authors). Linguists
were independently instructed (see section 3.3)
to assign one of the two classes to each example
with little guidance. We leveraged their linguistic
training and expertise to make decisions rather
than imposing some specific scheme. Unresolved
sentences would receive the mixed class label.

4. The most prominent difference is a small
change in the annotation scheme (after indepen-
dent linguistic advice). The SemEval 2007 Task 8
annotation scheme, which can be found in (Mark-
ert and Nissim, 2007) considers the political en-
tity interpretation a literal reading. It suggests that
in “Britain’s current account deficit...”, Britain
refers to a literal location, rather than a govern-
ment (which is an organisation). This is despite
acknowledging that “The locative and the politi-
cal sense is often distinguished in dictionaries as
well as in the ACE annotation scheme...”. In Re-
LocaR, we consider a political entity a metonymic
reading.

3.3 Annotation Guidelines (Summary)

ReLocaR has three classes, literal, metonymic
and mixed. Literal reading comprises territorial
interpretations (the geographical territory, the
land, soil and physical location) i.e. inanimate
places that serve to point to a set of coordi-
nates (where something might be located and/or
happening) such as “The treaty was signed in
Italy.”, “Peter comes from Russia.”, “Britain’s
Andy Murray won the Grand Slam today.”, “US
companies increased exports by 50%.”, “China’s
artists are among the best in the world.” or “The
reach of the transmission is as far as Brazil.”.

A metonymic reading is any location oc-
currence that expresses animacy (Coulson and
Oakley, 2003) such as “Jamaica’s indifference



will not improve the negotiations.”, “Sweden’s
budget deficit may rise next year.”. The following
are other metonymic scenarios: a location name,
which stands for any persons or organisations
associated with it such as “We will give aid to
Afghanistan.”, a location as a product such as
“I really enjoyed that delicious Bordeaux.”, a
location posing as a sports team “India beat
Pakistan in the playoffs.”, a governmental or
other legal entity posing as a location “Zambia
passed a new justice law today.”, events acting as
locations “Vietnam was a bad experience for me”.

The mixed reading is assigned in two cases: ei-
ther both readings are invoked at the same time
such as in “The Central European country of Slo-
vakia recently joined the EU.” or there is not
enough context to ascertain the reading i.e. both
are plausible such as in “We marvelled at the art of
ancient Mexico.”. In difficult cases such as these,
the mixed class is assigned.

3.4 Inter-Annotator Agreement

We give the IAA for the test partition only. The
whole dataset was annotated by the first author as
the main annotator. Two pairs of annotators (4 lin-
guists) then labelled 25% of the dataset each for
a 3-way agreement. The agreement before adjudi-
cation was 91% and 93%, 97.2% and 99.2% after
adjudication (for pair one and two respectively).
The other 50% of sentences were then once again
labelled by the main annotator with a 97% agree-
ment with self. The remainder of the sentences
(unable to agree on among annotators even after
adjudication) were labelled as a mixed class (1.8%
of all sentences).

3.5 CoNLL 2003 and MR

We have also annotated a small subset of
the CoNLL 2003 NER Shared Task data for
metonymy resolution (locations only). Follow-
ing the Reuters RCV1 Corpus (Lewis et al., 2004)
distribution permissions3, this data is only avail-
able by emailing the first author. There are 4,089
positive (literal) and 2,126 negative (metonymic)
sentences to assist with algorithm experimentation
and model prototyping. Due to the lack of anno-
tated training data for MR, this is a valuable re-
source. The data was annotated by the first author,
there are no IAA figures.

3http://trec.nist.gov/data/reuters/reuters.html

4 Methodology

4.1 Predicate Window (PreWin)

Through extensive experimentation and observa-
tion, we arrived at the intuition behind PreWin,
our novel feature extraction method. The classi-
fication decision of the class of the target entity
is mostly informed not by the whole sentence
(or paragraph), rather it is a small and focused
“predicate window” pointed to by the entity’s
head dependency. In other words, most of the
sentence is not only superfluous for the task, it
actually lowers the accuracy of the model due to
irrelevant input. This is particularly important in
metonymy resolution as the entity’s surface form
does not change for subsequent classifications.

