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ABSTRACT 1 
 2 
Circadian disruption has been linked to carcinogenesis in animal models, but the evidence in 3 

humans is inconclusive. Genetic variation in circadian rhythm genes provides a tool to 4 

investigate such associations. We examined associations of genetic variation in nine core 5 

circadian rhythm genes and six melatonin pathway genes with risk of colorectal, lung, ovarian 6 

and prostate cancers using data from the Genetic Associations and Mechanisms in Oncology 7 

(GAME-ON) network. The major results for prostate cancer were replicated in the Prostate, 8 

Lung, Colorectal and Ovarian (PLCO) cancer screening trial, and for colorectal cancer in the 9 

Genetics and Epidemiology of Colorectal Cancer Consortium (GECCO). The total number of 10 

cancer cases and controls was 15,838/18,159 for colorectal, 14,818/14,227 for prostate, 11 

12,537/17,285 for lung and 4,369/9,123 for ovary. For each cancer site, we conducted gene-12 

based and pathway-based analyses by applying the summary-based Adaptive Rank Truncated 13 

Product method (sARTP) on the summary association statistics for each SNP within the 14 

candidate gene regions. Aggregate genetic variation in circadian rhythm and melatonin pathways 15 

were significantly associated with the risk of prostate cancer in data combining GAME-ON and 16 

PLCO, after Bonferroni correction (Ppathway<0.00625). The two most significant genes were 17 

NPAS2 (Pgene=0.0062) and AANAT (Pgene=0.00078); the latter being significant after Bonferroni 18 

correction. For colorectal cancer, we observed a suggestive association with the circadian rhythm 19 

pathway in GAME-ON (Ppathway=0.021); this association was not confirmed in GECCO 20 

(Ppathway=0.76) or the combined data (Ppathway=0.17). No association was observed for ovarian and 21 

lung cancer. These findings support a potential role for circadian rhythm and melatonin pathways 22 

in prostate carcinogenesis. Further functional studies are needed to better understand the 23 

underlying biologic mechanisms.  24 
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INTRODUCTION 1 

Circadian rhythm is driven by an internal biological clock, which enables humans to sustain an 2 

approximate 24-hour cycle of biological processes
1
, and regulates diverse cancer-related 3 

biological functions such as metabolism, immune regulation, DNA repair and cell cycle control
2
. 4 

Disruption of circadian rhythm has been linked to carcinogenesis at the system, cell and 5 

molecular levels
2
. Based on sufficient evidence in experimental animals for the carcinogenicity 6 

of light exposure during the biological night, and limited epidemiological studies showing 7 

increased risk of breast cancer among female nightshift workers and flight attendants employed 8 

at least ten years, shift work with disrupted circadian rhythm has been categorized as a probable 9 

carcinogen to humans by the International Agency for Research on Cancer 
3
. However, evidence 10 

for cancers other than breast is limited. Increased cancer risks in other organs have been 11 

observed in mouse models with ablated circadian rhythm genes, such as the blood
4
, liver

4
, ovary 12 

4
, intestine

5
, colon 

5
 and skin 

6
, possibly due to constitutively elevated cell proliferation 

6
, 13 

impaired DNA repair 
7
 and apoptosis 

8
, and inefficient immune response 

9, 10
. There is growing 14 

evidence from epidemiologic studies that other types of cancers including prostate 
11-14

, colon 
15

 15 

and non-Hodgkin lymphoma
16

 also may be associated with rotating and night shift work.   16 

A few candidate gene studies have examined associations between genes involved in 17 

circadian processes and several cancer sites 17-29
, especially breast 

21, 24-26, 29
. In this study, we 18 

examined associations of the core genes involved in the circadian rhythm and melatonin 19 

pathways with the risk of prostate, colorectal, lung and ovarian cancer in population of European 20 

descent, taking advantage of the large study populations from the Genetic Associations and 21 

Mechanisms in Oncology (GAME-ON) GWAS consortia. We conducted a pathway-level 22 
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analysis, aggregating association evidence across multiple genes. Potentially interesting findings 1 

were further replicated in independent populations of European descent.  2 

 3 

METHODS 4 

Study populations  5 

Our initial analyses used data from 20 GWAS studies on four common cancer sites within the 6 

National Cancer Institute GAME-ON Network (http://epi.grants.cancer.gov/gameon/)
30

, 7 

including 12,537 lung cancer cases and 17,285 controls from the Transdisciplinary Research for 8 

Cancer of Lung (TRICL) consortium; 5,100 colorectal cases and 4,831 controls from the 9 

ColoRectal Transdisciplinary Study (CORECT); 10,218 prostate cancer cases and 11,286 10 

controls from the Elucidating Loci in Prostate Cancer Susceptibility (ELLIPSE) consortium; as 11 

well as 4,369 ovarian cancer cases and 9,123 controls from the Follow-up of Ovarian Cancer 12 

