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Combating Mutations In Genetic Disease And Drug 

Resistance: Understanding Molecular Mechanisms to 

Guide Drug Design 

Abstract 

Introduction: Mutations introduce diversity into genomes, leading to selective changes and 

driving evolution. These changes have contributed to the emergence of many of the current 

major health concerns of the 21st century, from the development of genetic diseases and 

cancers to the rise and spread of drug resistance. The experimental systematic testing of all 

mutations in a system of interest is impractical and not cost-effective, which has created 

interest in the development of computational tools to understand the molecular consequences 

of mutations to aid and guide rational experimentation. 

Areas covered: Here we discuss the recent development of computational methods to 

understand the effects of coding mutations to protein function and interactions, in particular in 

the context of the 3D structure of the protein. Using these methods, novel insights into the 

mechanistic effects of mutations in disease and drug resistance can be obtained, which can 

be used to guide treatment options and design better, more efficient and personalised 

therapeutics. 

Expert opinion: While significant progress has been made in terms of innovative tools to 

understand and quantify the different range of effects in which a mutation or a set of mutations 

can give rise to a phenotype, a great gap still exists when integrating these predictions and 

drawing causality conclusions linking variants. This often requires a detailed understanding of 

the system being perturbed. However, as part of the drug development process it can be used 

preemptively in a similar fashion to pharmacokinetics predictions, to guide development of 

therapeutics less prone to the development of resistance, and help guide the design and 

analysis of clinical trials, patient treatment and public health policy strategies. 

Keywords 

Mutational Analysis, Genetic Diseases, Drug Resistance, Cancer, Drug Design, Molecular 

Mechanism, Genotype-Phenotype Association. 

Article highlights 

● Scalable and reliable structural based computational approaches are providing 

detailed insight into the molecular consequences of coding mutations. 

● These have been used to guide patient treatment strategies for renal cell carcinoma 

and genetic diseases. 

● Using these methods, drug resistance mutations can be identified and predicted. 

● Used in a preemptive fashion, these can help guide drug development in the search 

for new therapeutics less likely to develop resistance. 

● Mutations can give rise to a phenotype through different molecular mechanisms which 

can be assessed via integration of computational methods.  



1. Introduction 

Changes at the genetic level can result in drastic changes in cellular phenotypes and 

behaviour. These changes can lead to disease, or provide selective advantages that promote 

the development of drug resistance. In particular, non-synonymous single nucleotide 

polymorphisms (nsSNPs) within the protein coding regions of the genome have been strongly 

associated with occurrence and predisposition of human disease and drug resistance, 

sparking great interest from the research community. 

 

The rapid developments in high-throughput sequencing, including dramatic drops in the cost, 

have created vast opportunities to understand the link between our genomes and phenotypes. 

This has opened up the promises of personalised medicines, targeted therapies and targeted 

public health policies. In order to fully realise the potential of these developments, however, 

we still need to improve our understanding of what are the molecular consequences of a given 

mutation, and how do these lead to a given phenotype. 

 

While considerable resources have been invested in the experimental evaluation of genomic 

mutations, characterizing mutation effects is a challenging task and impractical to 

systematically experimentally evaluate all possible mutations for a given protein of interest, 

even more considering the range of different mechanisms in which mutations can affect 

protein function and interactions. Traditional experimental approaches are also not efficient 

enough or don’t achieve scalability required to provide real time guidance into patient 

treatment and public health policy. This has led to significant interest in the development of 

computational approaches to rapidly and accurately evaluate the effects of mutations. Figure 

1 summarises how in silico mutation analysis can be helpful in deconvoluting genotype-

phenotype associations obtained from the wealth of genomic variation generated from 

sequencing efforts, including shedding light into disease predisposition and its mechanisms in 

a molecular level. Such methods can also be used to mutation prioritization for further 

experimental investigation, identification and anticipation of resistant variants and resistance 

hot-spots, knowledge that can be applied in the design of drugs less prone to resistance as 

well as to drive the development of public health policies and aid in establishing more 

appropriate and personalised treatments. 