In Figure 1, we show the process of extracting
the Predicate Window from a sample sentence
(more examples are available in the Appendix).
We start by using the SpaCy dependency parser
by Honnibal and Johnson (2015), which is the
fastest in the world, open source and highly
customisable. Each dependency tree provides the
following features: dependency labels and entity
head dependency. Rather than using most of the
tree, we only use a single local head dependency
relationship to point to the predicate. Leveraging
a dependency parser helps PreWin with selecting
the minimum relevant input to the model while
discarding irrelevant input, which may cause the
neural model to behave unpredictably. Finally, the
entity itself is never used as input in any of our
methods, we only rely on context.

PreWin then extracts up to 5 words and their
dependency labels starting at the head of the en-
tity, going in the away (from the entity) direction.
The method always skips punctuation and the con-
junct (“and”, “or”) relationships in order to find
the predicate (see Figure 3 in the Appendix for a
visual example of why this is important). The rea-
son for the choice of 5 words is the balance be-
tween too much input, feeding the model with less
relevant context and just enough context to capture
the necessary semantics.

4.2 Neural Network Architecture

The output of PreWin is processed using the
following machine learning model. We decided
to use the Long Short Term Memory (LSTM)



Figure 1: The predicate window starts at the head of the target entity and ends up to 4 words further,
going away from the entity. The “conj” relations and punctuation are always skipped. In the above
example, the head of “UK” is “decided” so PreWin takes 5 words plus labels as the input to the model.
In this case, the left hand side input to the model is set to zeroes (see the Appendix for full architecture).

architecture by Keras4 (Chollet, 2015). Two
LSTMs are used, one for the left and right side (up
to 5 words each). A fully connected (dense) layer
is used for the left and right dependency relation
labels (up to 5 labels each, encoded with one-hot).
The full architecture is available in the Appendix,
please see Figure 2. LSTMs are excellent at
modelling language sequences (Hochreiter and
Schmidhuber, 1997), (Sak et al., 2014), (Graves
et al., 2013), which is why we use this type of
model. To download and replicate, visit GitHub5.

Both the Multilayer Perceptron and the Convo-
lutional Neural Network were consistently inferior
(typically 5% - 10% lower accuracy) in our earlier
performance comparisons and experiments, which
is also why we opted for LSTMs. For all experi-
ments, we used a vocabulary of the first (most fre-
quent) 100,000 word vectors in GloVe6 Penning-
ton et al. (2014). Finally, unless explicitly stated
otherwise, the standard dimension of word embed-
dings was 50, which we found to work best.

4.3 “Immediate” Baseline

A common approach in lexical classification tasks
is choosing the 5 to 10 words to the immediate
right and left of the entity as input to a model such
as Mikolov et al. (2013), Mesnil et al. (2013), Ba-
roni et al. (2014) and Collobert et al. (2011). We
evaluate this method (its 5 and 10-word variant)
alongside PreWin and Paragraph.

4https://keras.io/
5https://github.com/milangritta/Minimalist-Location-
Metonymy-Resolution

6http://nlp.stanford.edu/projects/glove/

4.4 Paragraph Baseline

The paragraph baseline method extends the “im-
mediate” one by taking 50 words from each side of
the entity as the input to the classifier. In practice,
this extends the feature window to include extra-
sentential evidence in the paragraph. This ap-
proach is also popular in machine learning (Mela-
mud et al., 2016), (Zhang et al., 2016).

4.5 Ensemble of Models

In addition to a single best performing model, we
have combined several models trained on differ-
ent data and/or using different model configura-
tions. The Ensemble method enabled us to reach
SOTA results. For SemEval data, we combined
two separate models (using PreWin) trained on the
newly annotated 2003 CoNLL NER dataset and
the training data for SemEval. For ReLocaR data,
we let three models vote, all trained on the Re-
LocaR training data. The first model trained with
300-dimensional embeddings (PreWin method),
the second used the paragraph baseline and the
third used PreWin (standard 50-dimensional em-
beddings).

5 Results

We evaluate all methods using (any one or a com-
bination of) three datasets for training (ReLocaR,
SemEval, CoNLL) and two for testing (ReLocaR,
SemEval).