Genetic Association and Interaction Studies (FOCI) (Table 1). For colorectal and prostate cancer, 13 

potentially interesting findings were carried forward and replicated in additional independent 14 

data: 10,738 cases and 13,328 controls from the Genetics and Epidemiology of Colorectal 15 

Cancer Consortium for colorectal cancer (GECCO) 
31

; 4,600 cases and 2,940 controls from the 16 

Prostate, Lung, Colorectal and Ovarian (PLCO) cancer screening trial for prostate cancer 32
. All 17 

participants were of European descent, and most of the studies were conducted using Illumina 18 

genotyping platforms (Table 1). Details of the genotyping and quality control steps were 19 

published previously 30-32
. All participating studies obtained approval from the institutional ethics 20 

review board, and informed consents were obtained from each study participant by the individual 21 

study coordinating center. 22 

http://epi.grants.cancer.gov/gameon/
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 1 

Candidate genes 2 

For the circadian rhythm pathway, we included nine well-established core circadian rhythm 3 

genes that generate the mammalian circadian rhythm
33

 and were selected for a previous cancer 4 

study to represent the circadian rhythm pathway 
24

: CLOCK and its paralogue NPAS2 (neuronal 5 

PAS domain protein 2); ARNTL (aryl hydrocarbon receptor nuclear translocator-like; a.k.a. 6 

Bmal1); CKIε (casein kinase I ε; a.k.a. CSNKIE); Cryptochrome 1 (CRY1); CRY2; and three 7 

Period homologs (PER1, PER2 and PER3).  8 

Due to a close integration of melatonin to the circadian system, we also included four 9 

genes involved in melatonin biosynthesis (http://www.kegg.jp/kegg-bin/show_module?M00037) 10 

34
 and two melatonin receptor genes: arylalkylamine N-acetyltransferase (AANAT, a gene 11 

encoding the rate limiting enzyme in the melatonin biosynthesis), TPH1 (tryptophan hydroxylase 12 

1), TPH2, and DDC (aromatic-L-amino-acid decarboxylase); MTNR1α (melatonin receptor 1α), 13 

and MTNR1β. Another gene involved in the melatonin biosynthesis, ASMT (Acetylserotonin O-14 

methyltransferase) was not included because we have no access to the data of the x chromosome 15 

where this gene is located. 16 

 17 

Statistical analyses  18 

The analytical methods of original studies and the cancer-specific results have been described 19 

previously 
31, 32, 35-38

 and summarized in Table 1. Briefly each original study provided log odds 20 

ratios and standard errors on each SNP and each cancer risk, mostly adjusting for age, principal 21 
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components (PCs), and sex (if applicable). For each cancer site, fixed-effect meta-analyses were 1 

conducted to combine summary association statistics of participating studies by the cohort 2 

consortium. The genotypes were imputed based on data of European populations from the 1000 3 

Genomes Project (March 2012 reference panel) 
39

, using either MaCH 
40

 or IMPUTE 
41

. We 4 

extracted both the genotyped and imputed SNPs of the genetic regions from 20 kb upstream to 5 

10 kb downstream of each candidate gene.  6 

We conducted gene- and pathway-based meta-analyses using the summary based 7 

adaptive rank truncated product (sARTP) method, which combines SNP-level association 8 

evidence across SNPs in a gene or a pathway 42
. The sARTP method automatically adjusts for 9 

the size of the gene (i.e., number of SNPs in a gene) and the size of the pathway (i.e., number of 10 

genes in a pathway) through a resampling procedure. The final gene- and pathway-level p-values 11 

were estimated from the resampled null distribution through one million resampling steps. The 12 

sARTP method accounts for the linkage disequilibrium (LD) between SNPs to maintain proper 13 

type I error. The LDs between SNPs were estimated from the 503 European subjects (CEU, TSI, 14 

FIN, GBR, IBS) in the 1000 Genome Project (phase 3, v5, 2013/05/02) 
39

. We excluded SNPs 15 

with MAF < 5% and applied LD filtering to highly correlated SNP pairs (r
2
 > 0.95). We also 16 

conducted a sensitivity analysis using a more stringent threshold for LD pruning (r
2
 > 0.8).  17 

For prostate and colorectal cancer that have pathway p-values less than 0.05, we 18 

replicated our findings in PLCO and GECCO. We also repeated the gene- and pathway-based 19 

analyses on data combing the initial and replication studies.  20 

To eliminate the impact of potential systematic biases in SNP-level association, we 21 

adjusted for the genomic control inflation factor (lambda=1.015) for data from the CORECT 37, 42
. 22 

The genomic control inflation factors for GECCO, ELLIPSE, PLCO, TRICL and FOCI were 23 
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close to or smaller than 1.0, thus were not adjusted in our analyses. To take potential false-1 

positives from multiple-comparisons into account (two pathways, or 15 genes) for each of the 2 

four cancer sites, pathways with p-value < 0.00625 (0.05/ (2×4)) and genes with p-value < 3 