 

2. Analysing the effects of mutations  

The two most commonly used methods by clinical geneticists to look at the effects of coding 

nsSNP mutations in the human genome are SIFT 1 and Polyphen 2. Other approaches include 

CADD3 and MutationTaster4. These approaches use the protein sequence to evaluate whether 

a given mutation is likely to be pathogenic or not. However, they have been limited by the lack 

of mechanistic information they provide and their over-estimation of mutations likely to be 

pathogenic 5. Structural approaches can complement these analyses by providing detailed 

mechanistic information, but historically have involved a trade-off between scalability and 

molecular level mechanistic information, with molecular dynamics approaches providing 

greater atomic detail, but proving impractical for comprehensive analysis of a large number of 

different mutations. 

 



In the 1990’s, efforts to utilise the expanding structural information available for many proteins 

led to the development of SDM 6 the first method for predicting the effects of mutations on 

protein folding and stability. Subsequent efforts by other groups led to a range of methods to 

predict the same effects, improving upon the accuracy but not considering the other potential 

structural effects mutations might lead to. 

 

This was first addressed through the systematic application of cut-off scanning matrices 7, 8 to 

quantitatively and scalably predict the effects of mutations on the binding affinities to other 

ligands, including other proteins, nucleic acids, small molecules and metal ions9-14. Table 1 

presents a summary of the main structure-based methods proposed over the past years to 

analyse the different effects of mutations on coding regions. While this started to allow the 

deconvolution of the individual molecular changes that might be occurring, the big question 

limiting their application, especially in a clinical setting, was how do these individual effects 

combine to lead to a phenotype? Recent efforts have started to integrate these structural 

effects in order to better understand phenotypes, and have been used to look at a number of 

different human health problems driven by mutations in protein coding regions 14-22. 

 

 

  



Table 1. Recent structure based computational methods for analysing the effects of 

coding mutations. 

Method Web server* Publication 
year 

Reference† 

Effects of Mutations on Protein Stability and Folding 

SDM http://www-cryst.bioc.cam.ac.uk/~sdm/sdm.php  
http://structure.bioc.cam.ac.uk/sdm2  

2011 
2017 

23 
24 

PoPMuSiC 2.1 http://babylone.ulb.ac.be/popmusic 2011 25 

mCSM-Stability http://structure.bioc.cam.ac.uk/mcsm/stability 2014 13 

DUET http://structure.bioc.cam.ac.uk/duet 2014 12 

ENCoM http://bcb.med.usherbrooke.ca/encom.php 2015 26 

MAESTROweb https://biwww.che.sbg.ac.at/maestro/web 2016 27 

STRUM http://zhanglab.ccmb.med.umich.edu/STRUM/ 2016 28 

ELASPIC http://elaspic.kimlab.org 2016 29 

Effects of Mutations on Protein-Protein Binding Affinity 

BeAtMuSiC http://babylone.ulb.ac.be/beatmusic/ 
 

2013 30 

mCSM-PPI http://structure.bioc.cam.ac.uk/mcsm/protein_prot
ein 

2014 13 

mCSM-AB http://structure.bioc.cam.ac.uk/mcsm_ab 2016 9 

MutaBind https://www.ncbi.nlm.nih.gov/projects/mutabind 2016 31 

Effects of Mutations on Protein-Nucleic Acid Interactions 

mCSM-NA http://structure.bioc.cam.ac.uk/mcsm/protein_dna  
http://structure.bioc.cam.ac.uk/mcsm_na 

2014 
2017 

13 
11 

Effect of Mutations on Protein-Small Molecule Interactions 

mCSM-Lig http://structure.bioc.cam.ac.uk/mcsm_lig 2016 14 

CSM-Lig http://structure.bioc.cam.ac.uk/csm_lig  2016 10 

* The URL links to the webserver to run the method. Links current as of April 2017. † The primary 

reference describing the method, and which should be cited if used. 
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3. Using mutation analysis to guide treatment: towards 

personalised treatments 

3.1. Cancers 

By analysing the molecular effects of mutations in common renal cell carcinoma genes, 

including p15 and SDHA, these have been correlated to a patient’s risk of developing renal 

carcinoma. This was best demonstrated by recent studies looking at mutations in the von 

Hippel-Lindau protein (VHL) associated with the development of clear cell renal cell carcinoma 

(ccRCC) 15, 16, 32, 33. By assessing whether a mutation affected the stability of the protein, or 

disrupted interactions to Elongin or HIF-1α, a patient could be classified into high, medium 

and low risk groups that could help guide screening strategies and provide more focussed 

genetic counselling. The available clinical data from over 100 patients was integrated with a 

saturation mutagenesis analysis of all possible mutations on VHL producing Symphony, a 

relational database mapping experimental and predicted risks of mutations to its molecular 

mechanism, aiding the characterization of newly discovered variants. 