5.1 Metrics and Significance

Following the SemEval 2007 convention, we use
two metrics to evaluate performance, accuracy
and f-score (for each class). We only evaluate at
the coarse level, which means literal versus non-



literal (metonymic and mixed are merged into one
class). In terms of statistical significance, both
the SemEval dataset (1,000 samples) and our ac-
curacy improvement (although new SOTA) are too
small to be significant at the 95% confidence level.
However, the accuracy improvements of PreWin
over each baseline are highly statistically signifi-
cant with 99.9%+ confidence.

5.2 Predicate Window

Tables 1 and 2 show PreWin performing con-
sistently better than other baselines, in many
instances, significantly better and with fewer
words (smaller input). Compared with the 5 and
10 window “immediate” baseline, which is the
common approach in classification, PreWin is
more discriminating with its input. Due to the
linguistic variety and the myriad of ways the target
word sense can be triggered in a sentence, it is
not always the case that the 5 or 10 nearest words
inform us of the target entity’s meaning/type. We
ought to ask what else is being expressed in the
same 5 to 10-word window?

Conventional classification methods (Immedi-
ate, Paragraph) can also be seen as prioritising
either feature precision or feature recall. Para-
graph maximises the input sequence size, which
maximises recall at the expense of including
features that are either irrelevant or mislead
the model, lowering performance. Immediate
maximises precision by using features close to the
target entity at the expense of missing important
features positioned outside of its small window,
once again lowering performance. PreWin can be
understood as an integration of both approaches.
It retains high precision by limiting the size of the
feature window to 5 while maximising recall by
searching anywhere in the sentence, frequently
outside of a limited “immediate” window.

Perhaps we can also caution against a simple
adherence to Firth (1957) “You shall know a word
by the company it keeps”. This does not appear to
be the case in our experiments as the PreWin reg-
ularly performs better than the “immediate” base-
line. Further prototypical examples of the method
can be viewed in the Appendix. Our intuition that
most words in the sentence, indeed in the para-
graph do not carry the semantic information re-
quired to classify the target entity is ultimately

based on evidence. Aiming to approximate hu-
man decision making, the neural model uses only
a small window (which may be far away from the
entity), linked to the entity via a head dependency
relationship for the final classification decision.

5.3 Common Errors

Most of the time (typically 85% for the two
datasets), PreWin is sufficient for an accurate
classification. However, it does not work well in
some cases.

Discarding important context: Sometimes
the 5 or 10 word “immediate” baseline method
would actually have been preferred such as in the
sentence “...REF in 2014 ranked Essex in the top
20 universities...”. PreWin discards the right-hand
side input, which is required in this case for a
correct classification. Since ”ranked” is the head
of ”Essex”, the rest of the sentence gets ignored
and the valuable context gets lost.

More complex semantic patterns: Many
common mistakes were due to the lack of the
model’s understanding of more complex predi-
cates such as in the following sentences: “ ...of
military presence of Germany.”, “Houston also
served as a member and treasurer of the...” or
”...invitations were extended to Yugoslavia ...”.
We think this is due to a lack of training data
(approx 1,000 sentences per dataset). Additional
examples such as “...days after the tour had exited
Belgium.” expose some of the limitations of the
neural model to recognise uncommon ways of
expressing a reference to a literal place. Recall
that no external resources or tools were used to
supplement the training/features, the model had to
learn to generalise from what it has seen during
training, which was limited in our experiments.

Parsing mistakes were less common though
still present. It is important to choose the right
dependency parser for the task since different
parsers will often generate slightly different parse
trees. We have used SpaCy7 for all our experi-
ments, which is a Python-based industrial strength
NLP library. Sometimes, tokenisation errors for
acronyms like “U.S.A.” and wrongly hyphenated
words may also cause parsing errors, however, this
was infrequent.

7https://spacy.io/



Method Training (Size) Accuracy

PreWin SemEval (925) 66.8
Immediate 5 SemEval (925) 59.5
Immediate 10 SemEval (925) 59.6
Paragraph SemEval (925) 60.4

PreWin CoNLL (6,215) 81.3
Immediate 5 CoNLL (6,215) 78.6
Immediate 10 CoNLL (6,215) 80.6
Paragraph CoNLL (6,215) 78.0

PreWin ReLocaR (1,000) 84.3
Immediate 5 ReLocaR (1,000) 81.9
Immediate 10 ReLocaR (1,000) 82.6
Paragraph ReLocaR (1,000) 82.3

Ensemble ReLocaR (1,000) 85.7

Table 1: Results for the ReLocaR dataset.