0.00083 (0.05/ (15×4)) were considered significant. 4 

For prostate cancer, where we found significant associations with genetic variations of 5 

circadian and melatonin pathways after the Bonferroni correction, secondary analyses for 6 

aggressive prostate cancer were conducted at the gene and pathway level, using data combining 7 

six studies of ELLIPSE and PLCO (4,446 cases and 12,724 controls). For the SNPs with the 8 

smallest p-values in the genes with Pgene≤0.05 on the risk of overall prostate cancer, we also 9 

checked their SNP associations with aggressive prostate cancer. 10 

 11 

RESULTS 12 

We found suggestive associations between genetic variation in both circadian rhythm and 13 

melatonin pathways and prostate cancer risk based on data of GAME-ON, with (Ppathway=0.014 14 

and 0.024, respectively (Table 2). These associations were not statistically significant in PLCO 15 

alone (Ppathway=0.28 and 0.21), but were enhanced in the combined data of GAME-ON and 16 

PLCO (Ppathway=0.0016 and 0.0060) (Table 2), both being significant after Bonferroni correction. 17 

NPAS2 in the circadian rhythm pathway (Pgene=0.0062) and AANAT (Pgene=0.00078) in the 18 

melatonin pathway contributed the most to the association with the risk of prostate cancer, with 19 

AANAT survived Bonferroni correction (Table 3). Other genes with the gene-level p-values at 20 

borderline significance were CLOCK (Pgene=0.021), CRY2 (Pgene=0.043), DDC (Pgene=0.050), 21 

PER2 (Pgene=0.060), and PER1 (Pgene=0.063) (Table 3). A sensitivity analysis with more 22 
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stringent threshold in LD pruning (r
2 

> 0.8) produced consistent pathway-level and gene-level 1 

results (data not shown). SNPs with p-value < 0.01 in NPAS2 and AANAT are presented in Table 2 

4.   3 

With a much smaller number of aggressive prostate cancer cases (4,446 cases, 12,724 4 

controls), we did not observe significant association of aggressive prostate cancer with either 5 

pathway (Ppathway=0.29 and 0.66), but we observed a suggestive association with PER3 6 

(Pgene=0.03) (Supplementary Table 2). For SNPs that have the smallest p-values in genes 7 

CLOCK, CRY2, NPAS2, AANAT, and DDC (Pgene  0.05 with overall prostate cancer), the log 8 

odds ratios (β) estimated for overall and aggressive prostate cancer are comparable and have the 9 

same direction (Supplementary Table 3).     10 

For colorectal cancer (Table 2), we observed a suggestive association with circadian 11 

rhythm pathway in GAME-ON (Ppathway=0.021), but not in GECCO (Ppathway=0.76) or in the 12 

combined data (Ppathway=0.17) (Supplementary Table 4). No association was observed for ovarian 13 

cancer and lung cancer (Table 2, Supplementary Table 5). 14 

15 
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DISCUSSION 1 

We found common genetic variations in the circadian rhythm and melatonin pathways were 2 

associated with prostate cancer risk in the population of European descent. These associations 3 

were initially identified in the GAME-ON consortium, and further confirmed in the data 4 

combining the GAME-ON and PLCO studies. Our findings suggest that the circadian rhythm 5 

and melatonin pathways may be involved in prostate carcinogenesis.  6 

Circadian disruption has been suggested as a prostate cancer risk factor based on 7 

epidemiological observation of increased prostate cancer risks among shift workers
11-14

, and 8 

countries with more light exposure at night
43

. In support of this hypothesis, three genetic 9 

epidemiology studies found suggestive associations between SNPs in core circadian genes and 10 

prostate cancer 
19, 23, 27

 or aggressive prostate cancer 23
 in Caucasian 23, 27

 and Asian 19 populations, 11 

although these studies had limited power (sample sizes < 2600) to adjust for multiple 12 

comparisons. By taking advantage of the large study population from cancer consortia and using 13 

a novel analytical tool, our study provided further evidence that the circadian rhythm and 14 

melatonin pathways may be involved in prostate carcinogenesis in humans.  15 

Although multiple genes are likely to contribute to pathway association signals, the most 16 

significant genes were NPAS2 and AANAT. Previous functional studies suggest that NPAS2 plays 17 

an important role in DNA damage response, cell cycle control and apoptosis by activating 18 

diverse downstream genes
44, 45

, consistent with a role as a tumor suppressor. In line with our 19 

finding, the Thr allele of rs23051560 (P=7.5×10
-4

), a non-synonymous SNP (Ala394Thr) in the 20 

NPAS2, has been suggestively associated with lower risks of breast cancer
28

, prostate cancer
19

, 21 

and NHL
46

, three tumors that have been linked with circadian disruption in epidemiologic studies. 22 
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This SNP has also been suggested to modify the association of night shift work and breast cancer 1 