 

Understanding cancer genetics has been important for the diagnosis and treatment of a range 

of other cancers34, 35, with increasing interest in how the structural impacts of mutations can 

be used to interpret sequence information. This has led to recent efforts to map the COSMIC 

database onto protein structures. 

 

3.2. Mendelian Genetic diseases 

Alkaptonuria (AKU), also known as ochronosis or black bone disease, is a rare recessive 

inherited genetic disease and first metabolic disorder firstly described over 100 years ago. 

AKU is caused by coding mutations that disrupt structure and function of the enzyme 

homogentisate 1,2-dioxygenase (HGD), related to phenylalanine and tyrosine metabolism. 

HGD gene product folds to form a homo-hexamer disposed as two stacked trimers, quaternary 

structure which is necessary for enzyme function. 

 

Two comprehensive analysis on AKU causing mutations were carried out in an attempt to 

characterize the potential molecular mechanisms on which mutations could disruption enzyme 

activity 17, 18. 

 

Mutation effects on protein monomer stability as well as protein-protein and protein-ligand 

affinity were predicted with the DUET, mCSM-PPI and mCSM-Lig web servers respectively. 

Three mutation clusters emerged from this analysis, regarding the molecular mechanism for 

structure and function disruption: (a) mutations that greatly affected monomer stability, 

therefore preventing oligomer formation; (b) mutations greatly reducing protein-protein affinity 

between the hexamer components, also preventing proper oligomer formation and (c) 

mutations with mild effects on both monomer stability and protein-protein affinity, which 

together caused functional impairment. The structural analysis of mutations in other Mendelian 

diseases, for example Ornithine Transcarbamylase deficiency36, have identified that disease 

causing mutations lead to altered protein stability and interactions. Mutations with these 

molecular consequences occurred in roughly similar proportions to those observed in AKU.  



 

These observations have been validated experimentally and expanded to examine all known 

disease causing mutations for inclusion in the HGD mutation database37, which could 

hopefully guide the development of new, more effective and personalised drugs to treat this 

condition. For example, subsequent efforts have identified molecular stabilizers that reverse 

the effects of the destabilising mutations, analogous to the recent successes on p53. They 

have also been used to classify patients in the SONIA2 clinical trial, as we know that the 

molecular mechanism of a mutation can alter how patients may respond to therapeutics38. 

 

Structural mutation analysis techniques have started to play important roles in the diagnosis 

of rare Mendelian genetic diseases. For example, establishing the genetic basis of epilepsy is 

a fundamental step for disease prognosis and choice of patient treatments38. Recently these 

methods were used to not only identify the genetic cause of a previously undiagnosed or 

characterized human cohesinopathy but also characterize the molecular mechanism, 

subsequently experimentally validated39. The potential for the structural characterisation of 

mutations to impact upon clinical practice will only continue to grow with the increasing 

availability of structural information, and routine use of exome sequencing in patient care. 

 

3.3. Screening for drug resistance in tuberculosis 

The reduction of sequencing costs, and improvements in accuracy and sensitivity, have led to 

interest in using high-throughput sequencing to diagnose patients, and identify drug resistance 

mutations. For infectious diseases such as tuberculosis (TB), where the drug susceptibility 

screening is time consuming and costly, genomic sequencing opens up the possibility of being 

able to more rapidly identify the correct treatment strategies for a patient, but also to guide 

public health policy by following the spread of resistance. Experimental innovations have 

allowed researchers to sequence the TB genome based on a sample of the patient’s sputum, 

and Public Health England is now sequencing all new TB cases in the UK.  

 

Many resistance mutations in TB have been well characterised, but one of the limitations of 

these approaches is how to interpret novel mutations identified within the genome. Due to the 

lack of horizontal gene transfer, TB is an ideal pathogen to apply structural based mutational 

analysis approaches. Looking at mutations in rpoB and katG, which leads to rifampicin and 

isoniazid resistance respectively, clear structural features were identified that correlated 

strongly with the resulting effectiveness of the drugs (MIC) 40. A number of resistance 

mutations have also been observed across protein-protein interfaces, which raises the 

interesting hypothesis that similar to Mendelian disease mutations, those at interfaces might 

be prone to lead to disease and resistance because they have a lower fitness cost associated 

to them than those in the active site that completely disrupt activity 36, 41, 42. 