5.4 Flexibility of Neural Model

The top accuracy figures for ReLocaR are almost
identical to SemEval. The highest single model
accuracy for ReLocaR was 84.3% (85.7% with
Ensemble), which was within 1% of the equivalent
methods for SemEval. Both were achieved using
the same methods (PreWin or Ensemble), neural
architecture and size of corpora. When the model
is trained on the CoNLL (NER) data, the accu-
racies are 79.7% and 81.3%. This shows a good
degree of flexibility in our minimalist neural net-
work. However, when the model trained on ReLo-
caR and tested on SemEval (and vice versa), accu-
racy drops to between 66.8% and 72.5% showing
that what was learnt does not seem to transfer well
to another dataset. We think the reason for this is
the difference in annotation guidelines; the gov-
ernment is a metonymic reading, not a literal one.
This causes the model to make more mistakes.

5.5 Ensemble Method

The highest accuracy and f-scores were achieved
with the ensemble method for both datasets. We
combined two models (previously described in
section 4.5) for SemEval to achieve 86.3% accu-
racy (previous SOTA 86.2%) and three models for
ReLocaR to achieve 85.7% for the new dataset.
Training separate models with different parame-
ters and/or on different datasets does increase clas-
sification capability as various models learn dis-
tinct aspects of the task. Letting them vote for the
final label enabled the 1.3 - 1.4% improvement.

Method Training (Size) Accuracy

PreWin SemEval (925) 85.0
Immediate 5 SemEval (925) 81.5
Immediate 10 SemEval (925) 81.8
Paragraph SemEval (925) 81.3

PreWin CoNLL (6,215) 79.7
Immediate 5 CoNLL (6,215) 77.8
Immediate 10 CoNLL (6,215) 78.2
Paragraph CoNLL (6,215) 79.0

PreWin ReLocaR (1,000) 72.5
Immediate 5 ReLocaR (1,000) 64.8
Immediate 10 ReLocaR (1,000) 66.0
Paragraph ReLocaR (1,000) 66.3

Nastase et al. (2013) SemEval (1,000) 86.2

Ensemble PreWin SemEval & CoNLL 86.3

Table 2: Results for the SemEval dataset.

5.6 Dimensionality of Word Embeddings

We found that increasing dimension size (to 100
and 300) did not improve performance, in fact,
accuracy decreased by an average of 3%. The
neural network tended to overfit, even with fewer
epochs, the results were inferior to our default
50-dimensional embeddings. We posit that fewer
dimensions of the distributed word representations
force the abstraction level higher as the meaning
of words must be expressed more succinctly.
We think this helps the model generalise better,
particularly for smaller datasets. Lastly, learning
word embeddings from scratch on datasets this
small (1,000 samples) is possible but impractical,
the performance typically decreases 5% if word
embeddings are not initialised first.

Dataset / Method Literal Non-Literal

SemEval / PreWin 91.9 60.6
SemEval / SOTA 91.6 59.1
ReLocaR / PreWin 86.1 85.6

Table 3: Per class f-scores - the old versus new
SOTA figures (all using the Ensemble method).
Note the model class bias for SemEval.

5.7 F-Scores and Class Imbalance

Table 3 shows the new SOTA f-scores using the
Ensemble method, the previous SOTA on Se-
mEval and the best f-scores for ReLocaR. The
class imbalance inside SemEval (80% literal, 18%



metonymic, 2% mixed) is reflected as a high bias
in the final model. This is not the case with ReLo-
caR and its 49% literal, 49% metonymic and 2%
mixed ratio of 3 classes. The model was equally
capable of distinguishing between literal and non-
literal cases.

5.8 Another baseline

There was another baseline we tested, however, it
was not covered anywhere so far because of its
low performance. It was a type of extreme parse
tree pruning, during which most of the sentence
gets discarded and we only retain 3 to 4 content
words. The method uses non-local (long range)
dependencies to construct a short input sequence.
However, the method was a case of ignoring too
many relevant words and accuracy was fluctuating
in the mid-60% range, which is why we did not re-
port the results. However, it serves to further jus-
tify the choice of 5 words as the predicate window
as fewer words caused the model to underperform.