risk, with Thr carriers more vulnerable to shift work effect
24

. AANAT (aka., serotonin N-2 

acetyltransferase) is the rate limiting and originating enzyme for melatonin synthesis, through 3 

which the suprachiasmatic nucleus via a sympathetic multisynaptic pathway regulates rhythmic 4 

melatonin synthesis 47
.  Melatonin acts as a chronobiotic molecule, optimizing phase 5 

relationships between oscillators in both central nervous system and peripheral organs, 6 

reinforcing circadian rhythms of body functions, and entraining body rhythms to the 7 

environmental light phase 
48, 49

. 8 

A mechanism linking the circadian system, melatonin and prostate cancer may operate 9 

through the neuroendocrine gonadal axis. The pineal gland and melatonin have a role in the 10 

inhibition of the neuroendocrine gonadal axis
50

; while sex hormones, such as androgen, are 11 

essential on prostate development. Androgen has been a prostate cancer inducer in animals 
51

, 12 

and associated with increased prostate cancer risk in humans 
52, 53

. Therefore, it is possible that 13 

an increase in androgen, subsequent to disrupted circadian rhythm and/or suppressed melatonin 14 

54
, may contribute to prostate carcinogenesis. Alternatively, melatonin may have a direct anti-15 

tumor effect, by controlling the p53 pathway, or its antimitotic, antioxidant and immune-16 

modulatory activities
1
. Both in vitro and in vivo studies provide evidence that melatonin inhibits 17 

prostate tumor growth
55, 56

, whereas melatonin suppression in rats increases tumor growth in a 18 

dose-dependent manner
50

. In agreement with the melatonin hypothesis, lower urinary 6-19 

sulfatoxymelatonin has been associated with an increased risk of advanced prostate cancer in a 20 

prospective study 57
. 21 
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 Apart from mechanisms related to melatonin, the circadian clock may control cell 1 

proliferation and apoptosis through regulating the expression of genes involved in these 2 

processes at the transcription or translation level, such as c-Myc and Mdm2, Trp53 and Gadd45, 3 

cyclins etc. 
2
 4 

We did not find any significant association for the risk of aggressive prostate cancer at 5 

the gene or pathway level. Given a much smaller number of aggressive prostate cancer cases, 6 

and the fact that genetic effects are generally small on cancer risk, the statistical power of gene- 7 

and pathway-based analyses was limited. However, we observed a suggestive association with 8 

PER3 (Pgene=0.03); a SNP (rs1012477) of this gene has been associated with prostate cancer 9 

aggressiveness in a previous report
27

. For SNPs with the smallest p-values associated with 10 

overall prostate cancer within CLOCK, CRY2, NPAS2, AANAT, and DDC, the estimated effect 11 

sizes for the risk of overall and aggressive prostate cancer are comparable and have the same 12 

direction. Given the poor prognosis and public health impact of aggressive prostate cancer, more 13 

focused study is needed for the role of circadian rhythm genes and prostate cancer 14 

aggressiveness.  15 

Our study did not find associations in the circadian rhythm or melatonin pathway genes 16 

with colorectal, lung or ovarian cancer. Several important factors need to be considered before 17 

concluding that circadian rhythm has no effect on these cancer sites. First, gene functions differ 18 

by organs and although we studied the core genes in each pathway, there might be other critical 19 

circadian-related genes missed in this study. RORα, for example, suggested as an important 20 

regulator for homeostasis in intestinal epithelium
58

, as well as newly identified circadian genes 
59

 21 

are worthwhile to be evaluated in the future. Second, the statistical power of gene- and pathway-22 

http://www.ncbi.nih.gov/LocusLink/LocRpt.cgi?l=17869
http://www.ncbi.nih.gov/LocusLink/LocRpt.cgi?l=17246
http://www.ncbi.nih.gov/LocusLink/LocRpt.cgi?l=22059
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based analyses for studying ovarian cancer may be limited by small sample size compared with 1 

other cancer sites considered in this paper. Third, for lung and colorectal cancer, where 2 

environmental and life style risk factors play a dominant role, the contribution of disrupted 3 

circadian rhythm might be small and/or may be indirectly associated with cancer through 4 

modifying the toxicity of environmental carcinogens 
60

, or altering the DNA damage response
6, 7

. 5 

Therefore, incorporating data on environmental carcinogens and measures of toxicity into the 6 

study of circadian rhythm and cancer may be important. Fourth, although genetic variation does 7 

not suffer from confounding bias by other life style factors, it may have a smaller impact on 8 

circadian rhythm disruption than light exposure at night and night shift work. Therefore, future 9 

studies of both environmental or life style inducers of circadian disruption coupled with 10 

mechanistic or genetic marker studies in circadian rhythm pathways are needed. 11 