 

While previous experimental and clinical knowledge about the effect of a given mutation in a 

given strain on drug susceptibility will always provide the gold standard for predicting and 

identifying drug resistance, structural based approaches complement this limited available 

information by providing the power to look at novel mutations. 

 



4. Targeting resistance mutations: towards resistance-resistant 

therapies. 

4.1. HIV protease 1 Inhibitors 

HIV protease catalyses the cleavage of the polypeptide precursors into mature enzymes and 

structural proteins, an essential step in the HIV-1 replication cycle. Inhibitors targeting the HIV 

protease have been in clinical use since 1995 and include darunavir, amprenavir, atazanavir, 

nelfinavir, indinavir, saquinavir and lopinavir 43, 44. 

 

Due to the HIV’s error prone replication, resistance mutations against these inhibitors have 

evolved rapidly and been widely observed clinically, limiting the effectiveness of these 

therapies. These include mutations in the active site (V32I, L33F, I54M and I84V) that through 

changes in hydrogen bonding and Van der Waals interactions between the inhibitors and the 

catalytic site amino acids, can reduce their binding affinities 45, 46.  

 

A better understanding of the effects of mutations on inhibitor binding and their molecular 

mechanism giving rise to resistance are crucial for designing novel drugs, more effectively and 

less prone failure. Computational structure-based methods have an important in tackling this 

challenge. The mCSM suite was successfully used to predict the effect of the aforementioned 

mutations upon the binding affinities. Molecular dynamics simulations have also been used to 

elucidate the effects of the protease inhibitor resistance mutations D30N, I50V, I54M, and 

V82A, providing interesting mechanistic information on how these mutations alter binding 

affinities, including changes in the binding conformation (I50V), conformational changes 

(I54M) and large enthalpic changes reducing binding affinity (V82A) 47. While genomic 

methods have proven unreliable for phenotypic characterisation of HIV 48, this potentially offers 

a means to better leverage this information and suggests ways to guide new designs that 

avoid these common hot-spots. 

 

The last HIV protease inhibitor approved, darunavir, was designed with this in mind and is 

capable of inhibiting the replication of both wild-type and multidrug-resistant strains of HIV-1. 

While earlier inhibitors interacted with the side-chains of Asp-28 and Asp-30, darunavir 

contained a bis-tetrahydrofuranylurethane functional group that made close, tight interactions 

with the main chain of these residues, making only minimal interactions with the side chains 
49. This made darunavir less sensitive to substitutions in either of these positions. Figure 2A 

depicts an alignment between darunavir and a non-peptidic inhibitor GRL-085 and the 

interactions made by the inhibitors (Figures 2B and 2C, respectively). 

 

Many resistant strains against darunavir, however, have emerged. These mutations often lead 

to a change in the conformation of the active site residues, reducing affinity for darunavir, but 

also leading to a significant fitness cost 50. In the effort to avoid these resistance mutations, 

current medicinal chemistry efforts have identified potent inhibitors that differ from the currently 

approved protease inhibitors by the number and proximity of contacts to the main chains of 

these catalytic amino acids 49. These compounds will be hopefully even more effective 

therapeutics that are significantly less prone to develop resistance. 

 



4.2. Influenza neuraminidase inhibitors 

Influenza neuraminidase inhibitors (NAIs) are the major specific anti-influenza drugs used 

clinically, despite the emergence of resistance 51. Currently, the NAIs oseltamivir, zanamivir, 

peramivir and laninamivir (currently approved only in Japan) have been approved to prevent 

and treat influenza A and B 51-54. Many governments have stockpiled resources of these drugs 

in the event of an Influenza outbreak. During the recent H1N1 and H7N9 Influenza outbreaks 

significant resources were focussed on identifying and monitoring potential resistance 

mutations, primarily through genetic screening, with sporadic oseltamivir-resistant 2009 H1N1 

virus infections identified. Thus, understanding the mechanisms of influenza NA drug 

resistance is crucial to develop drugs that can get around mutations and be more successful 

to fight the epidemics and pandemics 51. 

