
Kiwi Scientific Acceleration at Large
Incremental Compilation and Multi-FPGA HLS Demo.

David J. Greaves
University of Cambridge Computer Laboratory

Abstract—The Kiwi project revolves around a compiler that
converts C#.NET bytecode into Verilog RTL and/or SystemC. An
alpha version of the Kiwi toolchain is now open source and a user
community is growing.

We will demonstrate an incremental approach to large system
assembly ofHLS and blackbox components, based on an extended
IP-XACT intermediate representation. We show how to address
multi- FPGA designs with object passing between components,
automatic configuration of shared memory maps and automatic
assembly of debugging infrastructure.

We will also demonstrate the use of the unsafe subset of
the C# language for type casting between byte arrays and
structures which is a common coding style for network protocol
implementations. Unsafe programming is also needed for user-
coded memory managers that need to essentially perform address
arithmetic, but such procedures can commonly defeat the memory
pool disambiguation algorithms in static analysis.

I. I NTRODUCTION

Kiwi is a compiler and library and infrastructure for
hardware accelerator synthesis and general support for high-
performance scientific computing. The output is intended for
execution onFPGA or possibly in custom siliconASIC.

We aim to compile a fairly broad subset of theconcurrent
C# language subject to some restrictions:

In Kiwi 1, the prior version, we provided:

• Program can freely instantiate classes but not at run
time - a fixed number of instantiation operations must
be detectable at compile time.

• Array and heap structure sizes must all be statically
determinable (i.e. at compile time).

• Program can use recursion but the maximum calling
depth must be statically determined.

• Stack and heap must have same shape at each
run-time iteration of non-unwound loops. In other
words, every allocation made in the outer loop of
your algorithm must be matched with an equivalent,
manifestly-implicit garbage generation event or ex-
plicit obj.Dispose() or Kiwi.Dispose(Object obj)

in that outer loop.

• Program can freely create new threads but creation
operations statically determined too.

• Manual assembly of blocks from separate compila-
tions is needed by editing wrapper RTL.

In Kiwi 2, (available 3Q2017), we relax the static re-
strictions and allow the size of data structures inDRAM

to be determined at runtime. Kiwi 2, supports three major
compilation modes. These can be mixed in a single design, at a
subsystem granularity, and combined with the new incremental
compilation support based onIP-XACT.

1) The Sequencer major mode is ‘classicalHLS’. For
each thread it makes a custom datapath made up of
RAMs, ALUs and externalDRAM connections and
folds the program onto this structure using some
small number of clock cycles for each iteration of
the inner loops.

2) The Fully-Pipelined Accelerator major mode runs the
whole subsystem every clock tick, accepting new data
every clock cycle, albeit with some number of clock
cycles latency between a particular input appearing
at the output.

3) The SoC Render major mode provides C# access to
an IP-XACT-driven wiring generator with support for
automatic glue logic insertion. This can target multi-
FPGA designs and provides a clean mechanism to
wrap up third-partyIP blocks, such asCAMs.

Specific demonstrables:

1) Incremental compilation with each block described in
extendedIP-XACT.

2) Wrapping third-partyIP blocks so they may be in-
voked as part of theHLS schedule.

3) SmartFSM decomposition - i.e. subroutine call and
return without the state explosion that arises from
total inlining.

4) Automatic partition and sharing of mainDRAM banks
between separate pre-compiled subsystems.

5) Automatic wiring of data paths for method call,
control, abend, debug and memory access.

6) Mixing of hard/softHLS coding style where precise
control over packing of operations to clock cycles
is sometimes required by the programmer to imple-
ment net-level protocols or certain hard-real time
constraints.

7) Automated load balancing over instantiated compo-
nents and automated selection of the number of
mirrorable IP blocks to instantiate.

8) Automated partition betweenFPGAs with marshalling
and instantiation of SERDES or other hardware
bridges.

9) Automatic connection toAXI -4 components.
10) Using unsafe C# for custom memory managers and

network protocol parsing/emitting.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/96707077?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