In this study, like other candidate pathway-based analyses 
61

, we assigned SNPs to each 12 

of the circadian genes based on genomic location. Approaches that assign SNPs to a gene based 13 

on functionality such as a genetic influence on gene expression or expression quantitative risk 14 

loci (eQTL) might reveal more signals, but this type of approach relies heavily on the known 15 

eQTL function of the SNPs in the tissue of interest and, in fact, the eQTL effects on gene 16 

expression are typically tissue-specific 
62

. We attempted to evaluate the involvement of the top 17 

prostate cancer risk SNPs of AANAT and NPAS2 as functional eQTLs using RNA-seq and SNP 18 

data from ten normal brain tissues (GTEx). We observed modest eQTL effects on AANAT and 19 

NPAS2 mRNA levels by the top risk SNPs, but no risk eQTL survived correction for multiple 20 

comparisons (data not shown). Importantly, published data suggest that the target tissue for 21 

melatonin synthesis is the pineal gland, while for circadian rhythm it is the superchiasmatic 22 

nucleus (SCN) 
1
.  RNA-seq data for these normal brain tissues are not available in GTEx or to 23 
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our knowledge from any other publically available database. Thus, whether the observed prostate 1 

cancer risk SNPs of AANAT and NPAS2 circadian genes are functional eQTLs, and whether the 2 

changes in mRNA levels in the pineal gland and SCN are associated with prostate cancer 3 

susceptibility remains to be determined.  4 

 5 

Our study has many strengths. Using genetic markers to examine circadian hypotheses 6 

minimizes the bias due to potential confounders, and therefore is a valuable complement to 7 

traditional epidemiologic studies (e.g., in night shift workers). We used an analytical tool that 8 

combines signals across SNPs within genes and pathways, and therefore found significant results 9 

that would have been detectable by single SNP analysis. To our knowledge, the sample sizes in 10 

our study are the largest to date for colorectal, lung, and prostate cancer. The data quality of the 11 

included GWAS studies is well established. To control potential false positive findings, we 12 

adjusted for multiple comparisons, and replicated our findings in independent data. 13 

In summary, our study suggests that common genetic variation in and around circadian 14 

rhythm and melatonin pathways may be involved in human prostate carcinogenesis, in support of 15 

circadian disruption as a potential human carcinogen.  16 
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Table 1. Summary of study populations and designs for each cancer site 
  Consortium 

Name 

Cancer 

Site 

No. 

study
*
 Cases Controls Genotyping Platform 

Reference 

Panel Covariants 

Initial data of GAME-ON 

      CORECT  Colorectal 6 5100 4831 Affymetrix Axiom 1000 Genome
†
 age, sex, first 4 principal components (PCs) 

37
   

TRICL  Lung 6 12537 17285 Illumina 317K/550K/610K 1000 Genome
†
 age, sex, PCs 

38
  

FOCI   Ovary 3 4369 9123 

Illumina 

317K/370K/550K/610K/670K/2.5M 1000 Genome
†
 study, first 5 PCs 

36
  

ELLIPSE   Prostate 5 10218 11286 Illumina, Affymetrix 1000 Genome
†
 age, study, PCs 

35
  

        Replication data 

       PLCO   Prostate 1 4600 2940 Illumina HumanOmni2.5 Beadchip 1000 Genome
†
  age, 2 significant PCs 

32
   

GECCO  Colorectal 21 10738 13328 

Illumina 

550K/610K/CytoSNP/Omni; 

Affymetrix for one study 1000 Genome
†
   

age, sex (when applicable), center/region 

(when applicable), batch (when applicable), 

smoking status (when applicable), first 3 PCs 
31

 
*Contributed studies are listed in the supplementary table 1; †

1000 Genome March 2012 reference panel
  1 

CORECT: ColoRectal Transdisciplinary Study 2 

TRICL: Transdisciplinary Research for Cancer of Lung 3 

FOCI: Follow-up of Ovarian Cancer Genetic Association and Interaction Studies 4 

ELLIPSE: Elucidating Loci in Prostate Cancer Susceptibility 5 

PLCO: Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial 6 

GECCO: Genetics and Epidemiology of Colorectal Cancer Consortium7 
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Table 2. Pathway results for each cancer site 1 

 
 

Circadian rhythm pathway Melatonin pathway 

Cancer Data N.SNP P-value N.SNP P-value 

Prostate GAME-ON 520 0.014 258 0.024 

 

PLCO 521 0.28 223 0.21 

 

Combined data 521 0.0016
*
 263 0.0060

*
 

Colorectal GAME-ON 653 0.021 352 0.24 

 
GECCO 670 0.76 376 0.066 

 
Combined data 842 0.17 459 0.091 

Lung GAME-ON 510 0.71 243 0.22 

Ovary GAME-ON 521 0.14 263 0.26 
*
Statistically significant after Bonferroni correction (p < 0.05/8=0.00625) 2 