 

A strong correlation has been observed between mutations that affect the slow binding and 

dissociation of these NAIs, and the association with resistance 55. Resistance mutations that 

have been observed to residues E119 and I222 of Influenza A lead to high and slight 

resistance to oseltamivir and zanamivir respectively 56. Figures 3A and 3B highlight these 

resistance hot-spots on the solved complex of the neuraminidase with oseltamivir and the 

interactions established on the wild-type protein. Mutations on E119, include substitutions to 

Gly, Asp, Ala, Ile and Val, lead to the loss of a salt bridge to the inhibitors 57, with zanamivir 

showing less susceptibility due to the presence of the 4-guanidino group that maintains typical 

interactions 51. 

 

Mutations at I222 alter the hydrophobic drug binding pocket. While I222R leads to a reduction 

in oseltamivir, peramivir and zanamivir effectiveness 52, 58, 59, the I222L mutation, which is also 

found in Influenza B, has been reported to not lead to significant drug resistance 51. The other 

common mutation in N2 is R292K, which leads to resistance against oseltamivir and peramivir 

and a slight reduction of zanamivir and laninamivir effectiveness 52. 

 

Following treatment with oseltamivir, the N1 subtype specific substitution H274Y has also 

been observed, leading to resistance to this drug and also peramivir, but not to zanamivir and 

laninamivir 60, 61. The change in volume of the side chains upon this mutation causes the 

carbonyl group of E276 to be shifted into the binding site of the enzyme, disturbing the 

hydrophobic pocket that would accommodate the pentyloxy group of oseltamivir 61. 

 

Therefore in efforts to overcome some of these resistance problems, the guanidino group of 

zanamivir and the hydrophobic pentyloxy group of oseltamivir were merged 60. The guanidino 

group was capable of inhibiting the spread of Influenza A with the hydrogen bond interactions 

between the guanidino group and neuraminidase binding site crucial for the inhibition of the 

enzyme and virus replication 61, 62. However, the inhibition profile of MS-257 and zanamivir 

was comparable against the E119V and I222L mutant strains 51. 

 

The sequence database compiled by the WHO containing lists of amino acid substitutions in 

the neuraminidase has been widely used to identify key mutations and regions, guiding 

genomic analysis of resistance and proving invaluable for testing new compounds targeting 

inhibition of neuraminidase 63, 64. It has also facilitated the use of next-generation sequencing 

to detect resistance markers in the NA gene and predict the effect of drug treatment 65, which 



have been complemented by the use of structural based approaches to identify likely 

resistance mutations. 

 

4.3. Kinase drug development 

4.3.1 Kinase Inhibition 

Abnormal regulation of kinases through occurrence of mutations is responsible for many 

human diseases, including metabolic disorders and certain types of cancer 66. The 

development of small molecule kinase inhibitors has therefore been seen as an attractive 

treatment option 67. Unlike conventional chemotherapy (cytotoxic), molecular targeted 

therapies using kinase inhibitors are designed to act at specific biological points that are 

essential for development of tumour cells 68. 

 
The design of kinase inhibitors has great impact on their efficacy and sensitivity to resistance. 

The first kinase inhibitors developed targeted the ATP binding site via competitive binding. As 

resistance to these inhibitors was identified, other strategies including allosteric and covalently 

bound inhibitors were used to avoid these common resistance mutations 67. 

 

4.3.2 ATP-competitive inhibitors - First generation 

ATP-competitive kinase inhibitors inhibit ATP binding in the catalytic site of the target kinase, 

or bind at alternative sites to induce conformational molecular changes that inhibit the activity 

of the enzyme 68. Imatinib was the first kinase small molecule inhibitor clinically approved by 

the U.S. Food and Drug Administration (FDA) for treatment of chronic myeloid leukemia 69. 

Imatinib binds to the active site of the target enzyme preventing other substrates from 

phosphorylation and consequently inhibiting kinase activity. Figure 4A shows the Abelson 

tyrosine-protein kinase 2 (ABL2) in complex with imatinib. The inhibitor only binds to the 

enzyme when it is in inactive conformation. Another example of an inhibitor with a mechanism 

similar to imatinib is gefitinib which is used for treatment of non-small-cell lung cancer through 

inhibition of the epidermal growth factor receptor (EGFR).  