6 Discussion

6.1 NER, GP and Metonymy

We think the next frontier is a NER tagger, which
actively handles metonymy. The task of labelling
entities should be mainly driven by context rather
than the word’s surface form. If the target entity
looks like “London”, this should not mean the
entity is automatically a location. Metonymy
is a frequent linguistic phenomenon and could
be handled by NER taggers to enable many
innovative downstream NLP applications.

Geographical Parsing is a pertinent use case.
In order to monitor/mine text documents for geo-
graphical information only, the current NER tech-
nology does not have a solution. We think it is in-
correct for any NER tagger to label “Vancouver”
as a location in “Vancouver welcomes you.”. A
better output might be something like the follow-
ing: Vancouver = location AND metonymy = True.
This means Vancouver is usually a location but is
used metonymically in this case. How this infor-
mation is used will be up to the developer. Organ-
isations behaving as persons, share prices or prod-
ucts are but a few other examples of metonymy.

6.2 Simplicity and Minimalism

Previous work in MR such as most of the SemEval
2007 participants (Farkas et al. (2007), Nicolae

et al. (2007), Leveling (2007), (Brun et al., 2007),
(Poibeau, 2007)) and the more recent contribu-
tions used a selection of many of the following
features/tools for classification: handmade trigger
word lists, WordNet, VerbNet, FrameNet, extra
features generated/learnt from parsing Wikipedia
(approx 3B words) and BNC (approx 100M
words), custom databases, handcrafted features,
multiple (sometimes proprietary) parsers, Levin’s
verb classes, 3,000 extra training instances from a
corpus called MAScARA 8 by Markert and Nis-
sim (2002) and other extra resources including the
SemEval Task 8 features. We managed to achieve
higher performance with a small neural network,
minimal training data, a basic dependency parser
and the new PreWin method by being highly dis-
criminating in choosing signal over noise.

7 Conclusions and Future Work

We showed how a minimalist neural approach can
replace substantial external resources, handcrafted
features and how the PreWin method can even
ignore most of the paragraph where the entity is
positioned and still achieve state of the art perfor-
mance in metonymy resolution. The pressing new
question is: “How much better the performance
could have been if our method availed itself of the
extra training data and resources used by previous
works?” Indeed this is the next research chapter
for PreWin.

We discussed how tasks such as Geographical
Parsing can benefit from “metonymy-enhanced”
NER tagging. We have also presented a case
for better annotation guidelines for MR (after
consulting with a number of linguists), which
now means that a government is not of a literal
class, rather it is a metonymic one. We fully
agreed with the rest of the previous annotation
guidelines. We also introduced ReLocaR, a new
corpus for (location) metonymy resolution and
encourage researchers to make effective use of it
(including the additional CoNLL 2003 data subset
we annotated for metonymy).

Further future work will be to test the PreWin
method on an NER task to see if and how it can
generalise to a different classification task and
how the results compare to the SOTA and sim-
ilar methods such as Collobert et al. (2011) us-
8http://homepages.inf.ed.ac.uk/mnissim/mascara/



ing the CoNLL 2003 NER datasets. Word Sense
Disambiguation (Yarowsky, 2010), (Pilehvar and
Navigli, 2014) with neural networks (Yuan et al.,
2016) is another related classification task suitable
for testing PreWin. If it does perform better, this
will be of considerable interest to classification re-
search (and beyond) in NLP.
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Figure 2: The neural architecture of the final model (using www.keras.io). The sentence is Vancouver
is the host city of the ACL 2017. Small, separate sequential models are merged and trained as one. The
50-dimensional embeddings were initiated using GloVe. The right hand input is processed ←, the left
hand input is processed→. This is to emphasise the importance of the words closer to the entity.

Figure 3: Why it is important for PreWin to always skip the conjunct dependency relation.

Figure 4: A lot of irrelevant input is skipped such as “is” and “Peter Pan in an interview.”.

Figure 5: By looking for the predicate window, the model skips many irrelevant words.