P-value <0.05 in bold3 
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 Table 3. Pathway-based and gene-based results between circadian rhythm-melatonin pathway genes and prostate cancer 1 

    GAME-ON   PLCO   Combined data 

  

(10218 cases, 11286 controls) 

 

(4600 cases, 2941 controls) 

 

(14818 cases, 14227 controls) 

Gene Chr N.SNP P-value   N.SNP P-value   N.SNP P-value 

Circadian rhythm pathway 

       ARNTL 11 80 0.41 

 

80 0.40 

 

80 0.29 

CK1E 22 48 0.67 

 

48 0.11 

 

48 0.30 

CLOCK 4 24 0.013 

 

24 0.44 

 

24 0.021 

CRYI 12 35 0.27 

 

35 0.87 

 

35 0.55 

CRY2 11 20 0.53 

 

20 0.073 

 

20 0.043 

NPAS2 2 167 0.051 

 

167 0.14 

 

167 0.0062 

PER1 17 29 0.24 

 

30 0.12 

 

30 0.063 

PER2 2 50 0.090 

 

50 0.57 

 

50 0.060 

PER3 1 67 0.020   67 0.94   67 0.24 

Pathway-level 520 0.014   521 0.28   521 0.0016
*
 

          Melatonin pathway 

        AANAT 17 34 0.071 

 

38 0.043 

 

38 0.00078
*
 

DDC 7 84 0.033 

 

77 0.63 

 

84 0.050 

MTNR1A 4 35 0.041 

 

18 0.52 

 

35 0.35 

MTNR1B 11 23 0.94 

 

7 0.92 

 

23 0.96 

TPH1 11 18 0.72 

 

18 0.17 

 

18 0.15 

TPH2 12 64 0.081   65 0.12   65 0.21 

Pathway-level  258 0.024   223 0.21   263 0.0060
*
 

*
Statistically significant after Bonferroni correction (p < 0.05/8=0.00625 at pathway level; p < 0.05/60=0.00083 at gene level) 2 

P-value<0.05 in bold 3 

4 
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Table 4. SNPs in AANAT and NPAS2 with prostate cancer with meta-analyses p-value < 0.01 1 

    Allele      GAME-ON (ELLIPSE)   PLCO   Fixed-effect meta-analyses 

SNP Loc Ref Effect  RAF
*
   β P   β P   β P 

Gene: AANAT               

rs150316415 74475409 G A  0.94 

 

0.34 4.33×10
-3

 

 

0.25 2.15×10
-3

 

 

0.28 3.41×10
-5

 

rs3744045 74475024 G A  0.08 

 

-0.27 5.04×10
-3

 

 

-0.21 2.85×10
-3

 

 

-0.23 4.80×10
-5

 

rs61742551 74472998 G A  0.98 

 

N/A N/A 

 

0.41 8.12×10
-4

 

 

0.41 8.12×10
-4

 

rs9894765 74456426 G C  0.24 

 

-0.07 0.16 

 

-0.10 2.11×10
-2

 

 

-0.09 7.14×10
-3

 

rs12945905 74456758 C T  0.80 

 

0.13 1.67×10
-2

 

 

0.07 0.14 

 

0.09 8.08×10
-3

 

    

  

         Gene: NPAS2               

rs1542178 101595475 G A  0.67   -0.08 6.50×10
-4

   -0.09 9.88×10
-3

   -0.08 2.03×10
-5

 

rs2305160 101591304 G A  0.67   -0.08 7.70×10
-4

   -0.09 1.52×10
-2

   -0.08 3.47×10
-5

 

rs2305159 101591443 C A  0.32   -0.08 4.84×10
-4

   -0.04 0.24   -0.07 3.37×10
-4

 

rs1542179 101595235 G A  0.32   -0.08 5.50×10
-4

   -0.04 0.28   -0.07 4.55×10
-4

 

rs4851392 101581976 G A  0.74   -0.07 2.26×10
-3

   -0.06 8.68×10
-2

   -0.07 4.71×10
-4

 

rs13019460 101461099 G C  0.21   -0.06 0.18   -0.13 1.70×10
-3

   -0.10 1.24×10
-3

 

rs6747874 101578489 G A  0.74   0.08 2.77×10
-3

   0.05 0.19   0.07 1.27×10
-3

 

rs6747755 101578458 G A  0.74   0.08 3.18×10
-3

   0.05 0.19   0.07 1.46×10
-3

 

rs12622050 101579454 G A  0.76   0.08 2.47×10
-3

   0.05 0.27   0.07 1.65×10
-3

 

rs12619710 101579487 C T  0.26   -0.07 3.56×10
-3

   -0.05 0.21   -0.07 1.73×10
-3

 

rs2278728 101598312 C T  0.32   -0.07 2.02×10
-3

   -0.04 0.33   -0.06 1.80×10
-3

 

rs876060 101576964 T A  0.24   -0.08 2.47×10
-3

   -0.04 0.31   -0.07 1.92×10
-3

 