 

Despite the success of imatinib, studies have shown that patients can develop resistance and 

relapse after initial response to therapy. The effect of mutations linked to imatinib resistance 

were analysed by mCSM-Lig 14, which could correctly identify resistance mutations located 

even quite distal from the active site. mCSM-Lig quantitatively predicts the effect of mutations 

on small molecule affinity. Resistance mutations of competitive inhibitor, however, can exist 

by shifting the preference of the protein towards the natural ligand (ATP), not necessarily by 

dramatically reducing the affinity of the protein to the drug. Interestingly, using a fold-ratio 

between the predicted affinity effect on the natural ligand and the drug, mCSM-Lig was 

successful in identifying the majority of the imatinib resistance mutations. 

 

Several mechanisms of resistance have been observed, including mutations in the BCR-ABL 

kinase domain, with the most common resistant observed the gatekeeper mutant T315I 70. 

This amino acid substitution eliminates a critical oxygen molecule needed for hydrogen 

bonding between imatinib and the ABL kinase, and also introduces a steric clash preventing 

drug binding. The gatekeeper residue determines the relative accessibility of a hydrophobic 

pocket located adjacent to the ATP binding site, which is important for imatinib binding given 

that hydrophobic interactions are crucial for inhibitor binding affinity 67, 71, 72. In fact, mutations 



in gatekeeper residues have also been studied for other kinases in different types of cancer, 

such as the Threonine 790 of EGFR in Lung cancer that mutates to a methionine (T790M) 

increasing the affinity for ATP and making it difficult for the gefitinib to compete for the binding 

site 73-75. Such mechanisms of resistance have contributed to the development of more 

sophisticated generations of inhibitors with mechanisms to overcome resistances conferred 

by these gatekeeper mutations. 

 

4.3.3 ATP-competitive inhibitors - Second Generation 

The second generation of small molecule kinase inhibitors preferentially bind to regions 

outside the ATP binding site, for example to the inactive conformation, also known as DFG-

out, of the protein kinase. The transition from the active conformation to DFG-out conformation 

exposes additional hydrophobic pockets adjacent to the ATP site that can be used by the 

inhibitors to stabilize the kinase in its inactive conformation 76, preventing ATP binding. 

 

Dasatinib is a multitargeted tyrosine kinase inhibitor that targets oncogenic pathways and is a 

more potent inhibitor than imatinib that binds only when the ABL enzyme is in its inactive 

conformation. Dasatinib is also effective against several imatinib-resistant ABL mutations that 

occur in regions that are in contact with imatinib or mutations involved in stabilization of 

specific inactive imatinib-bound conformation of the enzyme. However, the T315I gatekeeper 

mutation is also resistant to dasatinib due crucial hydrogen bond with the T315 side chain 77. 

Figure 4B shows ABL1 in complex with dasatinib. The main residues involved in the binding 

of the drug are highlighted, including T315. 

 

4.3.4 Allosteric inhibitors - Third Generation 

These inhibitors regulate the kinase activity in an allosteric manner, exhibiting a higher degree 

of selectivity due the exploitation of binding sites and regulatory mechanisms that are specific 

to a particular kinase 67. Figure 4C shows the allosteric inhibitor CI-1040 binding MEK1 

immediately adjacent to the ATP binding site. 

 

This class of inhibitors can bind either to the kinase domain (or close to the ATP binding site) 

or to sites outside the kinase domain. These range of options for inhibiting the catalytic activity 

of kinases represent clear advantages over the ATP-competitive inhibitors 78, 79. However, the 

lack of methods to identify such inactive conformations or binding modes in kinases to drive 

the development of this type of inhibitor still remains a challenge 80. Inhibitors that disrupt 

formation of the higher order oligomers, which play an important role in achieving high signal-

to-noise throughout the signal transduction process, have also proven to be effective kinase 

inhibitors that avoid the common ATP resistance mutations 81-83. 

 

ABL001, also known as Asciminib, is a potent and selective third generation kinase inhibitor 

with activity against chronic myeloid leukemia and Philadelphia chromosome-positive (Ph+) 

acute lymphoblastic leukemia. ABL001 binds to the myristoyl pocket of ABL1 kinase leading 

to a formation of an inactive kinase conformation84. Recent studies have shown that treatment 

with ABL001 combined with ATP-competitive inhibitors can help prevent resistance in chronic 

myeloid leukemia85, 86. 

 

4.3.5 Covalent inhibitors - Fourth Generation 

Recent studies 87, 88 described a fourth class of kinase inhibitors that are capable of forming 

covalent bonds to the kinase active site, most frequently by reacting with a nucleophilic 



cysteine residue. Unlike first and second generation inhibitors, the fourth generation blocks 

the binding of ATP irreversibly preventing the kinase from being activated. Figure 4D shows 

the fourth generation inhibitor Neratinib (HKI-272) in complex with EGFR kinase T790M 

mutant, making a covalent bond to Cysteine 797. 

 

4.3.6 Tackling kinase inhibitor resistance 

Much of the effort to target and avoid resistance against common kinase inhibitors has 

focussed on the development of inhibitors with different modes of action. This has in part been 

driven by the lack of selectivity of the early inhibitors that targeted the ATP binding site- which 

is highly conserved among many proteins. Structural methods such as mCSM-lig and 

molecular dynamics approaches have been able to correctly identify and predict likely 

resistance mutations, which could also potentially facilitate the design of new inhibitors 

avoiding these resistance hot-spots, similar to the efforts in anti-viral inhibitor design. However, 

more practically, as sequencing of cancers is becoming more routine, these methods offer the 

opportunity to help guide the selection of the most effective therapeutics- facilitating the 

widespread implementation of personalised medicine. 

 

The advent of fast and precise computational methods to predict effect of mutations can be 

leveraged to assist and guide the development of new drugs. Since resistance can emerge 

from different molecular mechanisms, current predictors can be integrated in novel drug 

resistance identification methods that can then be used in large-scale screening to identify 

better protein targets, identify and avoid potential resistance hot-spots as well as optimize 

ligand affinity and selectivity, driving the experimental design of better, more potent and 

efficacious drugs. 

 

5. Expert Opinions 

While significant progress has been made in terms of innovative tools to understand and 

quantify the different range of effects in which a mutation or a set of mutations can give rise to 

a phenotype, a great gap still exists when integrating these predictions and drawing causality 

conclusions linking variants, compounded by the need for detailed information regarding the 

system/protein. The availability of scalable, effective computational methods to assess 

mutation effects creates new opportunities of development of such integrated approaches and 

decipher complex genomic background patterns, shedding light into their role in the 

emergence of a given phenotype and molecular mechanisms of action. This capability can 

then be used to systematically study, for instance, how drug resistance emerges on specific 

drug targets, aiding the drug development process. Initial efforts on that matter have focussed 

on preparing predictors and databases for specific diseases and proteins, however greater 

effort needs to be invested in making these predictors user friendly, integrated and accessible 

to geneticists. This is particularly important considering that most structural information is a 

snapshot of a protein conformation, but how mutations affect the equilibrium between different 

states can play a very important role in disease and drug resistance 89. A complementary and 

important effort refers to the collection and curation of experimental data regarding mutation 

effects linked to phenotype in comprehensive databases. This information forms the evidence 

set necessary for the proposal of novel computational methods as well as the improvement of 

current approaches. Initiatives like the Platinum database 90, the first curated online database 



linking effects of mutations on protein-small molecule affinity for complexes with known 

structures, are fundamental. 

 

Despite this limitation, these methodologies have already provided invaluable insights into 

many diseases. Current genomic analyses are dependent upon pre-existing information; 

either extensive genomic or biochemical analyses. This limits the insight and information that 

can be drawn regarding novel mutations. As these structural methods become more widely 

used, they will complement traditional analyses methods to provide much greater power from 

genomic analysis. 

 

In the shorter term, the ability of these methods to predict likely resistance mutations before 

they arise offers enormous potential throughout the drug development process. Peter 

Coleman first suggested that the design of inhibitors that resemble transition state analogues 

should be more resilient to the development of resistance. Out of this Zanamivir was 

developed, the first successful structure guided drug development, but as we have seen over 

the intervening years resistance against Relenza has been widely reported, although it has 

been less prone to resistance than Oseltamivir.  