rs13012930 101460947 G A  0.82   0.04 0.18   0.15 9.93×10
-4

   0.08 2.56×10
-3

 

rs4851391 101579811 G C  0.24   -0.07 6.25×10
-3

   -0.05 0.26   -0.06 3.60×10
-3

 

rs4851377 101522266 C T  0.46   -0.05 5.54×10
-2

   -0.07 3.33×10
-2

   -0.06 4.98×10
-3

 

rs13017728 101481348 G T  0.09   -0.10 0.1.8   -0.15 1.24×10
-2

   -0.13 5.42×10
-3

 

rs965519 101470349 G A  0.18   -0.04 0.22   -0.13 2.53×10
-3

   -0.07 6.15×10
-3
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rs2309993 101499264 C T  0.67   0.07 0.10   0.08 3.24×10
-2

   0.07 7.25×10
-3

 

rs4851386 101566938 C T  0.52   -0.05 3.58×10
-2

   -0.06 9.42×10
-2

   -0.05 7.48×10
-3

 

rs3739006 101566184 G A  0.52   -0.04 4.22×10
-2

   -0.06 8.14×10
-2

   -0.05 7.91×10
-3

 

rs4851385 101566323 G C  0.48   0.04 4.22×10
-2

   0.06 8.14×10
-2

   0.05 7.91×10
-3

 

rs3739005 101566070 C T  0.48   0.05 3.46×10
-2

   0.05 0.13   0.05 9.19×10
-3

 
*
Reference allele frequency. The frequencies are calculated from 503 European subjects in the 1000 Genomes data.   1 
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 Supplementary Table 1. Population and design of each contributed study 

Cancer Study Locations Design 

Initial analytical data in GAME-ON 

Colon & Rectum MECC US Cohort 

(CORECT) CFR US Cohort 

 

Kentucky US Pop. CC 

 

CPS-II/ACS US Cohort 

 

Melbourne Australia Cohort 

 

Newfoundland  Canada Pop. CC 

    Lung MDACC US Hospital CC 

(TRICL) ICR UK Hospital CC 

 

Toronto Canada Clinic CC 

 

IARC Europe Hospital CC 

 

GLC German Pop. CC 

 

NCI US Pop. CC and nested CC 

    Ovary UKGWAS UK CC 

(FOCI) USGWAS US, Canada, Poland CC 

 

U19 US CC 

    Prostate BPC3 US CC, nested CC 

(ELLIPSE) CRUK1 UK CC 

 
CRUK2 UK CC 

 
CAPS1 Sweden CC 

 

CAPS2 Sweden CC 

    Replication data 

   Prostate (PLCO) PLCO US Nested CC 
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CC: case-control 

 

  

    Colon & Rectum 

   (GECCO) ASTERISK  France Hospital CC 

 

COLO23   US Pop. CC 

 

DACHS1    Germany Pop. CC 

 

DACHS2    Germany Pop. CC 

 

DALS1     US Pop. CC 

 

DALS2  US Pop. CC 

 

HPFS1     US Nested CC 

 

HPFS2 
US Nested CC 

 

HPFSad    US Nested CC 

 

MEC       US Nested CC 

 

NHS1     US Nested CC 

 

NHS2      US Nested CC 

 

NHSad     US Nested CC 

 

OFCCR  Canada Pop.CC 

 
PHS1P2 US Nested CC 

 

PLCO1     US Nested CC 

 

PLCO2    US Nested CC 

 

PMH      US Pop. CC 

 

VITAL     US Nested CC 

 

WHI1      US Nested CC 

 

WHI2      US Nested CC 
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Supplementary table 2. Gene- and pathway-based p-values for overall and aggressive prostate cancer 

  

 

Combined results 

 

Aggressive prostate 

  

(14818 cases, 14227 

controls) 

 

(up to 4446 cases, 12724 

controls) 

Gene Chr N.SNPs P-value   N.SNPs P-value 

Circadian rhythm pathway 

    ARNTL 11 80 0.29 

 

80 0.54 

CK1E 22 48 0.30 

 

48 0.58 

CLOCK 4 24 0.021 

 

24 0.093 

CRYI 12 35 0.55 

 

35 0.87 

CRY2 11 20 0.043 

 

20 0.57 

NPAS2 2 167 0.0062 

 

167 0.18 

PER1 17 30 0.063 

 

30 0.70 

PER2 2 50 0.060 

 

50 0.23 

PER3 1 67 0.24 

 

67 0.030 

Pathway-level 521 0.0016
*
   521 0.29 

       Melanotin pathway 

     AANAT 17 38 0.00078
*
 

 

38 0.47 

DDC 7 84 0.050 

 

84 0.49 

MTNR1A 4 35 0.35 

 

35 0.22 

MTNR1B 11 23 0.96 

 