 

During the development of a recent class of Mycobacterium tuberculosis IMPDH inhibitors, 

structural guided mutational prediction was used to identify likely resistance mutations, defined 

in this case as point mutations that disrupted inhibitor binding, but did not affect NAD binding, 

protein solubility or formation of the active tetramer. One mutation in particular, Y487C, was 

highlighted, and subsequently confirmed to be one of the few mutations to arise during 

resistance screening 91. Subsequent drug development attempts avoided this resistance hot-

spot and were active against the Y487C mutant 92. This also enables the analysis of multiple 

mutations, some of which have been characterised to facilitate the development of resistance. 

In many cases, these seem to increase protein stability or natural ligand binding, which can 

be decreased due to the primary resistance mutation. 

 

While current medicinal chemistry efforts are currently normally retroactive - we observe which 

mutations arise in the lab or clinic and then design new generations of inhibitors to target or 

avoid them - the power of computational mutational analysis enables us to pre-emptively 

identify likely resistance hot-spots, and to take this information under consideration when 

optimising candidate molecules. In a similar fashion to how experimental structures93-97 and 

pharmacokinetic predictors are now widely used to guide medicinal chemistry efforts 98, 

playing a role in dramatically reducing failure rates of clinical trials due to these problems. The 

use of in silico mutational analysis in the development of new therapeutics will hopefully avoid 

likely resistance mutations. While the evolutionary forces and the constant selective battle 

makes the development of resistance somewhat inevitable, this will hopefully aid in the 

development of the next generation of therapeutics that are more resistant to the development 

of resistance. 
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Figures 

 
Figure 1. The use of in silico mutational analysis to tackle drug resistance and genetic diseases. Sequencing efforts 

generate a wealth of genomic variation. Computational mutation analysis can help deconvolute genotype-

phenotype associations aiding in understanding the molecular mechanism of diseases and disease predisposition 

as well as in mutation prioritization for experimental validation, identification of resistant variants and resistance 

hot-spots, which can then fed into drug design pipelines as well drive the development of public health policies and 

choice of more appropriate and personalised treatments.  

 

 
  



Figure 2. HIV-1 protease in complex with the non-peptidic inhibitor GRL-085 and darunavir (PDB: 5COO and 

4HLA, respectively). A shows the two aligned structures of HIV-1 protease in complex with GRL-085 (light gray) 

and darunavir (dark gray). B depicts the main interactions between the key residues of the binding site of HIV-1 

protease and darunavir. C shows the interactions between GRL-085 and the wild-type protease, calculated by 

Arpeggio 99. 

 

 
 

 
  



Figure 3. Neuraminidase subtype 2 of Influenza A in complex with Oseltamivir (PDB: 4GZP). A shows the main 

resistance hot-spot residues Glu119, Asp151 and Ile222 shown as sticks. The two negatively charged residues 

interact with Oseltamivir via ionic interactions shown as dashes, as calculated by Arpeggio 99. Arg292, another 

important binding residue is also shown. B shows the four aforementioned residues and the oseltamivir molecule 

in a surface perspective. 
 

 
  



Figure 4. Four generations of kinase inhibitors. A shows ABL2 in complex with first generation kinase inhibitor 

Imatinib (PDB: 3GVU). Imatinib binds to the active site of the enzyme preventing other substrates from 

phosphorylation only when the ABL2 is in inactive conformation. B shows ABL1 in complex with second generation 

inhibitor Dasatinib (PDB: 2GQG). Dasatinib is a multitargeted tyrosine kinase inhibitor more potent than Imatinib 

due to its capability of binding to the enzyme in inactive imatinib-bound conformation, also effective against several 

imatinib-resistant mutations, except for T315I gatekeeper mutation as a result of a crucial hydrogen bond with T315 

(underlined) for the stabilization of the complex. C shows MEK1 in complex with CI-1040 allosteric kinase inhibitor 

adjacent to the ATP binding site of the enzyme (PDB: 1S9J). The third generation of kinase inhibitors can bind 

either to the kinase domain or to other sites giving them clear advantage over ATP-competitive in first and second 

generation. D shows EGFR mutant T790M/L858R in complex with fourth generation kinase inhibitor Neratinib 

(PDB: 3W2Q). Unlike first and second generation inhibitors, this fourth generation inhibitor binds covalently to the 

kinase active site, blocking ATP binding. 

 

 
 

 