23 0.32 

TPH1 11 18 0.15 

 

18 0.96 

TPH2 12 65 0.21 

 

65 0.35 

Pathway-level  263 0.0060
*
   263 0.66 

*
Statistically significant after Bonferroni correction (p < 0.05/8=0.00625 at pathway level; p < 0.05/60=0.00083 at gene level) 

P<0.05 in bold 
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Supplementary Table 3. Comparison of SNP-based results between overall and aggressive prostate cancer
*
  

  Allele Overall Aggressive 

Gene SNP
*
 Ref

**
 Eff

**
 log(OR) SE P-value log(OR) SE P-value 

Circadian rhythm pathway 

CLOCK rs62309758 T C -0.09 0.03 1.45E-03 -0.09 0.04 7.57E-03 

CRY2 rs7108730 T C 0.08 0.03 3.66E-03 0.06 0.04 1.05E-01 

NPAS2 rs2305160 A G 0.08 0.02 3.47E-05 0.06 0.03 3.00E-02 

Melatonin pathway 

AANAT rs150316415 G A 0.28 0.07 3.41E-05 0.16 0.08 6.49E-02 

DDC rs12718611 G A -0.11 0.04 1.72E-03 -0.07 0.05 1.12E-01 
*
SNPs with the smallest p-value in the genes with Pgene≤0.05, based on association with overall prostate cancer.

 

**
reference and effect alleles 
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Supplementary table 4. Gene- and pathway-based p-values for colorectal cancer in GAME-ON and replication samples 

    Game-ON (CORECT)   GECCO     Combined results 

  

(5100 cases, 4831 controls) 

 

(10738 cases, 13328 controls) 

 

(15838 cases, 18159 controls) 

Gene Chr N.SNPs P-value   N.SNPs P-value   N.SNPs P-value 

Circadian rhythm pathway 

       ARNTL 11 114 0.0044 

 

113 0.78 

 

140 0.028 

CK1E 22 38 0.14 

 

55 0.18 

 

68 0.24 

CLOCK 4 47 0.18 

 

35 0.34 

 

53 0.11 

CRYI 12 56 0.81 

 

47 0.83 

 

73 0.95 

CRY2 11 35 0.64 

 

32 0.85 

 

41 0.91 

NPAS2 2 202 0.011 

 

212 0.82 

 

245 0.51 

PER1 17 47 0.60 

 

38 0.44 

 

53 0.55 

PER2 2 54 0.63 

 

54 0.40 

 

68 0.59 

PER3 1 60 0.68   84 0.15   101 0.047 

Pathway-level   653 0.021   670 0.76   842 0.17 

          Melatonin pathway 

        AANAT 17 53 0.59 

 

52 0.85 

 

61 0.91 

DDC 7 119 0.89 

 

115 0.58 

 

147 0.74 

MTNR1A 4 60 0.18 

 

61 0.86 

 

72 0.30 

MTNR1B 11 33 0.92 

 

34 0.87 

 

45 0.96 

TPH1 11 20 0.029 

 

22 0.27 

 

27 0.068 

TPH2 12 67 0.77   92 0.0064   107 0.013 

Pathway-level 352 0.24   376 0.066   459 0.091 

 P<0.05 in bold. None of gene based or pathway based p values reached Bonferroni corrected significance  
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Supplementary table 5. Gene- and pathway-based p-values for lung and ovarian cancers in GAME-ON 

   

Lung cancer 

(12537 cases, 17285 controls) 

 

Ovarian cancer 

(4369 cases, 9123 controls) 

Gene Chr   N.SNP
*
 P-value   N.SNP

*
 P-value 

Circadian rhythm pathway 

ARNTL 11 

 

78 0.18 

 

80 0.58 

CK1E 22 

 

47 0.35 

 

48 0.024 

CLOCK 4 

 

24 0.19 

 

24 0.20 

CRYI 12 

 

33 0.40 

 

35 0.29 

CRY2 11 

 

18 0.52 

 

20 0.13 

NPAS2 2 

 

165 0.56 

 

167 0.046 

PER1 17 

 

29 0.35 

 

30 0.87 

PER2 2 

 

50 0.87 

 

50 0.54 

PER3 1   66 0.90   67 0.68 

Pathway-level   510 0.71   521 0.14 

Melatonin pathway 

      AANAT 17 

 

30 0.63 

 

38 0.14 

DDC 7 

 

82 0.089 

 

84 0.10 

MTNR1A 4 

 

35 0.93 

 

35 0.20 

MTNR1B 11 

 

21 0.85 

 

23 0.64 

TPH1 11 

 

17 0.23 

 

18 0.21 

TPH2 12   58 0.048   65 0.75 

Pathway-level   243 0.22   263 0.26 

*SNP numbers after the LD pruning, using r
2
>0.95 

P<0.05 in bold. None of gene- or pathway-level p-values reached the Bonferroni correction threshold of significance.  
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